林匹克训练题库余数与同余

合集下载

余数与同余问题

余数与同余问题

余数同余问题1、用一个自然数去除另一个自然数,不完全商是8,余数是16,被除数、除数、商、余数这四个数的和为463,那么除数为:2、57、96、148被某自然数整除,余数相同,且不为零,那么284被这个自然数除后余:3、150、232、396被某个两位数除后都有余数,且余数都是同一个奇数,那么所得的余数是:4、有一个自然数,用它分别去除81、127、232都有余数,且3个余数的和是33,那么这个自然数是:5、一个两位数去除251,得到的余数是41,这个两位数是:6、两个小于100的不同自然数去除440,余数都是35,这两个数的差为:7、一个两位数除以8,商与余数相同,那么这样的数总和为:8、有一个除法算式,被除数、除数和商都是整数,且没有余数,被除数、除数、商相加的和是79,被除数和除数相差56,这个算式是:9、一个整数,减去它除以5后所得余数的4倍,差是234,这个自然数是:10、2010除以一个两位数ab=(),使所得余数最大。

11、1)一个两位数被它的各位数字之和去除,能得到的最大余数是:2)一个三位数被它的各位数字之和去除,能得到的最大余数是:12、在大于2010的自然数中,逐个找出“被49除后,商与余数相等的数”,这些数的和是:13、用一个自然数A去除333,商得4,用所得余数去除自然数B,所得商和余数相加恰好为A,那么B最小为:14、两个数字之和为10、8的三位数乘积是一个五位数,且这个五位数的后四位是1031,那么这两位三位数之和是:15、一个自然数除以9的余数和除以8的商的和等于13,那么这个数除以8的余数是:16、一个自然数除以7的余数和除以8的商的和等于15,则满足条件的所有自然数的和是:17、10个自然数的和为100,分别除以3,若用去尾法,10个商的和为30,若用四舍五入法,10个商的和为34,那么10个数中被3除余1的数有:18、一个三位数分别被63、95、143除之后所得的余数之和为19,那这个三位数是:19、在小于1000的正整数中,被12、15和18除得余数相同的数共有:20、若M=3x+x3,当x取1、2、3、……、2010时,能被7整除的M共有:21、当X取1、2、3、……2010时,有()个整数X使2x与X2被7除余数相同。

小学奥数题库《数论》余数问题同余5星题(含解析)全国通用版

小学奥数题库《数论》余数问题同余5星题(含解析)全国通用版

数论-余数问题-同余-5星题课程目标知识提要同余•定义同余定理:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为a≡b(mod m),这个式子叫做同余式,读作:a同余于b,模m.•性质及推论(1)若两个数a、b除以同一个数m得到的余数相同,则a、b的差一定能被m整除。

(2)用式子表示为:如果有a≡b(mod m),那么一定有a - b = mk、k是整数,m|(a - b)精选例题同余1. 若2017,1029与725除以d的余数均为r,那么d−r的最大值是.【答案】35【分析】(1)2017−1029=988,1029−725=304,因为2017,1029与725除以d的余数均为r,所以d∣988,d∣304,d是988和304的公约数.(2)988=22×13×19,304=24×19,所以d可以是2,4,19,38,76.(3)经检验2017,1029与725除以76的余数依次为41,41,41;2017,1029与725除以38的余数依次为3,3,3;(2017,1029与725除以2的余数均为1,2017,1029与725除以4的余数均为1,2017,1029与725除以19的余数依次为3,3,3;)(4)d−r的最大值是35.2. 用自然数n去除63,91,129得到的三个余数之和为25,那么n=.【答案】43【分析】n能整除63+91+129−25=258.因为25÷3=8⋯⋯1,所以n是258大于8的约数.显然,n不能大于63.符合条件的只有43.3. 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【答案】17【分析】这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90+164= 254后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是254−220=34的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么他去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.4. 20092009的各位数字和为A,A的各位数字和为B,B的各位数字和为C,C的各位数字和为D,D的各位数字和为E,求E.【答案】5【分析】ABCD除以9的余数应该相同.20092009除以9的余数和22009除以9的余数相同,而2的乘方除以9的余数依次为2、4、8、7、5、1、2⋯⋯6个数一循环,故而22009除以9的余数等同于2的5次方除以9,余数为5.20092009小于100002009,所以一定不多于8037位,数字和不会超过72333,故而B小于72333.B最多为5位数,数字和不会超过45,所以C是两位数,故而D不会超过18,E一定是一个1位数.所以E=5.5. 请证明p4≡1(mod240),其中p是大于5的质数.【答案】见解析【分析】p4−1=(p2+1)(p+1)(p−1),240=24×3×5,由于p不是3的倍数,则p+1、p−1必有一个3的倍数;由于p的尾数只能是1、3、7、9,则p+1、p−1、P2+1必有一个尾数为0,是5的倍数;p+1、p−1、P2+1都是偶数,其中p+1、p−1是连续偶数,必有一个是4的倍数,所以至少有4个质因数2.6. 我们将具有如下性质的自然数 K 称为“高思数”:如果一个整数 M 能被 K 整除,则把 M 的各位数字按相反顺序重写时所得到的数也能被 K 整除,请求出所有的“高思数”.【答案】 1、3、9、11、33、99【分析】 易知,1 必为“高思数”;因为一个数反序重写数字和不变,所以 3、9 为“高思数”;因为一个数反序重写奇位和与偶位和之差也不变,所以 11 为“高思数”,由整除规律,33、99 也是“高思数“.除此之外,感觉是没有了,下面给出证明.引理(可以看做是先证明一个小结论):对于任意的不含 2 或 5 的正整数 n ,形如 1、11、111、1111、…的数中一定有无数个是 n 的倍数.证明:由于 1,11,111,1111,⋯,11⋯1⏟n+1个1这 n +1 个数中一定存在 2 个数关于 n 同余,那么这两个数的差一定是 n 的倍数,而这两个数的差是形如 11⋯1⏟a 个100⋯0⏟b 个0 的数,说明 11⋯1⏟a 个1是 n 的倍数,同理可得这里面有无数个数是 n 的倍数.首先说明“高思数”的个位数字只能是 1、3、7、9.因为,“高思数”肯定不是偶数,否则肯定能得到它的某个倍数的首位是 1,那么这个偶数就无法整除这个倍数的反序数.同理,“高思数”的个位数字也不能是 5.所以“高思数”的个位数字只能是 1、3、7、9.若 K 是“高思数”,根据引理得一定存在某个自然数 l 使得 K ∣11⋯1⏟l 个1,那么 K ∣77⋯7⏟l 个7,进一步得 K ∣77⋯1⏟l 个700⋯0⏟(l−1)个0+77⋯1⏟l 个7,即 K ∣77⋯7⏟(l−2)个78477⋯7⏟(l−1)个7,利用“高思数”的性质得 K ∣77⋯7⏟(l−1)个74877⋯7⏟(l−2)个7,利用整除的性质得 K ∣77⋯7⏟(l−2)个78477⋯7⏟(l−1)个7−77⋯7⏟(l−1)个74877⋯7⏟(l−2)个7,即 K ∣9900⋯0⏟(l−2)个0.因为“高思数”的个位数字只能是 1、3、7、9,所以“高思数”分解质因数后一定不含质因数 2 和 5,故 K ∣99,所以 K 只可能是 1、3、9、11、33、99,经验证这 6 个都是“高思数”,至此已求出所有的“高思数”.7. 在给定的圆周上有 100 个点.任取一点标上 1;按顺时针方向从标有 1 的点往后数 2 个点,标上 2;从标有 2 的点再往后数 3 个点,标上 3 ……依此类推,直至在圆周上标出 100.对于圆周上的这些点,有的点可能标上多个数,有的点可能没有被标数.请问:标有 100 的那个点上标出的数最小是多少?【答案】 75【分析】 标有 100 的那个点是从标有 1 的点开始数(包括标有 1 的这个点)1+2+⋯+100=5050 的点,所以这个点上标的数是符合 1+2+⋯+n ≡5050(mod100) 的点,即 n(n+1)2≡50(mod100),故 n(n +1)≡0(mod100),由于 n 和 n +1 互质,要想乘积是 100 的倍数,那么 n 和 n +1 中有一个数要是 25 的倍数,可能的情况有 (24,25)、(25,26)、(49,50)、(50,51)、(74,75)、(75,76),很明显只有 (24,25) 和 (75,76) 可能符合,经检验,只有 (75,76) 符合,说明这个点上还标有 75,所以标有 100 的那个点上标出的数最小是 75.8. 任意给定一个正整数 n ,一定可以将它乘以适当的整数,使得乘积是完全由 0 和 7 组成的数.【答案】 见解析.【分析】 考虑如下 n +1 个数:7,77,777,⋯⋯,77⋯7⏟n 位,77⋯7⏟n+1位,这 n +1 个数除以 n 的余数只能为 0,1,2,⋯⋯,n −1 中之一,共 n 种情况,根据抽屉原理,其中必有两个数除以 n 的余数相同,不妨设为 77⋯7⏟p 位和 77⋯7⏟q 位(p >q ),那么 77⋯7⏟p 位−77⋯7⏟q 位=77⋯7⏟(p−q)位00⋯0⏟q 位 是 n 的倍数,所以 n 乘以适当的整数,可以得到形式为 77⋯7⏟(p−q)位00⋯0⏟q 位的数,即由 0 和 7 组成的数.9. 学校新买来 118 个乒乓球,67 个乒乓球拍和 33 个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【答案】 17【分析】 设学校一共有 A 个班级,则有:118≡67(modA)≡33(modA),据同余性质,可知 x 为它们两两差的约数,118−67=51,118−33=85,67−33=34,(51,85,34)=17,所以学校共有 17 个班10. 一个不超过 200 的自然数,如果用四进制表示,那么它的数字之和是 5;如果用六进制表示,那么它的数字之和是 8;如果用八进制表示,那么它的数字之和是 9.如果用十进制表示,那么这个数是多少?【答案】 23【分析】 根据结论:“在 n 进制中,一个自然数与它的数字和模 (n −1) 同余”,所以这个数 {÷3⋯2,÷5⋯3,÷7⋯2, 利用物不知数可以求出符合的答案为 23、128、233、…,符合“不超过 200”的只有 23 和 128,经检验,23=(113)4=(35)6=(27)8,128=(2000)4=(332)6=(200)8,只有 23 符合.11. 求证:可以找到一个各位数字都是 4 的自然数,它是 1996 的倍数.【答案】 见解析.【分析】 1996÷4=499,下面证明可以找到 1 个各位数字都是 1 的自然数,它是 499 的倍数.取 500 个数:1,11,111,⋯⋯,111⋯⋯1(500 个 1).用 499 去除这 500 个数,得到 500 个余数 a 1,a 2,a 3,⋯,a 500.由于余数只能取 0,1,2,⋯,498 这 499 个值,所以根据抽屉原则,必有 2 个余数是相同的,这 2 个数的差就是 499 的倍数,差的前若干位是 1,后若干位是 0:11⋯100⋯0.又 499 和 10 是互质的,所以它的前若干位由 1 组成的自然数是 499 的倍数,将它乘以 4,就得到一个各位数字都是 4 的自然数,这是 1996 的倍数.12. 一个正整数,它分别加上 75 和 48 以后都不是 120 的倍数,但这两个和的乘积却能被 120 整除.这个正整数最小是多少?【答案】 117【分析】 先将 120 分解质因数 120=23×3×5,设这个数为 A ,依题意得后来的两个数分別是 A +75 和 A +48,这两个数相差 (A +75)−(A +48)=27.因为 27 是 3 的倍数,所以 A +75 和 A +48 除以 3 的余数相同;因为 (A +75)(A +48) 是 120 的倍数,所以 A +75 和 A +48 都是 3 的倍数.因为 27 不是 5 的倍数,所以 A +75 和 A +48 中只有 1 个是 5 的倍数;因为 27 和 8 互质,所以 A +75 和 A +48 中只有 1 个是 8 的倍数;又因为 A +75 和 A +48 都不是 120 的倍数,所以不可能有一个数既是 5 的倍数也是 8 的倍数,说明 A +75 和 A +48 中一个是 5 的倍数,另一个是 8 的倍数.综上,A +75 和 A +48 中一个是 15 的倍数,另一个是 24 的倍数.若 A +75 是 15 的倍数.A +48 是 24 的倍数,则很明显 A 既是 15 的倍数又是 24 的倍数,最小是 120;若 A +75 是 24 的倍数,A +48 是 15 的倍数,则 {A ÷24⋯21,A ÷15⋯12,所以 A 最小是 117. 所以这个正整数最小是 117.13. 设 20092009 的各位数字之和为 A ,A 的各位数字之和为 B ,B 的各位数字之和为 C ,C 的各位数字之和为 D ,那么 D =?【答案】 5【分析】 由于一个数除以 9 的余数与它的各位数字之和除以 9 的余数相同,所以 20092009 与 A 、B 、C 、D 除以 9 都同余,而 2009 除以 9 的余数为 2,则 20092009 除以 9 的余数与 22009 除以 9 的余数相同,而 26=64 除以 9 的余数为 1,所以 22009=26×334+5=(26)334×25 除以 9 的余数为 25 除以 9 的余数,即为 5.另一方面,由于 20092009<100002009=108036,所以 20092009 的位数不超过 8036 位,那么它的各位数字之和不超过 9×8036=72324,即 A ⩽72324;那么 A 的各位数字之和 B <9×5=45,B 的各位数字之和 C <9×2=18,C 小于 18 且除以 9 的余数为 5,那么 C 为 5 或 14,C 的各位数字之和为 5,即 D =5.14. 某住宅区有12家住户,他们的门牌号分别是1,2,3,⋯,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号码整除.已知这些电话的首位数字都小于6,并且门牌号码是9的这一家的电话号码能被13整除.请问:这一家的电话号码是多少?【答案】388089【分析】设第一家住户的电话号码为n+1,则1∣n+1,2∣n+2,3∣n+3,⋯,12∣n+12,由此可知n能被1∼12同时整除,而1∼12的最小公倍数为23×32×5×7×11=27720,则n=27720m,其中m为正整数.由条件“门牌号码是9的这一家的电话号码能被13整除”可得,13∣27720m+9.而27720m+9≡4m+9(mod13),所以m=14时满足条件,这一家的电话号码为27720×14+9=388089.15. 设2n+1是质数,证明:12,22,⋯,n2被2n+1除所得的余数各不相同.【答案】见解析.【分析】假设有两个数a、b,(1⩽b<a⩽n),它们的平方a2,b2被2n+1除余数相同.那么,由同余定理得a2−b2≡0( mod(2n+1)),即(a−b)(a+b)≡0( mod(2n+1)),由于2n+1是质数,所以a+b≡0( mod(2n+1))或a−b≡0( mod(2n+1)),由于a+ b,a−b均小于2n+1且大于0,可知,a+b与2n+1互质,a−b也与2n+1互质,即a+b,a−b都不能被2n+1整除,产生矛盾,所以假设不成立,原题得证.16. 三个聪明的初中生聚在一起玩一个推理游戏.小强和小花各选了一个自然数并分别将它告诉小安,小安告诉小强和小花,他将分别把两个数的和与乘积写在不同的纸上.小安写好后,将其中一张纸藏起来,把另一张纸亮出来给小强和小花看(这张纸上写着2008).小安请小强和小花互猜对方所选的数,小强首先宣称他无法确定小花所选的数,小花听完小强的话后,也说她无法确定小强所选的数.请问:小花所选的数是多少?【答案】1004【分析】首先小强和小花肯定都没有选0,否则一看就知道2008是和,就能知道对方的数.设这两个数分别为强和花,首先,很明显强∣2008,否则立刻盼断出2008是和,花= 2008−强,此时小强是因为无法确定2008是和还是积导致无法判断出小花的数.同理,花∣2008.此时小花也知道了强∣2008,小花会这样进行推理:如果2008是积,那么与已知的情况都符合;如果2008是和,那么由强∣2008知2008−花∣2008,如果2008−花不能整除2008,小花立刻就知道2008不是和,是积,就能知道小强的数.由于实际上小花无法确定小强的数,说明花∣2008的同时2008−花∣2008.而2008=23×251,枚举出它所有的约数:1、2008、2、1004、4、502、8、251,经检验只有1004符合,所以小花所选的数是1004.17. 在下面的算式中,汉字“第、十、一、届、华、杯、赛”,代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于.第十一届+华杯赛2006【答案】35【分析】根据弃九法两个加数除以9的余数与他们和除以9的余数相同,因为2006除以9余8,所以第、十、一、届、华、杯、赛”所代表的7个数字的和除以9的余数为8,再根据加法规则,“第”=1.“届+赛”=6或“届+赛”=16.若“届+赛”=6,只能是“届”、“赛”分别等于2或4,此时“一”十“杯”=10只能“一”、“杯”分别为3或7.此时“十+华”=9,“十”、“华”分别只能取(1,8),(2,7),(3,6),(4,5),但1,2,3,4均已被取,不能再取.所以,“届+赛”=6填不出来,只能是“届+赛”=16,“十+华”+1=10,也就是“一+杯”=9同时“十+华”=9.所以它们可以分别在(3,6),(4,5)两组中取值.因此“第、十、一、届、华、杯、赛”所代表的7个数字的和等于1+9+9+16=35.。

奥数五六年级知识点总结第五讲余数与同余

奥数五六年级知识点总结第五讲余数与同余

奥数是指奥林匹克数学竞赛(International Mathematical Olympiad,简称IMO),是世界性的数学竞赛。

奥数竞赛注重学生的思维能力的发展,培养学生的逻辑推理、问题解决和创新思维能力。

数学竞赛中的知识点是教育学生数学基本概念及运算,以及运用数学的方法来解决问题。

下面是我所总结的奥数五六年级第五讲的知识点,主要涉及到“余数与同余”。

一、余数1.定义:在整除的运算中,除法所得的剩下的数就是余数。

2. 例如:11除以3,商为3,余数为2,记作11≡2(mod 3)。

3.基本性质:(1)两个数相加与他们的余数相加的结果相等。

(2)两个数相乘与它们的余数相乘的结果相等。

(3)两个数的商的余数与这两个数余数的商的结果相等。

(4)两个数的幂次方的余数与这两个数的幂次方的余数的结果相等。

二、同余1. 定义:若整数 a、b、m 为任意给定的整数,若 m 能整除 (a-b),即 (a-b) 是 m 的倍数,则称a与b对模 m同余,记作a≡b (mod m)。

2.基本性质:(1)若a≡b (mod m),则a+c≡b+c (mod m);(2)若a≡b (mod m),则ac≡bc (mod m);(3)若a≡b (mod m),c≡d (mod m),则a+c≡b+d (mod m),ac≡bd (mod m);(4)若a≡b (mod m),则a^n ≡b^n (mod m),其中 n 为任意正整数。

三、求余数与同余的方法1.利用除法法则求余数:(1)方法一:将被除数逐位地从左至右除以除数,除的过程中产生的余数就是最终的余数。

(2)方法二:利用整数的性质,寻找适合的数进行整除,或者先利用近似法求商,再求余数。

(3)方法三:利用乘法法则,将除数与整数相乘,再用被除数减去这个乘积来求余数。

2.利用同余法则求余数:(1)将同余公式改写为等式,然后同时减两边的倍数,可以得到一个新的同余公式。

(2)利用同余关系,可以将大数的运算转化为小数的运算,从而简化计算。

余数与同余解析

余数与同余解析

六余数和同余 1.有余数的除法各部分之间的关系:被除数=除数×商+余数被除数-余数=商×除法 2.除法算式的特征:余数<除数 3.有关余数问题的性质:性质1:如果两个整数a,b 除以同一个数m,而余数相同,那么a 和b 的差能被m 整除。

性质2:对于同一个除数,如果两个整数同余,那么他们的差就一定能被这个数整除。

性质3:对于同一个除数,如果两个整数同余,那么他们的乘方仍然同余。

解答同余类型题目的关键是灵活运用性质,把求一个比较大的数字除以某数的余数问题转化为求一个较小数除以这个数的余数,使复杂的问题变得简单化。

1.把题目转化为算式就是:□÷7=□……□ 余数要比除数7 小,商和余数相同,题中商和余数可能是0、1、2、3、4、5、6,带入原式。

根据被除数=商×除法+余数,算得:0×7+0=0;1×7+1=8;2×7+2=16;3×7+3=24;4×7+4=32;5×7+5=40;6×7+6=48。

所求被除数可能是:0、8、16、24、32、40、48。

一个三位数被37 除余17,被36 除余3,那么这个三位数是多少?有啥好方法吗?这道题可采取经典的余数处理方法------凑。

这个凑,可不是漫无目的的凑。

而是有理有据才行。

1、找一个最小的自然数,满足除以37 余17,当然17 即可满足。

2、很显然,这个数除以36 并不余3,作适当调整。

3、为了不改变37 的那个余数,每次可加上一个37. 4、每加一次37,除以36 的那个余数就增加1(记住,不要计算被除数是多少,而采取的是余数的性质。

被除数扩大一倍,余数也扩大一倍,被除数增加几,余数也会增加几(或者除以除数的余数))5、因为我们要求的数除以36 要余3,现在只是余17,即达到36 后再多出3,即余39 (注意,这里用的是扩展余数),还差39-17=22.所以要增加22 个37. 6、结果是17+22×37 即为答案。

小学奥数之 同余问题(含详细解析)

小学奥数之 同余问题(含详细解析)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

奥数余数和同余讲义

奥数余数和同余讲义

(十八)余数和同余【知识要点】1、例如:37÷5=7……2,四者之间的数量关系:被除数=除数×商+余数2、同余的概念:两个整数,被同一个大于1的整数m除,所得余数如果相同,那么,这两个整数对于除数m来说是同余的。

例如:14和26这两个数虽然大小不同,但它们分别除以6所得的余数相同,我们把14和26叫做关于模6同余。

3、同余最基本的性质是:几个同余式(模相同)相加、减、乘、乘方仍然同余。

【典型例题】例1、两个整数相除商8,余16;并且被除数、除数、商及余数的和是463.那么被除数是多少?解:因为:被除数=除数×8+16,并且被除数+除数=463―8―16=439,所以除数=(439-16)÷(8+1)=47,被除数=47×8+16=392.例2、被3除余2,被5除余3,被7除余4的最小自然数是多少?解:被3除余2的数有2,5,8,11,…其中8又能被5除余3,并且满足条件最小的,而[3,5]=15,所以8+15=23,23+15=38,38+15=53,53满足了被7除余4这个条件,并且最小。

例3、五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人,问上体育课的同学最少多少名?解:[3,4,5,6]=60, 60-1=59(人).例4、小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数恰好相同,这题中的除数是几?解:设除数为m,正确的商位q,余数为r,那么错写被除数后,除数仍为m,商为q-3,余数仍为r。

因为:171=m×q+r117= m×(q-3)+r于是171 -117= (m×q+r)-(m×q-3 m+r)得m=18.【精英班】例5、有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这个三位数是多少?解:这个三位数除以5余4,所以它的个位数字是4或9,因为个位数字是百位数字的3倍,所以个位数字只能是9,百位数字是3.因为这个数除以11余3,所以它的十位数字=3+(9-3)=9,这个三位数是399.【竞赛班】例6、11+22+33+44+55+66+77+88+99除以3的余数是多少?解:由数的整除性质和同余性质可推知:(1)3的倍数的任何次方(0除外)除以3的余数为0,可知33+66+99 除以3余0.(2)不是3的倍数的偶次方除以3的余数为0,可知22+44+88除以3余1.(3)11除以3余1,55与25对于3同余,它们除以3余2. 77与17对于3同余,它们除以3余1. 所以(1+2+1)÷3=1……1。

奥数数论题库17-余数问题_知识例题精讲

奥数数论题库17-余数问题_知识例题精讲

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

一、带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

知识点拨教学目标5-6余数问题例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

高中奥林匹克数学竞赛-同余

高中奥林匹克数学竞赛-同余

第5讲 同余【知识点】1.设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -⇔∈+=⇔≡;每一个整数a 恰与1,2,……,m ,这m 个数中的某一个同余; 2.同余的性质:1).反身性:)(mod m a a ≡;2).对称性:)(mod )(mod m a b m b a ≡⇔≡; 3).若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡;4).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ±≡± 特别是)(mod )(mod m k b k a m b a ±≡±⇔≡;5).若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡; 特别是)(m od ),(m od m bk ak Z k m b a ≡⇔∈≡则 )(m od ),(m od m b a N n m b a nn≡⇔∈≡则; 6).)(mod )(m ac ab c b a +≡+;7).若)(m od 1),(),(m od m b a m c m bc ac ≡=≡时,则当 )(mod )(mod ).(mod ),(m b a mc bc ac dmb a d mc ≡⇔≡≡=特别地,时,当; 8).若)(m od 1m b a ≡,)(m od 2m b a ≡ )(mod 3m b a ≡………………)(mod n m b a ≡,且)(m od ],,[21M b a m m m M n ≡⋯⋯=,则【例1】证明:完全平方数模4同余于0或1;证明:;,122Z k k n k n n ∈+==或者是任一整数,则设);4(m od 04222≡==k n k n 时,当);4(m od 1)121222≡+=+=k n k n (时,当 所以原命题成立;【例2】证明对于任何整数0≥k ,153261616+++++k k k 能被7整除;153322153266661616++⋅+⋅=∴+++=++kk kk k k M M 证:令)7(mod 0)7)(mod 1132(1173732721)122327()11047(3)197(21156257293642=+++=++⋅++⋅⋅++⋅⋅=++⋅++⋅⋅++⋅⋅=++⋅+⋅=C B A k k k k k k,,0Z k k ∈≥∀∴且对于153261616+++++k k k 都能被7整除;注:+∈≡⇒≡Z k b a b a k),(m od 1)(m od 1 【例3】试判断282726197319721971++能被3整除吗?整除;不能被又即:解:3197319721971)3(mod 2)21(),3(mod 142)3)(mod 21(197319721971)3)(mod 210(197319721971)3(mod 21973),3(mod 11972),3(mod 0197128272628142828282726282726282726++∴≡+∴≡=+≡++++≡++∴≡≡≡ΘΘ【例4】能否把1,2,……,1980这1980个数分成四组,令每组数之和为4321S S S S ,,,,且满足;=,=,,=101010342312S S S S S S ---不能这样分组;产生矛盾,又=解:依题意可知:∴∴≡⋅=⋅=++++=≡+=∴+++++++++=)4(mod 219819902198119801980321)4(mod 0604302010111114321ΛΘT S T S S S S S S S S T【例5】在已知数列1,4,8,10,16,19,21,25,30,43中,相邻若干数之和,能被11整除的数组共有多少组。

《余数及同余(一)》配套练习题

《余数及同余(一)》配套练习题
10、已知 3 个连续自然数依次是 11、9、7 的倍数,而且都在 500 和 1500 之间,那么这 3 个数的和是多少?
答案部分 一、解答题 1、 【正确答案】: 63 【答案解析】:这个两位数肯定是 949-4=945 的约数, 而 945=33×5×7,它最大的两位数约数是 32×7= 63.
3
【答疑编号 10256047】
4、 【正确答案】: 4 【答案解析】: 2 的 n 次方的个位数字按 2,4,8,6 循环; 3 的 n 次方的个位数字按 3,9,7,1 循环; 7 的 n 次方的个位数字按 7,9,3,1 循环; 8 的 n 次方的个位数字按 8,4,2,6 循环; 而 2012 整除 4,由 6+1+1+6=14, 于是,所求末位数字为 4。
所以 5999疑编号 10256046】
3、 【正确答案】: 31 【答案解析】: 7 的 n 次方除以 4 的余数按照 3,1 循环;所以这个和除以 4 余 3; 7 的 n 次方除以 25 的余数按照 7,24,18,1 循环;所以这个和除以 25 余 6。 除以 4 余 3,除以 25 余 6 最小的数是 31。 所以算式计算结果的末两位数字是 31。
《余数及同余(一)》配套练习题 一、解答题 1、949 除以一个两位数所得的余数是 4,则这个两位数最大是多少? 2、 5999+ 231000的个位数字是几?它除以 7 的余数是几? 3、算式 7+72+…+ 71990 计算结果的末两位数字是多少? 4、算式 2 + 2012 3 + 2012 72012+82012 得数的末位数字是多少? 5、
6、2001×2002×2003×…× 2011×2012 的积的末三位数是多少? 7、用某个自然数去除 73、101、143 所得到的余数相同,那么这个数最大 是多少?

小学奥数 数论 余数问题 同余问题.题库版

小学奥数  数论  余数问题     同余问题.题库版

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  同余问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

同余问题的奥数题

同余问题的奥数题

同余问题的奥数题引言奥数是指数学奥林匹克竞赛(IMO)或全国中学生数学奥林匹克竞赛(NOI)等数学竞赛的简称。

同余问题是奥数中常见的一个重要概念,也是一种常用的解题方法。

本文将介绍同余问题在奥数中的应用,并通过一个具体的奥数题来详细讲解同余问题的解题过程。

同余问题定义在数论中,给定两个整数a和b,如果它们除以正整数m所得的余数相同,则称a与b对模m同余,记作a ≡ b (mod m)。

其中≡表示“同余”,mod表示“对模”。

这里m被称为模数。

性质1.如果a ≡ b (mod m),则对于任意整数k,有a + km ≡ b (mod m)。

2.如果a ≡ b (mod m),c ≡ d (mod m),则a + c ≡ b + d (mod m),ac≡ bd (mod m)。

3.如果a ≡ b (mod m),则an ≡ bn (mod m),其中n为任意正整数。

常见应用同余问题在密码学、编码理论、计算机科学等领域有着广泛应用。

在奥数中,同余问题常用于解决数字特征和数列性质相关的问题。

下面通过一个具体的奥数题来说明同余问题的应用。

奥数题示例题目描述一串由0-9组成的数字序列,长度为n。

现在要从这个序列中选择若干个数字,使得它们组成的整数能够被7整除。

问有多少种不同的选择方案。

解题思路我们可以使用动态规划的方法来解决这个问题。

首先定义一个二维数组dp,其中dp[i][j]表示在前i个数字中选取若干个数字,它们组成的整数对7取模等于j的方案数。

那么我们可以得到状态转移方程:dp[i][j] = dp[i-1][j] + dp[i-1][(10*j+digit)%7]其中digit表示第i个数字。

代码实现def solve(sequence):n = len(sequence)dp = [[0] * 7 for _ in range(n+1)]dp[0][0] = 1for i in range(1, n+1):digit = int(sequence[i-1])for j in range(7):dp[i][j] = dp[i-1][j]dp[i][(10*j+digit)%7] += dp[i-1][j]return dp[n][0]sequence = input("请输入一串由0-9组成的数字序列:")print("方案数:", solve(sequence))解题过程假设输入的数字序列为12345。

余数与同余

余数与同余

余数与同余1、用某自然数A去除1992,得到商是46,余数是R。

A=(),R=()。

2、写出全部除109后余数为4的两位数。

3、一个两位数除310,余数是37,求这样的两位数。

4、一个数除200余5,除300余1,除400余10,这个数是()。

5、顺次写出除以4余2,除以5余3的三个数。

6、一个整数,减去它被5除后余数的4倍是154,那么原来的整数是()。

7、两个整数相除得商数是12,余数是26。

被除数、除数、商和余数的和等于454,除数是()。

8、两个整数相除商8,余16;并且被除数、除数、商和余数的和是463。

那么被除数是()9、某个月里有三个星期日的日期为偶数,请你推算出这个月的15日是星期()。

10.被2、3、5除都余1,且不等于1的最小整数是()。

11.一个小于200的数,它除以11余8,除以13余10,那么这个数是()。

12.甲数除以13余7,乙数除以13余9,现将甲乙两数相乘,积除以13应该余()。

14.一个自然数除以19余9,除以23余7。

那么这个自然数最小是()。

(15)、已知一个两位数除1477,余数是49,那么,满足那样条件的所有两位数是()。

(16)、六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和,一个人是另一个人的2倍,则丙手中卡片上的数是()。

(17)、有民兵在操场上列队,只知人数在90~110之间,排成三列无余,排成5列不足2人,排成7列不足4人,共有民兵()人。

1.五年级同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人。

问上体育课的同学最少()名。

2.八个盒子,各盒内装奶糖分别为9,17,24,28,30,31,33,44块。

甲先取走了一盒,其余各盒被乙、丙、丁三人所取走。

已知乙、丙取到的糖的块数相同且为丁的2倍。

问甲取走的一盒中有()块奶糖。

小学奥数总复习第二十六讲讲《余数和同余》练习

小学奥数总复习第二十六讲讲《余数和同余》练习

小学奥数总复习第二十六讲讲《余数和同余》练习重要性质:①如果a除以k余r,那么k能整除(a-r)。

②如果a、b对于k同余,那么k能整除(a-b)。

③a4k+1和a;a4k+2和a2;a4k+3和a3;a4k+4和a4的个位数字分别相同。

④a、b的和、差、积、商除以k所得的余数,等于a、b分别除以k所得余数的和、差、积、商,再除以k所得的余数。

……例:一个数被3除2,被5除余3,被7除余4,求此最小数是几?解:被3除余2的数有:2,5,8,11,14,17…;被5除余3的数有:3,8,13,18,23…。

显然8被3除余2,且被5除余3,因3与5的最小公倍数是15,所以15+8,30+8,45+8,60+8…都满足被3除余2,被5除余3,只须在这列数中找到被7除余4的最小数,53÷7=7。

所以符合题意的数是53。

1、71427×19除以7的余数是几?2、求71423-19除以7的余数。

3、求132011×172012×192013的个位数字。

4、346,304,563三个数分别除以同一个自然数,得到的余数相同,那么这个自然数是多少?5、73,216,227被某个数除余数相同,那么108被这个数除余数应该是多少?6、自然数a去除13511,13903,14589,余数相同,a的最大值是多少?7、有一个自然数,用它分别去除63,90,130都有余数,3个余数的和为25,这3个余数中最小的一个是几?8、一个数除以3余2,除以5余3,除以7余4,求符合条件的最小自然数。

9、两个数相除,商8余16,被除数、除数与商的和是447,求被除数和除数。

3。

用1,9,8,8这4个数字能排除几个被11除余8的4位数? 26、塑料袋里有奶糖若干粒,如果每次取3粒,最后剩l粒;每次取5粒或7粒,最后都剩4粒,塑料袋里至少有奶糖多少粒?7、学校将五年级学生分组开展课外活动,每组5人多2人;每组6人多1人;每组7人少2人;参加课外活动的学生至少有多少人?8、有学生在操场上列队做操,只知道人数在90~110之间。

余数与同余练习

余数与同余练习

余数与同余(一)知识要点:1.被除数=除数×商+余数2.余数<除数3.余数的性质性质1:如果两个整数a,b除以同一个数m,而余数相同,那么a和b的差能被m 整除。

性质2:如果被除数扩大(或缩小)若干倍,除数不变,那么余数也扩大(或缩小)同样的倍数。

性质3:如果被除数增加(或减少)除数的若干倍,除数不变,那么余数也不变。

例1:两数相除,商是499,余数是3,被除数最小是几?练习1:下面算式中的两个括号内应该填什么数,才能使这道整数除法题的余数最大?()÷85=99……()()÷24=56……()例2:两个数相除的商是21,余数是3.如果把被除数、除数、商和余数相加,它们的和是225。

被除数、除数各是多少?练习2:两个数相除,商是4,余数是6,被除数、除数、商和余数的和是121,求被除数。

练习3:两个整数相除商是12,余数是8,并且被除数与除数的差是822,求这两个整数。

例3. 有一个整数,除300,262,205得到的余数相同,问这个整数是几?例4. 692,608,1126三个数分别除以同一个自然数,得到的余数相同,那么这个自然数是多少?练习4:346,304,563三个数分别除以同一个自然数,得到的余数相同,那么这个自然数是多少?练习5:数713,1103,830,947被某一个数除,所得余数相同(不为0),求除数。

余数与同余(二)例5. 学生在操场上列队做操,只知道人数是在90至110之间,如果排成3列不多也不少;如果排成5列则少2人;如果排成7列则少4人。

问共有学生多少人?练习1:今有物不知其数,凡三三数之剩二,五五数之剩三,七七数之剩二,问物几何?练习2:某市举行大型体操表演,小学生队的人数在2000到2150之间,排成3列则刚好,排成5列则少2人,排成7列则少4人。

这队小学生共有多少人?练习3:一筐梨,三三数之余1,四四数之余3,五五数之差1。

这筐梨最少有几个?练习4:红旗小学表演团体操的同学在操场排队,如果每排12人,最后一排少1人;如果每排15人,最后一排少4人;如果每排18人,最后一排少7人。

余数与同余问题

余数与同余问题

余数同余问题1、用一个自然数去除另一个自然数,不完全商是8,余数是16,被除数、除数、商、余数这四个数的和为463,那么除数为:2、57、96、148被某自然数整除,余数相同,且不为零,那么284被这个自然数除后余:3、150、232、396被某个两位数除后都有余数,且余数都是同一个奇数,那么所得的余数是:4、有一个自然数,用它分别去除81、127、232都有余数,且3个余数的和是33,那么这个自然数是:5、一个两位数去除251,得到的余数是41,这个两位数是:6、两个小于100的不同自然数去除440,余数都是35,这两个数的差为:7、一个两位数除以8,商与余数相同,那么这样的数总和为:8、有一个除法算式,被除数、除数和商都是整数,且没有余数,被除数、除数、商相加的和是79,被除数和除数相差56,这个算式是:9、一个整数,减去它除以5后所得余数的4倍,差是234,这个自然数是:10、2010除以一个两位数ab=(),使所得余数最大。

11、1)一个两位数被它的各位数字之和去除,能得到的最大余数是:2)一个三位数被它的各位数字之和去除,能得到的最大余数是:12、在大于2010的自然数中,逐个找出“被49除后,商与余数相等的数”,这些数的和是:13、用一个自然数A去除333,商得4,用所得余数去除自然数B,所得商和余数相加恰好为A,那么B最小为:14、两个数字之和为10、8的三位数乘积是一个五位数,且这个五位数的后四位是1031,那么这两位三位数之和是:15、一个自然数除以9的余数和除以8的商的和等于13,那么这个数除以8的余数是:16、一个自然数除以7的余数和除以8的商的和等于15,则满足条件的所有自然数的和是:17、10个自然数的和为100,分别除以3,若用去尾法,10个商的和为30,若用四舍五入法,10个商的和为34,那么10个数中被3除余1的数有:18、一个三位数分别被63、95、143除之后所得的余数之和为19,那这个三位数是:19、在小于1000的正整数中,被12、15和18除得余数相同的数共有:20、若M=3x+x3,当x取1、2、3、……、2010时,能被7整除的M共有:21、当X取1、2、3、……2010时,有()个整数X使2x与X2被7除余数相同。

小学奥数教程:同余问题_全国通用(含答案)

小学奥数教程:同余问题_全国通用(含答案)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711-()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题 【难度】1星 【题型】解答【解析】 (法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

五年级下册奥数试题-同余问题全国通用

五年级下册奥数试题-同余问题全国通用

同余问题姓名1(例)、1309被一个质数相除,余数是21,求这个质数。

2、1796被一个质数相除,余数是24,求这个质数。

3(例)、求2001×2000除以7的余数。

4、求123×345+234×456除以11的余数。

5(例)、有一个大于1的整数,它除1000、1975、2001都得到相同的余数,那么这个整数是多少?6、有三个数1989、901和306被同一个自然数除,得到相同的余数,求这个自然数。

7(例)、两个自然数相除,商15,余3,被除数、除数、商、余数的和是853,求被除数。

8、两数相除商40余7,被除数、除数、余数和商的和是710,求被除数。

9(例)、有一个数除以3余1,除以4余2,问这个数除以12,余数是几?10、一个数除以5余1,除以6余3,除以7余4,这个数最小是几?11(例)、3867×4253=1644□351,求□里的数。

12、4937×6845=3379□765,求□里的数。

练习题(A组)1、两个自然数相除,商8余16,被除数、除数、商与余数的和为265,求除数是多少?2、写出除以8所得的商和余数(不为0)相同的所有的数。

3、2002×2002-2001除以9的余数是多少?4、当2002和1781除以某一个自然数,余数分别是2和1,那么这个数最大是多少?5、一个数除以17的余数是5,被除数扩大2倍,余数是多少?6、有一个数,除以3余数是1,除以4余数是3 。

这个数除以12,余数是()。

7、570被一个两位数除,余数是15,这个两位数是多少?8、有一个数加上22的和被9除余3,这个数加上35的和被9被余几?B组1、有一个整数,用它去除45,53,143得到的3个伤痕的和是20,这个数是多少?2、有一个数用它去除100,余数是1,用它去除50,余数是6,求这个数。

3、把几十个苹果平均分成若干份,每份9个余8个,每份8个余7个每份4个余3个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余数与同余
216两数相除,商是499,余数是3,被除数最小是几?
217两个数被13除分别余7和10,这两个数的和被 13除余几?
218用108除一个数余100,如果改用36除这个数,那么余数是几?
2191111除以一个两位数,余数是66,求这个两位数。

220用1—9这9个数码连续不断地排列成一个100位数
89…
这个100位数除以9余几?
221把自然数从小到大依次无间隔地写成一个数。

问:从第1个数码到第300个数码所构成的数除以9余几?
222求这样的三位数,它除以9所得的余数等于组成它的三个数字的平方和。

223求下列各数除以11的余数:
224将自然数1—40从左至右依次排列成一个71位数,求这个数除以11的余数。

225已知大小两数之和是789,大数去掉个位数字后等于小数。

求大数。

226分别求满足下列条件的最小自然数:
(1)用3除余2,用5除余1,用7除余1;
(2)用3除余1,用5除余2,用7除余2;
(3)用3除余2,用7除余4,用11除余1。

227一个自然数在1000到1200之间,且被3除余1,被5除余2,被7除余3。

求这个自然数。

228A,B,C三人绕校园一周的时间分别为6分、7分、11分。

由开始点A出发后,B比A晚1分钟出发,C比B晚5分钟出发,那么A,B,C初次同时通过开始出发的地点是在A出发后多少分钟?
229有一类自然数,其中每一个数与2的和都是5的倍数,与5的差都是6的倍数。

问:这类自然数中最小的是几?
230有一类自然数,其中每一个数与5的和都是9的倍数,与5的差都是7的倍数。

请按从小到大的顺序写出这类自然数中的前三个。

231在一个四位数除以19的竖式中,每商一次后的余数都是8。

满足条件的四位数有哪些?
232一个自然数,减去它除以7所得余数的5倍,结果是100,求原来的自然数。

233两数相除商9余4。

如果被除数、除数都扩大到原来的3倍,则被除数、除数、商、余数之和等于2583。

求原来的被除数和除数。

234甲、乙、丙、丁四人分扑克牌,先给甲3张,再给乙2张,再给丙1张,最后给丁2张,然后再按照甲3张、乙2张,……的顺序发牌。

问:最后一张(第54张)牌发给了谁?
235节日的街上挂起了长长一排彩灯,从第1盏开始,按照5盏红灯、4盏黄灯、3盏绿灯、2盏蓝灯的顺序周而复始地排下去。

问:第2000盏灯是什么颜色?
236右图中,从A点出发沿顺时针方向绕正方形走,到B点拐第1个弯,在哪个点拐第67个弯?
237某班学生列队时,排三路纵队多1人,排四路纵队多2人,排五路纵队多3人。

问:这班学生至少有多少人?
238有一个数除以3余2,除以4余1。

问:此数除以12余几?
2392000除以自然数a的不完全商是46,求a。

240678除以一个数的不完全商是13,并且除数与余数的差是8,求除数和余数。

241从6月 25日12时起,过10000分钟后是哪月哪日的几时几分?
242求1 2+2 2+…+99 2除以4的余数。

243计算下列各式的余数:
(1)81547×118÷7;(2)2758×3361÷9;
(3)9642×2879×4787÷13;(4)2461×135×6047÷11;
(5) 6443 12 ÷19;(6)253 16×187 19÷83。

244☆求下列各式的余数;
(1) 2123÷6; (2) 4848÷5; (3)10100÷7;
(4) 345÷7; (5) 5100÷11; (6)1013÷13。

245☆求÷ 7的余数。

246☆将一批货物共 328千克装入纸箱,每箱13千克,最后余多少千克?
个数对,那么这样的数对有哪几组?
248有一串数1,1,2,3,5,8,…从第3个数起,每个数都是前2个数之和,在这串数的前100个数中,有多少个是5的倍数?
249☆70个数排成一排,除了两头的两个数外,每个数的3倍恰好等于它两边两个数的和。

已知最左边的几个数是:0,1,3,8,21,…问:最右边的一个数除以6的余数是几?
250在小于1000的自然数中,除以18及33而余数相同的数有多少个?
251有一个自然数,除345和543所得的余数相同,且商相差11。

求这个数。

252张霞在计算有余数的除法时,把被除数115当成了151,结果商比正确结果大了3,但余数恰好相同。

求这道除法算式的除数。

253用一个整数去除454和546所得的余数都是17,求这个数。

254某个自然数除以512余83,除以513也余83。

这个自然数除以38余几?
255有一个大于1的整数,除365,450,314所得的余数都相同,求这个数。

256学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网。

如果将这三种物品分别平分给每个班,那么这三种物品剩下的数量相同。

学校共有多少个班?
257有一个数,用它去除120,余数是1,用它去除50,余数比它小1。

求这个数。

258用一个自然数去除700余4,除900余12,除1000余16,求这个数。

259两个数的和是357,用较大的数除以较小的数商5余15。

求这两个数。

260有一个整数,用它分别去除157,234和324,得到的三个余数之和是100。

求这个整数。

261一个三位数,除以28余25,除以29余10,求这个三位数。

262一个自然数被7,8,9除的余数分别为1,2,3,并且三个商数的和是570,求这个自然数。

263☆一个自然数,分别除以3,4,6,7,12,42后,得到的余数分别为2,1,5,6,5,41。

又知这六个商的和为877,求这个自然数。

264计算下式除以7所得的余数;
1111+2×1111+3×1111+…+111l×1111。

265证明:奇数的平方除以8都余1。

266有四个不同的自然数,其中任意两个数的和是2的倍数,任意三个数的和是3的倍数。

为使这四个数的和尽可能小,这四个数应分别是几?
267号码分别为37,57,77和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
268在一个圆圈上有几十个孔(见下图),小明像玩跳棋那样,从A孔出发沿逆时针方向每隔几个孔跳一步,希望一圈以后能跳回A孔。

他先试着每隔2孔跳一步,结果只能跳到B孔,他又试着每隔4孔跳一步,也只能跳到B孔,最后他每隔6孔跳一步,正好跳回A孔。

问:这个圆上共有多少个孔?
269☆两个代表团乘车去参观,每辆车可乘36人,两代表团坐满若干辆车后,第一个代表团余下的13人与第二个代表团余下的成员正好又坐满一辆车。

参观完,第一个代表团的每个成员与第二个代表团的每个成员两两合拍一张照片留念。

如果每个胶卷可拍36张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?。

相关文档
最新文档