基于ADS的微带缝隙天线的仿真设计..

合集下载

ADS仿真天线详细过程

ADS仿真天线详细过程

如何进行ADS的天线仿真:1.建立工作环境2.Option->Technology-> Technology Setup,修改单位,这一步要在建立PCB之前进行,而且更换时不能打开原理图和PCB文档。

3.新建layout文件,修改网格,暂时不改layout layer设置。

建立微带片和PIN。

4.设置基片所需的材料文件,也是options->technology中,在包括copper(铜皮)和FR4文件。

5.对基片布局进行设置1)整体2)微带片3)基片4)GND层6.Port端口7.EM设置,可以看到之前设置的基片、端口是否正确,如果有误则显示黄色叹号。

不出现黄色叹号就说明可以正常仿真。

这里还有扫频设置。

设置OK就可以simulate。

8.仿真结果,以及一些相关设置界面。

此时封装这个S参数的仿真结果,用于原理图仿真。

注意需要设置的地方。

进入其他结果界面之前,需要进行端口参数设置。

包括频率值,端口电平和阻抗参数。

完成后apply,然后compute。

结果如下:暂时对这些参数不是很了解仔细,目前比较关注的是S11和效率,而从这个看了,ADS 没有提供直接的效率值,但是有G和D,我们可以通过G/D*100%了解到效率值。

下面我们来了解其如何实现匹配的。

1.首先,从仿真结果中或者在频点(2.4G)的阻抗参数。

如上:Z=Z0*(4.135+j2.118)2.在原理图界面,打开smith chart工具3.下一步就是在smith中进行匹配了。

这部分设置比较多,如下,注意的是对负载阻抗的设置,这个是根据我们前面求出的天线的输入阻抗值进行的设置。

4.开始进行匹配。

这里有个技巧:在上面设置完之后,首先,我们选择左边的微带线串联器件,然后在smith 中任意位置单击,确定一个值。

再在右边的原理窗口,单击选中放置的微带器件,发现下面有两个选项可以修改,就是Z0和Value,这两个就是微带传输线的阻抗和电长度,是微带匹配的关键参数。

利用ADS和HFSS仿真微带天线案例

利用ADS和HFSS仿真微带天线案例

利用ADS和HFSS仿真微带天线案例01矩形微带天线设计原理在工程上,微带天线采用传输模法设计,在PCB板上实现,如图1(a)所示:L是微带天线长边,电场正弦变化;W是其宽边,天线的辐射槽便是宽边的边沿;ΔL是由边沿电容引起的边沿延伸。

图1(b)给出其等效电路图,可看成源阻抗通过长为L+2ΔL的传输线与负载阻抗ZL 相连,其中ZS=ZL是辐射槽的阻抗;Zin是从输入端口位置的辐射槽向里看的输入阻抗,即不包含第一个辐射槽阻抗在内的输入阻抗。

由具有任意负载阻抗的一段传输线的输入阻抗公式可得(微波工程51页):其中,Z0为宽度W的微带线的特性阻抗,β为传播常数。

谐振时,把(2)带入(1)式得到:Zs=Zin=ZL。

这也表明半波长线不改变负载阻抗。

ΔL、εe由以下两个式子确定。

其中,W为微带天线的宽边;h为介质板的厚度;εr为相对介电常数。

W值不是很关键,通常按照下面的式子确定:02矩形微带天线ADS仿真设计。

要求:PCB基片εr=3.5,厚度h=1mm,导体厚度T=0.035mm,工作频率3GHz,输入阻抗50Ω。

2.1 几何参数计算根据式(2)-(5)计算天线几何参数。

2.2 馈线设计、ADS LineCalc工具使用(1)启动LineCalc,如图2所示。

(2)Substrate Parameters 栏中,设置PCB参数;Component Parameters 栏中,设置频率;Electrical 栏中设置阻抗和电长度。

具体设置如下:相对介电常数Er: 3.5介质厚度H: 1mm导体厚度T:0.035mm工作频率Freq:3GHz特征阻抗Z0=50Ω电长度E_Eff:180°其他为默认值。

(3)设置完成后,将Physical 栏中W和L的单位改成mm,然后点击Synthesize 栏下的“向上箭头”按钮,在Physical 栏中得到馈线的宽度为2.219360mm,长度为30.162200mm。

基于ADS的微带缝隙天线的仿真设计

基于ADS的微带缝隙天线的仿真设计

课程设计说明书题目:基于ADS的微带缝隙天线的仿真设计学院(系):年级专业:学号:学生姓名:指导教师:教师职称:基于ADS的微带缝隙天线的仿真设计摘要:通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,具有广阔的前景与实用意义。

特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。

本文就设计一个中心频率工作为880MHz,相对带宽为B=5%,介质板厚度h=1.6mm,损耗角正切tanδ=0.0018,介电常数为Er=2.3的微带缝隙天线展开研究以及仿真和优化。

关键词:ADS;微带缝隙天线;仿真设计;Design of microstrip slot antenna based on ADSsimulationAbstract: Communication system development has brought the antenna the vitality of the industry, in many types of antenna microstrip antenna has become one of the forefront of current research, has broad prospects and practical significance. Microstrip slot antenna, in particular, with its light weight, thin section, flat structure and easy with conformal carrier, feeding the advantages of network can be made with the antenna structure has caused extensive concern of antenna workers. In this paper, the design of a work center frequency is 880 MHZ, relative bandwidth is B = 5%, medium plate thickness h = 1.6 mm, loss tangent tan delta = 0.0018, the dielectric constant of Er = 2.3 microstrip slot antenna study and simulation and optimization.Key words: ADS; Microstrip slot antenna. The simulation design;学习目的1. 学习射频电路的理论知识;2. 掌握ADS并可以设计微带天线;3. 通过ADS设计中心频率为880MHZ,相对带宽为B=5%的微带缝隙天线;学习器件ADS(Advanced Design system)软件ADS软件介绍ADS全称Advanced Design system,是Agilent公司2008年推出新版本的EDA软件。

微带天线设计与仿真ADS

微带天线设计与仿真ADS

如有你有帮助,请购买下载,谢谢!
微波电路与系统仿真实验报告(第三次)
一、实验名称:微带天线设计与仿真
二、实验技术指标:
1.频率:3GHz附近
2.陶瓷基片:介电常数εr=9.8 厚度h=1.27mm
3.输入阻抗:50Ω
三、报告日期:2011年10 月13 日
四、报告页数:共5 页
五、报告内容:
1.电路原理图(原理图应标明变量名称的含义,可用文字表述或画图说明)
2.电路图(利用ADS创建的电路图,可用屏幕截图)
这是微带天线未匹配的结构图:
这是输入匹配电路的原理图:
3.仿真结果(可用图形或数据显示)
这是未加入匹配电路的仿真结果:
4.布局图
这是加入匹配电路之后的布局图:
5.优化方法和优化目标(可用屏幕截图)
6.优化之后的电路图和仿真结果
优化之后的仿真结果之一:S11
方向图:
增益与方向性系数以及效率:
六、仿真结果分析
可以看出,微带天线的设计主要是参数的调节和匹配网络的优化,较小的反射系数可以使天线的效率更高,增益更大。

微带天线在半空间具有较好的全向性,但是增益低。

签名:赵翔
日期:2010年10月13日
1页。

实验七微带缝隙天线仿真设计

实验七微带缝隙天线仿真设计

杭州电子科技大学
《通信天线实验》
课程实验报告
实验七 :微带缝隙天线仿真设计
微带缝隙天线仿真设计:
1.实验目的
1、了解微带缝隙天线的概念。

2、掌握MWO EM structure仿真方法。

3、掌握天线基本参数及优化设计方法。

2.实验内容
完成样例微带缝隙天线EM仿真设计。

1、创建 EM structure
2、建立 an enclosure
3、创建层
4、定义端口配置计算网格
5、观察电流密度和电场强度
6、观察smith圆图和方向图
7、执行频率扫描 (AFS)
8、将EM structure添加到原理图并仿真
3. 实验结果
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

基于ADS的微带天线设计

基于ADS的微带天线设计

射频实验报告(5)班级:信息83学号:08058017姓名:何彬实验要求:作业:设计、制作一中心频率为2.45GHz 的微带天线,天线采用50Ohm 微带线馈电,扫频范围:2.2GHz-2.7GHz 。

板材参数:H:基板厚度(1.5 mm), Er:基板相对介电常数(2.65) Mur:磁导率(1), Cond:金属电导率(5.88E+7) Hu:封装高度(1.0e+33 mm), T:金属层厚度(0.035 mm) TanD:损耗角正切(1e-4), Roungh:表面粗糙度(0 mm)报告要求:(1)简单叙述微带天线工作原理; (2)给出微带天线的版图尺寸;(3)给出版图仿真结果,并对其结果进行分析;(4)制作该天线,进行测试,给出天线的驻波测试结果,分析误差原因。

一、 实验原理:微带天线:参数计算方法:zyL/2g 的微带辐射单元与接地板之间的场分布微带辐射单元四周的场分布二、数值计算:据经验公式计算各微带的数值为: W =45.3 mm, L=40.2 mm;W1=0.52 mm, L1=21.86 mm; W2=4 mm, L2=20.64 mm.三、根据算得的数据进行设计:根据数据设计版图为:⎪⎪⎩⎪⎪⎨⎧==20220212029022λλW W G Y inW>λ0W ≤λ0)2(20L L cf e ∆+=ε2/10122⎪⎪⎭⎫⎝⎛+=r f c W ε()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++-+=∆⎪⎭⎫ ⎝⎛+-++==-8.0/264.0/258.03.0412.012121211202/10h W h W hL W h W h Z e e r r eeεεεεεεπ版图仿真结果:由仿真结果可以看见中心频率不对,比预期的2.45G要低。

另一种仿真:首先只画天线辐射贴片仿真结果为:可以看出直接由经验公式算出的贴片参数是不能满足要求的,需要进行改动:设W=45mm,L=37.1mm。

基于ADS的微带天线的设计与仿真设计

基于ADS的微带天线的设计与仿真设计

基于ADS的微带天线的设计与仿真The design and simulation of PIFA based on ADS 王伟堃(Wang Weikun)06250109计算机与通信学院本科生毕业设计说明书基于ADS的微带天线的设计与仿真作者:王伟堃学号:06250109专业:通信工程班级:06级通信工程(1)班指导教师:侯亮答辩时间:2010年6月15日平面倒F天线(PIFA,Planar Inverted F Antenna)主要应用在手机终端中,由于其体积小、重量轻、成本低、性能好,符合当前无线终端对天线的要求,因而得到广泛的应用,进行了许多研究工作。

先进设计系统(Advanced Design System),简称ADS,是安捷伦科技(Agilent)为适应竞争形势,为了高效的进行产品研发生产,而设计开发的一款EDA软件。

软件迅速成为工业设计领域EDA软件的佼佼者,因其强大的功能、丰富的模板支持和高效准确的仿真能力(尤其在射频微波领域),而得到了广大IC设计工作者的支持。

ADS可以模拟整个信号通路,完成从电路到系统的各级仿真。

它把广泛的经过验证的射频、混合信号和电磁设计工具集成到一个灵活的环境中,包括从原理图到PCB 板图的各级仿真,当任何一级仿真结果不理想时,都可以回到原理图中重新进行优化,并进行再次仿真,直到仿真结果满意为止,保证了实际电路与仿真电路的一致性。

本设计通过ADS软件对微带天线进行设计,设计了平面倒F天线,即PIFA天线的设计以与利用Hilbert分型结构对天线小型化设计。

论文主要包括:PIFA天线的介绍,ADS软件的使用,PIFA天线的设计以与仿真,优化与结果分析等容。

论文结构安排如下:第一章绪论;第二章FIFA天线原理与介绍;第三章ADS软件的使用;第四章PIFA天线的设计;第五章仿真优化与结果分析。

第一章介绍了本设计要解决的问题,提出了用ADS软件设计PIFA天线。

ADS天线匹配仿真设计

ADS天线匹配仿真设计

ADS天线匹配仿真设计1打开ADS并新建一个工程文件点击Create A New Project,将弹出下面的对话框:这里要注意两点:1、Project Technology Files一定要选择正确的单位,一般选择millimeter2、文件路径请不要带有中文和空格,在default\后面输入工程(Project)的名称。

这里我们将要建立的工程命名为“AntennaMatching”,点击OK建立工程。

2建立、保存电路图文件工程建立后会自动弹出电路图(Schematic)文件,如图所示:注意:此时电路图文件还未保存。

在进行设计之前,建议先保存电路图文件。

若电路图文件未自动弹出,可以新建一个,具体方法如图:点击之后会新建一个未命名的电路图文件,先命名并保存为Matching1.(在ADS中,所有的电路图文件后缀名是.dsn)3创建一个一端口电路的仿真为了生成一个合适的s1p文件(后面用来放入仿真或测试得到的天线无源参数),这里先进行一个任意的一端口电路仿真,并生成.s1p文件。

注意:这个方法只针对无法直接得到.s1p的情况。

若电磁仿真软件和矢网能够生成一端口s1p文件,则可跳过此步。

另外,该方法对两端口网络的其中任何一个端口都是同样适用的。

选择Tlines-Ideal中的TLIN元件(理想传输线,会和实际传输线有所差别)并将其拖拽放置到电路图中。

双击可以改变这段理想传输线的参数:这里我们可以用默认的参数即可。

为了得到这个一端口网络的S参数,我们要加入S参数仿真控制器和端口:在左上角下拉菜单中选择“Simulation-S_Param”选择其中的S P和Term两个元件,拖拽加入电路图文件中,并将T erm接地:连接完成后电路图如图所示:此时需要设置S参数仿真的频率,请按照实际测试的频率范围设置,比如这里设置700MHz到2.3GHz,选取201个仿真点。

双击S-Parameters仿真控制器进行设置:设置完成后点击F7,或者下面的图标开始仿真:仿真完成之后,在菜单中选择Tools>Data File Tool,弹出下列对话框:如图所示设置参数,将仿真的文件写入到一个名叫Antenna1.s1p 的文件中,点击Write to File可产生此文件。

ADS设计缝隙天线1

ADS设计缝隙天线1

课程设计说明书题目:基于ADS的微带缝隙天线的仿真设计学院(系):年级专业:学号:学生姓名:指导教师:教师职称:燕山大学课程设计(论文)任务书院(系): 基层教学单位: 学 号 学生姓名 专业(班级)设计题目 基于ADS 的微带缝隙天线的仿真设计设计技术参数计微带缝隙天线的中心频率工作为900MHz相对带宽为B=15% 介质板厚度h=1.6mm 损耗角正切tanδ=0.0018 介电常数为E r =2.3 设计要求 1. 了解微带天线设计的基本流程,掌握微带缝隙天线的设计方法 2. 掌握ADS Momentum 在缝隙天线设计中的使用方法。

工作量两周工作日左右每个工作日四到六小时工作计划2011/11/20-2011/11/23 选定课题并查阅相关资料 2011/11/24-2011/11/26 设计课题步骤并上机实践 2011/11/27-2011/11/30 整理数据,完成分析 2011/12/01-2011/12/03 撰写课程设计任务书 参考资料1.徐兴福.ADS2008射频电路设计与仿真实例.电子工业出版社.20092.陈艳华 李朝晖 夏玮.ADS 应用详解——射频电路设计与仿真. 人民邮电出版社,2008.93.黄玉兰.ADS 射频电路设计基础与典型应用. 人民邮电出版社,2010.14.[美]Reinhold Ludwing 著.射频电路设计——理论与应用. 电子工业出版社,2003.5 指导教师签字 基层教学单位主任签字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

年 月 日基于ADS的微带缝隙天线的仿真设计ADS based design and Simulation of microstrip slotantenna摘要:随着新时代高新技术的发展,微带天线已经受到越来越多的关注。

它一般应用在1~50GHz频率范围,特殊的天线也可用于几十兆赫,但和常用微波天线相比其体积小,重量轻,低剖面,能与载体(如飞行器)共形,电性能多样化。

基于ADS智能穿戴设备蓝牙微带天线设计与优化

基于ADS智能穿戴设备蓝牙微带天线设计与优化

Design of Bluetooth Micros-trip Antenna Based on ADS
KONG Shu-miao Guangdong Appscomm Co.,Ltd,GuangdongGuangzhou,510000
Abstract: Wearable device is a kind of technology and equipment, to blend in electronics or computer can easily wear in physical clothing and accessories, including health and fitness of tracking information, etc. In general, intelligence can be worn equipment there will be some form of communication ability and will allow users to real-time access to information, usually this kind of communication using Bluetooth technology, locally stored data via Bluetooth transmission to the mobile phone and upload the cloud. Other intelligent wearable technology equipment including the motion sensor photo and synchronization of mobile devices, such as watches, glasses, smart textiles, hair band, thin sections and hats, jewelry, such as bracelets, rings, earrings, etc. A patch antenna is a narrowband antenna fabricated by etching the antenna element pattern in metal trace bonded to an insulating dielectric substrate, such as a printed circuit board, with a continuous metal layer bonded to the opposite side of the substrate which forms a ground plane. Advantages of micros-trip antennas include: low cost to fabricate, light weight, simple structure, easy to process. In this paper, by using ADS software on Bluetooth 2.4 GHz frequency micros-trip antenna design and simulation optimization. Key word : micros-trip antenna , wearable device ,Bluetooth ,ADS(advanced design system),optimize

用ADS设计微带天线

用ADS设计微带天线

用ADS 设计微带天线一、原理本微带天线采用矩形微带贴片来进行设计。

假设要设计一个在2.5GHz 附近工作的微带天线。

我采用的介质基片,εr= 9.8, h=1.27mm 。

理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。

并且带宽相对较高。

由公式:2/1212-⎪⎭⎫ ⎝⎛+=r r f c W ε=25.82mm贴片宽度经计算为25.82mm 。

2/11212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε=8.889;()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w h l e e εε∆l=0.543mm ; 可以得到矩形贴片长度为:l f cL e r ∆-=22ε=18.08mm馈电点距上边角的距离z 计算如下:)2(cos 2)(cos 2)(501022z R z G z Y e r in ⨯===λεπβ22090W R r λ=(0λ<<W 条件下)得到:z=8.5966mm利用ADS 自带的计算传输线的软件LineCalc 来计算传输线的宽度,设置如下:计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。

二、计算基于ADS系统的一个比较大的弱点:计算仿真速度慢。

特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。

判断计算值是否能符合事实。

sonnet中的仿真电路图如下:S11图象如下:可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。

但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。

主要的近似是下面公式引起22090W R r λ=(0λ<<W 条件下)因为计算的时候没有符合0λ<<W 的条件(W=25.82mm ,而λ0=120mm ,相对之下,它们间的差距不是非常大),因此会引起和事实的不符。

用ADS设计微带天线

用ADS设计微带天线

用ADS 设计微带天线一、 原理本微带天线采用矩形微带贴片来进行设计。

假设要设计一个在附近工作的微带天线。

我采用的介质基片,εr= , h=。

理由是它的介电系数和厚度适中,在附近能达到较高的天线效率。

并且带宽相对较高。

由公式:2/1212-⎪⎭⎫ ⎝⎛+=r r f c W ε=贴片宽度经计算为。

2/11212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε=;()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w hle e εεl=;可以得到矩形贴片长度为:l f c L er ∆-=22ε=馈电点距上边角的距离z 计算如下:)2(cos 2)(cos 2)(501022z R z Gz Y er in ⨯===λεπβ22090W R r λ=(0λ<<W 条件下)得到:z=利用ADS 自带的计算传输线的软件LineCalc 来计算传输线的宽度,设置如下:计算结果:在这类介质板上,时候50Ω传输线的宽度为。

计算基于ADS系统的一个比较大的弱点:计算仿真速度慢。

特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。

判断计算值是否能符合事实。

sonnet中的仿真电路图如下:S11图象如下:可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。

但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。

主要的近似是下面公式引起22090W R r λ=(0λ<<W 条件下)因为计算的时候没有符合0λ<<W 的条件(W=,而λ=120mm ,相对之下,它们间的差距不是非常大),因此会引起和事实的不符。

由于较为符合设想的结果,下面是本人利用ADS 软件来进行天线的计算: 首先,打开一个layout 文件,设定其单位如下:然后打开Momentum/Substrate/Create/Modify,参数设置如下:再设置Metallization Layers上参数如下;原始图画如下:各个参数定义如图,经过仿真,得到如下图象:得到了和sonnet仿真类似的图象,此时在下,S11=Z0+然后进行远区场的模拟(在时候):主要的功率增益,方向性系数和效率图如下:在0度的时候,天线增益为,方向性为。

用ADS设计微带天线

用ADS设计微带天线

用ADS 设计微带天线一、原理本微带天线采用矩形微带贴片来进行设计。

假设要设计一个在2.5GHz 附近工作的微带天线。

我采用的介质基片,εr= 9.8, h=1.27mm 。

理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。

并且带宽相对较高。

由公式:2/1212-⎪⎭⎫⎝⎛+=r r f c W ε=25.82mm贴片宽度经计算为25.82mm 。

2/11212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε=8.889;()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w hle eεε∆l=0.543mm ; 可以得到矩形贴片长度为:l f c L er ∆-=22ε=18.08mm馈电点距上边角的距离z 计算如下:)2(cos 2)(cos 2)(501022z R z Gz Y er in ⨯===λεπβ22090W R r λ=(0λ<<W 条件下)得到:z=8.5966mm利用ADS 自带的计算传输线的软件LineCalc 来计算传输线的宽度,设置如下:计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。

二、计算基于ADS系统的一个比较大的弱点:计算仿真速度慢。

特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。

判断计算值是否能符合事实。

sonnet中的仿真电路图如下:S11图象如下:可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。

但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。

主要的近似是下面公式引起22090W R r λ=(0λ<<W 条件下)因为计算的时候没有符合0λ<<W 的条件(W=25.82mm ,而λ0=120mm ,相对之下,它们间的差距不是非常大),因此会引起和事实的不符。

由于较为符合设想的结果,下面是本人利用ADS 软件来进行天线的计算: 首先,打开一个layout 文件,设定其单位如下:然后打开Momentum/Substrate/Create/Modify,参数设置如下:再设置Metallization Layers上参数如下;原始图画如下:各个参数定义如图,经过仿真,得到如下图象:得到了和sonnet仿真类似的图象,此时在2.5GHz下,S11=Z0(3.118+j4.771)然后进行远区场的模拟(在2.5GHz时候):主要的功率增益,方向性系数和效率图如下:在0度的时候,天线增益为4.142dB,方向性为5.702dB。

用ADS设计微带天线

用ADS设计微带天线

用ADS 设计微带天线一、原理本微带天线采用矩形微带贴片来进行设计。

假设要设计一个在2.5GHz 附近工作的微带天线。

我采用的介质基片,εr= 9.8, h=1.27mm 。

理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。

并且带宽相对较高。

由公式:2/1212-⎪⎭⎫⎝⎛+=r r f c W ε=25.82mm贴片宽度经计算为25.82mm 。

2/11212121-⎪⎭⎫ ⎝⎛+-++=w h r r e εεε=8.889;()()()()8.0/258.0264.0/3.0412.0+-++=∆h w h w hle e εε∆l=0.543mm ;可以得到矩形贴片长度为:l f c L er ∆-=22ε=18.08mm馈电点距上边角的距离z 计算如下:)2(cos 2)(cos 2)(501022z R z Gz Y er in ⨯===λεπβ22090W R r λ=(0λ<<W 条件下)得到:z=8.5966mm利用ADS 自带的计算传输线的软件LineCalc 来计算传输线的宽度,设置如下:计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。

二、计算基于ADS系统的一个比较大的弱点:计算仿真速度慢。

特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。

判断计算值是否能符合事实。

sonnet中的仿真电路图如下:S11图象如下:可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。

但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。

主要的近似是下面公式引起22090W R r λ=(0λ<<W 条件下)因为计算的时候没有符合0λ<<W 的条件(W=25.82mm ,而λ0=120mm ,相对之下,它们间的差距不是非常大),因此会引起和事实的不符。

由于较为符合设想的结果,下面是本人利用ADS 软件来进行天线的计算: 首先,打开一个layout 文件,设定其单位如下:然后打开Momentum/Substrate/Create/Modify ,参数设置如下:再设置Metallization Layers上参数如下;原始图画如下:各个参数定义如图,经过仿真,得到如下图象:得到了和sonnet仿真类似的图象,此时在2.5GHz下,S11=Z0(3.118+j4.771)然后进行远区场的模拟(在2.5GHz时候):主要的功率增益,方向性系数和效率图如下:在0度的时候,天线增益为4.142dB,方向性为5.702dB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书题目:基于ADS的微带缝隙天线的仿真设计学院(系):年级专业:学号:学生姓名:指导教师:教师职称:基于ADS的微带缝隙天线的仿真设计摘要:通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,具有广阔的前景与实用意义。

特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。

本文就设计一个中心频率工作为880MHz,相对带宽为B=5%,介质板厚度h=1.6mm,损耗角正切tanδ=0.0018,介电常数为Er=2.3的微带缝隙天线展开研究以及仿真和优化。

关键词:ADS;微带缝隙天线;仿真设计;Design of microstrip slot antenna based on ADSsimulationAbstract: Communication system development has brought the antenna the vitality of the industry, in many types of antenna microstrip antenna has become one of the forefront of current research, has broad prospects and practical significance. Microstrip slot antenna, in particular, with its light weight, thin section, flat structure and easy with conformal carrier, feeding the advantages of network can be made with the antenna structure has caused extensive concern of antenna workers. In this paper, the design of a work center frequency is 880 MHZ, relative bandwidth is B = 5%, medium plate thickness h = 1.6 mm, loss tangent tan delta = 0.0018, the dielectric constant of Er = 2.3 microstrip slot antenna study and simulation and optimization.Key words: ADS; Microstrip slot antenna. The simulation design;学习目的1. 学习射频电路的理论知识;2. 掌握ADS并可以设计微带天线;3. 通过ADS设计中心频率为880MHZ,相对带宽为B=5%的微带缝隙天线;学习器件ADS(Advanced Design system)软件ADS软件介绍ADS全称Advanced Design system,是Agilent公司2008年推出新版本的EDA软件。

ADS经过多年的发展,仿真功能和仿真手法日益完善,最大的特点是集成了从IC级到电路级直至系统级的仿真模板。

它内含基于矩量法的电磁仿真模板,ADS Momentum是一种对3D进行简化的2.5D电磁仿真器,非常适合第三维上均匀变化的结构仿真,如PCB板级设计、无源板级器件设计等。

其仿真速度极快,同时保证和主流3D电磁仿真软件相当的精度。

天线基础天线的性能直接影响着整个无线通信的性能,一般来说,表征天线性能的主要参数有方向特性、增益、输入阻抗、驻波比、极化特性等。

(1)天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

(2)天线的增益天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

(3)天线的阻抗天线的输入阻抗:是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50Ohm或75Ohm。

微带缝隙天线的仿真1.设计实例设计一个中心频率工作在880MHz的微带缝隙天线,相对带宽为5%的宽带缝隙天线。

介质板的介电常数为E r=2.3,损耗角正切tanδ=0.0018,介质板厚度h=1.6mm。

本例中的微带缝隙天线采用的是偏心双线馈电方式,这种馈电方式有利于扩展天线的带宽,天线的模型如图1所示。

图1偏心双线馈电的微带缝隙天线2.ADS仿真具体步骤(1)新建工程在开始菜单中选择“Advanced Design System 2009 → Advanced Design System”,在主窗口,通过点击下拉菜单“File→New Project…”创建新项目,命名为“aperture_antenna”,并把单位选择成“millimeter”。

(2)设置Layout层在“本例中需要用到两个Layout层,因此首先设置两个Layout层,分别命名为c ond1和cond2。

其中,cond1是微带馈线所在的Layout层;cond2层是开缝的接地板所在的Layout层。

在Layout工作区单击鼠标右键,从弹出的的快捷菜单中单击【Layers】命令,弹出“Layer Editor”对话框,单击【Cut】按钮将默认的所有Layout层全部删除。

单击【New】按钮创建两个金属层cond1和cond2,同时为了观察方便,选择Layout中的图形以轮廓线方式显示,如图2所示。

图2 Layout层设置窗口(3)创建接地板模型①单击工具栏中的画矩形的工具,执行菜单命令【Insert】→【Coordinate Entry】,在弹出的对话框中输入矩形接地板初始坐标值(0,0),单击【Apply】按钮,输入接地板的终点(220,145),单击【OK】按钮,如图所示。

双击已经创建好的接地板图形,弹出该图形的属性对话框,如图3所示,在下拉列表中选择Layout层“cond2”。

图3 输入接地板坐标②利用矩形或多边形绘图工具创建矩形的缝隙,输入缝隙的始末坐标(57,62)和(163,83.5)。

注意,这里缝隙不能和之前创建好的接地板的Layout 层在同一层上。

双击创建好缝隙,在属性对话框中的层选项中选为“cond1”。

因为接下来将要使用Boolean Logical工具在接地板上剪出一个缝隙,而在运用Boolean Logical工具时要求两个做布尔代数的图形必须是在不同Layout层上。

③下面运用Boolean Logical工具来创建开缝隙的接地板。

按住【Ctrl】键,选择图所示中创建好的缝隙与接地板,执行菜单命令【Edit】→【Boolean Logical】,弹出“Boolean Logical Operation Between Layers”对话框,如图6所示。

Cond2层的图形减去cond1层的图形,布尔减之后的图形选择cond2作为其Layout层。

做完布尔减之后的图形如图4所示。

如图5所示是将cond2层在层设置中改成实心显示后的图。

从图中可以清晰地看出,在接地板的中心剪出了一个缝隙。

图4 做完布尔减之后的接地板图5 改为实心显示后的接地板(4)创建微带馈线模型首先用ADS中的Linecacl工具计算50Ohm的线宽和100Ohm的线宽。

经过Linecacl计算,50Ohm的线宽为5.3mm,100Ohm的线宽为1.54mm。

按照图1所示的馈线尺寸,可以使用矩形工具或多边形工具,仿照前面方法创建微带馈线,如图6所示。

确保馈线的层属性为cond1,如果Layout层不是cond1,请按前面的方法在属性对话框中将其改为cond1。

图6微带缝隙天线模型(5)创建微带基板设置执行菜单命令【Momentum】→【Substrate】→【Creat/Modify】,在弹出的对话框里设置基板的基本参数。

将介质板的厚度设置为 1.6mm,介质板的介电常数设为2.3,损耗角正切设置为0.0018,如图7所示。

图7 设置基板参数(6)Layout 层映射选择“Layout Layers”标签页,如图8所示,将cond1、cond2分别粘贴在介质板两面上,完成映射后,单击【OK】按钮。

(7)端口设置①单击工具栏中的图标,分别在cond1层及cond2层上添加一个端口。

注意:端口所在的Layout层必须和其对应的物体在同一层上,如果端口要加在cond1层上,那么该端口的Layout层属性也要设置成cond1。

②执行菜单命令【Momentum】→【Port Editor】,然后回到Layout工作区,单击添加的端口,将Port1的类型设置成“Internal”,将Port2的类型设置成“Ground Reference”。

图8 Layout层映射(6)S参数仿真设置①执行菜单命令【Momentum】→【Simulation】→【S-parameters】,弹出S参数仿真控制界面,在仿真控制界面上设置频率起始点。

②单击【Simulate】按钮,进行S参数仿真。

电磁仿真需要的时间和天线的尺寸有很大的关系,天线越大,仿真需要的时间越长。

最终仿真的S参数如图9所示。

从图中可以看出,该天线的中心频率为880MHz,中心频率出的S11达到-35.297dB,带宽范围为836~924MHz,相对带宽达到5%。

图9 仿真后的S11性能工程上习惯看电压驻波比(VSWR),因此需要在ADS中编辑VSWR公式,将S11性能转化为VSWR性能。

在数据显示窗口中,单击图标,并将其拖曳到空白的工作区,在公示栏中输入VSWR公式。

编辑完V AWR公式之后,单击【OK】按钮。

回到工具栏单击图标,将其拖曳到空白的工作区。

相关文档
最新文档