(完整word版)全国2019年4月高等教育自学考试概率论与数理统计(经管类)试题
全国2019年4月高等教育(工本)自学考试试卷、详细答案及考点分析
x
2
,则幂级数变为
n1
1 2n
tn
,其系数为
an
1 2n
an1
1 2n1
故
1
lim an1 a n
n
lim
n
2n1 1
1 2
2n
所 以
R
1
2
,此时幂级数
n1
1 2n
tn
半径为
2,收敛域为
2,2 , 从 而 原 幂 级 数
n1
1 2n
x
2n
半径为
2,收敛域
0,4 .当
x
0
,幂级数变为交错级数
第一部分 选择题
一、单项选择题:本大题共 5 小题,每小题 3 分,共 15 分。在每小题列出的四个备选项中 只有一项是最符合题目要求的,请将其选出。
1. 在空间间直角坐标系中,点 2,1,6 关于原点的对称点的坐标是
A. 2,1,6
B. 2,1,6
C. 2,1,6
D. 2,1,6
解:使用空间间直角坐标系中对称点的关系。若点 Px, y, z 关于原点对称,则 x,y,z 变
d
d
2 sin
f
r2
rdr ,
0
0
D
所以选 D. 考核知识点:二重积分的计算(综合应用); 考核要求:熟练掌握计算二重积分的极坐标变换法.
4. 以 y cos 4x 为特解的微分方程是
A. y 16 y 0
B. y 16 y 0
C. y 16 y 0
D. y 16 y 0
解:使用代入法。由于 y cos 4x 是微分方程的特解,因此代入微分方程中必使等号成立。
为其相反数,则对称点为 P1 x, y,z ,所以点 2,1,6 关于原点的对称点的坐标是 2,1,6 ,选 B.
全国2019年4月高等教育自学考试概率论与数理统计(经管类)试题
2019年4月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)04183一、单项选择题:本大题共10小题,每小题2分,共20分。
1.设()0.6P B =,()0.5P A B =,则()P A B -=A. 0.1B.0.2C.0.3D.0.42.设事件A 与B 相互独立,且()0.6P A =,()0.8P A B =,则()P B =A. 0.2B.0.4C.0.5D.0.63.甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率的概率是 A. 16 B. 14 C. 13 D. 5124.设随机变量X则P{X>0}=A. 14B. 12C. 34D. 1 5.设随机变量X 的概率为,02()0,cx x f x ≤≤⎧=⎨⎩其他,则P{X ≤1}= A.14 B. 12 C. 23 D. 346.已知随机变量X~N(-2,2),则下列随机变量中,服从N(0,1)分布的是 A. 1(2)2X - B. 1(2)2X + C. 2)X - D. 2)X +A. 0.1B.0.4C.0.5D.0.78.设随机变量X 与Y 相互独立,且D(X)=4,D(Y)=2,则D(3X-2Y)=A. 8B.16C.28D.449.设123,,x x x 是来自总体X 的样本,若E(X)=μ(未知),123132x ax ax μ=-+是μ的无偏估计,则常数a=A. 16B. 14C. 13D. 1210.设12,,,(1)n x x x n >为来自正态总体2(,)N μσ的样本,其中2,μσ均未知,x 和2s 分别是样本均值和样本方差,对于检验假设0000=H H μμμμ≠:,:,则显著性水平为α的检验拒绝域为 A.02(1)x n αμ⎧⎫->-⎨⎬⎩⎭ B. 02x αμ⎧⎫->⎨⎬⎩⎭ C.02(1)x n αμ⎧⎫-≤-⎨⎬⎩⎭ D. 02x αμ⎧⎫-≤⎨⎬⎩⎭ 二、填空题:本大题共15小题,每小题2分,共30分。
2019年4月全国自考《概率论与数理统计(二)》考前试题和答案02197
本题分数 8 分
修改分数
你的得分 第 2 题 在电压不超过 200V,200~240V,超过 240V 三种情况下,某种电子元件损坏的概率分别为 0.1,0.001 和 0.2,若电源电压 X~N(220,252), 求:(1)元件损坏的概率 α;
修改分数
你的得分 第 4 题 设连续型随机变量 X 的概率密度为(如下图)则 k分数 2 分
修改分数
你的得分 第 5 题 设 X 的分布列为(如下图)则 D(1-2X)=___.
【正确答案】
本题分数 2 分
你的得分 第 6 题 图中空白处答案应为:___
修改分数
【正确答案】
【正确答案】
五、应用题(10 分) 第1题
【正确答案】
本题分数 2 分
你的得分 第 2 题 图中空白处答案应为:___
修改分数
【正确答案】
本题分数 2 分
修改分数
你的得分 第 3 题 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为 0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为___.
【正确答案】 0.496
本题分数 2 分
【正确答案】 D
本题分数 2 分 第 7 题 f(x)=1b-aa≤x≤b 0 其他是()分布的密度函数. A. 指数
B. 二项 C. 均匀 D. 泊松
【正确答案】 C
本题分数 2 分 第 8 题 设 x1,x2,…,xn 是来自总体 X 的样本,X~N(0,1),则∑ni=1x2i 服从() A. χ2(n-1) B. χ2(n) C. N(0,1) D. N(0,n)
041831910全国高等教育自学考试 概率论与数理统计(经管类)试题
2019年10月高等教育自学考试《概率论与数理统计(经管类)》试题课程代码:04183一、单项选择题1.某射手向一目标射击两次,事件i A 表示“第i 次射击命中目标”,i =1,2,事件B 表示“仅第二次射击命中目标”,则B =A .21A AB .21A AC .21A AD .21A A 2.设事件A 与B 相互独立,P (A )=0.4,P (B )=0.2,则=)(A B P A .0.2 B .0.4 C .0.5 D .0.63.设随机变量X 的分布律为,则=≥}1{X PA .0.2B .0.3C .0.5D .0.74.已知随机变量X 服从参数为λ的指数分布,0>λ,则当0>x 的X 的分布函数)(x F = A .x e λλ- B .x e λ--1 C .x e λλ D .x e λ+15.设二维随机变量(X,Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤=其他,,0,210,210,),(y x c y x f 则常数=c A .41 B .21 C .2 D .46.设X 随机变量,且10)12(=+X D ,则=)(X D A .2.25 B .2.5 C .4.5 D .5 7.设二维随机变量(X ,Y )的分布律为则=)10(XY EA .4B .5C .40D .508.设)1(,,,21>n x x x n 是来自正态总体),(20σμN 的样本,其中0μ已知,则2σ的无偏估计量为A .∑=--n i i x n 120)(11μ B .∑=--n i i x n 10)(11μ C .∑=-n i i x n 120)(1μ D .∑=-ni i x n 130)(1μ9.设)1(,,,21>n x x x n 为来自正态总体)1,(μN 的样本,x 为样本均值。
若检验假设00:μμ=H ,01:μμ≠H ,则采用的检验统计量应为A .)(0μ-x nB .)(μ-x nC .n x 0μ-D .nx μ-10.依据样本),,2,1)(,(n i y x i i =得到一无线性回归方程x y 10ˆˆˆββ+=,记x ,y 为样本均值,∑=-=n i i xx x x L 12)(,∑=-=n i i yy y y L 12)(,∑=--=ni i i xy y y x x L 1))((,则=1ˆβ A .xx yyL L B .yy xx L L C .yy xy L LD .xxxy L L二、填空题11.设随机事件A 与B 互不相容,且2.0)(=A P ,3.0)(=B A P ,则=)(B P 。
(完整版)全国2019年4月高等教育自学考试概率论与数理统计(经管类)试题
2019年4月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)04183一、单项选择题:本大题共10小题,每小题2分,共20分。
1.设()0.6P B =,()0.5P A B =,则()P A B -=A. 0.1B.0.2C.0.3D.0.42.设事件A 与B 相互独立,且()0.6P A =,()0.8P A B =,则()P B =A. 0.2B.0.4C.0.5D.0.63.甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率的概率是 A. 16 B. 14 C. 13 D. 5124.设随机变量X则P{X>0}=A. 14B. 12C. 34D. 1 5.设随机变量X 的概率为,02()0,cx x f x ≤≤⎧=⎨⎩其他,则P{X ≤1}= A.14 B. 12 C. 23 D. 346.已知随机变量X~N(-2,2),则下列随机变量中,服从N(0,1)分布的是 A. 1(2)2X - B. 1(2)2X + C. 2)X - D. 2)X +A. 0.1B.0.4C.0.5D.0.78.设随机变量X 与Y 相互独立,且D(X)=4,D(Y)=2,则D(3X-2Y)=A. 8B.16C.28D.449.设123,,x x x 是来自总体X 的样本,若E(X)=μ(未知),123132x ax ax μ=-+是μ的无偏估计,则常数a=A. 16B. 14C. 13D. 1210.设12,,,(1)n x x x n >为来自正态总体2(,)N μσ的样本,其中2,μσ均未知,x 和2s 分别是样本均值和样本方差,对于检验假设0000=H H μμμμ≠:,:,则显著性水平为α的检验拒绝域为 A.02(1)x n αμ⎧⎫->-⎨⎬⎩⎭ B. 02x αμ⎧⎫->⎨⎬⎩⎭ C.02(1)x n αμ⎧⎫-≤-⎨⎬⎩⎭ D. 02x αμ⎧⎫-≤⎨⎬⎩⎭ 二、填空题:本大题共15小题,每小题2分,共30分。
线性代数(经管)2019年4月自学考试试题+答案
2019年4月高等教育自学考试全国统一命题考试线性代数(经管类) (课程代码04184)说明:在本卷中,A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r (A )表示矩阵A 的秩.第一部分选择题一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.设行列式,2b b a a 12211221-=-+-+b b a a 则2121b b a a = A.-2B.-1C.1D.22.设A 为2阶矩阵,将A 的第1行与第2行互换得到矩阵B ,再将B 的第2行加到第1行得到矩阵C ,则满足PA=C 的可逆矩阵P=A.⎪⎪⎭⎫ ⎝⎛0111B.⎪⎪⎭⎫⎝⎛1011 C.⎪⎪⎭⎫⎝⎛1110 D.⎪⎪⎭⎫⎝⎛1101 3.设向量β=(2,1,b )T可由向量组()T1111,,=α,()Ta 322,,=α线性表出,则数a ,b 满足关系式A.a-b=4B.a-b=0C.a+b=4D.a+b=04.设齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++0002321321321x x x x x kx x x x 有非零解,则数k=A.-2B.-1C.1D.25.设3阶实对称矩阵A 的秩为2,则A 的特征值λ=0的重数为 A.0B.1C.2D.3第二部分非选择题二、填空题:本大题共10小题,每小题2分,共20分。
6.设某3阶行列式第2行元素分别为1,-2,3,对应的余子式为3,2,-2,则该行列式的值为 .7.已知行列式1111c b a302=,则111111302-+-c b a = .8.=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛102010001333221232221131211a a aa a a a a a .9.设n 阶矩阵A 满足关系式==1-22-A E A A ,则 .10.设向量组1α=(1,1,a )T,2α=(1,a ,1)T,3α=(a ,1,1)T的秩为2,则数α= .11.与向量1α=(2,-1)T正交的单位向量2α= .12.设4元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为(A ,b )→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----0000120011200011a 若该线性方程组有惟一解,则数a 的取值应满足 .13.设A 为n 阶矩阵,若非齐次线性方程组Ax=b 有无穷多解,则|A|= . 14.设A 为n 阶矩阵,且满足|BA+2l=0,则A 必有一个特征值为 . 15.二次型f (x 1,x 2,x 3)=(x 1一x 2)2-(x 2+x 3)2的矩阵A= . 三、计算题:本大题共7小题,每小题9分,共63分。
(完整版)2019年4月自考国民经济统计概论真题附答案.doc
2019 年 4 月高等教育自学考试全国统一命题考试国民经济统计概论( 课程代码 00065)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2.应考者必须按试题顺序在答题卡( 纸 ) 指定位置上作答,答在试卷上无效。
3.涂写部分必须使用 2B 铅笔,书写部分必须使用黑色字迹签字笔。
第一部分选择题一、单项选择题:本大题共的,请将其选出。
l. 若在 10000 人中随机抽取15 小题,每小题 1 分,共 15 分。
在每小题列出的备选项中只有一项是最符合题目要求1%人进行调查,则样本容量是A.1%B.10%C.100D.100002.职工的性别属于A. 数字变量B.属性变量C.连续变量D.顺序变量3.将产品按质量划分为一等品、二等品、三等品,这种划分使用的测度尺度是A.定类尺度B.定序尺度C.定距尺度D.定比尺度4.先将职工按收入水平进行分组,然后在各组中随机抽取一部分职工,这种抽样方式是A.整群抽样B.简单随机抽样C.等距抽样D.分层抽样5.将我国家庭按人口数分组并编制次数分布表,适宜采用的是A.等距分组次数分布表B.异距分组次数分布表C.组距分组总次数分布表D.单值分组次数分布表6.在职工工资 ( 单位:元 ) 分组表中,工资最高一组为“ 10000 以上”,其邻组为“ 9000~10000”,则最高一组的组中值是A.9500B.10000C.10500D.110007.数据: 3、 7、 8、 12、 12、12、 14、、15、 18、20、 23 的中位数是A.12B.13C.14D.158.从 100 个产品中随机抽取一个登记后将其放回,再抽取第二个登记,放回后再抽取第三个,如此反复。
这种抽样方法是A. 重复抽样B.不重复抽样C.非随机抽样D.主观抽样9.相关系数的取值范围是A. 小于 -1B.大于1C.-1到1之间D.0到1之间10.若估计且通过检验的线回归方程为y? = 2 + 0.89x , 则 y 和 x 之间的相关关系一定是A. 正相关B.负相关C.不相关D.完全相关11. 某企业的产值2015 年是 1000 万元, 2016 年是 1210 万元,则该企业产值2016 年与 2015 年相比的增长速度是A.21%B.79%C.100%D.121%12.某地区人均收入 2011 年为 40000 元, 2016 年为 50000 元,则该地区这一时期人均收入平均发展速度的算式为6 50000 B. 5 50000 C. 6 50000 -1 D. 5 50000 -1A. √√√√40000 40000 40000 4000013.用收入法计算国内生产总值 , 不需要包括的项目是A. 劳动者报酬B.营业盈余C.投资总额D.生产税净额14.己知商品价格总指数是 110%,销售量总指数是 105%,则其销售额总指数是A.5%B.15%C.15.5%D.115.5%15.CPI 指的是A. 生产者价格指数B.居民消费价格指数C.股票价格指数D.经济产量指数二、多项选择题:本大题共 5 小题,每小题 2 分,共 10 分。
2019年4月自考概率论与数理统计(二)考前试题和答案02197
2019年4月自考《概率论与数理统计(二)》考前试题和答案02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤()【正确答案】 A【你的答案】本题分数2分第2题若D(X),D(Y)都存在,则下面命题中错误的是()A. X与Y独立时,D(X+Y)=D(X)+D(Y)B. X与Y独立时,D(X-Y)=D(X)+D(Y)C. X与Y独立时,D(XY)=D(X)D(Y)D. D(6X)=36D(X)【正确答案】 C【你的答案】本题分数2分第3题设F(x)=P{X≤x}是连续型随机变量X的分布函数,则下列结论中不正确的是()A. F(x)不是不减函数B. F(x)是不减函数C. F(x)是右连续的D. F(-∞)=0,F(+∞)=1【正确答案】 A【你的答案】本题分数2分【正确答案】 D【你的答案】本题分数2分第5题从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm,标准方差为1.6cm,若想知这批零件的直径是否符合标准直径5cm,因此采用了t-检验法,那么,在显著性水平α下,接受域为()【正确答案】 A【你的答案】本题分数2分第6题设μ0是n次重复试验中事件A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有limn→∞Pμ0n-p≥ε()A. =0B. =1C. >0D. 不存在【正确答案】 A【你的答案】本题分数2分第7题设X的分布列为X0123P0.10.30.40.2F(x)为其分布函数,则F(2)=()A. 0.2B. 0.4D. 1【正确答案】 C【你的答案】本题分数2分第8题做假设检验时,在()情况下,采用t-检验法.A. 对单个正态总体,已知总体方差,检验假设H0∶μ=μ0B. 对单个正态总体,未知总体方差,检验假设H0∶μ=μ0C. 对单个正态总体,未知总体均值,检验假设H0∶σ2=σ20D. 对两个正态总体,检验假设H0∶σ21=σ22【正确答案】 B【你的答案】本题分数2分第9题已知E(X)=-1,D(X)=3,则E[3(X2-2)]=()A. 9B. 6C. 30D. 36【正确答案】 B【你的答案】本题分数2分第10题 X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ}=()A. Φ(k)+Φ(-k)B. 2Φ(k)C. 2Φ(k-1)D. 2Φ(k)-1【正确答案】 D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
《概率论与数理统计经管类》答案
2022年4月高等教育自学考试全国统一命题考试概率论与数理统计(经管类) 卷子(课程代码04183)本卷子共5页,总分值l00分,考试时间l50分钟。
考生答题考前须知:1.本卷全部真题必须在答题卡上作答。
答在卷子上无效,卷子空白处和反面均可作草稿纸。
2.第—局部为选择题。
必须对应卷子上的题号使用2B铅笔将“答题卡〞的相应代码涂黑。
3.第二局部为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题地域无效。
第—局部选择题(共20分)一、单项选择题(本大题共l0小题,每题2分,共20分)在每题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡〞的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A,B为随机事件,A B,则=2.设随机事件么,B相互独立,且P(A)=0.2,P(曰)=0.6,则=A.0 12 B.0.32 C.0.68 D.0.883.设随机变量X的分布律为,F(x)为X的分布函数,则F(0.5)=A.0 B.0.2 C.0.25 D.0.34.设二维随机变量(X,Y)的分布函数为F(x,y),则(X,Y)关于X的边缘分布函数F X(x)= A.F(x,+∞) B.F(+∞,y) C.F(x,-∞) D.F(-∞,y) 5.设二维随机变量(X,y)的分布律为则P(X+Y=3)=A.0.1 B.0.2 C.0.3 D.0.46.设Ⅸ,y为随机变量,E(X)=E(Y)=1,Cov(X,Y)=2,则E(2XY)=A.-6 B.-2 C. 2 D.67.设随机变量,且并与y相互独立,则A.f(5) B.f(4) C.F(1,5) D.F(5,1)8.设总体为来自X的样本,n>1,为样本均值,则未知参数P的无偏估量p=9.在假设检验过程中,增大样本容量,则犯两类错误的概率A.都增大 B.都减小C.都不变 D.一个增大,一个减小10.依据样本得到一元线性回归方程,为样本均值。
2019年4月全国自考概率论与数理统计答案详解19页word
2019年4⽉全国⾃考概率论与数理统计答案详解19页word 2019年4⽉⾼等教育⾃学考试《概率论与数理统计》(经管类)答案解析课程代码:04183⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)1.甲,⼄两⼈向同⼀⽬标射击,A表⽰“甲命中⽬标”,B表⽰“⼄命中⽬标”,C表⽰“命中⽬标”,则C=()A.AB.BC.ABD.A∪B【答案】D【解析】“命中⽬标”=“甲命中⽬标”或“⼄命中⽬标”或“甲、⼄同时命中⽬标”,所以可表⽰为“A∪B”,故选择D.【提⽰】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B⾄少有⼀个发⽣”为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发⽣”为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;②若,则AB=A.(3)事件的差:称事件“A发⽣⽽事件B不发⽣”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A, AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2.设A,B是随机事件,,P(AB)=0.2,则P(A-B)=()A.0.1B.0.2C.0.3D.0.4【答案】A【解析】,,故选择A.【提⽰】见1题【提⽰】(3).3.设随机变量X的分布函数为F(X)则()A.F(b-0)-F(a-0)B.F(b-0)-F(a)C.F(b)-F(a-0)D.F(b)-F(a)【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提⽰】. 【提⽰】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1< x2),都有;③F(x)是单调⾮减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),可以求出下列三个常⽤事件的概率:①;②,其中a③.4.设⼆维随机变量(X,Y)的分布律为0 1 20 1 0 0.1 0.2 0.4 0.3 0则()A.0B.0.1C.0.2D.0.3【答案】D【解析】因为事件,所以,= 0 + 0.1 + 0.2 = 0.3故选择D【提⽰】1.本题考察⼆维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,⽽互不相容事件的概率为各事件概率之和.5.设⼆维随机变量(X,Y)的概率密度为,则()A.0.25B.0.5C.0.75D.1【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,所以故选择A.【提⽰】1.⼆维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因⽽在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平⾯区域D内取值的概率为.2.⼆重积分的计算:本题的⼆重积分的被积函数为常数,根据⼆重积分的⼏何意义可⽤简单⽅法计算:积分值=被积函数0.5×积分区域⾯积0.5.6.设随机变量X的分布律为X﹣2 0 2P 0.4 0.3 0.3则E(X)=()A.﹣0.8B.﹣0.2C.0D.0.4【答案】B【解析】E(X)=(﹣2)×0.4+0×0.3+2×0.3=﹣0.2故选择B.【提⽰】1.离散型⼀维随机变量数学期望的定义:设随机变量的分布律为,1,2,….若级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E(c)=c,c为常数;②E(aX)=aE(x),a为常数;③E(X+b)=E(X+b)=E(X)+b,b为常数;④E(aX+b)=aE(X)+b,a,b为常数.7.设随机变量X的分布函数为,则E(X)=()A. B. C. D.【答案】C【解析】根据连续型⼀维随机变量分布函数与概率密度的关系得,所以,=,故选择C.【提⽰】1.连续型⼀维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.⼀维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果⼴义积分绝对收敛,则随机变量的数学期望为.8.设总体X服从区间[,]上的均匀分布(),x1,x2,…,x n为来⾃X的样本,为样本均值,则A. B. C. D.【答案】C【解析】,,⽽均匀分布的期望为,故选择C.【提⽰】1.常⽤的六种分布(1)常⽤离散型随机变量的分布(三种):X0 1概率q pA.两点分布①分布列②数学期望:E(X)=P③⽅差:D(X)=pq.B.⼆项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望: E(X)=nP③⽅差: D(X)=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③⽅差:=(2)常⽤连续型随机变量的分布(三种):A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④⽅差:D(X)=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④⽅差:D(X)=.C.正态分布(A)正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④⽅差:=,⑤标准化代换:若X~,,则~.(B)标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E(X)=0,④⽅差:D(X)=1.2.注意:“样本”指“简单随机样本”,具有性质:“独⽴”、“同分布”.9.设x1,x2,x3,x4为来⾃总体X的样本,且,记,,,,则的⽆偏估计是()A. B. C. D.【答案】A【解析】易知,,故选择A.【提⽰】点估计的评价标准:(1)相合性(⼀致性):设为未知参数,是的⼀个估计量,是样本容量,若对于任意,有,则称为的相合(⼀致性)估计.(2)⽆偏性:设是的⼀个估计,若对任意,有则称为的⽆偏估计量;否则称为有偏估计.(3)有效性设,是未知参数的两个⽆偏估计量,若对任意有样本⽅差,则称为⽐有效的估计量.若的⼀切⽆偏估计量中,的⽅差最⼩,则称为的有效估计量.10.设总体~,参数未知,已知.来⾃总体的⼀个样本的容量为,其样本均值为,样本⽅差为,,则的置信度为的置信区间是()A.,B.,C.,D.【答案】A【解析】查表得答案.【提⽰】关于“课本p162,表7-1:正态总体参数的区间估计表”记忆的建议:①表格共5⾏,前3⾏是“单正态总体”,后2⾏是“双正态总体”;②对均值的估计,分“⽅差已知”和“⽅差未知”两种情况,对⽅差的估计“均值未知”;③统计量顺序:, t, x2, t, F.⼆、填空题(本⼤题共15⼩题,每⼩题2分,共30分)11.设A,B是随机事件,P (A)=0.4,P (B)=0.2,P (A∪B)=0.5,则P (AB)= _____.【答案】0.1【解析】由加法公式P (A∪B)= P (A)+ P (B)-P (AB),则P (AB)= P (A)+ P (B)-P (A∪B)=0.1故填写0.1.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取⼀个,则第三次取到0的概率为________.【答案】【解析】设第三次取到0的概率为,则故填写.【提⽰】古典概型:(1)特点:①样本空间是有限的;②基本事件发⽣是等可能的;(2)计算公式.13.设随机事件A与B相互独⽴,且,则________.【答案】0.8【解析】因为随机事件A与B相互独⽴,所以P (AB)=P (A)P (B)再由条件概率公式有=所以,故填写0.8.【提⽰】⼆随机事件的关系(1)包含关系:如果事件A发⽣必然导致事件B发⽣,则事件B包含事件A,记做;对任何事件C,都有,且;(2)相等关系:若且,则事件A与B相等,记做A=B,且P (A)=P (B);(3)互不相容关系:若事件A与B不能同时发⽣,称事件A与B互不相容或互斥,可表⽰为=,且P (AB)=0;(4)对⽴事件:称事件“A不发⽣”为事件A的对⽴事件或逆事件,记做;满⾜且.显然:①;②,.(5)⼆事件的相互独⽴性:若, 则称事件A, B相互独⽴;性质1:四对事件A与B,与B,A与,与其⼀相互独⽴,则其余三对也相互独⽴;性质2:若A, B相互独⽴,且P (A)>0, 则.14.设随机变量服从参数为1的泊松分布,则________.【答案】【解析】参数为泊松分布的分布律为,0,1,2,3,…因为,所以,0,1,2,3,…,所以=,故填写.15.设随机变量X的概率密度为,⽤Y表⽰对X的3次独⽴重复观察中事件出现的次数,则________.【答案】【解析】因为,则~,所以,故填写.【提⽰】注意审题,准确判定概率分布的类型.16.设⼆维随机变量(X,Y)服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.【答案】【解析】因为⼆维随机变量(X,Y)服从圆域D:上的均匀分布,则,所以故填写.【提⽰】课本介绍了两种重要的⼆维连续型随机变量的分布:(1)均匀分布:设D为平⾯上的有界区域,其⾯积为S且S>0,如果⼆维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布,记为(X,Y)~.(2)正态分布:若⼆维随机变量(X,Y)的概率密度为。
2019年4月自考概率论与数理统计(二)考前试题和答案02197
2019年4月自考《概率论与数理统计(二)》考前试题和答案02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤()【正确答案】 A【你的答案】本题分数2分第2题若D(X),D(Y)都存在,则下面命题中错误的是()A. X与Y独立时,D(X+Y)=D(X)+D(Y)B. X与Y独立时,D(X-Y)=D(X)+D(Y)C. X与Y独立时,D(XY)=D(X)D(Y)D. D(6X)=36D(X)【正确答案】 C【你的答案】本题分数2分第3题设F(x)=P{X≤x}是连续型随机变量X的分布函数,则下列结论中不正确的是()A. F(x)不是不减函数B. F(x)是不减函数C. F(x)是右连续的D. F(-∞)=0,F(+∞)=1【正确答案】 A【你的答案】本题分数2分【正确答案】 D【你的答案】本题分数2分第5题从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm,标准方差为1.6cm,若想知这批零件的直径是否符合标准直径5cm,因此采用了t-检验法,那么,在显著性水平α下,接受域为()【正确答案】 A【你的答案】本题分数2分第6题设μ0是n次重复试验中事件A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有limn→∞Pμ0n-p≥ε()A. =0B. =1C. >0D. 不存在【正确答案】 A【你的答案】本题分数2分第7题设X的分布列为X0123P0.10.30.40.2F(x)为其分布函数,则F(2)=()A. 0.2B. 0.4D. 1【正确答案】 C【你的答案】本题分数2分第8题做假设检验时,在()情况下,采用t-检验法.A. 对单个正态总体,已知总体方差,检验假设H0∶μ=μ0B. 对单个正态总体,未知总体方差,检验假设H0∶μ=μ0C. 对单个正态总体,未知总体均值,检验假设H0∶σ2=σ20D. 对两个正态总体,检验假设H0∶σ21=σ22【正确答案】 B【你的答案】本题分数2分第9题已知E(X)=-1,D(X)=3,则E[3(X2-2)]=()A. 9B. 6C. 30D. 36【正确答案】 B【你的答案】本题分数2分第10题 X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ}=()A. Φ(k)+Φ(-k)B. 2Φ(k)C. 2Φ(k-1)D. 2Φ(k)-1【正确答案】 D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
全国2019年4月自考04183概率论与数理统计经管类试题
绝密★考试结束前浙江省2019年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183 请考生按规定用笔将所有试题的答案涂㊁写在答题纸上㊂选择题部分注意事项: 1.答题前,考生务必将自己的考试课程名称㊁姓名㊁准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上㊂ 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑㊂如需改动,用橡皮擦干净后,再选涂其他答案标号㊂不能答在试题卷上㊂一㊁单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将 答题纸”的相应代码涂黑㊂错涂㊁多涂或未涂均无分㊂1.已知P (A )=0.7,P (B )=0.3.若事件A ,B 相互独立,则P (A ∪B )=A.0.3B.0.4C.0.79D.12.若事件A ,B 互斥,则下列公式正确的是A.P (A ∪B )=P (A )+P (B ) B.P (AB )=P (A )P (B )C.P (A -B )=P (A )-P (B ) D.P (A |B )=P (A )3.设随机变量X 的分布律为X -4-102P0.35a0.150.05,则a 的值是A.0.25B.0.35C.0.45D.0.554.设随机变量X 的概率密度函数为f (x )=1/3,0<x <1;2/9,3<x <6;0,其他ìîíïïïï,要使P {X ≥k }=23,则k 的取值范围是A.k =4.5B.1≤k ≤3C.k >3D.k <15.设随机变量X 服从参数为4的泊松分布,则E (X )=A.14B.12C.2D.46.设二维随机变量(X ,Y )的分布律为 YX 01010.20.40.10.3则下列结论正确的是A.X 与Y 相互独立 B.P (X =Y )=0.6C.P (X >Y )=0.3 D.P (X <Y )=0.17.设随机变量X 与Y 相互独立,且X ~N (0,4),Y ~N (0,1),令Z =X +2Y ,则D (Z )=A.3B.4C.6D.88.设二维随机变量(X ,Y )的概率密度为f (x ,y )=1π,x 2+y 2≤1,0,其他ìîíïïïï,则X 与Y 是A.独立同分布的随机变量B.独立不同分布的随机变量C.不独立同分布的随机变量D.不独立不同分布的随机变量9.设随机变量X 1,X 2, ,X n (n >1)独立同分布,且共同方差为σ2>0,令Y =1n ∑ni =1X i,则A.Cov (X 1,Y )=σ2n B.Cov (X 1,Y )=σ2C.D (X 1+Y )=n +2nσ2D.D (X 1-Y )=n +1nσ210.设x 1,x 2, ,x n 是取自正态总体N (μ,σ2)的简单随机样本,x 是样本均值,记s 21=1n -1∑n i =1(x i -x )2,s 22=1n ∑n i =1(x i -x )2,s 23=1n -1∑n i =1(x i -μ)2,s 24=1n ∑n i =1(x i -μ)2,则服从自由度为n -1的t 分布的随机变量是A.t =x -μs 1/n -1 B.t =x -μs 2/n -1C.t =x -μs 3/n -1D.t =x -μs 4/n -1非选择题部分注意事项: 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上㊂二㊁填空题(本大题共15小题,每小题2分,共30分)11.已知P (A )=0.5,P (AB )=0.3,则P (A -B )= .12.设随机变量X 服从正态分布N (2,σ2),且P {2<X <4}=0.3,则P {X <0}= .13.已知二维随机变量(X ,Y )的数字特征是:D (X )=16,D (Y )=25,ρXY =0.6,则Cov(X ,Y )= .14.设总体X 服从正态分布N (0,1),x 1,x 2, ,x 8为取自该总体的简单随机样本,则∑8i =1x 2i服从 分布.(写出参数)15.设随机变量X 服从二项分布B (3,0.9),则P {X =1}= .16.设x 1,x 2, ,x n 为取自总体X 的简单随机样本,构造θ∧=θ(x 1, ,x n )作为总体参数θ的点估计,则当 时称θ∧为θ的无偏估计.17.设二维随机变量(X ,Y )的分布律为 YX 01200.200.100.1510.300.150.10则P {Y >X }= .18.100件产品中有16件是不合格品,从该产品中依次不放回地随机抽2件,则第二次抽到不合格品的概率是 .19.设二维随机变量(X ,Y )服从区域D ={(x ,y )|(x -1)2+(y -1)2≤1}上的均匀分布,则P {X +Y ≤2}= .20.若随机变量ξ服从均匀分布U [1,6],则方程t 2+ξt +1=0有实根的概率是 .21.设二维随机变量(X ,Y )的概率密度为f (x ,y )=a -x -y ,0≤x ≤1,0≤y ≤1,0,其他{,则a = .22.甲㊁乙两单位女职工所占的比例分别为14,13.现随机取一个单位,并在该单位随机找一名职工,若已知这人为女职工,则该职工属于甲单位的概率是 .23.设随机变量X的数字特征是E(X)=μ,D(X)=σ2,则由切比雪夫不等式有P{|X-μ|≥3σ|}≤ .24.设样本x1,x2, ,x n是从正态总体N(μ,σ2)中抽取的一个简单随机样本,其中μ,σ2都未知,假设检验问题为H0:μ=μ0,H1:μ≠μ0,则检验统计量为 .25.设样本x1,x2, ,x n是从正态总体N(μ,4)中抽取的一个简单随机样本,其中μ未知,则μ的极大似然估计为 .三㊁计算题(本大题共2小题,每小题8分,共16分)26.盒中有4个乒乓球,其中1个旧球,3个新球.第一次比赛时从盒中任取1个球用,用后放回盒中;第二次比赛时再从盒中任取1个球用,求:(1)第二次比赛用球是新球的概率;(2)已知第二次比赛用球是新球的条件下,第一次比赛用球是新球的概率.27.现有10组观测数据,由下表给出:x0.5-0.80.9-2.86.52.31.65.1-1.9-1.5y-0.3-1.21.1-3.54.61.80.53.8-2.80.5试用最小二乘法建立y对x的线性回归方程.四㊁综合题(本大题共2小题,每小题12分,共24分)28.设随机变量X的概率密度为f(x)=12,-1≤x≤1, 0,其他ìîíïïïï.求:(1)随机变量X的分布函数F(x);(2)E(X);(3)D(X).29.抽样调查结果表明:某地区考生的外语成绩(百分制)服从正态分布N(μ,σ2),平均成绩72分,96分以上者占总人数的2.3%,求:(1)σ的值;(2)考生的外语成绩在60分至84分之间的概率.(附:Φ(1)=0.841,Φ(2)=0.977)五㊁应用题(10分)30.根据经验得知某种产品的使用寿命服从正态分布,标准差为150小时.今由一批产品中随机抽查26件,计算得到平均寿命为2537小时,问在显著性水平0.05下,能否认为这批产品的平均寿命为2500小时?(附:u0.025=1.96)。
2019年4月自考国民经济统计概论真题附答案(可编辑修改word版)
2019 年 4 月高等教育自学考试全国统一命题考试国民经济统计概论(课程代码00065)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
3.涂写部分必须使用 2B 铅笔,书写部分必须使用黑色字迹签字笔。
第一部分选择题一、单项选择题:本大题共 15 小题,每小题 1 分,共 15 分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
l.若在 10000 人中随机抽取 1%人进行调查,则样本容量是A.1%B.10%C.100D.100002.职工的性别属于A.数字变量B.属性变量C.连续变量D.顺序变量3.将产品按质量划分为一等品、二等品、三等品,这种划分使用的测度尺度是A.定类尺度B.定序尺度C.定距尺度D.定比尺度4.先将职工按收入水平进行分组,然后在各组中随机抽取一部分职工,这种抽样方式是A.整群抽样B.简单随机抽样C.等距抽样D.分层抽样5.将我国家庭按人口数分组并编制次数分布表,适宜采用的是A.等距分组次数分布表B.异距分组次数分布表C.组距分组总次数分布表D.单值分组次数分布表6.在职工工资(单位:元)分组表中,工资最高一组为“10000以上”,其邻组为“9000~10000”,则最高一组的组中值是A.9500B.10000C.10500D.110007.数据:3、7、8、12、12、12、14、15、18、20、23 的中位数是A.12B.13C.14D.158.从100 个产品中随机抽取一个登记后将其放回,再抽取第二个登记,放回后再抽取第三个,如此反复。
这种抽样5 5000040000方法是A.重复抽样B.不重复抽样C.非随机抽样D.主观抽样9.相关系数的取值范围是 A.小于-1B.大于 1C.-1 到 1 之间D.0 到 1 之间10.若估计且通过检验的线回归方程为y = 2 + 0.89x ,则 y 和 x 之间的相关关系一定是A. 正相关B.负相关C.不相关D.完全相关11. 某企业的产值 2015 年是 1000 万元,2016 年是 1210 万元,则该企业产值 2016 年与 2015 年相比的增长速度是A.21%B.79%C.100%D.121%12. 某地区人均收入 2011 年为 40000 元,2016 年为 50000 元,则该地区这一时期人均收入平均发展速度的算式为B.C.13. 用收入法计算国内生产总值,不需要包括的项目是A.劳动者报酬B.营业盈余C.投资总额D.生产税净额14.己知商品价格总指数是 110%,销售量总指数是 105%,则其销售额总指数是 A.5%B.15%C.15.5%D.115.5%15. CPI 指的是A. 生产者价格指数B.居民消费价格指数C.股票价格指数D. 经济产量指数二、多项选择题:本大题共 5 小题,每小题 2 分,共 10 分。
自学考试真题:14-10概率论与数理统计(经管类)-含解析
全国2014年10月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设随机事件A 与B 相互独立,P(A)=0.2,P(B)=0.4,则P (A|B )= A.0 B.0.2 C.0.4 D.12.设随机变量{}{}c X P X ≤=>c X P 且),~N(3,22,则常数c=A.0B.2C.3D.43.下列函数中可以作为某随机变量概率密度的是A.⎩⎨⎧<<=其他,0,10,3)(2x x x fB.⎩⎨⎧≤<=其他,0,21,3)(2x x x fC.⎩⎨⎧<<=其他,0,32,3)(2x x x fD.⎩⎨⎧<<=其他,0,11-,3)(2x x x f4.设随机变量X 与Y 相互独立,且D(X)=4,D(Y)=3,则D(3X-2Y)= A.6 B.18 C.24D.485.设X,Y 为随机变量,若E(XY)=E(X)E(Y),则下列结论一定成立的是 A.D(XY)=D(X)D(Y) B.D(X+Y)=D(X)+D(Y) C.X 与Y 相互独立D.X 与Y 不相互独立6.设随机变量X 的方差等于1,由切比雪夫不等式可估计{}≤≥-2)(X E X P A.0 B.0.25 C.0.5D.0.757.设总体X 的概率密度为f(x),n x x x ,...,,21为来自该总体的样本,则样本的联合概率密度函数为 A. f(x)B.)(...)()(21n x f x f x f +++C.)(x f '' D.)()...()(21n x f x f x f8.设总体X 的期望n x x x ,...,,),0(1=E(X)21>λλ为来自该总体的样本,∑==nii x nx 11,则λ的 矩估计为 A.x B. x1C.λxD.xλ 9.若假设检验0100:,:μμμμ≠=H H 的显著性水平为a,0<a<1,则a=A.{}为真|接受01H H PB.{}为真|接受00H H PC.{}为真|接受11H H PD.{}为真|接受10H H P10.在一元线性回归方程x y 10ˆˆˆββ+=中,回归系数1ˆβ=A.Lyy L xy B.Lxy L yy C.Lxx L xyD.Lxyx L x二、填空题(本大题共15小题,每小题2分,共30分)11.设随机事件A 与B 互不相容,P(A)=0.2,P(A ∪B)=0.8,则P(B)=________. 12.设A,B 为随机事件,且P (A )=0.6,P(AB)=0.4,则)(B A p =__________.13.某工厂产品的次品率为1%,在正品中有80%为一等品,如果从该厂产品中任取一件进行检验,则检验结果是一等品的概率为__________.14.设)(x Φ为标准正态分布函数,则Φ(2)+Φ(-2)=_________. 15.设)(),(21x F x F 分别为随机变量21,X X 的分布函数,且)()()(21x F x aF x F -=也是某随机变量的分布函数,则常数a=_________.16.设随机变量X 的分布律为F (x )是X 的分布函数,则F(2)=_________.17.设随机变量X 与Y 相互独立,X 的概率密度⎩⎨⎧≤>=-,0,0,0,)(x x e x f x x Y 的概率密度⎩⎨⎧≤>=-,0,0,0,3)(3y y e y f y y 则当x>0,y>0时,二维随机变量(X,Y )的概率密度f(x,y)=________. 18.设随机变量X ~N (1,2),Y ~N (0,1),且X 与Y 相互独立,则2X+3Y ~__________. 19.设随机变量X 服从区间[1,5]上的均匀分布,则)()(X D X E =_________. 20.设随机变量X 服从参数为3的泊松分布,随机变量Y ~N (1,4),则)(22Y X E +=_________.21.设随机变量X ~B(100,0.9),则P {X >85}≈_________.)9525.0)35((=Φ22.设总体X ~N (0,1),n x x x ,...,,21为来自该总体的样本,则∑=nii x 12~__________. 23.设总体X 的概率密度⎩⎨⎧<<=-其他,0,10,)(1x x x f θθn x x x ,...,,21为来自X 的样本,x 为样本均值(x ≠1),则θ的矩估计θˆ=_________.24.设总体X ~N(μ,1),n x x x ,...,,21为来自X 的样本,x 为样本均值,则μ的(1-a )置信区间为_____. 25.设总体X ~N ),(2σμ(σ未知),n x x x ,...,,21为来自该总体的样本,2,s x 分别为样本均值和样本方差,则对于假设检验0100:,:μμμμ≠=H H ,应采用检验统计量的表达式为_________.三、计算题(本大题共2小题,每小题8分,共16分)26.某车间有3台独立工作的同型号机器,假设在任一时刻,每台机器不出现故障的概率为0.9,求在同一时刻至少有一台机器出现故障的概率。
(完整版)自考概率论与数理统计经管类
(完整版)⾃考概率论与数理统计经管类概率论与数理统计(经管类)综合试题⼀(课程代码4183)⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.下B ).D ).U 、综合测试题A. A B A BB.(A B) BC. (A- B)+B=AD. AB AB2.设 P(A) 0,P(B)各式中).A. P(A- B)=P(A)-P(B)B. P(AB)=P(A)P(B)C. P(A+B)=P(A)+P(B)D. P(A+B)=P(A)+P(B)- P(AB)4, 3. 同时抛掷3枚硬币,则⾄多有1枚硬币正⾯向上的概率是A1 c1 A.-B.-864. ⼀套五卷选集随机地放到书架上, D.则从左到右或从右到左卷号恰为 1, 2, ).3, 5顺序的概率为 A.—120).C. 155.设随机事件A , B 满⾜B A ,则下列选项正确的是 D.).A. P(A B) P(A) P(B)B. P(A B) P(B)C. P(B| A) P(B)D. P(AB) P(A)6.设随机变量X 的概率密度函数为f (x),则f(x) ⼀定满⾜(C ).A. 0 f(x) 1B. f (x)连续C. f(x)dx 1D. f()7.设离散型随机变量 X 的分布律为P(X k)1,2,...,且b0,则参数1 1 1A. -B. -C. -D. 12 3 58. 设随机变量X,丫都服从[0, 1]上的均匀分布,则E(X Y)= ( A ).A.1B.2C.1.5D.09.设总体X服从正态分布,EX 1,E(X2)2XX2,…,X10为样本,则样本均值1 10X X i10 i 1(D ).A. N( 1,1)B. N(10,1)C.N( 10,2)1D.N( 1,)1010.设总体X : N( ,2),(X1,X2,X3)是来⾃X的样本,⼜1 1 ? X1 aX2X34 2是参数的⽆偏估计,则 a = ( B ).A. 1B.-4C.-2D.-3⼆、填空题(本⼤题共15⼩题,每⼩题2分,共30分)请在每⼩题的空格中填上正确答案。
全国4月自考概率论与数理统计(经管类)试题和答案
全国20XX年4月高等教育自学考试统一命题考试概率论与数理统计(经管类)试题和答案评分标准课程代码:04183本试卷满分100分,考试时间150分钟.考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效。
试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用28铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.掷一颗骰子,观察出现的点数。
A表示“出现3点”,B表示“出现偶数点”,则A.A B⊂ B.A B⊂C.A B⊂ D.A B⊂正确答案:B(2分)2.设随机变量x的分布律为,F(x)为X的分布函数,则F(0)=A.0.1B.0.3C.0.4D.0.6正确答案:C(2分)3.设二维随机变量(X,Y)的概率密度为,11,02,(,)0,≤≤≤≤其它,c x yf x y-⎧=⎨⎩则常数c=A.14B.12C.2D.4正确答案:A(2分)4.设随机变量X服从参数为2的泊松分布,则D(9—2X)=A.1B.4C.5D.8正确答案:D(2分)5.设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价...的是A.X与Y相互独立B.()()()D X Y D X D Y-=+C.E(XY)=E(X)E(Y)D.()()()D X Y D X D Y+=+正确答案:A (2分)6.设X 为随机变量,E(x)=0.1,D(X )=0.01,则由切比雪夫不等式可得A.{}0.110.01≥≤P X -B.{}0.110.99≥≥P X -C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<正确答案:A (2分)7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1()ni i x x =-∑=A.(1)n x -B.0C.xD.nx正确答案:B (2分)8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,则参数2σ的无偏估计为A.2111n i i x n =-∑ B.211n i i x n =∑ C.211()1ni i x x n =--∑ D.11()2ni i x x n =-∑ 正确答案:C (2分)9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为A./x s nμ- B.0/x s nμ-C.()n x μ-D.0()n x μ-正确答案:D (2分)10.设一元线性回归模型为201,(0,),1,2,,,i i i iy x N i n ββεεσ=++=则E (y i )=A.0βB.1i x βC.01i x ββ+D.01i i x ββε++正确答案:C (2分)非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2019年4月自考国民经济统计概论真题附答案(最新整理)
2019年4月高等教育自学考试全国统一命题考试国民经济统计概论(课程代码 00065)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
3.涂写部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。
第一部分选择题一、单项选择题:本大题共15小题,每小题1分,共15分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
l.若在10000人中随机抽取1%人进行调查,则样本容量是A.1%B.10%C.100D.100002.职工的性别属于A.数字变量B.属性变量C.连续变量D.顺序变量3.将产品按质量划分为一等品、二等品、三等品,这种划分使用的测度尺度是A.定类尺度B.定序尺度C.定距尺度D.定比尺度4.先将职工按收入水平进行分组,然后在各组中随机抽取一部分职工,这种抽样方式是A.整群抽样B.简单随机抽样C.等距抽样D.分层抽样5.将我国家庭按人口数分组并编制次数分布表,适宜采用的是A.等距分组次数分布表B.异距分组次数分布表C.组距分组总次数分布表D.单值分组次数分布表6.在职工工资(单位:元)分组表中,工资最高一组为“10000以上”,其邻组为“9000~10000”,则最高一组的组中值是A.9500B.10000C.10500D.110007.数据:3、7、8、12、12、12、14、、15、18、20、23的中位数是A.12B.13C.14D.158.从100个产品中随机抽取一个登记后将其放回,再抽取第二个登记,放回后再抽取第三个,如此反复。
这种抽样方法是A.重复抽样B.不重复抽样C.非随机抽样D.主观抽样9.相关系数的取值范围是A.小于-1B.大于1C.-1到1之间D.0到1之间10.若估计且通过检验的线回归方程为,则y 和x 之间的相关关系一定是y =2+0.89x A.正相关 B.负相关 C.不相关 D.完全相关11.某企业的产值2015年是1000万元,2016年是1210万元,则该企业产值2016年与2015年相比的增长速度是A.21%B.79%C.100%D.121%12.某地区人均收入2011年为40000元,2016年为50000元,则该地区这一时期人均收入平均发展速度的算式为A. B. C.-1 D.-165000040000 55000040000 650000400005500004000013.用收入法计算国内生产总值,不需要包括的项目是A.劳动者报酬B.营业盈余C.投资总额D.生产税净额14.己知商品价格总指数是110%,销售量总指数是105%,则其销售额总指数是A.5%B.15%C.15.5%D.115.5%15.CPI 指的是A.生产者价格指数B.居民消费价格指数C.股票价格指数D. 经济产量指数二、多项选择题:本大题共5小题,每小题2分,共10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年4月高等教育自学考试全国统一命题考试
概率论与数理统计(经管类)04183
一、单项选择题:本大题共10小题,每小题2分,共20分。
1.设()0.6P B =,()0.5P A B =,则()P A B -=
A. 0.1
B.0.2
C.0.3
D.0.4
2.设事件A 与B 相互独立,且()0.6P A =,()0.8P A B =U ,则()P B =
A. 0.2
B.0.4
C.0.5
D.0.6
3.甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率的概率是 A. 16 B. 14 C. 13 D. 512
4.设随机变量X
则P{X>0}=
A. 14
B. 12
C. 34
D. 1 5.设随机变量X 的概率为,02()0,cx x f x ≤≤⎧=⎨⎩
其他,则P{X ≤1}= A.
14 B. 12 C. 23 D. 34
6.已知随机变量X~N(-2,2),则下列随机变量中,服从N(0,1)分布的是 A. 1(2)
2X - B. 1(2)2X + C. 2)X - D. 2)X +
A. 0.1
B.0.4
C.0.5
D.0.7
8.设随机变量X 与Y 相互独立,且D(X)=4,D(Y)=2,则D(3X-2Y)=
A. 8
B.16
C.28
D.44
9.设123,,x x x 是来自总体X 的样本,若E(X)=μ(未知),µ123132
x ax ax μ=-+是μ的无偏估计,则常数a=
A. 16
B. 14
C. 13
D. 12
10.设12,,,(1)n x x x n >K 为来自正态总体2(,)N μσ的样本,其中2,μσ均未知,x 和2s 分别是样本均值和样本方差,对于检验假设0000=H H μμμμ≠:,:,则显著性水平为α的检验拒绝域为 A.
02(1)x n αμ⎧⎫->-⎨⎬⎩⎭ B. 02x αμ⎧⎫->⎨⎬⎩
⎭ C.
02(1)x n αμ⎧⎫-≤-⎨⎬⎩⎭ D. 02x αμ⎧⎫-≤⎨⎬⎩
⎭ 二、填空题:本大题共15小题,每小题2分,共30分。
11.设A,B,C 是随机事件,则“A,B,C 至少有一个发生”可以表示为 .
12.设P(A)=0.3,P(B)=0.6,P(A|B)=0.4,则P(B|A)= .
13.袋中有3个黄球和2个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为 .
14.已知随机变量X 服从参数为λ的泊松分布,且P{X=1}=P{X=2},则λ= .
15.设随机变量X 服从参数为1的指数分布,则P{X ≥1}= .
P{X=Y}= .
17.设二维随机变量(X,Y)的概率密度为,01,02,(,)0,,
c x y f x y ≤≤≤≤⎧=⎨⎩其他 则常数c= .
18.设随机变量X 服从区间[1,3]上的均匀分布,Y 服从参数为2的指数分布,X,Y 相互独立,f(x,y)是(X,Y)的概率密度,则f(2,1)= .
19.设随机变量X,Y 相互独立,且X~B(12,0.5),Y 服从参数为2的泊松分布,则E(XY)= .
20.设X~B(100,0.2), 204
X Y -=,由中心极限定理知Y 近似服从的分布是 . 21.已知总体X 的方差D(X)=6, 123,,x x x 为来自总体X 的样本,x 是样本均值,则D(x )= .
22.设总体X 服从参数是λ的指数分布,12,,,n x x x K 为来自总体X 的样本,x 为样本均值,则E(x )= .
23.设1216,,,x x x K 为来自正态总体N(0,1)的样本,则2221216x x x +++L 服从的分布
是 .
24.设12,,,n x x x K 为来自总体X 的样本,x 为样本均值,若X 服从[0,4θ]上的均匀分
布,θ>0,则未知参数θ的矩估计$θ
= . 25.设1225,,,x x x K 为来自正态总体N(μ,5²)的样本,x 样本均值,欲检验假设00=0,0H H μμ≠::,则应采用的检验统计量的表达式为 .
三、计算题:本大题共2小题,每小题8分,共16分。
26.两台车床加工同一种零件,第一台出现次品的概率是0.03,第二台出现次品的概率是0.06,加工出来的零件混放在一起,第一台加工的零件数是第二台加工的零件数的两倍.求:
(1)从中任取一个零件是次品的概率;
(2)若取得的零件是次品,它是由第一台加工的概率.
27.设随机变量X 的概率密度为2,01,()0,ax bx x f x ⎧+≤≤=⎨⎩其他,
且E(X)= 12. 求:(1)常数a,b ;(2)D(X).
四、综合题:本大题共2小题,每小题12分,共24分。
求:(1)常数a,b ;(2)(X,Y)关于Y 的边缘分布律;(3)P{X+Y ≤0}.
29.设随机变量X~N(1,9),Y~N(0,16),且X 与Y 的相关系数为0.5XY ρ=,Z=1132
X Y +. 求:(1)Cov(X,Y);(2)E(Z),D(Z);(3)Cov(X,Z).
五、应用题:10分。
30.某厂生产的一种金属丝,其折断力X(单位:kg)服从正态分布N(2,μσ),以往的平均折断力μ=570,今更换材料生产一批金属丝,并从中抽出9个样本检测折断力,算得样本均值576.6x =,样本标准差s=7.2.试问更换原材料后,金属丝的平均折断力是否有显著变化?(附:0.0250.0250.05, 1.96,(8) 2.306u t α===)。