和差化积、积化和差、万能公式

合集下载

和差化积与积化和差公式、万能公式(数学技巧点拨系列)讲义(教师版)

和差化积与积化和差公式、万能公式(数学技巧点拨系列)讲义(教师版)

和差化积与积化和差公式、万能公式【知识点讲解】1、积化和差公式cos α·cos β=12[]cosα+β+cosα-β;sin α·sin β=-12[]cosα+β-cosα-β;sin α·cos β=12[]sinα+β+sinα-β;cos α·sin β=12[]sinα+β-sinα-β.2、和差化积公式sin α+sin β=2sin α+β2cosα-β2;sin α-sin β=2cos α+β2sinα-β2;cos α+cos β=2cos α+β2cosα-β2;cos α-cos β=-2sin α+β2sinα-β2.3、万能公式sin α=2tanα21+tan2α2;cos α=1-tan2α21+tan2α2;tan α=2tanα21-tan2α2.4、解题导语使用这类公式时首先要确保公式记忆正确,其实在记忆时记住关键结构再比较各种公式的不同即可有效记忆。

同时,在实际应用中要考虑两角和、两角差是否为一个特殊值再进行使用,不要盲目使用!【例题讲解】【例1】已知cos cos cos 1cos cos αβθαβ-=-.求证:222tan tan cot 222θαβ=.【分析】由21cos 1s a o t c n 2θθθ-+=,结合万能公式化简可得结果.【详解】2cos cos 11cos 1cos cos cos cos 1cos 11cos c n os ta 2αβθαβαβθβθα----+-==-+()()()()221cos 1cos tan cot 1cos 1cos 22αβαβαβ-+==+-. 【跟踪训练1】已知6tan 2αβ+=13tan tan 7αβ=,求()cos αβ-的值.【答案】23【分析】先用万能公式求出()cos αβ+的值,再根据13tan tan 7αβ=得出7sin sin 13cos cos 0αβαβ-=,最后联立可求得答案.【详解】()2222611tan12cos 561tan 12αβαβαβ+--⎝⎭+===-+++⎝⎭,则有1cos cos sin sin 5αβαβ-=-①, 又已知sin sin 13cos cos 7αβαβ⋅=,从而有7sin sin 13cos cos 0αβαβ-=②.联立①②可得cos cos 730αβ=,13sin sin 30αβ=. ∴()2cos cos cos sin sin 3αβαβαβ-=+=.【例2】计算:(1)cos 20°+cos 60°+cos 100°+cos 140°; (2)sin 20°cos 70°+sin 10°sin 50°. 【答案】(1)12 (2)14【分析】(1)利用和差化积公式计算;(2)利用积化和差公式计算. 【解析】(1)原式=cos 20°+12+(cos 100°+cos 140°) =cos 20°+12+2cos 120°cos 20°=cos 20°+12-cos 20°=12. (2)sin 20°cos 70°+sin 10°sin 50°=12(sin 90°-sin 50°)-12(cos 60°-cos 40°)=14-12sin 50°+12cos 40°=14-12sin 50°+12sin 50°=14.【跟踪训练2】利用和差化积公式,求下列各式的值: (1)sin15sin105︒+︒; (2)sin20sin40sin80︒+︒-︒; (3)cos40cos60cos80cos160︒+︒+︒+︒. 【答案】62(2)0; (3)12. 【分析】(1)利用和差化积公式化简,再利用特殊角的三角函数值计算得解. (2)利用和差化积公式化简,再利用特殊角的三角函数值结合诱导公式求解作答. (3)利用和差化积公式化简,再利用特殊角的三角函数值结合诱导公式求解作答. 【解析】(1)1510515105326sin15sin1052sincos 2sin 60cos(45)22222+-︒+︒==-=⨯=(2)sin20sin40sin802sin30cos10cos10cos10cos100︒+︒-︒=-=-=. (3)1cos40cos60cos80cos160(cos40cos80)cos202︒+︒+︒+︒=︒+︒+-︒1112cos60cos20cos20cos20cos20222=︒︒+-︒=︒+-︒=.【对点训练】一、单选题1.已知[0,],,44ππαπβ⎡⎤∈∈-⎢⎥⎣⎦,且33cos 0,22sin cos 02πααλβββλ⎛⎫--=---= ⎪⎝⎭,若4cos 5α=,则tan β=( )A .12 B .13C 3D .3【答案】A【详解】[0α∈,]π,[,]44ππβ∈-,且3cos 0ααλ--=,设3()cos f x x x λ=--,则2()3sin 0f x xα'=+,故函数()f x 在[0,]π上单调递增,且α是()f x 的一个零点.3(2)2sin cos02πβββλ---=,即3(2)cos(2)022ππββλ----=.根据2[02πβ-∈,]π,故22πβ-也是()f x的一个零点,22παβ∴=-,cos cos(22παβ∴=-2222sin cos2tan4)sin2sin cos tan15βββββββ====++,1tan2β∴=,或tan2β=(舍去),2.若tan3α=,则sin2α=()A.35B.35C.34-D.34【答案】A【详解】222222222sin cos2sin cos2tan233cossin22sin cossin cossin cos tan1315cosααααααααααααααα⨯======++++.3.已知角θ的大小如图所示,则1sin2cos2θθ+=()A.5-B.5C.15-D.15【答案】A【详解】由图可知,tan54πθ⎛⎫+=-⎪⎝⎭,()()()22222cos sin1sin2sin cos2sin cos cos sincos2cos sin cos sin cos sin cos sinθθθθθθθθθθθθθθθθθθ+++++ ===--+-tan tan1tan4tan51tan41tan tan4πθθπθπθθ++⎛⎫===+=-⎪-⎝⎭-;4.cos15° sin 105°=()A312B312C 3D 31 【答案】A 【详解】1113131cos15sin105sin 15105sin 15105sin120sin 90122222[()()][()]︒︒=︒+︒-︒-︒=︒--︒=⨯= 5.若1cos cos sin sin 2x y x y +=, 2sin 2sin 23x y +=,则()sin +=x y ( ) A .23 B .23- C .13D .13-【答案】A【详解】因为1cos cos sin sin 2x y x y +=, 所以()1cos 2-=x y ,因为2sin 2sin 23x y +=, 所以()()22sin cos 3+-=x y x y ,所以()122sin 23+⨯=x y ,所以()2sin 3+=x y , 6.已知锐角,αβ满足22,tan tan 2332πααββ+==()sin βα-=( ) A .12 B 3C 62- D 62+【答案】C【详解】由223παβ+=得23απβ+=,所以tantan 2tan 321tan tan 2αβαβαβ+⎛⎫+== ⎪⎝⎭- 又tantan 232αβ=tantan 332αβ+=由tan tan 332tan tan 232αβαβ⎧+=⎪⎪⎨⎪=⎪⎩,解得tan 232tan 1αβ⎧=⎪⎪⎨⎪=⎪⎩,或tan 12tan 23αβ⎧=⎪⎨⎪=⎩α不是锐角),tan 1β=,β是锐角,4πβ⇒=,2sin cos 2ββ==222tan2(23)12sin 21(23)1tan2ααα-===+-+,则3cos α=所以232162sin()sin cos cossin 2βαβαα--=-== 7.若0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos αα=,则cos2α的值为( )A .35B .12-C .0D .35【答案】D 【详解】因为0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos αα=,所以cos 0α≠且22sin cos cos ααα=, 解得1tan 2α=,所以2222111tan 34cos 2cos sin 11tan 514ααααα--=-===++. 二、多选题8.下列关系式中,正确的是( )A .sin5sin32sin4cos θθθθ+=B .cos3cos52sin4sin θθθθ-=-C .1sin3sin5cos4cos 2θθθθ-=- D .()()1sin ?sin cos cos 2θαθαθα⎡⎤=--+⎣⎦【答案】AD【详解】由()sin5sin 4sin4cos cos4sin θθθθθθθ=+=+,()sin3sin 4sin4cos cos4sin θθθθθθθ=-=-, ()cos5cos 4cos4cos sin4sin θθθθθθθ=+=-, ()cos3cos 4cos4cos sin4sin θθθθθθθ=-=+,代入前三项,得sin5sin32sin4cos θθθθ+=,A 正确, B 错误,右边应是2sin4sin ;θθ C 错误,右边应是2cos4sin ;θθ-选项D ,等号右边()()1cos cos 2θαθα⎡⎤=-+--⎣⎦()()1cos cos sin sin cos cos sin sin 2θαθαθαθα⎡⎤=---+⎣⎦ ()12sin sin sin sin 2θαθα=--=,故选项D 正确, 三、填空题9.已知α为锐角且tan 23tan 4απα=-⎛⎫+ ⎪⎝⎭,则sin 22πα⎛⎫+ ⎪⎝⎭的值是________. 【答案】35或-0.6 【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. 因为α为锐角,故tan 2α=.222222cos 2cos sin 1tan 143sin 2cos 221cos sin 1tan 145πααααααααα---⎛⎫+======- ⎪+++⎝⎭10.π3π5πcos cos cos 777++=____.【答案】12或 0.5 【详解】 原式1πππ3ππ5π(2sin cos 2sin cos 2sin cos )π7777772sin 7=++ 12π4π2π6π4π[sin(sin sin )(sin sin )]π777772sin7=+-+- 6πsin7π2sin7=ππsin(π)sin 177ππ22sin 2sin 77-===. 11.若sin 11cos 2αα=+,则sin cos αα+的值为________.【答案】75【详解】解:∴sin 1tan 1cos 22ααα==+, ∴222112tan1tan 2172224sin cos 151tan 1tan 1224αααααα-⨯+-+=+==+++. 12.已知tan 34πθ⎛⎫-= ⎪⎝⎭,则cos2θ=______.【答案】35-. 【详解】令4παθ=-,则4πθα=+,且tan 3α=,所以()2222232sin cos 2tan 3cos 2cos 2sin 22sin cos tan 1315παααθααααα-⨯--⎛⎫=+=-====- ⎪+++⎝⎭.13.已知()tan π2θ+=,则πsin 24θ⎛⎫+= ⎪⎝⎭________.【答案】210【详解】因为()tan π2θ+=,由诱导公式得:()tan πtan 2θθ+== 所以2222sin cos 2tan 4sin 2sin cos tan 15θθθθθθθ===++.222222cos sin cos 21tan 1431tan 14os sin 5c θθθθθθθ-==-+++-==-,ππ42322sin 2sin 2cos cos 2sin 444551π220θθθ⎛⎫⎛⎫+=+=⨯+-⨯= ⎪ ⎪⎝⎭⎝⎭.14.已知613tan()tan tan ,27αβαβ+=则cos()αβ-的值为______. 【答案】23【详解】1sin sin 132tan tan 1cos cos 7(cos()cos()]2αβαβαβαβαβ===-++, 所以10cos()cos()3αβαβ-=-+, 222261tan 1(122cos()561tan 1()2αβαβαβ+--+===-+++,所以1012cos()()353αβ-=-⨯-=. 15.利用和差化积和积化和差公式完成下面的问题:已知1210sin sin 21ωω+=,126cos cos 21ωω+=,则2121cos cos sin sin ωωωω-=-___________.【答案】53- 【详解】1212121212121210sin sin sin sin 2sincos 22222221ωωωωωωωωωωωωωω+-+-+-⎛⎫⎛⎫+=++-== ⎪ ⎪⎝⎭⎝⎭,可得12125sin cos 2221ωωωω+-=;121212*********cos cos cos cos 2cos cos 22222221ωωωωωωωωωωωωωω+-+-+-⎛⎫⎛⎫+=++-== ⎪ ⎪⎝⎭⎝⎭,可得12123cos cos 2221ωωωω+-=;则1212121212sin cos 522tan 23cos cos 22ωωωωωωωωωω+-+==+-;12121212211212121221cos cos cos cos 2222sin sin sin sin 2222ωωωωωωωωωωωωωωωωωωωω+-+-⎛⎫⎛⎫--+ ⎪ ⎪-⎝⎭⎝⎭=+-+--⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭12121212122sinsin522tan 232cos sin 22ωωωωωωωωωω+-+==-=-+--.16.2sin 20cos80cos40+= _____. 【答案】14或0.25 【详解】()222111sin 20cos80cos40sin 20cos120cos40sin 20cos40224+=++=+- ()2211sin 202cos 20124=+-- 11124=-- 14=.四、双空题17.已知角θ的终边在直线20x y -=上,则tan θ=___________;3cos 22πθ⎛⎫+= ⎪⎝⎭___________. 【答案】 12或0.545或0.8 【详解】由直线20x y -=的斜率为12,则1tan 2θ=,又232tan 4cos 2sin221tan 5πθθθθ⎛⎫+===⎪+⎝⎭. 18.已知sin α+sin β=12,cos α+cos β=13,则tan(α+β)=________,cos(α-β)=________.【答案】 125-或 2.4- 5972-【详解】sin sin sin sin 2222αβαβαββααβ+-+-⎛⎫⎛⎫+=+++⎪ ⎪⎝⎭⎝⎭sin cos cos sin sin coscossin22222222αβαβαβαβαββααββα+-+-+-+-=+++1sincossin cos22222αβαβαββα+-+-=+=, 即12sincos222αβαβ+-=①,cos cos cos cos 2222αβαβαββααβ+-+-⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭ cos cos sin sin cos cos sin sin22222222αβαβαβαβαββααββα+-+-+-+-=-+-1coscoscos cos22223αβαβαββα+-+-=+=, 即12coscos223αβαβ+-=②, ①②两式相除得3tan22αβ+=, 则232tan21222tan()951tan 124αβαβαβ+⨯+===-+--; ()2221sin sin sin sin 2sin sin 4αβαβαβ+=++=, ()2221cos cos cos cos 2cos cos 9αβαβαβ+=++=, 两式相加可得()1322cos 36αβ+-=, ()59cos cos cos sin sin 72αβαβαβ-=+=-. 五、解答题19.把下列各式化成积的形式:(1)sin 24sin36+︒︒;(2)()()sin 15sin 15αα︒+-︒-; (3)cos cos3x x +;(4)cos cos22αβαβ+--.【答案】(1)cos6︒62α+(3)2cos2cos x x (4)2sin sin 22αβ-【解析】(1)解:()s s 2in 24364362sinco 2sin 30cos 6cos6224sin 236︒+︒︒-︒︒︒==︒-︒=+︒ (2)解:()()()()()()15151515sin 15sin 152cossin 22αααααα︒++︒-︒+-︒-︒+-︒-=()622cos15sin 2cos 4530sin ααα+=︒=︒-︒=;(3)解:()32cos cos32cos cos 2cos 2cos 2cos 2cos 22x x x x x x x x x x +-+==-=; (4)解:2222cos cos 2sin sin 2222αβαβαβαβαβαβ+-+-+-+--=-2sin sin 22αβ=-.20.利用积化和差公式,求下列各式的值:(1)cos15cos75︒︒;(2)sin20sin40sin80︒︒︒.【答案】(1)143【解析】(1)解:由积化和差公式得:cos15cos75︒︒ ,()()1cos 1575+cos 15752=︒+︒︒-︒⎡⎤⎣⎦ 1cos90+cos602⎡⎤=⎣⎦14=; (2)由积化和差公式得:sin20sin40sin80︒︒︒,()()1cos 2040cos 2040sin802⎡⎤=-︒+--︒︒⎣⎦, 11sin80sin80cos 2042=-︒+, ()111sin80sin100sin 60422=-︒+⨯+, 113sin 80sin 8044=-︒+︒3= 21.计算:sin 20°cos 70°+sin 10°sin 50°. 【答案】14【详解】sin 20cos70sin10sin50⋅+⋅()()()()11sin 2070sin 2070cos 1050cos 105022⎡⎤⎡⎤=++-+--+⎣⎦⎣⎦ ()()11sin 90sin 50cos 40cos6022=-+- 111sin 50cos 40422=-+ 1111sin 50sin 504224=-+=.证明下列各恒等式:22.ππ2sin sin cos 244ααα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭; 23.1sin 20cos70sin10sin 504+=;24.1sin15sin 30sin 758=.【解析】(1)ππππ2sin sin 2sin sin 44244παααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=--- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ πππ2cos sin sin 2cos 2442αααα⎛⎫⎛⎫⎛⎫=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故ππ2sin sin cos 244ααα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭成立. (2)sin 20cos70sin10sin50+()()()()11sin 2070sin 2070cos 1050cos 105022⎡⎤⎡⎤=++-+--+⎣⎦⎣⎦ ()()11sin 90sin 50cos 40cos6022⎡⎤⎡⎤=+-+--⎣⎦⎣⎦ ()()11sin 90sin 50cos 40cos6022=-+- 11111sin 50cos 4022222=-+-⨯ 1111sin 50sin 504224=-+=, 故1sin 20cos70sin10sin 504+=成立.(3)1sin15sin 30sin 75sin15sin 752=()11sin15sin 9015sin15cos1522=-= 111sin 30228=⨯=, 故1sin15sin 30sin 758=.25.把下列各式化为积的形式: (1)sin18cos 27+;(2)sin50cos50-;(3)ππcos cos 33αα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (4)sin cos x x +.【答案】(1)2sin 40.5cos 22.5(2)2cos 45sin5(3)π2cos cos 3α (4)2sin cos()44x ππ- 【解析】 (1)18636318sin18cos 27sin18sin 632sin cos 2sin 40.5cos 22.522+-+=+== (2)500500s 442cos sin 2cos 4c 5sin in 50os50sin 50s 52in 024+-===-- (3)ππππ()πππ3333cos cos 2cos cos 2cos cos 33223ααααααα++-+--⎛⎫⎛⎫++-== ⎪ ⎪⎝⎭⎝⎭(4)()()22sin cos sin sin()2sin cos 2sin cos()22244x x x x x x x x x πππππ+---+=+-==-。

和差化积、积化和差、万能公式

和差化积、积化和差、万能公式

和差化积、积化和差、万能公式在数学的三角函数领域中,和差化积、积化和差以及万能公式是一组非常重要且实用的公式。

它们在解决各种与三角函数相关的问题时,发挥着至关重要的作用。

首先,咱们来聊聊和差化积公式。

和差化积公式包括四个,分别是:sinα +sinβ =2sin(α +β) /2cos(α β) / 2sinα sinβ =2cos(α +β) /2sin(α β) / 2cosα +cosβ =2cos(α +β) /2cos(α β) / 2cosα cosβ =-2sin(α +β) /2sin(α β) / 2这些公式的作用在于将两个三角函数的和或差转化为乘积的形式。

这在处理一些复杂的三角函数表达式时,能够大大简化计算过程。

比如说,当我们遇到形如 sin5x + sin3x 的式子,如果直接计算可能会比较困难。

但通过和差化积公式,将其转化为 2sin4xcosx,计算就会变得相对简单许多。

接下来,再看看积化和差公式。

它们是:sinαcosβ =1/2sin(α +β) +sin(α β)cosαsinβ =1/2sin(α+β) sin(α β)cosαcosβ =1/2cos(α +β) +cos(α β)sinαsinβ =-1/2cos(α +β) cos(α β)积化和差公式则是把两个三角函数的乘积形式转化为和或差的形式。

比如说,计算∫sin2xcos3xdx 这样的积分问题,如果先使用积化和差公式将sin2xcos3x 转化为和差形式,再进行积分运算,就会轻松不少。

最后,咱们来认识一下万能公式。

万能公式包括:sinα =2tan(α/2) /(1 +tan²(α/2))cosα =(1 tan²(α/2))/(1 +tan²(α/2))tanα =2tan(α/2) /(1 tan²(α/2))万能公式的厉害之处在于,它可以将任何一个三角函数用tan(α/2)来表示。

和差化积和积化和差的公式都哪些 有什么方便的记忆方法

和差化积和积化和差的公式都哪些 有什么方便的记忆方法

和差化积和积化和差的公式都哪些有什么方便的记忆方法三角函数始终都是数学学习中的一大障碍,不少人经常抱怨三角函数太杂公式太多,以下是关于三角函数中和差化积和积化和差的公式和差化积和积化和差的公式和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]记忆方法积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。

这一点最简单的记忆方法是通过三角函数的值域来判断。

sin 和cos的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域却是[-1,1],因此除以2是必须的。

也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)=2sinαsinβ故最后需要除以2。

和差化积如何只记两个公式甚至一个我们可以只记上面四个公式的第一个和第三个。

而第二个公式中的-sinβ=sin(β+π),也就是sinα-sinβ=sinα+sin(β+π),这就可以用第一个公式解决。

同理第四个公式中,cosα-cosβ=cosα+cos(β+π),这就可以用第三个公式解决。

如果对诱导公式足够熟悉,可以在运算时把cos全部转化为sin,那样就只记住第一个公式就行了。

和差化积、积化和差、万能公式

和差化积、积化和差、万能公式

正、余弦和差化积公式指高中数学三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,设α+β=θ,α-β=φ那么α=(θ+φ)/2, β=(θ-φ)/2把α,β的值代入,即得sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立注意事项在应用和差化积时,必须是一次同名三角函数方可实行。

三角函数的和差化积与积化和差的公式

三角函数的和差化积与积化和差的公式

三角函数的和差化积与积化和差的公式在三角学中,三角函数的和差化积与积化和差是非常重要的公式。

这些公式能够帮助我们简化三角函数的计算,使得求解复杂的三角函数问题变得更加容易。

在本文中,我们将详细介绍三角函数的和差化积与积化和差的公式,并给出相关的推导过程和例子。

一、三角函数的和差化积公式1. 余弦函数的和差化积公式:cos(A ± B) = cosA·cosB ∓ sinA·sinB这个公式可以表示为:两个角的余弦的和或差等于各个角的余弦的乘积减去或加上各个角的正弦的乘积。

2. 正弦函数的和差化积公式:sin(A ± B) = sinA·cosB ± cosA·sinB这个公式可以表示为:两个角的正弦的和或差等于各个角的正弦的乘积加上或减去各个角的余弦的乘积。

3. 正切函数的和差化积公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA·tanB)这个公式可以表示为:两个角的正切的和或差等于各个角的正切相加或相减,再除以1减去或加上各个角的正切的乘积。

二、三角函数的积化和差公式1. 余弦函数的积化和差公式:cosA·cosB = (1/2)·[cos(A + B) + cos (A - B)]这个公式可以表示为:两个角的余弦的乘积等于这两个角的和与差的余弦的和的一半。

2. 正弦函数的积化和差公式:sinA·sinB = (1/2)·[cos(A - B) - cos(A + B)]这个公式可以表示为:两个角的正弦的乘积等于这两个角的差与和的余弦的差的一半。

3. 正切函数的积化和差公式:tanA·tanB = (tanA + tanB) / (1 - tanA·tanB)这个公式可以表示为:两个角的正切的乘积等于这两个角的正切相加,再除以1减去这两个角的正切的乘积。

和差化积、积化和差与万能公式的应用+课件-2025届高三数学一轮复习

和差化积、积化和差与万能公式的应用+课件-2025届高三数学一轮复习




因为 ∈ , , ∈ (, ), > ,






而 = = − < ,舍去.取 = .





=
=− .



积化和差公式的应用
[例2] (1)计算sin 20∘ cos 70∘ + sin 10∘ sin 50∘ 的值是(

.

1
,sin2x
2
+ sin2y =
2
,则sin
3





因为 + = ,所以
[ + + − ] + [ + − − ] =
所以 + − =
所以 +

×

所以 + =

+


可得

= ②.



+


可得 +




= ,

从而

+
=


+


+
=

− +

=

− .



=____.

和差化积、积化和差
与万能公式的应用
一、三角函数中的积化和差与和差化积公式为:
二、万能公式:
α
sin α =
2tan 2
, cos α =

和差化积积化和差万能公式

和差化积积化和差万能公式

和差化积积化和差万能公式和差化积、积化和差以及和差万能公式是高中数学中较为重要的内容,它们在解题中具有重要的作用。

下面详细介绍这些内容。

一、和差化积和差化积是一种将两个角的和(或差)转化为一个角的积的方法。

这种方法适用于解决一些三角函数表达式的展开、简化和求值问题。

1.正弦的和差化积公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB从公式中可以看出,只需要知道sinA、sinB、cosA和cosB的值,就可以通过和差化积公式求得sin(A+B)和sin(A-B)的值。

2.余弦的和差化积公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB类似地,只需要知道sinA、sinB、cosA和cosB的值,就可以通过和差化积公式求得cos(A+B)和cos(A-B)的值。

3.正切的和差化积公式:tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)通过和差化积公式,我们可以将两个角的和(或差)转化为一个角的正切值。

4.余切的和差化积公式:cot(A+B) = (cotAcotB - 1) / (cotA + cotB)cot(A-B) = (cotAcotB + 1) / (cotA - cotB)通过和差化积公式,我们可以将两个角的和(或差)转化为一个角的余切值。

和差化积的公式可以使得我们将复杂的三角函数表达式转化为简单的一步计算,节省了计算的时间和精力。

同时,它们也有助于我们更好地理解三角函数之间的关系。

二、积化和差积化和差是和差化积的逆过程,即将两个角的积转化为一个角的和(或差)。

这种方法适用于解决一些三角函数表达式的合并、求和和简化问题。

1.正弦的积化和差公式:sinAcosB = 1/2 * [sin(A+B) + sin(A-B)]从公式中可以看出,通过将sinAcosB转化为sin(A+B)和sin(A-B)的和的一半,可以实现两个角的积转化为一个角的和(或差)。

积化和差和差化积公式大全

积化和差和差化积公式大全

积化和差和差化积公式大全
积化和差和差化积是数学中常用的概念,它们可以用来解决复杂的数学问题。

积化和差和差化积的公式大全可以帮助我们更好地理解这些概念,并解决相关的数学问题。

首先,积化和差的公式是:
∑(f(x) + g(x)) = ∑f(x) + ∑g(x)
其中,f(x)和g(x)分别表示两个函数,∑表示求和。

这个公式表明,两个函数的和可以用两个函数的和求出。

其次,差化积的公式是:
∑(f(x) * g(x)) = ∑f(x) * ∑g(x)
其中,f(x)和g(x)分别表示两个函数,∑表示求和,*表示乘法。

这个公式表明,两个函数的乘积可以用两个函数的和乘积求出。

最后,积化差的公式是:
∑(f(x) - g(x)) = ∑f(x) - ∑g(x)
其中,f(x)和g(x)分别表示两个函数,∑表示求和,-表示减法。

这个公式表明,两个函数的差可以用两个函数的和差求出。

综上所述,积化和差和差化积的公式大全可以帮助我们更好地理解这
些概念,并解决相关的数学问题。

它们可以用来解决复杂的数学问题,比如求解积分、求解微分方程等。

和差化积积化和差万能公式

和差化积积化和差万能公式

和差化积积化和差万能公式Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】正、余弦和差化积公式指三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,设α+β=θ,α-β=φ那么α=(θ+φ)/2, β=(θ-φ)/2把α,β的值代入,即得sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立注意事项在应用和差化积时,必须是一次同名三角函数方可实行。

和差化积、积化和差、万能公式

和差化积、积化和差、万能公式

和差化积、积化和差、万能公式在数学的奇妙世界里,和差化积、积化和差以及万能公式就像是三把神奇的钥匙,能够帮助我们打开解决三角函数问题的大门。

咱们先来聊聊和差化积。

这一数学工具主要是用于将两个三角函数的和或差转化为乘积的形式。

比如说,对于正弦函数sinα +sinβ,通过和差化积公式,可以将其转化为2sin(α +β) /2cos(α β) / 2。

这在解决一些涉及到三角函数求和的问题时,可就派上大用场了。

再看看积化和差。

它与和差化积正好相反,是把两个三角函数的乘积转化为和或差的形式。

比如sinαcosβ,通过积化和差公式可以写成1/2sin(α +β) +sin(α β)。

这在对三角函数进行化简、变形时,能让复杂的式子变得简单明了,更容易找到解题的思路。

接下来,不得不说的就是万能公式。

万能公式可厉害了,它能把三角函数中的正弦、余弦、正切等都用同一个变量来表示。

比如,sinα可以用2tan(α/2) / 1 +tan²(α/2)来表示,cosα可以用1 tan²(α/2) / 1 + ta n²(α/2)来表示,tanα可以用2tan(α/2) /1 tan²(α/2)来表示。

想象一下,当我们面对一个复杂的三角函数问题,其中既有正弦又有余弦,还有正切,如果直接去处理,可能会感到眼花缭乱,毫无头绪。

但有了万能公式,就可以把它们都统一成用一个变量表示,这样一下子就把问题简化了许多。

比如说,要求一个包含正弦、余弦和正切的函数的最值。

如果直接求解,可能会因为函数形式的复杂性而感到困难重重。

但我们运用万能公式,把所有的三角函数都用同一个变量表示后,就可以将其转化为一个常见的函数形式,比如二次函数或者分式函数,然后利用我们熟悉的求最值的方法来解决问题。

在实际应用中,和差化积、积化和差以及万能公式经常会一起出现,相互配合,帮助我们攻克一个又一个的数学难题。

比如在求解一些三角函数的积分问题时,可能需要先利用积化和差将式子进行化简,然后再通过万能公式将其转化为更容易积分的形式。

和差化积积化和差万能公式

和差化积积化和差万能公式

和差化积积化和差万能公式标准化管理部编码-[99968T-6889628-J68568-1689N]正、余弦和差化积公式指高中数学三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,设α+β=θ,α-β=φ那么α=(θ+φ)/2, β=(θ-φ)/2把α,β的值代入,即得sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]编辑本段正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立编辑本段注意事项在应用和差化积时,必须是一次同名三角函数方可实行。

附录13 积化和差与和差化积,万能及半角公式

附录13 积化和差与和差化积,万能及半角公式

2
64
f (x) 的值域为[ 3 , 1]
44
③求函数 f (x) sin 2x cos(2x ) 的值域
法2:
f
(
x)

sin[
2x

(2x


6
6 )]
sin[
2x

(2x


6
)]
2
sin( 4x ) sin( )

6
6
2
1 sin( 4x ) 1
2 cos1000 cos800 1 1
22
③求函数 f (x) sin( x ) sin( 5 x) 的值域
12
12
解:
f (x) sin( x ) sin( x 5 )
12
12
sin[( x ) ] sin[( x ) ]
②求cos400+cos600+cos800+cos1600的值 解:原式= (cos1600 cos 400 ) cos800 1
2 [cos(1000 600 ) cos(1000 600 )] cos800 1
2 2 cos1000 cos 600 cos800 1

1
2t t
2

cos 2
1 tan 2 1 tan 2
1t2 1 t2
设t tan ,则
1+t2 2t
2
1-t2
此记忆方法乃代数换元法,体现了三角式与代数式可代换
注2.万能公式的证明:三角变换的技巧——数式互换

三角函数和差化积与积化和差公式

三角函数和差化积与积化和差公式

三角函数和差化积与积化和差公式三角函数和差化积公式是指将三角函数之差化为两个三角函数的乘积的公式。

而积化和差公式是指将两个三角函数的乘积化为两个三角函数之和或差的公式。

这两个公式在三角函数的运算中有着重要的应用,特别是在简化复杂的三角函数表达式、解三角方程、求极限等方面有着重要的作用。

1.三角函数和差化积公式(1)正弦和差化积公式:sin(A±B) = sinA·cosB ± cosA·sinB(2)余弦和差化积公式:cos(A±B) = cosA·cosB ∓ sinA·sinB(3)正切和差化积公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanA·tanB)积化和差公式是将两个三角函数的乘积化为两个三角函数的和或差的公式。

常用的积化和差公式有正弦积化和差公式、余弦积化和差公式和正切积化和差公式。

具体如下:(1)正弦积化和差公式:sinA·sinB = (1/2)(cos(A-B) - cos(A+B))(2)余弦积化和差公式:cosA·cosB = (1/2)(cos(A-B) + cos(A+B))(3)正切积化和差公式:tanA·ta nB = (tanA + tanB) / (1 - tanA·tanB)这些公式的推导过程可以通过将三角函数展开为指数形式,然后运用欧拉公式等方法来得到。

这些公式的应用非常广泛,特别是在求解三角方程中非常有用。

通过使用这些化积公式和化和差公式,可以将复杂的三角函数表达式化简为简单的形式,从而方便进行运算和推导。

具体来说,这些公式在求解三角方程中的应用十分重要。

例如,对于一个复杂的三角方程,可以通过使用这些公式将其化简为两个简单的三角函数之和或差的形式,从而可以更方便地求解出方程的根。

另外,在求极限的过程中,这些公式也经常被用到。

和差化积 积化和差

和差化积 积化和差

[基本要求][知识要点]1、积化和差公式:sinαsinβ=-[cos(α+β)-cos(α-β)]cosαcosβ=[cos(α+β)+cos(α-β)]sinαcosβ=[sin(α+β)+sin(α-β)]cosαsinβ=[sin(α+β)-sin(α-β)]积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得。

其中后两个公式可合并为一个:sinαcosβ=[sin(α+β)+sin(α-β)]2、和差化积公式sinθ+sinφ=2sin cossinθ-sinφ=2cos sincosθ+cosφ=2cos coscosθ-cosφ=-2sin sin和差化积公式是积化和差公式的逆用形式,要注意的是:①其中前两个公式可合并为一个:sinθ+sinφ=2sin cos②积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。

③只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。

④合一变形也是一种和差化积。

⑤三角函数的和差化积,可以理解为代数中的因式分解,因此,因式分解在代数中起什么作用,和差化积公式在三角中就起什么作用。

3、积化和差与积差化积是一种孪生兄弟,不可分离,在解题过程中,要切实注意两者的交替使用。

如在一般情况下,遇有正、余弦函数的平方,要先考虑降幂公式,然后应用和差化积、积化和差公式交替使用进行化简或计算。

和积互化公式其基本功能在于:当和、积互化时,角度要重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值。

正因为如此“和、积互化”是三角恒等变形的一种基本手段。

[例题选讲]1、求下列各式的值①cos40°+cos60°+cos80°+cos160°②cos23°-cos67°+2sin4°+cos26°③csc40°+ctg80°④cos271°+cos71°cos49°+cos249°解:①cos40°+cos60°+cos80°+cos160°=+cos80°+2cos100°cos60°=+cos80°-cos80°=②cos23°-cos67°+2sin4°cos26°=2sin45°sin22°+(sin30°-sin22°)=sin22°+-sin22°=③csc40°+ctg80°=+=======2cos30°=④解法一:cos271°+cos71°cos49°+cos249°=(cos71°+cos49°)2-cos71°cos49°=(2cos60°cos11°)2-(cos120°+cos22°)=cos211°+-cos22°=cos211°+-(2cos211°-1)=cos211°+-cos211°+=解法二:cos271°+cos71°cos49°+cos249°=+(cos120°+cos22°)+=+cos142°-+cos22°++=+(cos142°+cos98°)++cos22°=+cos120°cos22°+cos22°=解法三设x=cos271°+cos71°cos49°+cos249°y=sin271°+sin71°sin49°+sin249°则x+y=2(cos71°cos49°+sin71°sin49°)=2+cos22°x-y=(cos271°-sin271°)+(cos71°cos49°-sin71°sin49°)+(cos249°-sin249°) =cos142°+cos120°+cos98°=-+(cos142°+cos98°)=-+2cos120°cos22°=--cos22°联立二式得x=2、已知sinα+sinβ= cosα+cosβ=求tgαtgβ的值解:①2+②2得 2+2(sinαsinβ+cosαcosβ)=∴cos(α-β)=②2-①2得 cos2α+cos2β+2(cosαcosβ-sinαsinβ)=-∴2cos(α+β)cos(α-β)+2cos(α+β)=-∴2²cos(α+β)+2cos(α+β)=-∴cos(α+β)=-又sinαsinβ=-[cos(α+β)-cos(α-β)]=-(--)=cosαcosβ=[cosα+β)+cos(α-β)]=[-+]=-∴tgαtgβ==-=-3、设函数f(x)=asinωx+bcosωx+1 (a、b≠0 ω>0 )的周期是π,f(x)有最大值7且f()= +4(1)求a、b的值(2)若α≠kπ+β (k∈z) 且α、β是f(x)=0的两根求tg(α+β)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正、余弦和差化积公式指高中数学三角函数部分的一组恒等式sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·si n[(α-β)/2] 【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sin αcos β,设α+β=θ,α-β=φ那么α=(θ+φ)/2, β=(θ-φ)/2把α,β的值代入,即得sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±si nβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立注意事项在应用和差化积时,必须是一次同名三角函数方可实行。

若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然生动的口诀:(和差化积)帅+帅=帅哥帅-帅=哥帅咕+咕=咕咕哥-哥=负嫂嫂反之亦然记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。

结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。

sin和cos的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。

也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=[(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)]=2sinαsinβ故最后需要乘以2。

只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。

这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。

乘积项中的角要除以2在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。

熟知要使两个角的和、差分别等于α和β,这两个角应该是(α+β)/2和(α-β)/2,也就是乘积项中角的形式。

注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。

使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(α-β)/2的三角函数名。

是否同名乘积,仍然要根据证明记忆。

注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。

所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。

(α-β)/2的三角函数名规律为:和化为积时,以cos(α-β)/2的形式出现;反之,以sin(α-β)/2的形式出现。

由函数的奇偶性记忆这一点是最便捷的。

如果要使和化为积,那么α和β调换位置对结果没有影响,也就是若把(α-β)/2替换为(β-α)/2,结果应当是一样的,从而(α-β)/2的形式是cos(α-β)/2;另一种情况可以类似说明。

余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。

当然,也有其他方法可以帮助这种情况的判定,如(0,π]内余弦函数的单调性。

因为这个区间内余弦函数是单调减的,所以当α大于β时,cosα小于cosβ。

但是这时对应的(α+β)/2和(α-β)/2在(0,π)的范围内,其正弦的乘积应大于0,所以要么反过来把cosβ放到cosα前面,要么就在式子的最前面加上负号。

积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2(注意:此时差的余弦在和的余弦前面)或写作:sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意:此时公式前有负号)cosαcosβ=[cos(α-β)+cos(α+β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2证明积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。

即只需要把等式右边用两角和差公式拆开就能证明:sinαsinβ=-1/2[-2sinαsinβ]=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]=-1/2[cos(α+β)-cos(α-β)]其他的3个式子也是相同的证明方法。

(参见和差化积)作用积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以达到降次的效果。

在历史上,对数出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。

运算过程:将两个数通过乘、除10的方幂化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10^k*sinαsinβ的形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。

对数出现后,积化和差公式的这个作用由更加便捷的对数取代。

记忆方法积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。

结果除以2这一点最简单的记忆方法是通过三角函数的值域判断。

sin和cos的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域确是[-1,1],因此除以2是必须的。

也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)=2sinαsinβ故最后需要除以2。

使用同名三角函数的和差无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。

这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。

使用哪种三角函数的和差仍然要根据证明记忆。

注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。

所以反过来,同名三角函数的乘积,化作余弦的和差;异名三角函数的乘积,化作正弦的和差。

是和还是差?这是积化和差公式的使用中最容易出错的一项。

规律为:“小角”β以cosβ的形式出现时,乘积化为和;反之,则乘积化为差。

由函数的奇偶性记忆这一点是最便捷的。

如果β的形式是cosβ,那么若把β替换为-β,结果应当是一样的,也就是含α+β和α-β的两项调换位置对结果没有影响,从而结果的形式应当是和;另一种情况可以类似说明。

正弦-正弦积公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。

当然,也有其他方法可以帮助这种情况的判定,如[0,π]内余弦函数的单调性。

因为这个区间内余弦函数是单调减的,所以cos(α+β)不大于cos(α-β)。

但是这时对应的α和β在[0,π]的范围内,其正弦的乘积应大于等于0,所以要么反过来把cos(α-β)放到cos(α+β)前面,要么就在式子的最前面加上负号。

万能公式【词语】:万能公式【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换。

【推导】:(字符版)sinα=2sin(α/2)cos(α/2)=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]=[2tan(α/2)]/[1+(tanα/ 2)^2]cosα=[cos(α/2)^2-sin(α/2)^2]=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]=[1-tan(α/2) ^2]/[1+(tanα/2)^2]tanα=tan[2*(α/2)]=2tan(α/2)/[1-tan(α/2)^2]=[2tan(α/2)]/[1-(tanα/2)^2]。

相关文档
最新文档