统计学第九相关分析

合集下载

统计学第九章练习题答案

统计学第九章练习题答案

第九章 习题参考答案一、填空题9.1.1 时间 观察值 9.1.2 相对数时间数列、平均数时间数列 9.1.3 定基发展速度 9.1.4 时期9.1.5 4.17% 5.74% 9.1.6 32.25%9.1.7 几何平均法、高次方程法9.1.8 长期趋势、季节变动、循环变动、不规则变动 9.1.9 画散点图的方法、指标判别法 9.1.10 逐期增减量 9.1.11 二次曲线 、指数曲线 9.1.12 季节变动 同期平均法 9.1.13 长期趋势9.1.14 ˆ()i iy y 最小值2=-å 9.1.15 1200% 调整系数 9.1.16 移动平均法9.1.17 增降1%的绝对值 9.1.18 均方误差9.1.19 移动平均法 9.1.20 趋势外推法9.1.21 趋势季节模型 9.1.22 观察值与预测值二、单项选择题三、多项选择题四、判断题9.4.1 (×,各期环比增降速度不一定相等) 9.4.2 (×,计算年距发展速度) 9.4.3 (√)9.4.4 (×,考察期末所达到的发展水平) 9.4.5 (√)9.4.6 (×,其结果是不相同的)9.4.7 (×,指增降速度中每一个百分点所代表的绝对额) 9.4.8 (√)9.4.9 (×,逐期增长量不一定相等) 9.4.10 (×,a 不相同,b 相等) 9.4.11 (×,ˆ()i i y y最小值2=-å)9.4.12 (√)9.4.13 (×,拟合抛物线曲线趋势方程) 9.4.14 (×,进行一次平均即能得到预测值) 9.4.15 (√)9.4.16 (×,S j <100%时,表明现象此时处于淡季) 9.4.17 (√)9.4.18 (×,构建趋势季节模型) 9.4.19 (×,ˆˆy ys s=) 9.4.20 (√)五、简答题9.5.1 答:依据相对数时间数列计算平均发展水平的基本思想:①首先对相对数时间数列进行分解,找出各期的分子指标和分母指标;②其次分别计算出分子时间数列的平均发展水平a、分母时间数列的平均发展水平b;③最后将两个平均发展水平对比,以求得相对数时间数列的平均发展水平y。

统计学第9章 相关分析和回归分析

统计学第9章 相关分析和回归分析

回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系


被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)

某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)

贾俊平《统计学》(第5版)课后习题-第9章 分类数据分析【圣才出品】

贾俊平《统计学》(第5版)课后习题-第9章 分类数据分析【圣才出品】

第9章 分类数据分析一、思考题1.简述列联表的构造与列联表的分布。

答:列联表是由两个以上的变量进行交叉分类的频数分布表。

列联表的分布可以从两个方面看,一个是观察值的分布,又称为条件分布,每个具体的观察值就是条件频数;一个是期望值的分布。

2.用一张报纸、一份杂志或你周围的例子构造一个列联表,说明这个调查中两个分类变量的关系,并提出进行检验的问题。

答:对三个生产厂甲、乙、丙提供的学习机的A、B、C三种性能进行质量检验,欲了解生产厂家同学习机性能的质量差异是否有关系。

抽查了450部学习机次品,整理成为如表9-2所示的3×3列联表。

表9-2根据抽查检验的数据表明:次品类型与厂家(即哪一个厂)生产是无关的(即是相互独立的)。

建立假设:H0:次品类型与厂家生产是独立的,H1:次品类型与厂家生产不是独立的。

可以计算各组的期望值,如表9-3所示(表中括号内的数值为期望值)。

表9-3 各组的期望值计算表所以2222(2017)(4033)(7058)9.821173358χ---=+++=…。

而自由度等于(R -1)(C -1)=(3-1)×(3-1)=4,若以0.01的显著性水平进行检验,查χ2分布表得20.01(4)13.277χ=。

由于220.019.821(4)13.277χχ=<=,故接受原假设H 0,即次品类型与厂家生产是独立的。

3.说明计算2χ统计量的步骤。

答:计算2χ统计量的步骤:(1)用观察值o f 减去期望值e f ;(2)将(o f -e f )之差平方;(3)将平方结果2)(e o f f -除以e f ;(4)将步骤(3)的结果加总,即得:22()o e ef f f χ-=∑。

4.简述ϕ系数、c 系数、V 系数的各自特点。

答:(1)ϕ相关系数是描述2×2列联表数据相关程度最常用的一种相关系数。

它的计算公式为:ϕ,式中,∑-=ee of f f 22)(χ;n 为列联表中的总频数,也即样本量。

西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析

西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析

相关关系(例)
▪ 单位成本(y)与产量(x) 的关系…… ▪ 父亲身高(y)与子女身高(x)之间的关系 ▪ 社会商品零售额(y)与居民可支配收入(x)之
间的关系 ▪ 收入 (y)与文化程度(x)之间的关系 ▪ 商品销售量(y)与广告费支出(x1)、价格(x2)
之间的关系 ▪ 需要PPT配套视频,请加VX:1033604968
简单相关系数(简单线性相关系数) 对两个变量(定量变量)之间线性相关程 度的度量。 也称直线相关系数, 常简称相关系数。
等级相关(秩相关)
对两个定序变量之间线性相关程度的度量。
9--19
相关系数(Pearson’s
correlation coefficient)
有总体相关系数与样本相关系数之分:
• 总体相关系数ρ
变量间的相互依存关系有 两种类型:
——函数关系 ——相关关系
9--3
函数关系
1. 指变量之间确定性的数量依存关系;
2. 当变量 x 取某个数值时,
y 有确定的值与之对应, 则称 y 是 x 的函数 y = f
(x)
• 通常将作为变动原因的变 量 x 称为自变量,作为变
Y
动结果的变量y 称为因变量
将两个变量成对的观测数据在坐标图上标示出来, 变量 x 的值为横坐标,另一个变量 y 对应的数值 为纵坐标,一对观测值对应一个点,样本数据若 有n 对观测值,则相应的 n 个点形成的图形就称为 散点图。
如果一个是解释变量另一个是被解释变量,则通常 将解释变量放在横轴。
有助于分析者判断相关的有无、方向、形态、密 切程度。
9--5
相关关系
1. 指变量间数量上不确定的依存关系;
2. 一个变量的取值不能唯一地由 另一个变量来确定。当变量 x 取某个值时,与之相关的 变量 y 的取值可能有若干个 (按某种规律在一定范围内

医学统计学——相关分析

医学统计学——相关分析

函数关系是一一对应的确定性关系,比较 容易分析和测度,可是在现实中,变量之间的 关系往往并不那么简单。
相关关系的种类
按相关的程 度
完全相关 不完全相关 不相关
相关关系的种类
按相关方向
正相关
负相关
相关关系的种类
按相关的形 式
线性相关 非线性相关
相关关系的种类
按变量多少
单相关
复相关
偏相关
各类相关关系的表现形态图
Pearson简单相关系数用来衡量定距变量 间的线性关系。如 间的线性相关关系。
计算公式如下。 Pearson简单相关系数计算公式为
例1 相关系数计算表
产品产量 生产费用
年份 (千吨) (千元) x 2
x
y
y2
xy
1997 1.2
相关分析
1
相关分析的基本概念
2
二元定距变量的相关分析
3
二元定序变量的相关分析
4
偏相关分析
5
距离相关分析
描述变量之间线性相关程度的强弱,并用 适当的统计指标表示出来的过程为相关分析。 可根据研究的目的不同,或变量的类型不同, 采用不同的相关分析方法。本章介绍常用的相 关分析方法:二元定距变量的相关分析、二元 定序变量的相关分析、偏相关分析和距离相关 分析。
相关分析的基本概念
任何事物的变化都与其他事物是相互联系 和相互影响的,用于描述事物数量特征的变量 之间自然也存在一定的关系。变量之间的关系 归纳起来可以分为两种类型,即函数关系和统 计关系。
当一个变量x取一定值时,另一变量y可以 按照确定的函数公式取一个确定的值,记为 y = f(x),则称y是x的函数,也就时说y与x 两变量之间存在函数关系。又如,某种商品在 其价格不变的情况下,销售额和销售量之间的 关系就是一种函数关系:销售额=价格×销售 量。

《社会统计学》章节知识点——单选题

《社会统计学》章节知识点——单选题

《社会统计学》章节知识点——单选题第一章总论●变量类型1.下列变量属于数值型变量的是( A )。

A.工资收入B.产品等级C.学生对考试改革的态度D.企业的类型【参考答案】A2.从变量分类看,下列变量属于定序变量的是( C )。

A.专业B.性别C.产品等级D.收入【参考答案】C●总体和样本1.某地区政府想了解全市332.1万户家庭年均收入水平,从中抽取3000户家庭进行调查,以推断所有家庭的年均收入水平,这项研究的样本是( B )。

A.332.1万户家庭B.3000户家庭C.332.1户家庭的年均收入D.3000户家庭的年均收入【参考答案】B2.学校后勤集团想了解学校22000学生的每月生活费用,从中抽取2200名学生进行调查,以推断所有学生的每月生活费用水平,这项研究的总体是( A )。

A.22000名学生B.2200名学生C.22000名学生的每月生活费用 D.2200名学生的每月生活费用【参考答案】A3.为了解某地区的消费,从该地区随机抽取5000户进行调查,其中30%回答他们的月消费在5000元以上,40%回答他们每月用于通讯、网络的费用在300元以上,此处5000户是( C )。

A.变量 B.总体 C.样本 D.统计量【参考答案】C●抽样方式4.从含有N个元素的总体中,抽取n个元素作为样本,同时保证总体中每个元素都有相同的机会入选样本,这样的抽样方式称为( A )。

A.简单随机抽样B.系统抽样 C.整群抽样D.分层抽样【参考答案】A5.某班级有60名男生,40名女生,为了了解学生购书支出,从男生中抽取12名学生,从女生中抽取8名学生进行调查,这种调查方法属于( C )。

A.简单随机抽样 B.整群抽样 C.分层抽样 D.系统抽样【参考答案】C6.先将总体按某标志分为不同的类别或层次,然后在各个类别中采用简单随机抽样或系统抽样的方式抽取子样本,最后将所有子样本合起来作为总样本,这样的抽样方式称为( D )。

医学统计学-第9章 关联性分析

医学统计学-第9章 关联性分析
9.2.1 解决什么问题? ⑴统计描述:推断两变量是否有联系?是否
线性?程度如何?是正相关还是负相关? ⑵统计推断:两者的关系是否有统计学意
义?根据专业知识下结论。
9.2.2 相关系数的统计推断
r是样本相关系数,是总体相关系数ρ的估计
值,要想判断X、Y间是否有相关关系,就要检
验r是否来自总体相关系数ρ为零的总体。方法
本例 ν=n对-2=15-2=13,r0.05,13=0.514, 得到: p<0.05,即相关系数有统计学意义。
tr =
− 0.926 = −8.874,
1 − (0.926)2
ν = 15 − 2 = 13
15 − 2
可按公式(9-2) 计算
查附表C2(教材560),t 0.05,13=2.160;t> t 0.05,13,按α=0.05水准,拒绝H0,接受H1,故 可以认为凝血酶浓度与凝血时间呈负相关关系。
9.2.3 Spearman 秩相关
一、秩相关的概念及其统计描述 前面指出:Pearson积矩相关的假设检验要求
X和Y均服从正态分布。对那些不服从正态 分布或等级资料、总体分布未知的资料,因 难以进行分析,所以就不宜用积矩相关系数 来描述相关性。
此时,可采用等级相关(rank correlation), 或称秩相关来描述两个变量间相关的程度与方 向。该法是利用两变量的秩次大小作线性相关 分析,对原变量的分布不作要求,属非参数统 计方法。
例 某地研究2-7岁急性白血病患儿的血小
板数与出血症状程度之间的相关性,结果见下 表:试用秩相关进行分析。
首先先将实测原始数据由小到大排序 编秩,以pi表示Xi秩次;qi表示Yi的
次,见上表所示。
观察值相同的取平均秩次;将pi、qi直接 替换(9-1)中的X和Y的均数,直接得 到如下算式:

统计学第9章分类数据分析

统计学第9章分类数据分析

可解释性
分类结果应具有可解释性,能够清晰地说明各类 别的特征和差异,方便用户理解和应用。
避免过拟合
在训练分类模型时,应避免过拟合现象,确保模 型泛化能力良好,能够适用于不同的数据集和场 景。
交叉验证
采用交叉验证方法评估分类模型的性能,以客观 地评价分类结果的准确性和可靠性。
谢谢聆听
02
目的:通过频数分布表,可以直观地了解数据的分布情况 ,发现数据的异常值和缺失值,以及数据的离散程度和集 中趋势。
03
制作步骤
04
1. 将数据按照某一属性进行分类。
05
2. 统计每一类别的频数和频率。
06
3. 制作频数分布表,包括类别、频数、频率和累积频数 、累积频率等列。
列联表分析
定义:列联表分析是一种将两个或多 个分类变量进行联合,并分析它们之
社会阶层划分
通过分类数据分析,将社会人群划分为不同的阶层,分析不同阶 层的社会特征和行为模式。
人口普查
分类数据分析可以用于人口普查数据的分析和处理,提供更准确 的人口统计信息。
舆情分析
通过分类数据分析,了解公众对某一事件或话题的态度和意见, 为政策制定和舆论引导提供依据。
06 分类数据分析的注意事项
优势比和相对风险
基本概念
相对风险
优势比(Odds Ratio)和相对风险 (Relative Risk)是衡量分类数据关 联强度的指标。
表示暴露于某因素下发生事件的相对危 险度,计算方法为相对风险=暴露组的 事件发生率/非暴露组的事件发生率。
优势比
表示一个事件发生的相对概率,计算 方法为优势比=事件组的发生概率/非 事件组的发生概率。
分类数据分析
目录

应用统计学(第九章 协方差分析)

应用统计学(第九章 协方差分析)
➢ 均积与均方具有相似的形式,也有相似的性质: 一个变量的总平方和与自由度可按变异来源进行剖分,
从而求得相应的均方; 两个变量的总乘积和与自由度也可按变异来源进行剖分
而获得相应的均积; 把两个变量的总乘积和与自由度按变异来源进行剖分并
获得获得相应均积的方法称为协方差分析。
在随机模型的方差分析中,根据均方MS和期望均方的关 系,可以得到不同变异来源的方差组分的估计值;
b* SP / SP
e
ex
回归关系的显著性可用F检验或t检验,这时误差项目回
归自由度dfeU=1,回归平方和:
U SS b*SP SP2 / SP
e
ey
e
e
ex
误差项离回归平方和:
Q SS U SS SP2 / SS
e
ey
Байду номын сангаасey
ey
e
ex
离回归自由度:
df df df k(n 1) 1
矫正平均数的计算
yi.(xx..) yi . by / x ( xi . x..)
矫正平均数的多重比较
LSD0.05=0.8769, LSD0.01 =1.1718 食欲添加剂配方1、2、3号与对照比较, 其矫正50 日 龄平均重间均存在极显著的差异,配方1、2、3号的矫正50 日龄平均重均极显著高于对照。
回归关系的显著性检验:
变异来源 df 误 差回 归 1 误差离回归 43 误 差 总 和 44
SS 47.49 37.59 85.08
MS 47.49 0.87
F 54.32**
F0.01 7.255
F检验表明,误差项回归关系极显著,表明哺乳仔猪 50 日龄重与初生重间存在极显著的线性回归关系

张厚粲《现代心理与教育统计学》(第3版)【章节题库】(方差分析)

张厚粲《现代心理与教育统计学》(第3版)【章节题库】(方差分析)

5.在随机区组实验设计中,总平方和可以被分解为( )。 A.被试间平方和 B.被试内平方和区组平方和 C.误差项平方和 D.区组平方和 【答案】ACD
6.事后检验常用的方法有( )。 A.F 检验 B.N—K 法 C.HSD 法 D.t 检验
8 / 38
圣才电子书

【答案】BC
8.方差分析中,F(2,24)=0.90。F 检验的结果( )。 A.不显著 B.显著 C.查表才能确定 D.此结果是不可能的 【答案】A
9.如果用方差分析检验一个双组设计的平均数差异,将会得到一个与( )同样的 结果。
3 / 38
圣才电子书

A.F 检验
十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 9 章 第 9 章 方差分析
一、单选题 1.假设 80 个被试被分配到 5 个不同的实验条件组,那么要考虑各组被试在某症状测 量上的差异,F 比率的 df 各为( )。 A.5,79 B.5,78 C.4,79 D.4,75 【答案】D
15.某研究选取容量均为 5 的三个独立样本,进行方差分析,其总自由度为( )。 A.15 B.12
5 / 38
圣才电子书

C.2
十万种考研考证电子书、题库视频学习平台
D.14
【答案】B
16.当一个实验( )时,我们才能得到交互作用。 A.因变量多于 1 个 B.自变量多于 1 个 C.因变量多于 1 个的水平 D.自变量多于 2 个的水平 【答案】B
17.某研究选取容量均为 5 的三个独立样本,进行方差分析,其总自由度为( )。 A.15 B.12 C.2 D.14 【答案】B
18.完全随机设计的方差分析适用于( )。 A.三个及其以上独立样本平均数差异的显著性检验 B.方差齐性检验 C.三个及其以上相关样本平均数差异的显著性检验

本科“统计学”——第九章 时间序列分析

本科“统计学”——第九章   时间序列分析

1989
58.35
1998
163.00
2 - 20 6
移动平均法 (趋势图)
200
汽 150 车 产 100 量 (万辆)50
产量
五项移动平均趋势值 三项移动平均趋势值
0 1981
1985
图11-1
2 - 21 6
1993 1997 (年份) 汽车产量移动平均趋势图
1989
移动平均法 (应注意的问题)
2 - 26 6
3-3 指数平滑法
因此,F4是前三个时间序列数值的加权平均数。 Y1,Y2和Y3的系数或权数之和等于1。 由此可以得到一个结论,即任何预测值Ft+1是以 前所有时间序列数值的加权平均数。
2 - 27 6
3-4 指数平滑法
指数平滑法提供的预测值是以前所 有预测值的加权平均数,但所有过 去资料未必都需要保留,以用来计 算下一个时期的预测值。
1.
测定长期趋势的一种较简单的常用方法

通过扩大原时间序列的时间间隔,并按一定的间 隔长度逐期移动,计算出一系列移动平均数 由移动平均数形成的新的时间序列对原时间序列 的波动起到修匀作用,从而呈现出现象发展的变 动趋势

2.
移动步长为K(1<K<n)的移动平均序列为
Yi Yi 1 Yi K 1 Yi 1 K
一、利用平滑法进行预测
本节我们讨论三种预测方法:移动平均法、加权移动平 均法和指数平滑法。因为每一种方法的都是要“消除” 由时间序列的不规则成分所引起的随机波动,所以它们
被称为平滑方法。 三 种 平 滑 方 法
2 - 18 6
移动平均法 加权移动平均法 指数平滑法
1、移动平均法 (Moving Average Method)

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

《应用统计学》教学大纲

《应用统计学》教学大纲

《应用统计学》教学大纲一、课程简介统计学是农林经济管理本科专业的一门学科基础必修课。

本课程采取理论讲授与实验操作交替进行的方式,理论讲授部分主要包括统计数据的收集、整理、分析及预测,重点讲授各种统计方法,如参数估计、假设检验、方差分析、时间序列分析、统计指数、相关与回归分析等;实验操作部分包括统计工作过程的实验、Excel等电子表格在统计分析中的应用、统计学知识的综合应用三个实验。

二、教学大纲1.教学目的开设此课旨在培养学生数据收集、处理和分析能力。

通过本课程的学习,学生掌握统计学基本理论、方法及在Excel等统计软件中的运用,达到能应用统计方法分析问题和解决问题的目的。

2.教学要求(1)对教师的要求教师要积极备课,认真准备实验,对课程内容要融会贯通,切忌照本宣科。

授课在多媒体教室,结合典型实用案例和相关统计软件,理论讲授与上机操作交替进行。

做到授课内容与大纲相符,注重全程考核,最终成绩由考勤、调查方案设计、实验报告撰写、调查报告撰写、上机测试及期末考试构成,成绩评价体系标准真实、严谨、公平、公正、公开,提升学生学习积极性。

(2)对学生的要求学生能系统地掌握各种统计方法,并理解各种统计方法中所包含的统计思想;能运用统计方法分析和解决实际问题的能力;能够熟练应用Excel等统计软件进行数据分析。

3.预备知识或先修课程要求先修课程包括《概论论与数理统计》、《微观经济学》、《宏观经济学》、《管理学原理》等。

4.教学方式课程包括理论讲授和实验操作两部分。

理论授课32学时,教师讲授与课堂讨论相结合;实验操作24学时,包括统计工作过程实验、Excel等统计软件的运用及统计学知识的综合运用,以学生上机操作为主,教师引导、实地调查为辅。

5.实验环境和设备1)硬件环境:每个学生一台微型计算机。

2)软件环境:Windows 7、Office 2007(或以上版本)(Excel需安装数据分析及规划求解功能)软件包、卓越班学生还需SPSS、DPS软件包。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

第四讲-统计学中的相关分析

第四讲-统计学中的相关分析

3.当 r =1 时,即零相关,表示 x和 y 没有线性相关关系。
零相关表示x和y不相关或存在非线性关系。 4.当 0< r < 1时,表示 x和 y存在着一定的线性相关关系。
r < 0.3称为微弱相关; 0.3 ≤ r < 0.5称为低度相关;
0.5 ≤ r < 0.8称为显著相关;
0.8 ≤ r < 1称为高度相关;
如果相关关系表现为因素标志和结果标志的数值在变动方向上保持 一致,则称为正相关。 例如家庭收入增加,银行储蓄也会增加。
如果相关关系表现为因素标志和结果标志的数值在变动方向上相 反,则称为负相关。 例如企业的生产规模越大,产品的单位成本就越低。
现象总体表现出来的正相关或负相关是有一定条件和范围的。某种 现象不会永远以正相关表现,也不会永远以负相关表现。 例如,在一定的范围内,增加施肥量能提高农作物的产量,但如果 施肥过多,反而使庄稼只长叶子,不长果实, 最后可能收获量很少。
0.99
6 9 080 2082 6 27 124 4022
即产品产量与单位成本呈现高度负相关。
2019/11/22
21
例8‐3 试根据下表分组资料计算某地人均收入与人均支出的相关系数。
某地人均收入与人均支出的样本资料
0123456
人均年收入 (千元)
1.0以下 1.0~2.0 2.0~3.0 3.0~4.0 4.0~5.0 5.0以上
2019/11/22
第八章 相关分析
14
协方差的正负号与相关方向的关系图示:
0123456
y


xx0 y y 0 (x x)( y y)为负
y

统计学课件第9篇章分类数据分析

统计学课件第9篇章分类数据分析

谢谢聆听
其他回归模型
总结词
除了线性回归分析和Logistic回归分析之外,还有许多其他类型的回归模型可 供选择。
详细描述
这些模型包括岭回归、套索回归、多项式回归、逐步回归等,每种模型都有其 特定的适用场景和假设条件。选择合适的回归模型需要考虑数据的特征、模型 的预测精度和解释性等因素。
06 分类数据分析的实际应用
市场细分分析
市场细分
通过分类数据分析,将市场划分为不 同的细分市场,以便更好地理解客户 需求和行为,从而制定更有效的营销 策略。
消费者行为研究
通过分析消费者的购买行为、偏好和 态度,了解不同细分市场的消费者需 求和趋势,以优化产品设计和市场定 位。
人口统计学研究
人口普查
利用分类数据分析对人口普查数据进行处理和分析,了解人口分布、年龄结构、 性别比例等人口统计学特征。
05 分类数据的回归分析
线性回归分析
总结词
线性回归分析是一种通过建立自变量与因变量之 间的线性关系来预测因变量的方法。
总结词
线性回归分析的假设包括线性关系、误差项独立 同分布、误差项无偏和误差项同方差。
详细描述
线性回归分析基于最小二乘法原理,通过拟合一 条直线来描述自变量和因变量之间的关系。这种 方法适用于因变量是连续变量的数据,并且自变 量和因变量之间存在线性关系。
选择合适的图形类型,将频数分布表 中的数据按照分类变量进行分组并绘 制图形。
相对频率与累积频率
相对频率
01
某一组的频数与总频数之比,用于表示该组在总体中的相对重
要程度。
累积频率
02
某一组的相对频率与前面所有组的相对频率之和,用于表示该
组及之前所有组在总体中的相对重要程度。

统计学课后答案(第3版)第9章相关与回归分析习题答案

统计学课后答案(第3版)第9章相关与回归分析习题答案

第九章 相关与回归分析习题答案一、单选1.C ;2.B ;3.C ;4.D ;5.A ;6.C ;7.B ;8.C ;9.A ;10.C 二、多选1.ACD ;2.AE ;3.AD ;4.ABCD ;5.ACD ;6.AB ;7.ABDE ;8.ACE ;9.AD ;10.ABE 三、计算分析题 1、解:(1)(2)建立线性回归方程xy ∧∧∧+=10ββ,根据最小二乘法得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=∑∑∑∑∑∑∑∧∧∧n x n y x x n y x y x n i i i i i i i i 10221βββ)(由此可得∧1β=0.732,∧0β=-2.01,则回归方程是∧y =-2.01+0.732x(3)当受教育年数为15年时,其年薪的点估计值为:∧y =-2.01+0.732×15=8.97(万元)估计标准误差: 733.0538.0222===-=--=∑∧M S E n S S En y y S i iy )(置信区间为:∑=∧--+±n i i yx x x x nS t y 1202/)()(12α=8.97±2.228×0.733×9167.120917.6151212)(-+=8.97±1.290预测区间为:∑=∧--++±ni i yx x x x nS t y 1202/)()(112α=8.97±2.228×0.733×9167.120917.61512112)(-++ =8.97±2.081 2、解:(1)建立线性回归方程xy ∧∧∧+=10ββ,根据最小二乘法得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=∑∑∑∑∑∑∑∧∧∧n x n y x x n y x y x n i i i i i i i i 10221βββ)(由此可得0093.00=∧β,316.01=∧β,则回归方程是x y 316.00093.0+=∧(3)当GDP 达到16时,其货币供应量的点估计值为:∧y =0.0093+0.316×16=5.065亿元估计标准误差:Sy=22--∑∧n y y i i)(=2-n SSE=MSE =09294.0=0.305置信区间为:∑=∧--+±n i i yx x x x nS t y 1202/)()(12α=5.065±2.228×0.305×21863.135711.11161212)(-+ 3、(1)利用EXCEL 的CORREL 函数计算相关系数r=0.9937.相关系数接近于1,表明农业总产值与农村购买力之间有较强的正线性相关关系。

统计学课后题

统计学课后题

统计学课后题第二章均值向量和协方差阵的检验1、试谈willks统计量在多元方差分析中的重要意义。

2、形象分析的基本思路是什么?形象又称轮廓图,是将总体样本的均值绘制到同一坐标轴里所得的折线图,每一个指标都表示为折线图上的一点。

形象分析是将两总体的形象绘制到同一个坐标下,根据形象的形状对总体的均值进行比较分析。

第三章聚类分析1、聚类分析的基本思想和功能是什么?聚类分析的核心思想是根据具体的指标对所研究的个体或者对象进行分类,使得同一类中的对象之间的相似性比其他类的对象的相似性更强。

聚类分析不仅可以用来对样品进行分类,也可以用来对变量进行分类。

对样品的分类常称为Q型聚类分析,对变量的分类常称为R型的聚类分析。

聚类分析的目的或功能就是把相似的研究对象归成类,即使类间对象的同质性最大化和类与类间对象的异质性最大化。

2、试述系统聚类法的原理和具体步骤系统聚类的基本思想是:距离相近的样品先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品总能聚到合适的类中。

系统聚类的具体步骤:假设总共有N个样品第一步:将每个样品独自聚成一类,共有N类;第二步:根据所确定的样品“距离”公式,把距离较近的两个样品聚合为一类,其他的样品仍各自聚为一类,共聚成N-1类;第三步:将“距离”最近的两个类进一步聚成一类,共聚成N-2类;。

,以上步骤一直进行下去,最后将所有的样品全聚成一类。

3、试述K-均值聚类的方法原理这种聚类方法的思想是把每个样品聚集到其最近形心类中。

首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。

计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。

4、试述模糊聚类的思想方法模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解联立方程得到:
y x a y bx b xy x y x x
2 ( y y ) 最小值 c
14
第九章 相关分析
y c a bx
( y y c ) ( y a bx ) 最小值
2 2
通过求a、b的一阶偏导可得到求解a、b的联立方程:
na b x y 2 a x b x xy
5
第九章 相关分析
二、相 关 系 数
相关系数是测定变量之间相关密切程度的统计指标。
1、相关系数的计算方法:
相关系数按“积差法”计算。该方法是通过两变量与各 自平均值的离差的乘积来反映两变量之间的相关程度。 积差法公式为:
x y
2 xy
计算相关系数的简化式:

n x
n xy x y
12
第九章 相关分析
(四)配合直线回归方程的方法
配合估计回归线的方程称为回归方程。 方程式为: y c a bx y c:因变量的估计值,
a : 直线的起点值, b:直线的斜率,又称回归系数 x :自变量
回归系数b的经济涵义:பைடு நூலகம்
当自变量变动一个单位时,因变量的平均变动值。
13
第九章 相关分析
配合直线回归方程的过程就是求解方程系数a、b 的过程,求解a、b的方法一般采用最小平方法。
用最小平方法配合回归直线的基本思想是:
在所有的相关点中,通过数学方法配合一条较为理 想的直线,这条直线必须满足两点:
1、原数列与趋势线的离差之和为零。即:
( y y ) 0
c
2、原数列与趋势线的离差平方和为最小值。即
函数关系与相关关系的联系:对具有相关关系的 现象进行分析时,必须利用相应的函数关系的数 学表达式来表明现象之间的相关方程式。
2
第九章 相关分析
二、相 关 的 种 类
完全相关
1、按相关的程度划分
不完全相关 不相关 正相关 负相关 线性相关 非线性相关 单相关
2、按相关的方向划分
3、按相关的形式划分
4、按影响因素的多少划分
11
第九章 相关分析
三、简单线性回归方程 (一)简单线性方程式的一般形式:y a bx
(当两变量的增长比率为常数时,它们之间就呈 现为一种简单线性关系。)
(二)利用简单线性回归方程进行回归分析的前提: 所分析的两个变量之间必须存在相关关系,且 相关程度在显著相关以上。 (三)对两变量进行简单线性回归分析的任务: 设法在分散的、具有线性关系的相关点之间配合一 条最优的直线,这条直线就是估计回归线,它表明 两变量之间具体的变动关系。
2 2
x n y y
2

2

0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节
回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。 二、回 归 的 种 类 按自变量的个数分 按回归线的形态分 一元回归 多元回归 线性回归 非线性回归
2
2
x n y y
2

2

6
第九章 相关分析
如果定义:
( x x) Lxx 2 ( y y) Lyy ( x x)( y y) Lxy
2
相关系数可以表示为:

Lxy Lxx L yy
7
第九章 相关分析
2、相关系数的性质
(1)相关系数有正负号,分别表示正相关和负 相关。 (2)相关系数的取值范围在绝对值的 0 1 之间。 其值大小反映两变量之间相关的密切程度。 0 (3)相关系数 1表明两变量完全相关;
x
y
62 86 80 110 115 132 135 160 880
x
2
y
2
xy
74.4
172.0 248.0
1.44 4.00 9.61 14.44 25.00 17.21 51.84 64.00
3844 7396 6400
12100
13225
418.0
575.0 805.2 972.0 1280.0 4544.6
表明两变量完全不相关。 (4)当计算相关系数的原始数据较多(如50项以 上)时,认为相关系数在0.3以下为无相关, 0.3以上为有相关;0.3-0.5为低度相关;0.5-0.8 为显著相关;0.8以上为高度相关。
8
第九章 相关分析
相关系数计算分析例题
生产费用
序 月产量 号 1 1.2 2 2.0 3 3.1 4 3.8 5 5.0 6 6.1 7 7.2 8 8.0 ∑ 36.4
第九章 相关分析
本章主要内容
第一节 第二节 第三节 第四节 相关的意义和种类 相关图表和相关系数 回归分析 估计标准误差
1
第九章 相关分析
第一节
相关的意义和种类
一、相关关系的概念
函数关系:函数关系是一种严格的依存关系, 这种关系可以用y = f(x)的方程来表现。
相关关系:相关关系是一种不完全确定的随机关 系。
相关图表是相关分析的重要方法。通过相关图表可 以直观地判断现象之间呈现的相关的形态和方向。
简单相关表:根据总体单位的原始资料编制的相关表p.308 相关表 分组相关表 单变量分组相关表p.309 双变量分组相关表p.310 相关图 利用直角坐标系第一象限,把自变量置于横轴上,
因变量置于纵轴上,再将两变量相对应的变量值 用坐标点形式描绘出来即可。P.308
9
17424 18225 25600 207.54 104214
第九章 相关分析
根据计算结果可知:
2 x 36 . 4 , y 880 , n 8 , x 207.54,
y
2
104214, xy 4544.6
则相关系数为:

n x
n xy x y
复相关
3
第九章 相关分析
三、相关分析的主要内容:
(一) 确定现象之间有无关系,以及相关关系的表现形式 (二) 确定相关关系的密切程度 (三) 选择合适的数学模型 (四) 测量变量估计值的可靠程度 (五) 对计算出的相关系数进行显著检验
4
第九章 相关分析
第二节 相关图表和相关系数
一、相 关 图 表
相关文档
最新文档