(完整word版)同济大学版高等数学期末考试试卷
高等数学2期末复习题与答案(可编辑修改word版)
x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。
高数下期末考试试题及答案解析
WORD 格式整理⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共3页;2、考试时间110 分钟; 3 、姓名、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题( 8 个小题,每小题 2 分,共 16 分)将每题的正确答案的代号 A、 B、 C或 D 填入下表中.题号12345678答案1.已知 a 与 b都是非零向量,且满足a b a b ,则必有().(A)a b0(B) a b0(C) a b0(D)a b02. 极限 lim( x2y2 )sin212().x0x yy0(A) 0(B) 1(C) 2(D)不存在3.下列函数中, df f 的是 ().( A) f (x, y)xy( B) f (x, y)x y c0 ,c0为实数( C) f (x, y)x2y2( D) f (x, y)e x y4.函数 f ( x, y)xy (3x y) ,原点 (0,0)是 f (x, y) 的 ().( A)驻点与极值点( B)驻点,非极值点( C)极值点,非驻点( D)非驻点,非极值点5 .设平面区域 D : (x1)2( y 1)2 2 ,若 I 1x yd, I 2x y d ,D4D4I 33x yd,则有() .4D( A) I1I2I3( B) I 1I 2I 3( C) I 2I1I 3( D) I 3 I 1I 26.设椭圆 L :x2y 21的周长为 l ,则(3x2 4 y2 )ds() .43Ll3l4l12l(A)(B)(C)(D)7.设级数a n为交错级数, a n0 (n) ,则() .n 1(A) 该级数收敛(B)该级数发散(C) 该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是() .( A)若级数a n发散,则级数a n2也发散n 1n 1( B)若级数an2发散,则级数a n也发散n 1n 1( C)若级数an2收敛,则级数a n也收敛n 1n 1( D)若级数| a n |收敛,则级数an2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每小题 2 分,共 14 分) .3x 4 y2z60a 为.1. 直线3y z a与 z 轴相交,则常数x02.设 f ( x, y)ln( xy ), 则 fy(1,0)___________.x3.函数 f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设 D : x2y22x ,二重积分( x y)d=.D5.设 f x 是连续函数,{( x, y , z) | 0z9x2y2 } , f (x 2y 2 )dv 在的三次积分为.6. 幂级数( 1)n 1x n的收敛域是.n!n 17. 将函数 f ( x)1,x0为周期延拓后,其傅里叶级数在点1x2,0 x以 2于.专业资料值得拥有--学习资料分享----⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.设 u xf ( x, x) ,其中 f 有连续的一阶偏导数,求u ,u.y x y解:4.设是由曲面z xy, y x, x 1 及 z 0 所围成的空间闭区域,求 I xy2 z3dxdydz .解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:5.求幂级数nx n 1的和函数 S(x) ,并求级数n n的和.n 1n 1 2解:3. 交换积分次序,并计算二次积分dxxsin y dy.y解:专业资料值得拥有--学习资料分享----⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS ,为平面x y z 1在第一卦限部分.解:2.计算积分( x2y2 )d s,其中 L 为圆周 x2y2ax ( a0 ) .L解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面 z0 及 z 1之间的部分的下侧解:3.利用格林公式,计算曲线积分 I(x2y 2)d x (x 2xy)dy ,其中 L 是由抛物线 y x2和Lx y2所围成的区域 D 的正向边界曲线.yy x2x y2D专业资料值得拥有O x--学习资料分享----2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8 个小题,每小题 2 分,共 16 分)题号12345678答案D A B B A D C D1.已知 a 与 b 都是非零向量,且满足a b a b ,则必有(D)(A) a b0 ;(B)a b 0 ;(C) a b0 ; (D) a b0 .2. 极限 lim( x2y2 )sin212( A )x0x yy0(A) 0;(B) 1;(C) 2;(D)不存在 .3.下列函数中, df f 的是 ( B );( A) f ( x, y)xy ;( B) f ( x, y)x y c0 , c0为实数;( C) f (x, y)x2y2;( D) f (x, y)e x y.4.函数 f ( x, y)xy (3x y) ,原点 (0,0)是 f (x, y) 的 ( B).(A)驻点与极值点;(B)驻点,非极值点;(C)极值点,非驻点;( D)非驻点,非极值点 .5 .设平面区域 D: ( x 1)2( y 1)2 2 ,若 I1x y d , I2x ydD4D4WORD 格式整理3 x yd ,则有( A)I 34D(A) I 1I2I 3;(B) I 1I2I 3;( C) I 2I1I 3;(D) I 36.设椭圆 L :x2y 21的周长为 l ,则(3 x24y 2 )ds( D)43L(A) l ;(B)3l;(C)4l ;(D)12l7.设级数a n为交错级数, a n0(n) ,则(C)n 1(A) 该级数收敛;(B)该级数发散;(C) 该级数可能收敛也可能发散;(D)该级数绝对收敛.8. 下列四个命题中,正确的命题是(D)( A)若级数a n发散,则级数an2也发散;n1n 1( B)若级数an2发散,则级数a n也发散;n1n 1( C)若级数an2收敛,则级数a n也收敛;n1n 1( D)若级数| a n |收敛,则级数a n2也收敛.n1n 1二、填空题 (7 个小题,每小题 2 分,共 14 分 ) .3x 4 y2z60a 为31. 直线3y z a与 z 轴相交,则常数。
同济大学高等数学考试试题pdf
A. ( f (b) − f (a))( g(b) − g(a)) < 0
B.
f '(x) g '(x) < 0
C. ∫ f (x)dx∫ g(x)dx < 0
b
b
D. ∫a f (x)dx∫a g(x)dx < 0
9) If F (x) is an antiderivative of f (x) , C is any constant, then ____ is correct.
A. F (x) = C∫ f (x)dx
C. F '(x) = f (x) +C
x
∫ B. F (x) = f (x)dx C
D. F (x) = lim f (x + h) − f (x)
h→∞
h
10) a and b are in the domains of f (x) and g(x) , then ___ is correct.
7) If l= im f (x) li= m f '(x) 0, lim f ''(x) ≠ 0 but exists, then ________.
x→a
x→a
x→a
A. lim f (x) = 0, x→a f '(x)
B. lim f (x) ≠ 0 but exists, x→a f '(x)
C. lim f (x) = ∞, x→a f '(x)
D. lim f (x) ≠ ∞ but does not exist. x→a f '(x)
8) If f (x) is a continuous on interval [a,b], then in [a,b], f (x) at least have_ __
9高等数学同济大学第六版本Word版
习题9-21 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D {(xy )| |x |1 |y |1};解 积分区域可表示为D1x 1 1y 1 于是⎰⎰+Dd y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=(2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:解 积分区域可表示为D 0x 2 0y 2x 于是⎰⎰+Dd y x σ)23(y d y x dx x⎰⎰-+=2020)23(dx y xy x ⎰-+=2022]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=(3)⎰⎰++Dd y y x x σ)3(223, 其中D {(x y )| 0x 1, 0y 1}解 ⎰⎰++Dd y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=(4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (p , 0), 和(p , p )的三角形闭区域.解 积分区域可表示为Dx 0y x 于是,⎰⎰+Dd y x x σ)cos(⎰⎰+=x dy y x xdx 0)cos(π⎰+=π)][sin(dx y x x x⎰-=π0)sin 2(sin dx x x x ⎰--=π0)cos 2cos 21(x x xd+--=0|)cos 2cos 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线xy = 2x y =所围成的闭区域;解 积分区域图如并且D{(xy )| 0x 1 x y x ≤≤2} 于是⎰⎰Dd y x σ⎰⎰=102dy y x dx xx⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x(2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如 并且D{(xy )| 2y 2 240y x -≤≤} 于是⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y Dσ1564]10132[)212(22225342=-=-=--⎰y y dy y y (3)⎰⎰+Dy x d e σ, 其中D {(x y )| |x ||y |1}解 积分区域图如 并且 D {(x y )| 1x 0 x 1y x 1}{(x y )| 0x 1x 1y x 1} 于是 ⎰⎰⎰⎰⎰⎰+--+---++=111111x x y xx x yxDyx dy e dx e dy e dx e d eσ⎰⎰+---+--+=1110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=11201112)()(dx e e dx e ex x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1(4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域解 积分区域图如并且D{(xy )| 0y 2 y x y ≤≤21} 于是⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y Dσ613)832419(2023=-=⎰dy y y3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积, 即f (x , y )= f 1(x )f 2(y ), 积分区域D {(x y )| a x b , c y d },证明这个二重积分等于两个单积分的乘积, 即])([])([)()(2121dy y f dx x f dxdy y f x f dcbaD⎰⎰⎰⎰⋅=⋅证明 dxdy y f x f dy y f x f dx dxdy y f x f dcb a d cb aD⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121而 ⎰⎰=⋅dcd cdyy f x f dy y f x f )()()()(2121故 dxdy y f x f dxdy y f x f b adcD⎰⎰⎰⎰=⋅])()([)()(2121由于⎰dcdy y f )(2的值是一常数因而可提到积分号的外面于是得])([])([)()(2121dy y f dx x f dxdy y f x f dcbaD⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域; 解积分区域如图所示并且D {(x y )|x y x x 2 ,40≤≤≤≤} 或D {(x y )| y x y y ≤≤≤≤241 ,40}所以 ⎰⎰=xxdy y x f dx I 240),(或⎰⎰=yy dxy x f dy I 4402),((2)由x 轴及半圆周x 2+y 2=r 2(y 0)所围成的闭区域;解积分区域如图所示并且D {(x y )|220 ,x r y r x r -≤≤≤≤-} 或D{(xy )| 2222 ,0y r x y r r y -≤≤--≤≤}所以 ⎰⎰--=220),(x r r rdyy x f dx I 或⎰⎰---=2222),(0y r y r r dx y x f dy I(3)由直线y =x , x =2及双曲线x y 1=(x >0)所围成的闭区域;解积分区域如图所示并且D {(x y )|x y x x ≤≤≤≤1 ,21}或D{(xy )| 21 ,121≤≤-≤≤x yy }{(x y )|2 ,21≤≤≤≤x y y }所以 ⎰⎰=xxdyy x f dx I 1),(21或⎰⎰⎰⎰+=22121121),(),(yydxy x f dy dx y x f dy I(4)环形闭区域{(x , y )| 1x 2+y 24}.解 如图所示 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4,如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域,证明:⎰⎰⎰⎰=bybaxabadx y x f dy dy y x f dx ),(),(.证明 积分区域如图所示 并且积分区域可表示为D {(x y )|a x b a y x } 或D {(x y )|a y by x b } 于是 ⎰⎰Dd y x f σ),(⎰⎰=xab adyy x f dx ),( 或⎰⎰Dd y x f σ),(⎰⎰=byb a dxy x f dy ),(因此 ⎰⎰⎰⎰=byb ax ab adx y x f dy dy y x f dx ),(),(.6 改换下列二次积分的积分次序(1)⎰⎰ydx y x f dy 01),(;解 由根据积分限可得积分区域D {(x y )|0y 1 0x y } 如图因为积分区域还可以表示为D {(x y )|0x 1 x y 1} 所以 ⎰⎰⎰⎰=111),(),(xydyy x f dx dx y x f dy(2)⎰⎰yydx y x f dy 2202),(;解由根据积分限可得积分区域D{(x y)|0y2y2x2y}如图图.(5)⎰⎰exdy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1£x £e , 0£y £ln x }, 如图. 因为积分区域还可以表示为D ={(x , y )|0£y £1, e y £x £ e }, 所以 ⎰⎰ex dy y x f dx 1ln 0),(⎰⎰=10),(eey dx y x f dy}arcsin 2 ,01|),{(π≤≤-≤≤-=x y y y x D}arcsin arcsin ,10|),{(y x y y y x -≤≤≤≤⋃π,7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为m (x , y )=x 2+y 2, 求该薄片的质量. 解 如图, 该薄片的质量为⎰⎰=Dd y x M σμ),(⎰⎰+=Dd y x σ)(22⎰⎰-+=10222)(yydx y x dy⎰⎰--=Ddxdy y x V )326(⎰⎰--=110)326(dy y x dx10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262y x z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2£2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数, 所以⎰⎰+---=Dd y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(8232=-=⎰dx x .11 画出积分区域把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1){(x , y )| x 2+y 2a 2}(a >0); 解积分区域D 如图 因为D {( )|02 0a } 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (d f d a(2){(x , y )|x 2+y 22x };解 积分区域D 如图因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d(3){(x , y )| a 2x 2+y 2b 2}, 其中0a <b 解 积分区域D 如图 因为D {( )|02 a b } 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (bad f d(4){(x , y )| 0y 1-x , 0x 1}.解 积分区域D 如图因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D 所以⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 1020)sin ,cos (d f d12 化下列二次积分为极坐标形式的二次积分:(1)⎰⎰11),(dy y x f dx ;解 积分区域D 如图所示 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D所以 ⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(101⎰⎰=40sec 0)sin ,cos (πθρρθρθρθd f d ⎰⎰+24csc 0)sin ,cos (ππθρρθρθρθd f d(2)⎰⎰+xxdy y x f dx 32220)(;解 积分区域D 如图所示并且}sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D所示 ⎰⎰⎰⎰⎰⎰=+=+x xDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d(3)⎰⎰--21110),(x xdy y x f dx ;解 积分区域D 如图所示并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD所以 ⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解 积分区域D 如图所示 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D所以 ⎰⎰2010),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d13 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤= 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=(2)⎰⎰+xa dy y x dx 0220;解 积分区域D 如图所示 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤= 所以⎰⎰⎰⎰⋅=+Dxad d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a(3)⎰⎰-+xxdy y xdx 221221)(;解 积分区域D 如图所示 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ21212212)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ 所以⎰⎰⎰⎰⋅=+-Dy a a d d dx y x dy θρρρ22222)(420028a d d aπρρρθπ=⋅=⎰⎰14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(r , q )|0£q £2p , 0£r £2}, 所以⎰⎰⎰⎰=+DDy x d d e d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xy Darctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d . 15 选用适当的坐标计算下列各题: (1)dxdy y x D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域解 因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以dxdy y x D22⎰⎰dy ydx x x x ⎰⎰=211221⎰-=213)(dx x x 49=(2)⎰⎰++--Dd y x y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d(3)⎰⎰+Dd y x σ)(22 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D {(x y )|ay 3a y a x y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰(4)σd y x D22+⎰⎰ 其中D 是圆环形闭区域{(x , y )| a 2x 2+y 2b 2}解 在极坐标下D{()|02 a b }, 所以σd y x D 22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ16 设平面薄片所占的闭区域D 由螺线2上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd17 求由平面y =0 y =kx (k >0) z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积解 此立体在xOy 面上的投影区域D {(x y )|0arctan k0R } ⎰⎰--=Ddxdy y x R V 222kR d R d kRarctan 313arctan 022=-=⎰⎰ρρρθ18 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底 而以曲面z =x 2+y 2为顶的曲顶柱体的体积解 曲顶柱体在xOy 面上的投影区域为D {(x y )|x 2y 2ax } 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-= 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--(注:可编辑下载,若有不当之处,请指正,谢谢!)。
高等数学考试题库(含答案解析)
范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。
同济大学高等数学考试题
同济大学高等数学考试题高等数学(上)期中考试试卷 1(答卷时间为 120 分钟)一.选择题(每小题 4 分)1.以下条件中( )不是函数 f ( x) 在 x0 处连续的充分条件.(A) lim f ( x) , lim f ( x0 ) (B) lim f ( x) , f ( x0 ) x x0 ,0 x x0 0 x x0(C) f ,( x0 ) 存在 (D) f ( x) 在 x0 可微2.以下条件中( )是函数 f ( x) 在 x0 处有导数的必要且充分条件. (A) f ( x) 在 x0 处连续 (B) f ( x) 在 x0 处可微分f (x0 , x) f (x0 x) lim f ,( x) 存在 (D)存在 (C) lim x 0 x x0x 1 的( )间断点. 3. x , 1是函数 f ( x) , sin x (A)可去 (B)跳跃 (C)无穷 (D)振荡4.设函数 f ( x) 在闭区间 [a, b] 上连续并在开区间 (a, b) 内可导,如果在 ( a , b ) 内). f ,( x) , 0 ,那么必有((A)在 [ a , b ] 上 f ( x) , 0 [ a , b ] 上 f ( x) 单调增加 (B)在(C)在 [ a , b ] 上 f ( x) 单调减少 (D)在 [ a , b ] 上 f ( x) 是凸的5.设函数). f ( x) , ( x 2 3x , 2) sin x ,则方程 f ,( x) , 0 在 ( 0 , ) 内根的个数为( (A)0 个 (B)至多 1 个 (C) 2 个 (D) 至少 3 个二.求下列极限(每题 5 分)ln b (1 , ax) ax , b sin x ( a , 0 ). ( c , 0 ). 1. lim 2. lim x 0 x sin ax cx , d cos x1 a sin x x2 4. lim . 3. lim e x 1 x ( a , 0 ). x x 0 x三.求下列函数的导数(每题 6 分)x 1. y , ln tan cos x ln(tan x,求) y, . 22.设 F ( x) 是可导的单调函数,满足 F ,( x) , 0 , F (0) , 0 .方程F ( xy) , F ( x) , F ( y)dy 确定了隐函数 y , y( x) ,求 . dx x,0d 2 y ,,x , ln 1 , t 2 确定的函数,求 . 3.设 y , y( x) 是参数方程 , dx 2 ,; y , arctan tx , 0 ,ln(x , e) ( a , 0 ),问 a 取何值时 f ,(0) 存在,. 4.设函数 f ( x) , , x x , 0 ;a x e 四.(8 分)证明:当 x , 0 时有 e , x ,且仅当 x , e 时成立等式. 五.(8 分)假定足球门宽度为 4 米,在距离右门柱 6 米处一球员沿垂直于底线的方向带1球前进,问:他在离底线几米的地方将获得最大的射门张角,4 6, x六.(10 分)设函数 f ( x) 在区间 [a, b] 上连续,在区间 (a, b) 内有二阶导数 .如果 f (a) , f (b) 且存在 c (a, b) 使得 f (c) , f (a) ,证明在 (a, b) 内至少有一点 , ,使得. f ,,(, ) , 0七.(10 分)已知函数 y , f ( x) 为一指数函数与一幂函数之积,满足: (1) lim f ( x) , 0 , lim f ( x) , , ; x , x(2) y , f ( x) 在 ( ,, ) 内的图形只有一条水平切线与一个拐点. 试写出f ( x) 的表达式.高等数学(上)期中考试试卷 2(答卷时间为 120 分钟)一.填空题(每小题 4 分)x , 0 ,,(1 sin 1x x )在 x , 0 连续,则 a , . 1.已知函数 f ( x) , , x , 0 ,;a1 2. x , 0 是函数 f ( x) , 的间断点.(可去.跳跃.无穷.振荡) 1 e x ,1 f ( x0 3, ) f ( x0 ) , . 3.若 f ,( x0 ) , 1 ,则 lim , 0 2,2 ). 4.函数 f ( x) , ( x 3x , 2) sin x 在 ( 0 , ) 内的驻点的个数为( (A)0 个 (B)至多 1 个 (C) 2 个 (D) 至少3 个5.设 a , 0 ,若 lim ax 2 , bx , c , dx , e ,则 a 与 d 的关系是 . x ,二.计算题(每题 6 分), 1 1 ,, . 1.求 lim, x 0 , ln(1 , x) x ,12.求 lim,cos x,x 2 x 0x 3. y , ln tan cos x ln(tan x,求) y, . 22,,x , e t cos t d 2 y 确定的函数,求 4.设 y , y( x) 是参数方程 , dx 2 ,; y , t sin e tsin x cos x 5.求 dx . , 1 , sin 4 xdx 6.求, x x 2 1三.(8 分)证明:当 0 , x , 时有 sin x , tan x , 2 x .2f ( x) 有二阶导数,且 f (0) , 0 ,又满足方程 f ,( x) , f ( x) ,x ,证四.(8 分)设函数明 f (0) 是极值,并说出它是极大值还是极小值,m n 五.(8 分)设 a 和 b 是任意两个满足 ab , 1的正数,试求 a , b 的最小值(其中常数 m n , 0 ) ` 六.(10 分)设函数 f ( x) 在区间 [ 0 , 1 ]上可导,且 0 , f ( x) , 1,证明 , ( 0 , 1 ) ,使得 f (, ) , , ;又若 f ,( x) , 1( x ( 0 , 1 ) ),证明这样的 , 是唯一的.七.(10 分)(1)设 (an ) n,1 是单调增加的正数列,在什么条件下,存在极限lim a n , n1 n n n n , a ,试用夹逼准则证明,, (2)对上述数列 (a n ) n,1 ,令 xn , a1 , a2 , nlim xn , lim a n . n n3高等数学(上)期末考试试卷 1(答卷时间为 120 分钟)一.填空题(每题 4 分)1.函数 f ( x) 在 [ a , b ] 上有界是 f ( x) 在 [ a , b ] 上可积的条件,函数 f ( x)条件. 在 [ a , b ] 上连续是 f ( x) 在 [ a , b ] 上可积的1 2.函数 y , ,它是间断点. 的间断点为 x = 1 , tan x3.当 x 0 时,把以下的无穷小: x (A) a ,a ,1 0,, a; , 1(B) x sin x ;(C)1 cos 4 x ; (D) ln(1 , x ),,,按 x 的低阶至高阶重新排列是 .(以字母表示)1 ,2 1(n 1) , , sin 4. lim dx = . ,, = , 0 ,,sin n , sin n , n n n1 5.设函数 f ( x) 在闭区间 [ 0 , 1 ] 上连续,且 f ( x)dx , 0 ,则存在 x0 (0,1) ,使, 0f ( x0 ) , f (1 x0 ) , 0 .证法如下:x 1 令 F ( x , )f (t)dt , x [0,1] ,则 F ( x) 在闭区间 [0,1]上连续,在开区间, f (t )dt ,, 0 1 x,故根据微分学中的定理知, (0,1) 内,且 F (0) , , F (1) ,x0 (0,1) 使得 F ,( x0 ) , f ( x0 ) , f (1 x0 ) , 0 ,证毕.二.计算题(每题 6 分)1c x 1.若 lim (1 , x) , e 2 ,求 c 的值. x 0y 2.设 y , y( x) 是由方程 e , y , sin( xy) 确定的隐函数,求 y, . x 2 t 2 ,e , 1 dt , 0 3.求极限 lim . x 0 ln(1 , x 6 )ln x 4.求 dx , x4 2 5.求 x)dx . , x(sin ,x cos 2 , dx 6.求 2 , x 4 x 2 1x 2 1 三.(8 分)设 f ( x) , , e t dt ,求, f ( x)dx 1 0x 四(8 分)设函数 f ( x )在区间 [ 0 , 1 ]上连续,且 f ( x ,) 1,证明方程 2 x f (t )dt , 1 . 0 ,在开区间 (0,1 ) 内有且仅有一个根.1 2 所围成的图形绕直线 y , 1旋转而成的五.(8 分)求由抛物线 y , 2 x 与直线 x , 2 立体的体积.12 x 2 ,其线密度为, , k y ,R(k , R) 求六.(8 分)设半圆形材料的方程为 y ,该材料的质量.七.(12 分)在一高为 4 的椭圆底柱形容器内储存某种液体,并将容器水平放置,如果x 2 , y 2 , 1(单位:m),问: 椭圆方程为 4(1)液面在 y( 1 , y , 1) 时,容器内液体的体积V与 y 的函数关系是什么, y(2)如果容器内储满了液体后以每分钟 0.16m3 的速度将液体从容器顶端抽出,当液面在 y , 0 时,液面O x 下降的速度是每分钟多少 m,),抽完全部液体 (3)如果液体的比重为 1( N m 3需作多少功,高等数学(上)期末考试试卷 2(答卷时间为 120 分钟)一.填空题(每小题 4 分)条件;导数 f ,( x0 ) 存在是函 1.极限 lim f ( x) 存在是函数 f ( x) 在x0 处连续的 x x0条件. ——填入适当的字母即可: 数 f ( x) 在 x0 处连续的(B)必要 (A)充分(C)充分且必要 (D)既不充分也不必要f ( 2h) f ( h) 2.若 f ,(0) , 1,则 lim , . ,h 3.设 f ( x) , x( x1)(2 x 1)(3x 1) (nx 1) ,则 f ,,( x) 在 ( 0 , 1 ) 内有个零点. 0, [ 1 , xf (sin x)]d x , 4.设 f ( x )是 [ 1 , 1 ]上连续的偶函数,则 .5.平面过点 ( 1 , 1 , 1 ) , ( 2 , 2 , 2 ) 和 ( 1 , 1 , 2 ) ,则该平面的法向量为 .二.基本题(每小题 7 分)(须有计算步骤)2 x ln(1 , t)dt, 0 1.求极限 lim . x 0 1 cos x, 4 2.求定积分 x tan 2 xdx . 0 y 2 3.设 y , y( x) 是方程 e , e t dt x 1 , 0 确定的隐函数,证明 y , y( x) 是单调增加 y ,函数并求 y, x,0 .1 u 3 4.求反常积分 du . , 0 1 u 22m n 三.(10 分)设 a 和 b 是任意两个满足 a , b , 1 的正数,试求 a , b 的最大值(其中常数 m n , 0 ) ` 3 四.(10 分)一酒杯的容器部分是由曲线 y , x ( 0 , x , 2 ,单位:cm)绕 y 轴旋转 3 而成,若把满杯的饮料吸入杯口上方2cm 的嘴中,要做多少功,(饮料的密度为 1g/cm )五.(10 分)教材中有一例叙述了用定积分换元法可得等式xf (sin x)dx , f (sin x)dx . , 0 2 ,0如果将上式左端的积分上限换成 (2k 1) ( k Z ),则将有怎样的结果,进一步设kTf ( x) 是周期为 T 的连续的偶函数,, xf (x)dx 将有怎样相应的表达式,六(10 分)设动点 M ( x , y , z) 到 xOy 面的距离与其到定点 (1 , 1 , 1 ) 的距离相等,M .2 的轨迹为 , .若 L 是 , 和柱面 2 z , y 的交线在 xOy 面上的投影曲线,求 L 上对应于1 , x ,2 的一段弧的长度.xf 0 (t )dt , 0 . ( x) 是 [ 0 , , ) 上的连续的单调增加函数,函数 f ( x) , 七.(12 分)设 f 0 1 x(1)如何补充定义 f1 ( x) 在 x , 0 的值,使得补充定义后的函数(仍记为f1 ( x) )在 [ 0 , , )上连续,2)证明( f1 ( x) , f 0 ( x) ( x , 0 )且 f1 ( x) 也是 [ 0 , , ) 上的连续的单调增加函数;x x x f1 (t )dt f 2 (t)dt f n 1 (t )dt ,,, 0 0 0 ,则对任意的( x) , ( x) , ( x) , ,…, f n (3)若 f 2 , f 3 x x xx , 0 ,极限 lim fn ( x) 存在. n3高等数学(下)期中考试试卷 1(答卷时间为 120 分钟)一.填空题(每小题 6 分)1.有关多元函数的各性质:(A)连续;(B)可微分;(C)可偏导;(D)各偏导数连续,它们的关系是怎样的,若用记号“ X , Y ”表示由 X 可推得 Y ,则) ,( , ( )( . ) , , ) ;(2 2 ,该点处各方向导数中的最 2.函数 f ( x, y) , x xy , y 在点 ( 1 , 1 ) 处的梯度为大值是 .,平面曲线 3.设函数 F ( x, y) 可微,则柱面 F(x, y) , 0 在点 (x, y, z) 处的法向为,F(x, y , 0 )在点 ( x, y) 处的切向量为 . , z , 0 ; 1 4.设函数 f ( x, y) 连续,则二次积分 f ( x, y)dy , . , dx, sin x 2 1 f ( x, y)dx ; (A) (B) , dy,, dy, 0 ,arcsin y 1 ,arcsin y f ( x, y)dx ; (C) (D) ,dy,, dy, 0二.(6 分)试就方程 F ( x, y, z) , 0 可确定有连续偏导的函数 y , y( z, x) ,正确叙述隐函数存在定理.三.计算题(每小题 8 分)1.设 z , z( x, y) 是由方程 f ( x z , y z) , 0 所确定的隐函数,其中 f (u, v) 具有连续的偏导数f f z z 且, , 0 ,求,的值. y u v x2. 设二元函数 f (u, v) 有连续的偏导数,且 f u (1,0) , fv (1,0) , 1 . 又函数 u , u( x, y) 与,x , au , bv 2 2 ( a , b , 0 )确定,求复合函数 z , f [u( x, y),v( x, y)]的偏导 v , v( x, y )由方程组 , ; y , au bvz z 数, . x y ( x, y ),( a , a ) ( x, y ),( a , a )2 2 3.已知曲面 z , 1 x y 上的点 P 处的切平面平行于平面 2 x , 2 y ,z , 1,求点 P 处的切平面方程.x 3 4 计算二重积分: x 为边界的曲边三,, sin y d, ,其中 D 是以直线y , x , y , 2 和曲线 y , D角形区域.2 2 2 2 5.求曲线积分 ( x , y )dx , ( x y )dy , L 为曲线 y , 1 | 1 x | 沿 x 从 0 增大到 2 的方向. , L五.(10 分)球面被一平面分割为两部分,面积小的那部分称为“球冠”;同时,垂直于平面的直径被该平面分割为两段,短的一段之长度称为球冠的高. 证明:球半径为 R 高为 h 的球冠的面积与整1个球面面积之比为 h : 2R .六(10 分)设线材 L 的形状为锥面曲线,其方程为:x , t cos t ,y , t sin t ,z , t( 0 , t , 2 ),其线密度, ( x, y, z) , z ,试求 L 的质量.2 2点的引力.高等数学(下)期中考试试卷 2(答卷时间为 120 分钟)一.简答题(每小题 8 分),, x2,tcost;xz 2.方程 xy z ln y , e , 1在点 (0 , 1 , 1 ) 的某邻域内可否确定导数连续的隐函数 z , z( x, y) 或y , y( z, x) 或 x , x( y, z) ,为什么,3.不需要具体求解,指出解决下列问题的两条不同的解题思路:x 2 y 2 z 2 设椭球面 a 2 b c小距离.3f x (1 ,1) .2u 二.(8 分)设函数 f 具有二阶连续的偏导数, u , f ( xy , x , y) 求 . x y三.(8 分)设变量 x , y , z 满足方程 z , f ( x, y) 及 g ( x, y, z) ,0 ,其中 f 与 g 均具有连续的偏dy 导数,求 . dx,xyz , 0, 在点 (0,,) 处的切线与法平面的方程. 四.(8 分)求曲线 , 2 D y 2 五.(8 分)计算积分) ,, e,其中 D 是顶点分别为 ( 0 , 0 ) . ( 1 , 1 ) . ( 0 , 1 ) 的三角形区域. dxdy2 2 2 ) 2 , ( y 2 ) 2 , 9 上的最大值和最小值.2 22 x 2 , y 2 , 1000 上的点.(1)问: z 在点 M ( x, y) 处沿什么方向的增长率最大,并求出此增长率; .2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点 M 使得上述增 (长率最大,请写出该点的坐标.2 2七.(10 分)求密度为 , 的均匀柱体 x , y , 1 , 0 , z , 1,对位于点 M ( 0 , 0 , 2 ) 的单位质处的切平面,与平面 x , y , z , 0 平行.(1)写出曲面 , 的方程并求出点 M 的坐标;2, 3 , 1 处的切线方程. 1.求曲线 , y , 3 , sin 2t 在点,z , 1 , cos 3t, 2 , 2 , 1与平面 Ax , By , Cz , D , 0 没有交点,求椭球面与平面之间的最 4.设函数 z , f ( x, y) 具有二阶连续的偏导数, y , x 是 f 的一条等高线,若 f y (1 ,1) , 1,求1 1;x y 1 , 0六.(8 分)求函数 z , x , y 在圆 ( x七 . ( 14 分 ) 设一座山的方程为 z , 1000 2x y , M ( x, y )是山脚 z , 0 即等量线八(14 分) 设曲面 , 是双曲线 z 4 y , 2( z , 0 的一支)绕 z 轴旋转而成,曲面上一点 M .2 2 (2)若 , 是 , . ,和柱面 ,,1 yx 围成的立体,求 , 的体积.3高等数学(下)期末考试试卷 1(答卷时间为 120 分钟)一.简答题(每小题 5 分,要求:简洁.明确)2 2 1.函数 z , y x 在点 (1 , 1) 处沿什么方向有最大的增长率,该增长率为多少, xz 2.设函数 F (x, y, z ,) (z , 1) ln y , e 1,为什么方程 F(x, y, z) , 0在点 M(1, 1, 0) 的某个邻域内可以确定一个可微的二元函数 z , z( x, y) ,2 3 3.曲线 x , t 1 , y , t , 1 , z , t 在点 P(0 , 2 , 1) 处的切线方程是什么,2 y2 4.设平面区域 D : x2 , ,1 (a , 0,b , 0) ,积分,, (ax3 , by 5 , c)dxdy 是多少, b2 a D n n 5.级数的收敛域是什么, 2 n 2 , 1 xn,0 ,,e x , 1, 0 , x , , ) ,问级 6.设函数 f ( x) , , 的傅里叶系数为a0 , a n , bn (n , 1,2,3,,;e x 1, , x , 02 ,数 a0 ,n 1 a n 的和是多少, 2二.计算积分2 1.(8 分) I , sin x dx , dy, y x 2 y 2 , 1 ( y , 0) 取逆时针方2.(8 分) I , ( x , y)dx , ( y x)dy , L 为上半椭圆 x 2 ,, b2 a L向.z , y 2 , ,(0 , z , 2) 绕 z 轴旋转而成的曲面. 三.(12 分)设 , 是由曲线 ,;x , 0(1)写出 , 的方程和 , 取外侧(即朝着 z 轴负方向的一侧)的单位法向量;2 )dzdx , (8 y , 1) zdxdy . (2)对(1)中的定向曲面 , ,求积分I , ,,, 4(1 y2 2 2 四.(10 分)求微分方程 (1 , x ) y, , xy , x y 的通解x (0 , x , ) 展成正弦级数. 五.(10 分)把函数 f ( x , )2六.应用题x 2 y 2 z 2 1.(10 分)求曲面, 2 , 2 , 1 (a , 0, b , 0, c , 0) 在第一卦限的切平面,使 a 2 b c该切平面与三个坐标面围成的四面体的体积为最小,并写出该四面体的体积.2.(12 分)设 , 是由曲面 z , ln x 2 , y 2 与平面 z , 0 , z , 1所围成的立体. 求:(1) , 的体积V ;(2) , 的表面积 A .1高等数学(下)期末考试试卷 2(答卷时间为 120 分钟)一.填空题(每小题 4 分)z z 1.函数 z , f ( x, y )的偏导数在区域 D 内连续是 z , f ( x, y) 在D 内可微的与 x y条件.(充分,必要,充要)2.函数 z , f ( x, y) 在点 ( x0 , y 0 ) 处沿 l , {cos, , cos , }的方向导数可以用公式f , f x ( x0 , y0 ) cos,, f y ( x0 , y0 ) cos , 来计算的充分条件为 z , f ( x, y) 在点 l.(连续,偏导数存在,可微分) ( x0 , y 0 ) 处x x 3.若三阶常系数齐次线性微分方程有解 y1 , e . y2 , xe . y3 , ex,则该微分方程为 .0.5 , x , 1 ,x ,则它的傅里叶 4.周期为 2 的函数 f ( x) 在一个周期内的表达式为 , 1 , x , 0.5 ;1级数在 x , 3.5 处的和为 .n x 5.幂级数 . ln n 的收敛域是 n,2二.(8 分)设函数 f (u, v) 有二阶连续的偏导数,且 f u (0,0) , 1, f v (0,0) , 1 . 函数x 2 z z , f . xy , ,求 x y y ( x, y, )( 0 , 1 )2 2 三.(8 分)求抛物面 z , x , y 到平面 x , y , z , 1 , 0 的最近距离.四.计算下列积分:(每题 8 分)2 x1. d, ,其中 D 为三直线 y , 0 . y , x 与 x , 1所围成的平面区域. ,, e D2.,,, xydydz , yzdzdx , zxdxdy ,其中 , 是平面 x , 0, y , 0, z , 0 及 x , y , z , 1所围成的四面体的边界面的外侧., y z , 0 ,从 z 轴正向看去,沿逆时针方向. 3. xyz dz ,其中 , 是曲线 , 2 2 2 , ;x , y , z , 1 ,五.级数( 1) n 1 1.(8 分)设 an 是等差数列,公差 d , 0 ,s n , a1 , a2 ,, a n .问:级数 s n n,1是绝对收敛还是条件收敛或是发散的,说明理由.( 1)n 1 2 n x 的收敛域与和函数 s( x) . 2.(12 分)求幂级数 n ,1 2n 1六.微分方程1.(8 分)求微分方程 xy, , y , x ln x 的通解.2.(12 分)设函数 f ( x) 有二阶连续的导数且 f (0) , 0 , f ,(0) , 1 .如果积分2 f ( x)] y dx , [ f ,( x) , y] dy , [ x L2L 的路径无关,求 f ( x) . 与3。
(完整word版)高等数学测试及答案(第四章)
高等数学测试(第四章)一. 选择题(每小题3分,共30分)1. 已知函数2(1)x +为()f x 的一个原函数,则下列函数中( )是()f x 的原函数。
A 21x -B 21x +C 22x x -D 22x x + 2. 若函数ln x x为()f x 的一个原函数,则不定积分()xf x dx '⎰=( ) A 1ln x C x -+ B 1ln x C x ++ C 12ln x C x -+ D 12ln x C x ++ 3. 已知函数()f x 在(,)-∞+∞内可导,且恒有()f x '=0,又有(1)1f -=,则函数()f x =( ) A 1 B -1 C 0 D x4. 若函数()f x 的一个原函数为ln x ,则一阶导数()f x '=( )A 1xB 21x- C ln x D ln x x 5. 若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( )A 1+x sin ;B x sin 1-;C 1+x cos ;D x cos 1-.6. 设F )(x 是)(x f 的一个原函数,则下列各式正确的是(其中常数0>a )( )A .⎰+=c ax F a dx ax f x )(ln 1)(ln 1 B .⎰+=c ax aF dx ax f x)(ln )(ln 1 C .⎰+=c ax F x dx ax f x )(ln 1)(ln 1 D .⎰+=c ax F dx ax f x )(ln )(ln 1 7.()xf x dx ''=⎰ ( )A.()()xf x f x dx '-⎰B. ()()xf x f x C ''-+C.()()xf x f x C '-+D. ()()f x xf x C '-+8.下列式子中正确的是( )A .()()x F x dF =⎰B .()()C x F x dF d +=⎰C .()()dx x f dx x f dx d =⎰D .()()dx x f dx x f d =⎰ 9.若()()x G x F '=',k 为任意常数,则( )A .()()k x F x G =+B .()()k x F x G =-C .()()0=-x F x GD .()()()()'='⎰⎰dx x G dx x F10.若()x f '为连续函数,则()⎰='dx x f 2( ) A .()C x f +2 B .()C x f + C .()C x f +221 D .()C x f +22 二. 填空题(每小题4分,共20分)11.若ln ()x df x dx x =,则()_______f x =. 12.若2[()]2()cos d f x f x xdx =,且(0)1f =,则()______f x =____. 13. 2()____________1()f x dx f x '=+⎰. 14. =⎰dx x x x ___________________. 15. d dx x =⎪⎭⎫ ⎝⎛+211___________________. 三. 计算题16.(5分)计算22(1)dx x x +⎰. 17.(5分)计算 1x dx e +⎰.18.(5分)计算 321x dx x +⎰. 19.(5分)计算dx x x ⎰arctan .20.(5分)计算⎰21.(5分)计算 23x x e dx ⎰.22.(10分)计算 cos ax I e bxdx =⎰.23.(10分)设ln(1)(ln )x f x x +=,求()f x dx ⎰..高等数学测试题(四)不定积分部分一. 选择题 1—5 DCABB 6—10 DCDBC二. 填空题11. 2ln 1()ln 2x f x dx x C x ==+⎰. 12. ()sin 1f x x =+ 13. 22()()arctan ()1()1()f x df x dx f x C f x f x '==+++⎰⎰. 14. C x +815158. 15. C x x +-1. 二. 计算题16.(5分)计算 22(1)dx x x +⎰.【解析】原式=22111()arctan 1dx x C x x x-=--++⎰. 17.(5分)计算 1x dx e +⎰. 【解析】原式=(1)ln(1)1xx x e dx x e C e-=-+++⎰. 18.(5分)计算 321x dx x +⎰. 【解析】原式=22211()ln(1)122x x dx x x C x -=-+++⎰. 19.(5分)计算dx x x ⎰arctan .【解析】原式=dx x x x dx x x x x dx x ⎰⎰⎰⎪⎭⎫ ⎝⎛+-+=⎪⎪⎭⎫ ⎝⎛+-=22222211121arctan 211arctan 21arctan 21 ()C x x x x +-+=arctan arctan 212. 20.(5分)计算⎰【解析】设 t =原式=5253261166(arctan )1t t dt dt t t C C t t t +-==-+=++⎰⎰. 21.(5分)计算23x x e dx ⎰. 【解析】原式=22222222111()()222x x x x x e dx x d e x e e C ==-+⎰⎰. 22.(10分)计算 cos ax I e bxdx =⎰. 【解析】 222221cos sin 1(sin sin )1sin cos 1sin (cos cos )1sin cos ax ax ax ax ax ax ax ax ax ax ax I e bxdx e d bx b e bx a e bxdx ba e bx e d bxb ba e bx e bx a e bxdxb ba a e bx e bx Ib b b===-=+=+-=+-⎰⎰⎰⎰⎰22(sin cos )axe I b bx a bx C a b=+++ 23.(10分)设ln(1)(ln )x f x x+=,求()f x dx ⎰. 【解析】由ln(1)(ln )x f x x+=得ln(1)()x x e f x e +=, 所以ln(1)()ln(1)x x x x e f x dx dx e de e-+==-+⎰⎰⎰ ln(1)1x x x e dx e e +=-++⎰ln(1)1x x x x e e dx e e --+=-++⎰ ln(1)(1)1x x x x e d e e e --++=--+⎰ln(1)ln(1)x x x e e C e-+=--++ ln(1)ln(1)x x xe e x C e +=--+++.。
(word完整版)高等数学习题集及答案
1,1],且是单调递减的是【 】
B.y arccosx
D.y arccot x
若数列收敛,则极限唯一
若函数f (x)在x x0处的左右极限都存在,则
当变量x 0时,与x2等价的无穷小量是
B.1 cos2x
A .sinx
x1是函数f (x)
A.无穷间断点
C.跳跃间断点
下列命题正确的是
当x→0时,
A.无穷பைடு நூலகம்量
x 0是函数
连续点
设数列的通项
A. xn发散
2极限limxx1
A.若f (x0) A,
C.
f (x)在此点处的极限存在
】
ln 1 x2
D.
e2x1
x 2的
x1
】.
B.
D.
可去间断点
连续点
】
lim f(x)
x x0
C.若lim f (x)存在,则极限唯一x x0
B.
D.
若lim f (x) A,则
x x0
以上说法都不正确
f (x0) A
当变量x 0时,与x2等价的无穷小量是
A.连续点
f (x)
B.
C.
3
x
D.
2的x2x 2可去间断点
x 2是函数f (x)
A.连续点
3
xx
2
x2x 2
B.可去间断点
x 2是函数f (x)
x24
x2x 2
若{un}有界,若{un}收敛,
{un}收敛
{un}有界
若{un}无界,若{un}单调有界,则{un}收敛
{un}发散
e3
C.无穷间断点
(完整版)同济大学第六版高等数学第一章综合测试题
第一章综合测试题一、填空题1、函数1()arccos(1)f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )fg x x =-, 则()g x = .3、已知1tan ,0,()ln(1), 0ax x e e x f x x a x +⎧+-≠⎪=+⎨⎪=⎩在0x =连续,则a = . 4、若lim 25nn n c n c →∞+⎛⎫= ⎪-⎝⎭,则c = . 5、函数y =的连续区间为 .二、选择题1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数.(A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ).(A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛(C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2,x x f x x x ⎧+≠±⎪=-⎨⎪=±⎩ 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断(C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续4、 设lim 0n n n x y →∞=,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界(C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ⎧⎫⎨⎬⎩⎭收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无穷小,则( ).(A )必有m n = (B )必有m n > (C )必有m n ≤ (D )以上情况皆有可能 三、设2,0,1()(||),(),0.2x x f x x x x x x ϕ<⎧=+=⎨≥⎩ 求[()]f x ϕ,[()]f x ϕ. 四、求极限1、22lim(4)tan 4x x x π→-2、3113lim 11x x x →⎛⎫- ⎪--⎝⎭ 3、11lim 3x x x x →+∞⎛⎫+ ⎪⎝⎭4、22212lim 12n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭L 5、1/1/011lim arctan 1x x x e e x→+- 五、讨论函数22(4),0,sin ()(1),01x x x x f x x x x x π⎧-<⎪⎪=⎨+⎪≥⎪-⎩的连续性,如有间断点,判别其类型.六、设kA x αβ==,求A 及k ,使得当x →+∞时,αβ:. 七、已知()f x连续,05x →=,求20()lim x f x x →. 八、设函数)(x f 在(,)-∞+∞内有定义,且在点0x =处连续,对任意1x 与2x 有1212()()()f x x f x f x +=+. 证明:)(x f 在(,)-∞+∞内连续.九、证明:函数()[]f x x x =-在(,)-∞+∞上是有界的周期函数.十、设)(x f 在]1,0[上非负连续,且(0)(1)0f f ==. 证明:对任意实数(01)a a <<必存在实数0[0,1]x ∈,使得0[0,1]x a +∈,且00()()f x a f x +=.。
《高等数学》练习题库及答案,DOC(word版可编辑修改)
A、xarctan1/xB、arctan1/x C、tan1/xD、cos1/x 13、设 f(x)在点 x0 连续,g(x)在点 x0 不连续,则下列结论成立是() A、f(x)+g(x)在点 x0 必不连续 B、f(x)×g(x)在点 x0 必不连续须有 C、复合函数 f[g(x)]在点 x0 必不连续 D、在点 x0 必不连续
C、-1/2D、1
48、两椭圆曲线 x2/4+y2=1 及(x—1)2/9+y2/4=1 之间所围的平面图形面积等于()
A、лB、2лC、4лD、6л
49、曲线 y=x2—2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()
A、лB、6л/15
C、16л/15D、32л/15
50、点(1,0,-1)与(0,-1,1)之间的距离为()
5.下列命题正确的是()
A.发散数列必无界 B.两无界数列之和必无界
C.两发散数列之和必发散 D.两收敛数列之和必收敛
6. lim sin(x2 1) ()
x1 x 1
A.1B。0
C。2D.1/2
7.设 lim(1 k )x e 6 则 k=()
x
x
A。1B.2
C.6D。1/6
8。当 x 1 时,下列与无穷小(x-1)等价的无穷小是()
7、已知ρ=ψsinψ+cosψ/2,求 dρ/dψ|ψ=л/6=()
8、已知 f(x)=3/5x+x2/5,求 f`(0)=()
9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()
《高等数学》练习题库及答案,DOC(word 版可编辑修改) 10、函数 y=x2-2x+3 的极值是 y(1)=()
(完整word版)大专生高等数学考试期末考试
(A卷)
命题人叶茂莹
题
号
一
二
三
四
总分
阅卷
教师
得
分
………………………………………………………………………………………………………………
得
分
一、填空题(每题3分,共15分)
1、函数 的定义域为_______
2、函数 =_______
3、函数 在点 处可导,且 , ______
4、隐函数 ,导数 _______
5、经过曲线y=x3-sinx+1上的一点(0,1)处的切线方程________
得
分
二、选择题(每题4分,共20分)
1、下列函数为偶函数的是( )
A、 B、 C、 D、
2、 ( )
A、1B、-1C、1/2D、-1/2
3、设 使 存在的最高阶数 为( )
A、 B、 C、 D、
4、函数 的渐近线是( )
2、讨论函数f(x)= 的凹凸性和拐点.
3、 ,
求
4、求函数 在区间 的最大值和最小值
5、证明:当 时,有 成立。
A、 B、 C、 D、
5、设曲线 与 在点(1,0)处相切,其中 为常数,则( )
A、题(每题5分,共30分)
1、求下列函数的极限
(1)
(2)
(3)
2、求下列函数的导数或微分
(1) ,求
(2) ,求
(3) ,求
得
分
四、解答题(每题7分,共35分)
1、设函数 ,当 为何值时, 是 的间断点?
高等数学试题及答案(可编辑修改word版)
n →∞⎰ x 高等数学试题一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分)1.设f ( x) =l nx ,且函数( x) 的反函数-1( x) = 2( x+1),则f [( x)] = ()x- 1A .l n x- 2B .l n x+2C .l n 2- xD .l n x+2x+2x- 2 x+2 2- x⎰0(e t + e -t - 2)dt2. lim xx →01- cos x= () A .0B .1C .-1D . ∞3. 设∆y =f (x 0 + ∆x ) - f (x 0 ) 且函数 f (x ) 在 x = x 0 处可导,则必有()A. lim ∆y = 0∆x →0B. ∆y = 0⎧ 2x 2, x ≤ 1C. dy = 0D. ∆y = dy4. 设函数f ( x) =⎨ ⎩3x -1, x > 1 ,则f ( x) 在点x=1处()A. 不连续B .连续但左、右导数不存在C .连续但不可导D . 可导5.设⎰xf ( x) dx=e - x 2+ C ,则f ( x) = ()A. xe - x 2B. - x e - x 2C. 2e - x 2D. - 2e - x 2二、填空题(本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
1 16.设函数 f(x)在区间[0,1]上有定义,则函数 f(x+ )+f(x- )的定义域是.4 47. lim (a + aq + aq 2 + + aq n )( q < 1) =8. lim arctan x =x →∞ xg29. 已知某产品产量为 g 时,总成本是C( g) =9+800,则生产 100 件产品时的边际成本M C g =100 =10.函数 f (x ) = x 3+ 2x 在区间[0,1]上满足拉格朗日中值定理的点ξ是 .11.函数 y = 2x 3 - 9x 2 +12x - 9 的单调减少区间是 .12.微分方程 xy '- y = 1+ x 3 的通解是.2ln 2dt13. 设 a,则a = .6 14. 设 z = cos x y则 dz= .15.设 D = {(x , y ) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},则⎰⎰ xe -2 y dxdy =.D三、计算题(一)(本大题共 5 小题,每小题 5 分,共 25 分) ⎛ 1 ⎫x16.设 y = ⎪ ⎝ ⎭,求 dy.e t -1 =1+ x 2 ⎰x y x ⎢ ⎥ 17. 求极限 lim ln cot xx →0+ln x18. 求不定积分19. 计算定积分I= aa 2 - x 2 dx ..20.设方程 x 2 y - 2xz + e z= 1确定隐函数 z=z(x,y),求 z ' , z ' 。
同济大学高等数学第七版下册系列练习题答案
《高等数学》期末练习题1答案题目部分,(卷面共有25题,100分,各大题标有题量和总分)一、选择(10小题,共30分)1-5.BCAAC 6-10.ABADC 二、填空(5小题,共10分)1.答案:π-arccos 452.答案:平面y x =上的所有点。
3.答案:-16xy4.答案:2220().d f r rdr πθ⎰⎰5.答案:1201611+-三、计算(8小题,共48分)1.答案:过点P 1021(,,)-,l 1方向向量为S 1221=-{,,},过点P 2131(,,)-,l 2方向向量为S 2421=-{,,},n S S P P =⨯==-12126012152{,,},{,,}距离为d P P n n n==⋅=Prj ||/||12152.答案:cos cos αβ==22∂∂∂∂z xzy==11,所以∂∂z n =+=222223.解:d d d u u x x u y y =+∂∂∂∂=-+⎛⎝ ⎫⎭⎪1x e y x y xx y yx sin cos d d 4.解:由z x z y x y =-==+=⎧⎨⎩220240,得D 内驻点(1,-2),且z (,)1215-=-在边界x y 2225+=上,令L x y x y x y =+-+-++-2222241025λ()由L x x L y y L x y x y =-+==++==+-=⎧⎨⎪⎩⎪2220242025022λλλ得x y =±=525, ,(()zz 5251510552515105-=--=+比较后可知,函数z 在点(,)12-处取最小值z (,)1215-=-在点(-525,处取最大值()5101552,5+=-z 。
5.解:原式1212001==⋅=⎰⎰⎰⎰dx xydy xdx ydy 6.解:212321xxI dx dy x y zdz=⎰⎰⎰2221027112168516xdx xy dy x dx ===⎰⎰⎰7.解:消z 后,可得L 的参数方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z t y t x sin 21sin 21cos 0t2πt t t t t s d d cos 21cos 21sin d 222=++=,故⎰Lsxyz d 61sin 21sin 21cos 2=⋅⋅=⎰πtdt t t 8.答案:()41122lim lim1=++=∞→+∞→n n a a n nn n ∴级数的收敛半径41=R 四、判断(2小题,共12分)1.解:设f x x x()=+⎛⎝ ⎫⎭⎪1221,于是()ln ()ln f x x x=-+22取极限lim ln ()lim ln()lim x x x f x x x xx →∞→∞→=-+=-+202222=0故lim ()x f x →∞=1,从而有lim n nn →∞+⎛⎝⎫⎭=12121,故而12211n nn +⎛⎝ ⎫⎭⎪=∞∑发散。
(完整word版)《高等数学》练习题库及答案.docx
《高等数学》练习测试题库及答案一.选择题1.函数 y=1是()2x1A. 偶函数B. 奇函数C 单调函数D 无界函数2.设 f(sin x)=cosx+1,则 f(x) 为()2A 2x 2-2B 2-2x 2+x 2D 1 - 2C 1x3.下列数列为单调递增数列的有( )A . 0.9 ,0.99, 0.999,0.9999B . 3, 2, 5,42345n为奇数n1 , n21nC . {f(n)}, 其中 f(n)=n , 为偶数 D. { 2n}1n4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散D .两收敛数列之和必收敛6. lim sin( x 21) ()x 1x 1A.1B.0C.2D.1/27.设 lim (1 k ) x e 6则 k=()xxA.1B.2C.6D.1/68.当 x1 时,下列与无穷小(x-1)等价的无穷小是()A.x 2 -1B. x 3 -1C.(x-1) 2D.sin(x-1)9.f(x) 在点 x=x 0 处有定义是 A. 必要条件C.充分必要条件f(x) 在x=x 0 处连续的(B.充分条件 D.无关条件)10、当|x|<1时,y=()A 、是连续的B、无界函数C 、有最大值与最小值D、无最小值11、设函数 f (x)=( 1-x )cotx要使 f (x)在点: x=0 连续,则应补充定义f (0)为()A 、B、 e C、-e D、-e -112、下列有跳跃间断点x=0 的函数为()A、xarctan1/xB、 arctan1/xC、 tan1/xD、 cos1/x13、设f(x) 在点 x0连续, g(x) 在点 x0不连续,则下列结论成立是(A、f(x)+g(x)在点x0必不连续B、f(x) ×g(x) 在点 x0必不连续须有C、复合函数 f[g(x)]在点x0必不连续)D、在点x0必不连续14、设f(x)=在区间 (-∞,+∞) 上连续,且f(x)=0,则a,b满足()A、a>0,b >0 C、a<0,b >0BD、a>0,b <0、a<0,b <015、若函数f(x)在点x0连续,则下列复合函数在x0也连续的有()A、B、C、tan[f(x)]D、 f[f(x)]16、函数f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0,л]B、( 0, л)C、[-л /4,л/4]D、( - л/4,л /4 )17、在闭区间[a ,b]上连续是函数f(x)有界的()A、充分条件B、必要条件C、充要条件D、无关条件18、f(a)f(b)<0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()A、充分条件B、必要条件C、充要条件D、无关条件19、下列函数中能在区间 (0,1) 内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x2-1D、f(x)=5x 4-4x+120、曲线 y=x2在 x=1 处的切线斜率为()A、k=0B、k=1C、k=2D、-1/221、若直线 y=x 与对数曲线 y=log a x 相切,则()A、eB、1/e CxD1/e 、 e、 e22、曲线 y=lnx平行于直线 x-y+1=0 的法线方程是()A、x-y-1=0B、x-y+3e -2 =0C、 x-y-3e-2 =0D、 -x-y+3e -2 =023、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()A、± 1B、±л/2C、± ( л/2+1)D、± ( л/2-1)24、设 f(x) 为可导的奇函数,且 f`(x 0)=a ,则 f`(-x0)=()A、 aB、-aC、|a|D、025、设 y=㏑,则 y’|x =0=()A、 -1/2 B 、1/2C、-1 D、026、设 y=(cos)sinx,则 y’|x =0=()A、 -1B、0C、1D、不存在27、设 yf(x)=㏑(1+X) ,y=f[f(x)],则 y’|x =0=()A、 0 B 、 1/㏑ 2 C 、 1 D 、㏑ 228、已知 y=sinx ,则 y(10)=()A、 sinx B 、cosx C、-sinx D、 -cosx29、已知 y=x ㏑ x,则 y(10) =()9B 99、9A、 -1/x、1/ x C 、8.1/xD-8.1/x30、若函数 f(x)=xsin|x|,则()A、f``(0) 不存在 B 、f``(0)=0C、f``(0) =∞D、 f``(0)=л31、设函数 y=yf(x)在[0 ,л ] 内由方程 x+cos(x+y)=0所确定,则|dy/dx|x=0=()32、圆 A 、 -1 B 、0 C 、л/2D、 2x2cos θ,y=2sin θ上相应于 θ =л /4 处的切线斜率,K=()A 、-1B 、0C 、1D 、233、函数f(x)在点x 0 连续是函数f(x)在 x 0 可微的()A 、充分条件B 、必要条件C 、充要条件D 、无关条件34、函数 f(x) 在点 x 0 可导是函数 f(x) 在 x 0 可微的()A 、充分条件B、必要条件C 、充要条件D 、无关条件35、函数A 、0f(x)=|x|在B 、-dxx=0 的微分是( C 、dx D 、)不存在36、极限 lim ( x1) 的未定式类型是()x 11x ln xA 、0/0 型B、∞ / ∞型 C 、∞ - ∞D 、∞型137、极限 lim(sin x) x 2的未定式类型是()xx 0A 、00 型B、 0/0 型∞型C 、 1 型D 、∞x 2sin138、极限limx=()x 0sin x A 、0 B、1 C 、 2 D 、不存在39、x x 0 时, n 阶泰勒公式的余项 Rn(x) 是较 x x 0 的()A 、(n+1)阶无穷小B 、 n 阶无穷小C 、同阶无穷小D、高阶无穷小40、若函数 f(x) 在[0, +∞] 内可导,且 f`(x) >0,xf(0) <0 则 f(x) 在 [ 0,+ ∞]内有()A 、唯一的零点 B、至少存在有一个零点C 、没有零点D、不能确定有无零点41、曲线 y=x2-4x+3 的顶点处的曲率为()A、2B、 1/2C、1D、 042、抛物线 y=4x-x 2在它的顶点处的曲率半径为()A、0B、 1/2C、1D、 243、若函数 f(x)在( a,b )内存在原函数,则原函数有()A、一个B、两个C、无穷多个D、都不对44、若∫ f(x)dx=2e x/2 +C=()A、2e x/2B、 4 e x/2C、e x/2+CD、e x/245、∫ xe-x dx = ( D)A、xe-x -e -x +CB、-xe -x+e-x+CC、xe-x +e -x +CD、-xe -x -e -x+C-ndx()46、设 P( X)为多项式,为自然数,则∫ P(x)(x-1)A、不含有对数函数B、含有反三角函数C、一定是初等函数D、一定是有理函数47、∫-10|3x+1|dx= ()A、5/6 B 、1/2C、-1/2D、148、两椭圆曲线x2/4+y 2 =1及 (x-1)2/9+y 2/4=1之间所围的平面图形面积等于()A、л B 、2л C 、4л D 、6л49、曲线 y=x2-2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()A、лB、6л /15C、16л/15D、32л/1550、点( 1, 0, -1 )与( 0, -1 ,1)之间的距离为()A、 B 、2 C 、31/2D、2 1/251、设曲面方程(P, Q)则用下列平面去截曲面,截线为抛物线的平面是()A、 Z=4 B 、Z=0C、Z=-2D 、x=252、平面x=a 截曲面 x2/a 2+y2 /b 2-z 2/c 2=1 所得截线为()A、椭圆B、双曲线 C 、抛物线 D 、两相交直线53、方程 =0 所表示的图形为()A、原点( 0,0,0)B、三坐标轴C、三坐标轴D、曲面,但不可能为平面54、方程 3x2 +3y2-z 2=0 表示旋转曲面,它的旋转轴是()A、X 轴B、Y轴C、Z轴D、任一条直线55、方程 3x2 -y 2-2z 2=1 所确定的曲面是()A、双叶双曲面 B 、单叶双曲面 C 、椭圆抛物面D、圆锥曲面56 下列命题正确的是()A、发散数列必无界B、两无界数列之和必无界C、两发散数列之和必发散D、两收敛数列之和必收敛57.f(x)在点x=x0处有定义是f(x)在x=x0处连续的()A、. 必要条件B、充分条件C、充分必要条件D、无关条件58 函数 f(x)=tanx能取最小最大值的区间是下列区间中的()A、[0, л ]B、(0,л)C、[- л/4, л/4]D、(-л/4,л /4)59 下列函数中能在区间 (0,1) 内取零值的有()A、f(x)=x+1B、f(x)=x-1C、f(x)=x 2-1D、f(x)=5x4-4x+160 设 y=(cos)sinx,则y’|x=0=()A、-1B、0C、1D、不存在二、填空题1、求极限 lim(x 2+2x+5)/(x 2+1)= ()x1、求极限3()lim2x 03、求极限 lim x-2/(x+2)1/2 =()x 24、求极限 lim[x/(x+1)]x=()x5、求极限 lim1/x= ()(1-x)x 06、已知 y=sinx-cosx ,求 y`| x=л/6 =()7、已知ρ=ψsin ψ+cosψ/2 ,求 dρ /d ψ| ψ=л/6=()8、已知 f(x)=3/5x+x2 /5 ,求 f`(0)=()9、设直线 y=x+a 与曲线 y=2arctanx相切,则 a=()10、函数 y=x2-2x+3 的极值是 y(1)= ()11、函数 y=2x3极小值与极大值分别是()12、函数 y=x2-2x-1的最小值为()13、函数 y=2x-5x 2的最大值为()14、函数 f(x)=x 2e-x在[-1,1]上的最小值为()315、点( 0, 1)是曲线 y=ax +bx2+c 的拐点,则有 b=() c= ()16、∫ xx 1/2 dx= ()17、若 F`(x)=f(x) ,则∫ dF(x) = ()18、若∫ f(x)dx =x2e2x+c,则 f(x)= ()b19、d/dx∫a arctantdt =()1x t2x2(e1)dt0, x 0在点x=0连续,则a=()20、已知函数 f(x)=a, x0、∫ 02(x 2+1/x 4 )dx =()21x1/2(1+x1/2)dx=()22、∫4923、∫031/2a dx/(a2+x2)=()24、∫01 dx/(4-x2)1/2=()л25、∫л/3 sin (л /3+x)dx=()x1/2(1+x1/2)dx=()26、∫49x1/2(1+x1/2)dx=()27、∫49x1/2(1+x1/2)dx=()28、∫49x1/2(1+x1/2)dx=()29、∫49x1/2(1+x1/2)dx=()30、∫4931、∫49 x1/2(1+x1/2)dx=()32、∫49 x1/2(1+x1/2)dx=()33、满足不等式 |x-2|<1 的 X 所在区间为34、设 f(x) = [x] +1 ,则 f (л+10)=(35、函数 Y=|sinx|的周期是()())36、y=sinx,y=cosx 直线 x=0,x= л/2 所围成的面积是()238、心形线 r=a(1+cosθ )的全长为()39、三点( 1,1,2),(-1,1,2),( 0, 0, 2)构成的三角形为()40、一动点与两定点( 2,3,1)和( 4,5,6)等距离,则该点的轨迹方程是()41、求过点( 3,0,-1),且与平面 3x-7y+5z-12=0 平行的平面方程是()42、求三平面 x+3y+z=1 ,2x-y-z=0,-x+2y+2z=0 的交点是()43、求平行于 xoz 面且经过( 2,-5, 3)的平面方程是()44、通过 Z 轴和点( -3, 1, -2)的平面方程是()45、平行于 X 轴且经过两点( 4, 0, -2)和( 5, 1, 7)的平面方程是()46求极限 lim [x/(x+1)]x=()x47函数 y=x2-2x+3 的极值是 y(1)= ()9x 1/2(1+x1/2)dx= ()48∫449y=sinx,y=cosx直线 x=0,x= л /2 所围成的面积是()50求过点( 3,0,-1 ),且与平面 3x-7y+5z-12=0平行的平面方程是()三、解答题21、设 Y=2X-5X ,问 X 等于多少时 Y 最大?并求出其最大值。
同济大学2009-2016高数B期末考试题
同济大学2009-2010学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 设函数()f x 具有二阶导数, 且1'0,'dx y dy y ≠=, 则223"'d xy dyy =-.2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1)tx f t y f e π=-⎧⎨=-⎩所确定的函数的 导数32t dydx ==.3. 极限111lim()ln 212n n n n n→∞+++=+++.4. 微分方程22"5'6sin x y y y xe x -++=+的特解形式为(不需确定系数) 2()cos 2sin 2x x Ax B e C x D x E-++++.二. 选择题(4'416'⨯=) 5. 设函数sin ()bx xf x a e=+在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b<>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥<6. 曲线1ln(1)x y e x-=++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线;()D 有水平和铅直渐近线 7. 将0x +→时的无穷小量2sin ,,(1)xx t tdt tdt e dt αβγ===-⎰⎰排列起来, 使得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ](),,A αβγ; (),,B αγβ; (),,C βαγ; (),,D γβα 8. 设函数()f x 在点0x =的某个邻域内有定义, 且2()(0)0,lim2x f x f x →==-, 则在该点处 ()f x : [C ] ()A 不可导; ()B 可导且'(0)0f ≠; ()C 取得极大值; ()D 取得极小值.三. 解答题(7'428'⨯=) 9. 求极限30sin sin(sin )limx x x x →-, [30sin 1lim 6t t t t →-==] 10. 计算定积分240tan sec x x xdx π⎰ [224400111(tan )(sec 1)28242xd x x dx ππππ==--=-⎰⎰]11. 计算反常积分221arctan (1)xdx x x +∞+⎰[2212210111113()arctan arctan ()[arctan ]ln 2124232xdx xd x x x x ππ+∞+∞+∞=-=--=+++⎰⎰] 12. 试求微分方程221(1)dy y x y dx x+=-的通解 [221111()'()1(ln )2x x x x c y x y y -=-⇒=-+]四. (8')求曲线ln y x =上的点, 使此曲线在该点的曲率半径为最小.[312222221(1)(1)(21)1(0)'(,ln 2)22x x x R x R K x x ++-==>⇒=⇒-] 五. (8')设不定积分n n I =,(1)计算01,I I ; (2)利用变换sin x t =, 建立(2,3,4,)n I n =的递推公式[(1)01arcsin ,I x c I =+=[(2)211n n n n I I x c n n---=-] 六. (8')设函数(),()f x g x 在[,]a b 上连续, 且在[,]a b 上()0g x >, 证明至少存在一点[,]a b ξ∈,使()()()()babaf xg x dxf g x dxξ=⎰⎰. [minmax ()()()babaf xg x dxf fg x dx≤≤⎰⎰]七. (8')过坐标原点作曲线21(0)y x x =+≥的切线, 记该切线与此曲线及y 轴所围成的平 面图形为D , 试求:(1)平面图形D 的面积; (2)平面图形D 绕直线1x =旋转一周所成的旋转体的体积, [12,,32y x S V π===] 八. (8')已知22123,,xxxxxxx y xe e y xe e y xe ee --=+=+=+-是某个二阶常系数线性非齐次微分方程的三个解, 试写出该微分方程的通解并建立此微分方程. [212,"'2(12)xx x x y c ec e xe y y y x e -=++--=-]同济大学2010-2011学年第一学期高等数学B(上)期终试卷一. 填空题(4'416'⨯=)1. 已知极限lim ()x e f x →存在, 且函数()f x 满足: ln 1()lim ()()ex e x e x x f x f x x e e-→-=+-, 则 2l i m ()1x ee f x e →=-.2. 设函数2()ln(23)f x x x =+-, 则()11(2)(1)(1)!(1)5n n nfn -=--+.3. 不定积分1tan 1(tan ln tan )sin 22x dx x x C x +=++⎰.4. 定积分sin 2sin cos 03334xx xdx ππ=+⎰.二. 选择题(4'416'⨯=)5. 曲线32331(1)31t x t t t y t ⎧=⎪⎪+≠-⎨⎪=⎪+⎩的斜渐近线方程为 [A ] :1A y x =--; :1B y x =-; :1C y x =-+; :1D y x =+.6. 曲线22162y x x =-上点(2,0)P 处曲率K = [B ]:0A ; :16B ; 1:16C ; :4D . 7. 设()f x 为(,)-∞+∞内连续的偶函数, '()()F x f x =, 则原函数()F x [C ] :A 均为奇函数; :B 均为偶函数;:C 中只一个奇函数; :D 既非奇函数也非偶函数.8. 设1s 为曲线sin y x =上相应于02x π≤≤的一段弧长, 2s 为椭圆2222x y +=的周长,则 [D ] 12:A s s π-=; 12:B s s >; 12:C s s <; 12:D s s =. 三. 解答题(4'728'⨯=)9. 求极限302cos ()13lim x x x x→+-. [2cos ln 333001(cos 1)1lim lim 36xx x x e x x x x +→→--===-]10. 设()f x 是(,)-∞+∞内的连续的奇函数, 且0()lim 2x f x x +→=, 证明()f x 在0x =处可导,并求'(0)f . [00()(0)()(0)(0)0,lim lim 2'(0)00x x f x f f x f f f x x +-→→--====--] 11. 求定积分21[]max{1,}x x e dx --⎰, 其中[]x 表示不超过x 的最大整数.[0121102x I e dx dx dx e --=-++=-⎰⎰⎰]12. 判定反常积分2ln 1e x dx x +∞-⎰的收敛性, 如果收敛, 求出其值.[21ln 111(ln 1)()[]e e x I x d x x x e+∞+∞-=--=--=⎰] 四. (8')设()f x 是(,)-∞+∞内的连续函数, 且(0)0f ≠, 试求极限00()lim ()xxx tf x t dt xf x t dt→--⎰⎰.[0()()()()1limlimlim[()()]2()()()x xxxx x x x x f u du uf u duf u duxf x f x f x f u duxf x f u duξξ→→→∞-====++⎰⎰⎰⎰⎰]五. (8')设可积函数()f x 在(,)-∞+∞内满足关系式: ()()sin f x f x x π=-+, 且当[0,)x π∈时()f x x =, 试求3()f x dx ππ⎰.[2322(sin )(2)2I x x dx x dx πππππππ=-++-=-⎰⎰]六. (8')设n 为正整数, 函数2lim ,0()100nx n x x f x e x x -→∞⎧≠⎪=--⎨⎪=⎩, 求曲线()y f x =与直线2xy =-所围平面图形绕x 轴旋转一周所成的旋转体的体积. [122202001()[()()]()1283,01x x x f x V dx x x x x πππ<⎧⎪=⇒=---=-⎨+-≥⎪+⎩⎰] 七. (8')求微分方程223(1)20dy x y xy dx -+=的通解. [22231111()'()()x x x C y y y y+=⇒=-] 八. (8')令sin x t =, 化简微分方程22arcsin 2(1)x d y dyx xy e dx dx ---=, 并求其通解. [22222311sin ,cos cos cos dy dy d y d y dy t dx dt t dx dt t dt t ==+2arcsin arcsin arcsin 122arcsin 2t x xx d y x y e y C e C e e dt -⇒-=⇒=++]同济大学2011-2012学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=) 1. 极限31lim()2xx x e x →∞+=-.2. 若极限000(2)()lim3h f x h f x h→--=, 则03'()2f x =-.3.积分22216(3x x dx -+=⎰.4. 积分2cos 2cos 1sin 2xx xedx e C =-+⎰.5. 微分方程4"4'0y y y -+=的通解为1212()x y c x c e=+.6. 记41sin I xdx ππ-=⎰, 22sin I xdx ππ-=⎰, 23I x dx ππ-=⎰, 21sin I x xdx ππ-=⎰. 则这4项积分的大小关系为 [ B ] ()A 2134I I I I >>>;()B 3214I I I I >>>;()C 4132I I I I >>>;()D 1243I I I I >>>.7. 下列反常积分中收敛的反常积分是 [ A ] 211()2A dx x +∞+⎰;()e B +∞⎰; ()sin C xdx +∞-∞⎰; 101()1D dx x -⎰ 8. 若函数23ln(1)ln 2,1()11x x f x x a x ⎧+-≠⎪=-⎨⎪=⎩在1x =连续, 则常数 [ D ] ()A 23a =; ()B 23a =-; ()C 13a =-; ()D 13a =.二. 解答题(6'530'⨯=) 1.计算由曲线y =340x y -+=所围平面图形的面积.[21141)336A x dx -=-=⎰] 2. 若函数()u x 与()v x 具有n 阶导数, 试写出()()u x v x ⋅计算n 阶导数的莱布尼茨公式, 计算2xx e ⋅的10阶导数. [()()()2(10)1020[()()];()2(5)nn k k n k x x n k u x v x C u v xe e x -===+∑]3. 求函数2()(5)x f x x x e =+-的单调区间以及函数的极大与极小值. [4max min '(4)(1)(,4],[1,);[4,1];(4)7;(1)3x f x x e f e f e -=+-⇒-∞-+∞--==-]4. 计算反常积分221ln(1)x dx x+∞+⎰. [ln 22I π=+] 5. 求微分方程2"2'31,(0),'(0)73y y y y y +-===-的解. [331211233xx x x y c e c e e e --=+-=--]三. (8')在长度单位为米的坐标中, 由方程21x y =-与直线220x y --=围成的薄片铅直 的浸入水中, 其中x 轴平行于水面且在水下1米深处, 试求该薄片的一侧所受的水压力. [121(1)(221)4P g y y y dy g ρρ-=-+-+=⎰]四. (10')求积分1)x dx +⎰, [28ln 2393I π=+-]五. (10')1. 试求常数,a b , 使得函数在=201,12x x y x ax b ≤≤⎧=⎨<≤+⎩在区间[0,2]上可导; 2. 若由该曲线段绕y 轴旋转形成一个容器, 如果每单位时间以常量0v 向容器均匀 的注水, 试求该容器在水溢出前水深为h 时水面的上升速度.[2,1a b ==-;0220002,01()()'()''4,13(1)h v h h V h x y dy v V x h h h v h h ππππ⎧≤≤⎪⎪=⇒==⇒=⎨⎪<≤+⎪⎩⎰]六. (10')要建一个容积为14, 侧面为圆柱形, 顶部接着一个半球形的仓库(不含底部), 已知顶部每平方单位的造价是其侧面圆柱部分单位造价的3倍, 试求该仓库的底圆半径, 使得该仓库的造价最省.[2223f rh r ππ=+,2322281414(),'()033r h r f r r f r r r πππ+=⇒=+=⇒]七. (8')函数()f x 在0[,)x +∞上具有二阶导数, 并且"()0f x <, 对于任意0x x >, 由拉格 朗日中值定理, 存在0x x ξ<<, 使得00()()'()()f x f x f x x ξ-=-. 证明ξ定义了 0(,)x +∞上的一个单调增加函数.['()f x 递减()x ξξ=唯一确定(函数); 又可证00()()f x f x x x --, 可得()x ξ递增]同济大学2012-2013学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'8⨯)1. 函数()x f x xe -=的四阶带佩亚诺余项的麦克劳林公式为234411()()26f x x x x x o x =-+-+2. 2(1)x y e x -=+在1x =所对应点的曲率25K =3. 极限lim(1ln )x aa x a a x a a a x→-=--4.由方程22y x +=所确定的函数()y y x =在(1,0)点的导数(1,0)32dydx =5. 函数()f x 在[0,)+∞上连续, 则数列极限lim ()n f n →∞存在是函数极限lim ()x f x →+∞存在的什么条件? [ B ] ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件. 6. 在区间[,]a b 上, 函数()f x 连续的充分条件是: [ B ] ()()baA f x d x ⎰存在; ()()B f x 可导; ()()C f x 具有原函数; ()()D f x 有界.7. 如果作换元2sin x t =,则定积分2f dx 等于 [ C ]40()(2c o s )2c o s A f t t d t π⋅⎰; 24()(2cos )2cos B f t tdt ππ⋅⎰;42()(2c o s )2c o sC f t t d t ππ⋅⎰; 04()(2cos )D f t dt π⎰.8. 可导函数()f x 在区间[0,1]上单调增加的充分条件是在该区间上 [ D ] 2()()(1)()x A f x ex o x ∆=-∆+∆; 1()()0B f x dx >⎰;()"()0C f x >; 4()()[1()]()D f x f x x o x ∆=+∆+∆.二. (4'3⨯)1. 如图是函数()y f x =的图像, 试在下列空格中填入恰当的符号: 0<; 0=或0>.44()0f x d x -<⎰;44'()0f x dx -=⎰;44"()0f x dx ->⎰;44"'()0f x dx -<⎰.2. 求极限12001lim (12)x tx t dt x →+⎰ [1220lim 2(14)2x x x e →=+=]3. 计算不定积分(1)ln(1)x x dx ++⎰[2211(1)ln(1)(1)24x x x c ++-++] 三. (6'3⨯) 1. 求曲线21x x y e-=的凹凸区间与拐点的坐标. [22'(32),"4(2):(,2];:[2,)x x y e x y e x --=-=-⇒⋂-∞⋃+∞; 拐点:4(2,)e -]2. 计算反常积分21(2ln ln )edx x x x +∞+⎰. [1ln 1ln ln 322ln 2e x x +∞==+]3. 一个由曲线段24(01)y x x =≤≤绕y 轴旋转形成的容器内装满了比重为γ的均匀液体, 如果要将该容器内的液体全部排空至少需要做多少功. [48(4)43y W y dy πγπγ=-=⎰] 四. (8')试用适当的换元法求微分方程22222()2()1dy x y x dx y x -=-+的通解. [2222222arctan 21du xu y x u x u u x c dx u -=⇒+=⇒-=-+⇒+]五. (8')试说明闭区间上连续函数的像集是闭区间, 并举例说明在闭区间上, 像集是闭区间的函数未必连续. [最值定理; 介值定理; 反例略]六. (10')计算由曲线2xy e =, 该曲线经过坐标原点的切线以及y 轴所围成图形的面积, 并 求该图形绕x 轴旋转所得旋转体的体积.[切线:2y ex =;切点:12x =; 1122222220023(2);[()(2)]412x x x e e A e ex dx V e ex dx ππ--=-==-=⎰⎰] 七. (10')试求微分方程22"cos y y x x +=+的通解.[221231;*cos 2sin 2;cos sin cos 226i y Ax Bx C D x E x y C x C x x x λ=±=++++=++--] 八. (10')()f x 是以T 为周期的连续函数, 若()Tf t dt A =⎰, 求极限01lim()xx f t dt x →+∞⎰.[0(0)(0)(0)1()()()()()()limlimlimTnTnT TnTn n n T T T f t dt f t dtf t dt f t dtn f t dt f t dtA n nT nT T T nθθθθθθθθθ+→∞→∞→∞≤<≤<≤<+++====+++⎰⎰⎰⎰⎰⎰]同济大学2013-2014学年第一学期高等数学B(上)期终试卷一. 选择与填空题(3'824'⨯=) 1. 极限262lim()1nn n e n -→∞-=+2. 利用定积分的几何意义,积分4-=⎰92π3. 微分方程"'120y y y +-=的通解为4312x xy C e C e -=+4. 已知敌方的导弹阵地位于坐标原点处,发射的导弹飞行轨迹为光滑曲线()y f x =,我方 拦截导弹的阵地位于x 轴正向2000公里处,发射的拦截导弹飞行速度是敌方导弹速度的 两倍,如果由计算机控制,在敌方导弹发射时我方的拦截导弹同时发射,并且我方导弹的 运行轨迹是直线,如果两导弹的相撞点为00(,)x y ,则该点满足的方程为2x =⎰5. 0{}x 是有界数列, 则该数列单调是数列极限存在的什么条件 【A 】 ()A 充分条件; ()B 必要条件; ()C 充分必要条件; ()D 无关条件.6. ()f x 是连续函数, 曲线段()()xaf t dt a x b ≤≤⎰的弧长s 的计算公式为 【C 】()a A s =⎰; ()a B s =⎰;())aC s dx =⎰; ()aD s =⎰无关条件.7. 函数()f x 具有三阶连续导数,如果"()0,[,]f x x a b >∈,则下列四项积分中,积分值 确定为正数的积分为 【A 】 ()['()'()]ba A I fb f x d x =-⎰; ()'()baB I f x dx =⎰; ()[()()]baC I f x f a d x=-⎰; ()'"()baD I f x dx =⎰. 8. 利用换元ln(1)x t =+, 积分2()x f e dx ⎰等于 【D 】20(1)()1f t A dt t ++⎰; 210()(1)e B f t dt -+⎰; 20(1)()1e f t C dt t ++⎰; 210(1)()1e f t D dt t -++⎰. 二. 计算下列各题(6'636'⨯=)1. 试计算由23ln 3x x y y +++=所确定的曲线在(1,1)点的切线方程.[22213'3470(31)4x y x y y x +=-=-⇒+-=+]2. 求由参数方程t tx e y e t-⎧=⎨=+⎩所确定函数()y y x =的导数22;dy d ydx dx . [22322();22t t t t dy d y e e e e dx dx=-+=+] 3. 求不定积分[322(1)3x x c +-+] 4. 曲线段3:()L y x a x a =-≤≤的弧长为s , n D 是xoy 平面上与L 距离不超过n 的点集,即222{(,)(')('),(',')}n D x y x x y y n x y L =-+-≤∈,n D 的面积为n A ,求极限2lim nn A n →∞.[222()lim n n n A n A n s nπππ→∞≤≤+⇒=] 三. (8')计算反常积分31arctan x dx x +∞⎰. [121arctan 11[arctan ]22x x x x +∞=-++=]四. (8')()f x 具有二阶导数, 如果极限201()(2)lim1x f x xf x x →++=-, 求(0),'(0),"(0)f f f .[(01,'(0)1,"(0)6f f f =-==-]五. (8')可导函数()f x 满足方程40()2()1xf x tf t dt x -=--++⎰, 求函数()f x .[232(0)1,'()2()4()2(1)3x f f x xf x x f x x e -==-+⇒=-+]六. (10')求函数231xx y xe ++=的单调区间与极值, 并求出该函数在区间[2,2]-上的最值.[23111'(21)(1)(,1],[1,],[,);22x x y x x e ++=++⇒-∞-↑--↓-+∞↑极小1()2y -=极大1(1)y e -=-; 11min max 2(2),(2)2y y e e-=-=] 七. (10')计算由曲线21xy e=-, 直线41y e =-以及y 轴所围图形的面积; 并求出由该图形绕y 轴旋转所得旋转体的体积. [224244240031[(1(1)];2()(51)222x x A e e dx e V x e e dx πππ=---=+=-=-⎰⎰]八. (8')计算极限12ln(1)0(12)limtxx x t dt t +→-⎰.[11222ln(1)(12)(12)1(ln(1)),ln(1)2txx t dt x x x x x L t eξξξξξ+--=-++<<⇒⇒=⎰]同济大学2014-2015学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限23232lim()1nn n n e n -→∞-+=+2. x y xe =在1x =对应点的曲率k =3223(14)e e +3.反常积分110111dx xxαα+∞-+⎰⎰收敛, 则常数α的取值区间是3(,2)2α∈4.1'(32)(32)2x x x e f e dx f e c -=--+⎰5. ()f x 在[,]a b (其中1b a =+)上具有二阶导数,且"()0f x <,下列不等式正确的是 【B 】()'()'()()(A f b f a f b f a <<-; ()'()()()'()B f b f b f a f a <-<; ()()()'()'(C f b f a f b f a -<<; ()'()()()'()D f a f b f a f b <-<.6. ()f x 是连续函数, 极限121lim()nn k k n f n n→∞=-⋅∑等于下面的定积分 【D 】11()(21)A f x d x --⎰; 2()(21)B f x dx -⎰; 11()2()C f x dx -⎰; 1()(21)D f x dx -⎰.7. 如果数列{}n x 在任意区间[,]a b 上只含有有限项, 则下面判断中正确的判断是 【D 】 (){}n A x 是收敛数列; (){}n B x 是有界数列但不收敛; (){}n C x 是无界数列但是当n →∞时不是无穷大量; ()D 极限lim n n x →∞=∞.8. 223()(1)(2)(3)4f x x x x x =---+, 则'()0f x =在区间(1,1)-内有几个实根 【C 】()0A 个; ()1B 个; ()2C 个; ()D 至少3个.二. 计算下列各题(6'424'⨯=) 1. 求函数21232x x y e-++=的单调区间与凹凸区间.[2211232322'(2),"(1)(3)x x x x y x e y x x e-++-++=-=--]2. 求曲线2132y x ey -+=在(1,1)点的切线方程. [230x y +-=]3. 计算反常积分311arctan xdx x +∞⎰ [12] 4. 求微分方程"3'441y y y x --=+的通解. [41212x xy C e C e x -=+-+]三. (8')分析曲线1(1)ln()(0)y x e x x=++>是否有铅直、水平与斜渐近线, 如果有则求出 相应的渐近线. [铅直渐近线0x =; 斜渐近线11y x e=++]四. (8')已知(),()f x g x 都是非负的连续函数, 曲线()y f x =与()y g x =关于直线y c =对 称,由曲线(),()y f x y g x ==以及直线,()x a x b a b ==<所围成的平面图形的面积为A . (1)证明该图形绕x 轴旋转所得旋转体的体积为2V cA π=; [22()()()2()bb baaaV fg dx f g f g dx c f g dx πππ=-=+-=-⎰⎰⎰](2)计算椭圆2214x y +≤绕直线2y =旋转所得旋转体的体积. [28V π=] 五. (8')设()f x 是可导函数, 并且满足方程220()()12xt f x tf dt x =++⎰, 求函数()f x .[2231(0)1,'()4()2()22x f f x xf x x f x e ==+⇒=-]六. (8')(1)写出ln(1)x +的带有佩亚诺余项的n 阶迈克劳林公式;(2)计算极限2lim 1(1)xx x e x→+∞+.[(1)12311(1)()23n n nx x x x o x n ---++++;(2)221ln(1)limlim 1(1)x x x xx x x e e x-+→+∞→+∞==+七. (10')由方程22,4y x y ==所确定的抛物型薄片铅直地浸入水中, 顶端与水面持平(长度单位为米). (1)试求薄片一侧所受到的水压力; (2)如果此后水面以每分钟0.5米的速度开 始上涨, 试计算薄片一侧所受到的水压力的变化率. [(1)4(4P g y g ρ=-⎰; (2)40(,dP P g h y g dt ρ=-=⎰]八. (10')设222(0)nn n xy a a +=>所围图形在第一象限部分的面积为n A . (1)利用定积分写出n A 的计算公式(无需计算n A的值); (2)证明极限lim n n A →∞存在; (3)计算极限lim n n A →∞.[(1)0an A =⎰;(2)1122220(1)n n a t dt A a a -≤=≤⎰⎰;(3)2lim n n A a →∞=]同济大学2015-2016学年第一学期高等数学B(上)期终试卷一. 填空选择题(3'824'⨯=)1. 极限1202lim()23h h h e h-→-=+.2. 积分(12sin )cos '(12sin )2f x x f x dx C--⋅-=+⎰.3. 函数220()sin(1)x F x t dt =+⎰的导函数4'()2sin(1)F x x x =+.4. 曲线322(1)1(12)3y x x =++-≤≤的弧长143s =.5. 极限0lim ()x x f x -→=+∞的定义是 【D 】()0,0A εδ∀>∃>,当00x x δ<-<时, 有()f x A ε-<; ()0,0B εδ∀>∃>,当x δ>时, 有()f x ε>; ()0,0C M X ∀>∃>, 当x X >时, 有()f x M >; ()0,0D M δ∀>∃>, 当00x x x δ-≤<时, 有()f x M >. 6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()()A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223()()()()B C y x C y x y x ++, 其中12,C C 是任意常数;11223()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数;112233()()()()D C y xC y x C y x ++, 其中任意常数1231C C C ++=. 7. 若()f x 是连续函数, 则极限121lim()2nn k n k f n n→∞=+∑等于 【A 】3212()()A f x d x ⎰; 2()()B f x dx ⎰; ()C 12()f x dx ⎰; 10()()2xD f dx ⎰.8. 若对于积分0(2)af a x dx -⎰作换元2a x u -=, 则该定积分化为 【C 】()()aaA f u d u -⎰; 0()2()a B f u du ⎰; ()C 1()2aa f u du -⎰; 0()()a D f u du ⎰.二. 计算下列各题(6'424'⨯=)1. 试求曲线2sin y x y x ++=在点(1,0)处的切线方程. [21x y +=]2. 求不定积分2ln(1)x dx +⎰. [2ln(1)22arctan x x x x c +-++]3. 求微分方程3'xy x y =-的通解. [411()4y x c x =+] 4. 求微分方程"2'15153y y y x --=-的通解. [531213x xy C e C e x -=+-+]三. (8')计算由22y x x =+与直线2y x =+所围图形的面积. [1229(2)2x x dx ---=⎰]四. (8')计算反常积分31arctan x dx x +∞⎰. [211111arctan arctan 2222I x x x x +∞=---=]五. (8')已知'()y f x =的函数图像如图,(1)求函数()y f x =的单调区间、极大值与极小值; (2)求曲线()y f x =的凹凸区间与拐点. [35353(,],[,);[,];()x x x x f x -∞+∞极大,5()f x 极小124124[,],[,);(,],[,];x x x x x x +∞⋃-∞⋂拐点112244(,()),(,()),(,())x f x x f x x f x ] 六. (10')在半径为R 的半球内内接一圆锥体, 使得该锥体的锥顶位于半球的球心上, 锥体的底面平行于半球的底面, 求这样的内接圆锥体体积的最大值.[322max 1(3),3V R h h V π=-=] 七. (10')一椭球形容器由长半轴为2m , 短半轴为1m 的半支椭圆曲线绕其短半轴旋转而成,若容器内盛满了水, 试求要把该容器内的水全部吸出需作的功.[2221(10),4(1)(),4x y y dW y dy g y W g πρπ+=-≤≤=--=] 八. (8')已知()f x 具有二阶导数,且"()f x ≥判断lim ()x f x →∞的情况, 并给出判 断的理由.[21"()()(0)'(0)"()2f x f x f f x f x ξ≥=++→+∞]同济大学2016-2017学年第一学期高等数学B(上)期终试卷一. 选择填空题(3'824'⨯=)1. ()y f x =具有二阶导数, 且'()0f x ≠. 若曲线()y f x =在00(,)x y 的曲率为0k ≠, 其 反函数1()x f y -=所表示的曲线在对应点的曲率为'k , 则有 【A 】()'A k k =; 1()'B k k=; ()C 'k k >; ()'D k k <. 2. 已知函数()y f x =满足(0)1f =, 如果在任意点x 处, 当x ∆充分小时都有 2()1xy x o x x ∆=∆+∆+, 则有 【C 】 2221()()(1)x A f x x -=+; 2()()11x B f x x =++; ()C ()l 1f x =+; ()D 题中所给的条件无法得到确定的函数()f x . 3. 下面的极限式中哪项等于连续函数()f x 的定积分2()f x dx ⎰. 【D 】12()l i m ()nn k k A f n n →∞=∑; 121()lim ()n n k k B f n n →∞=∑; 11()lim ()n n k k C f n n →∞=∑; 11()lim 2()nn k k D f n n →∞=∑. 4.要使反常积分+∞⎰收敛, 则实数p 的取值范围是 【C 】 ()1A p >; ()1B p <; ()2C p >; ()2D p <.5. 如果作换元sin x t =,则积分3(sin )f x dx π=⎰.6. 微分方程231x y dye dx -+=的通解2113ln()32x y e C +=+.7. 已知2()x f x dx e C =+⎰, 则222(21)1(21)4x xf x dx e C --=+⎰.8.定积分3421[ln(1)2RRx x dx R π-+=⎰.二. 计算题(8'324'⨯=)1.求极坐标所表示的曲线4θρ=在04πθ=所对应点处的切线方程. [532x y e π-=] 2.计算定积分211π+⎰. [2π]3. 可导函数()f x 满足等式20()()22xttf dt f x =-⎰, 求函数()f x . [22()2x f x e =]三. (10')已知函数()()f x x R ∈在点1x =左连续, 同时该点是函数()f x 的跳跃间断点, 如 果该函数只有1x =一个间断点, 试分析函数32(39)f x x x C +-+间断点的个数. [266C -<<三个; 6C =两个; 26C ≤-或6C >一个]四. (10')求微分方程00"2'31414,'93x x y y y x y y ==+-=+⎧⎪⎨==⎪⎩的解. [315239x xy e e x -=---] 五. (10')曲线21(0)y x x =+≥. (1)求该曲线在点(2,5)处的切线方程L ; (2)求该曲线与切线L 以及y 轴所围图形的面积;(3)求题(2)所叙述的图形绕y 轴旋转所得旋转体的体积. [8843;;33y x A V π=-==] 六. (10')一只容器由2(02)y x x =≤≤绕y 轴旋转而成. (1)如果容器内的水量是容器容量的14, 求容器内水面的高度; (2)如果要将题(1)中这部分水吸尽, 求外力需要作的功. [162;3h W g ρπ==] 七. (12')(1)如果周期函数()()f x x R ∈有最小正周期0T , 证明对于()f x 的任意一个周期 T , 都有0T nT =, 其中n 是正整数; [记周期00[0,)T nT T -∈] (2)如果()()f x x R ∈以1T π=以及21T =为周期,证明存在一列{}n T (若i j ≠,则i j T T ≠) 使得n T 都是函数()f x 的周期, 并且数列{}n T 有极限; [1T 2T 非最小正周期, 存在321,n n T T T T -<⋅⋅⋅<为更小正周期] (3)如果满足题(2)条件的函数()f x 在点0x =连续, 证明()f x 是常数.[0,0εδ∀>∃>,当x δ<时,()(0)f x f ε-<;10,,0n n T T T x nT δδ--→∃<<-<]。
(完整word版)高等数学试题及答案(word文档良心出品)
《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高数》试卷1(上)
一.选择题(将答案代号填入括号内,每题3分,共30分).
1.下列各组函数中,是相同的函数的是( ).
(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 (
)g x =(C )()f x x = 和 (
)2
g x =
(D )()||
x f x x
=
和 ()g x =1 2.函数()
00x f x a x ≠=⎨⎪
=⎩ 在0x =处连续,则a =( ).
(A )0 (B )1
4
(C )1 (D )2
3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).
(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).
(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微
5.点0x =是函数4
y x =的( ).
(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点
6.曲线1
||
y x =
的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.
211
f dx x x
⎛⎫' ⎪⎝⎭⎰
的结果是( ). (A )1f C x ⎛⎫
-+ ⎪⎝⎭
(B )1f C x ⎛⎫
--+ ⎪⎝⎭
(C )1f C x ⎛⎫
+ ⎪⎝⎭
(D )1f C x ⎛⎫
-+ ⎪⎝⎭
8.
x x dx
e e -+⎰的结果是( ).
(A )arctan x
e C + (B )arctan x
e
C -+ (C )x x e e C --+ (
D )ln()x x e e C -++
9.下列定积分为零的是( ).
(A )424arctan 1x dx x π
π-+⎰ (B )44
arcsin x x dx ππ-⎰ (C )112x x
e e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()
f x 为连续函数,则()1
2f x dx '⎰等于( ).
(A )()()20f f - (B )
()()11102f f -⎡⎤⎣⎦(C )()()1
202f f -⎡⎤⎣
⎦(D )()()10f f -
二.填空题(每题4分,共20分)
1.设函数()21
00x e x f x x a x -⎧-≠⎪
=⎨⎪=⎩
在0x =处连续,则a =
.
2.已知曲线()y f x =在2x =处的切线的倾斜角为5
6
π,则()2f '=.
3.2
1
x
y x =-的垂直渐近线有条. 4.
()21ln dx
x x =
+⎰.
5.
()4
22
sin cos x
x x dx π
π
-
+=
⎰.
三.计算(每小题5分,共30分) 1.求极限
①21lim x
x x x →∞+⎛⎫
⎪⎝⎭ ②()
2
0sin 1
lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①
()()13dx x x ++⎰
②()0a > ③x xe dx -⎰
四.应用题(每题10分,共20分) 1. 作出函数3
2
3y x x =-的图像.
2.求曲线2
2y x =和直线4y x =-所围图形的面积.
《高数》试卷1参考答案
一.选择题
1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题
1.2-2.
3
3
-3.24.arctanln x c
+5.2
三.计算题
1①2e②1
6
2.
1
1
x
y
x y
'=
+-
3. ①11
ln||
23
x
C
x
+
+
+
②22
ln||
x a x C
-++③()1
x
e x C
-
-++
四.应用题
1.略2.18
S=。