济宁市嘉祥县2020—2021年七年级上期末数学试卷含答案解析

合集下载

2020-2021学年山东济宁市七年级上期末数学试卷及答案解析

2020-2021学年山东济宁市七年级上期末数学试卷及答案解析

2020-2021学年山东济宁市七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)数1,0,−2
3,﹣2中最大的是()
A.1B.0C.−2
3D.﹣2
2.(3分)如果一个数到原点的距离等于5,那么这个数是()
A.5B.﹣5C.5或﹣5D.以上都不是3.(3分)已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定
4.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=
1
2y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=−5
3,然后小明很快补好了
这个常数,这个常数应是()
A.−3
2B.
3
2
C.
5
2
D.2
5.(3分)实数a,b在数轴上的位置如图所示,则下列式子错误的是()
A.ab<0B.a+b>0C.b
a
<−1D.|a|>b
6.(3分)下列运算中,正确的是()
A.﹣22=﹣4B.3﹣|﹣2|=5
C.2a+3b=5ab D.﹣(a﹣b)=﹣a﹣b
7.(3分)已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC
=BC=1
2AB.选择其中一个条件就能得到“点C是线段AB中点”的是()
A.①B.③C.①或③D.①或②或③8.(3分)如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()
第1 页共13 页。

济宁市人教版七年级上册数学期末试卷及答案-百度文库

济宁市人教版七年级上册数学期末试卷及答案-百度文库

济宁市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-25.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④ 8.方程3x +2=8的解是( )A .3B .103C .2D .129.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 10.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+11.3的倒数是( ) A .3B .3-C .13D .13-12.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.15.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-16.﹣30×(1223-+45)=_____. 17.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.22.8点30分时刻,钟表上时针与分针所组成的角为_____度. 23.-2的相反数是__.24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、压轴题25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.27.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.28.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.29.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.30.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

2020-2021学年七年级上学期期末考试数学试题(含答案)

2020-2021学年七年级上学期期末考试数学试题(含答案)
--- I
-,... -•-.已·忘---·---�.,...I.,·,·.
rIr' ·----勹,`I---

'L ,,, --
L __
---r, -,一一,,
'---卜I - -一I:
'
I
I _ _ _,,I
I
__ _,I
J"--
..I.. __一
I
.. 0己.I
.. __一 I..
|
--1
--- I I
I
I


L.--.... I`
' , I
l
I
I
'
__
J..-
-..I.___合I 一一-
`
I
视图
,. ·-·,. -- 气一 -•,---T ---,
t
I
I
I
I
I
I
I
I
I
l
I
LI __ - Il.-- JI二=二 :IJ;;:.gLI ··皇!l
I
I
I
I
'
'
Ii--�-.,..
__
1
4-
---1 ---今1 --一,
2¾+11f 1:
17.
18. (8分)如图是用 10 块完全相同的小正方体搭成的几何体
正面
广__ 勹 -一 '-- - "'I.--.,---,
1
I
I
I
I
I
}l --+I -· -1I-- -+I --1I ---!I
I
I
I

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-3.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .1 6.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣77.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能8.当x=3,y=2时,代数式23x y-的值是( )A .43B .2C .0D .39.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣410.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6011.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 15.5535______.16. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-18.﹣213的倒数为_____,﹣213的相反数是_____.19.52.42°=_____°___′___″.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).21.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a=____.22.当12点20分时,钟表上时针和分针所成的角度是___________.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.若4a+9与3a+5互为相反数,则a的值为_____.三、解答题25.计算:()1()20230---+()2()()2242314-÷--⨯-+26.如图,在平面内有,,A B C三点.(1)请按要求作图:画直线AC,射线BA,线段BC,取BC的中点D,过点D作DE AC⊥于点E.(2)在完成第(1)小题的作图后,图中以,,,,A B C D E这些点为端点的线段共有条.27.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.28.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生; (2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______; (4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.29.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值. 30.解方程:5711232x x -+-=+. 四、压轴题31.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.32.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?33.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.2.D解析:D 【解析】 【分析】设分配x 名工人生产螺栓,则(26-x )名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程. 【详解】解:设分配x 名工人生产螺栓,则(26-x )名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个, ∴可得2×12x=18(26-x ). 故选:D . 【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.3.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.6.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.7.C解析:C 【解析】 【分析】根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解. 【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离 b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨 ∴B 在A 和C 之间 故选:C 【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.8.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.9.B解析:B 【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D 【解析】 【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程 【详解】解:设进价为x 元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价, 可列方程:300×0.8-x=60 故选:D 【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系; (2)打八折的含义.11.B解析:B 【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B ,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B .12.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a,b的值是解决此题的关键.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.17.810【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键. 19.52; 25; 12.【解析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、解答题25.(1)12;(2)9【解析】【分析】(1)根据有理数的加减法则进行计算;(2)先计算乘方,再计算乘除,最后计算加减.【详解】=-++=;解:(1)原式2023012=-÷--⨯+=.(2)原式16(2)3149【点睛】本题主要考查有理数的运算,掌握基本运算法则是解题的关键.26.(1)见解析;(2)8.【解析】【分析】(1)根据直线是向两方无限延伸的,线段有两个端点,射线是向一方无限延伸的画出直线AC、射线BA、线段BC,根据中点的定义找出BC中点D,利用网格的特点连接小正方形对⊥.角线并延长交AC于E即可得DE AC【详解】(1)答案如图所示:(2)图中以A、B、C、D、E为端点的线段有:AB、AE、AC、EC、BD、BC、DC、DE,共8条,故答案为:8【点睛】本题考查了基本作图,直线、射线、线段的定义,是基础题,主要训练了同学们把几何文字语言转化为几何图形语言的能力.27.小明家到景蓝小区门口的距离为1000米.【解析】【分析】可设小明家到景蓝小区门口的距离是x 米,根据等量关系:小明家到景蓝小区门口的时间=小明的父母到景蓝小区门口的时间,依此列出方程求解即可.【详解】解:设小明家到景蓝小区门口的距离为x 米,由题意得:54054060x x ⨯+=+ 解得:x =1000,答:小明家到景蓝小区门口的距离为1000米.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(1)50;(2)补图见解析;(3)72°;(4)672人.【解析】【分析】(1)画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;(2)根据总学生数,求出踢毽子与其他的人数,补全条形统计图即可(3)根据其他占的百分比乘以360°即可得到结果(4)由立定跳远的百分比,乘以2100即可得到结果【详解】(1)根据题意得:15÷30%=50(名)则共抽取50名学生(2)根据题意得:踢毽子人数为50×18%=9(名),其他人数为50×(1-30%-18%-32%)=10名,补全条形统计图,如图所示(3)根据题意得:360°×20%=72°则“其他"部分对应的圆心角的度数是72°;(4)根据题意得'立定跳远"部分的学生有2100×32%=672(名)【点睛】此题考查条形统计图,用样本估计总体和扇形统计图,看懂图中数据是解题关键29.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-, 再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±=【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.30.x =5.【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去分母得:2(5x ﹣7)﹣6=12+3(x +1),去括号得:10x ﹣14﹣6=12+3x +3,移项合并得:7x =35,解得:x =5.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 四、压轴题31.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.32.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

2021-2022学年山东省济宁市嘉祥县七年级(上)期末数学试题及答案解析

2021-2022学年山东省济宁市嘉祥县七年级(上)期末数学试题及答案解析

2021-2022学年山东省济宁市嘉祥县七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列几何体中,面的个数最多的是( )A. B. C. D.2.中国高铁总里程居世界第一,预计到2021年年底中国高铁总里程将达到39600000米,将39600000用科学记数法表示为( )A. 3.96×106B. 3.96×107C. 0.396×108D. 39.6×1063.设x为一个有理数,则|x|−x必定是( )A. 负数B. 正数C. 非负数D. 零4.下列概念表述正确的是( )A. 单项式ab的系数是0,次数是2B. 多项式4a2b+3ab−5的次数是2C. 单项式−23a3b3的系数是−2,次数是9D. xy−12是二次二项式5.如果关于x的方程2(x+a)−4=0的解是x=−1,那么a的值是( )A. 3B. −3C. −1D. 16.下列等式变形中,不正确的是( )A. 若a−2=b−2,则a=bB. 若am=bm,则a=bC. 若a=b,则a3=b3D. 若x=2,则x2=2x7.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( )A. 笔尖在纸上移动划过的痕迹B. 长方形绕一边旋转一周形成的几何体C. 流星划过夜空留下的尾巴D. 汽车雨刷的转动扫过的区域8.如图,下列说法正确的是( )A. 直线AB与直线BC是同一条直线B. 线段AB与线段BA是不同的两条线段C. 射线AB与射线AC是两条不同的射线D. 射线BC与射线BA是同一条射线9.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x元,列出如下方程:0.8x−20=0.6x+10.小明同学列此方程的依据是( )A. 商品的利润不变B. 商品的售价不变C. 商品的成本不变D. 商品的销售量不变10.如图,在已知一个角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画9条射线得的角的个数是( )A. 10个B. 18个C. 45个D. 55个二、填空题(本大题共5小题,共15.0分)11.已知方程(a+3)x|a|−2+5=0是关于x的一元一次方程,则a的值是______.12.若单项式1x m−1y2与单项−x2021y n+1的和仍是单项式,则m−n=______.213.若代数式5x−5与2x−9的值互为相反数,则x=.14.如图,已知点C为AB上一点,AC=12cm,CB=1AC,D,E分别为AC,AB的中点,则DE2的长为______cm.15.通过画图尝试,我们发现了如下的规律:图形直线上点的个数共有线段条数213346510………若在直线上有10个不同的点,则此图中共有条线段.三、解答题(本大题共8小题,共55.0分。

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答
三、压轴题
31.已知 , 、 、 、 是 内的射线.
(1)如图1,当 ,若 平分 , 平分 ,求 的大小;
(2)如图2,若 平分 , 平分 , , ,求 .
32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.
济宁市七年级上册数学期末试题及答案解答
一、选择题
1.计算 的结果是()
A.-8B.8C.2D.-2
2.将方程 去分母得()
A. B.
C. D.
3.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是( )
A. 或﹣1B.1或﹣1C. 或 D.5或
4.如图,已知直线 ,点 分别在直线 上,连结 .点D是直线 之间的一个动点,作 交直线b于点C,连结 .若 ,则下列选项中 不可能取到的度数为()
A.60°B.80°C.150°D.170°
5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是( )
类比拓展

2020-2021学年七年级上学期期末数学试卷 (解析版)

2020-2021学年七年级上学期期末数学试卷 (解析版)

2020-2021学年七年级(上)期末数学试卷一、选择题1.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°2.2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×1043.下表是11月份某一天北京四个区的平均气温:区县海淀怀柔密云昌平气温(℃)+1 ﹣3 ﹣2 0 这四个区中该天平均气温最低的是()A.海淀B.怀柔C.密云D.昌平4.下列计算正确的是()A.m2n﹣nm2=0 B.m+n=mnC.2m3+3m2=5m5D.2m3﹣3m2=﹣m5.已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1 C.D.36.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.b+c>0 D.|a|>|b|7.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=68.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为()A.20°B.70°C.110°D.160°9.已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→A B.P→B C.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是.12.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:.13.计算:48°39′+67°31′=.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.15.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是.(用含a的代数式表示)16.如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为.17.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(﹣2)的值为.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表洗衣机单价(元/台)烘干机单价(元/台)A品牌7000 11000B品牌7500 10000 表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择品种的洗衣机和品种的烘干机支付总费用最低,支付总费用最低为元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)19.计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(﹣)3.20.解方程:(1)3x﹣2=﹣6+5x;(2)=1.21.先化简,再求值:2(2xy2﹣x2y)﹣(x2y+6xy2)+3x2y,其中x=2,y=﹣1.22.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.四、解答题(本题共10分,第23题4分,第24题6分)23.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:名次球队场次胜场负场总积分1 中国11 11 02 美国11 10 1 283 俄罗斯11 8 3 234 巴西11 21(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为(用“<”连接)26.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD 的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.27.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为,M2(58)+M2(9653)的值为;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有个.参考答案一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°【分析】直接利用量角器量出其角度或估算得出答案.解:如图所示:食指和中指所夹锐角α的度数为:35°.故选:B.2.2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将“1.5万”用科学记数法表示应为1.5×104.故选:C.3.下表是11月份某一天北京四个区的平均气温:区县海淀怀柔密云昌平气温(℃)+1 ﹣3 ﹣2 0 这四个区中该天平均气温最低的是()A.海淀B.怀柔C.密云D.昌平【分析】由表格可知:﹣3<﹣2<0<1即可求解.解:∵﹣3<﹣2<0<1,∴最低的是怀柔,故选:B.4.下列计算正确的是()A.m2n﹣nm2=0 B.m+n=mnC.2m3+3m2=5m5D.2m3﹣3m2=﹣m【分析】根据合并同类项法则逐一判断即可.解:A.m2n﹣nm2=0,正确,故本选项符合题意;B.m与n不是同类项,所以不能合并,故本选项不合题意;C.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;D.2m3与﹣3m2不是同类项,所以不能合并,故本选项不合题意.故选:A.5.已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1 C.D.3【分析】把x=3代入关于x的方程mx+2=x,得到关于m的新方程,通过解新方程求得m的值即可.解:把x=3代入关于x的方程mx+2=x,得3m+2=3.解得m=.故选:A.6.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.b+c>0 D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.7.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=6【分析】根据等式的性质即可解决.解:A、若4x=2,则x=,原变形错误,故这个选项不符合题意;B、若4x﹣2=2﹣3x,则4x+3x=2+2,原变形错误,故这个选项不符合题意;C、若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=3,原变形错误,故这个选项不符合题意;D、若﹣=1,则3(3x+1)﹣2(1﹣2x)=6,原变形正确,故这个选项符合题意;故选:D.8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为()A.20°B.70°C.110°D.160°【分析】根据方向角的定义解答.解:如图,∠BOD即这条跑道所在射线OB与正北方向所成角.由于∠BOC=70°,∴∠BOD=180°﹣70°=110°所以这条跑道所在射线OB与正北方向所成角的度数为110°.故选:C.9.已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④【分析】直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.解:∵线段AB=8cm,AC=6cm,∴如图1,当A,B,C在一条直线上,∴BC=AB﹣AC=8﹣6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8﹣6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→A B.P→B C.P→C D.P→D【分析】根据线段的性质:两点之间线段最短,可直接得出.解:由题意得:蚂蚁爬行距离最短的路线是P→D;故选:D.二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是丁.【分析】根据绝对值最小的最接近标准,可得答案.解:|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.6,0.6<0.7<1.5<3.5,故最接近标准质量的足球是丁.故答案为:丁.12.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:﹣2x3(答案不唯一).【分析】利用单项式次数与系数的定义即可得出答案.解:一个单项式满足下列两个条件:①系数是﹣2;②次数是3.则满足上述条件的单项式:﹣2x3(答案不唯一).故答案为:﹣2x3(答案不唯一).13.计算:48°39′+67°31′=116°10' .【分析】根据度、分、秒的进制为60直接计算即可.解:39′+31′=70′=1°10′,故48°39′+67°31′=116°10'.故答案为:116°10'.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小(填:大或小),理由为三角形的两边之和大于第三边.【分析】任意两边上的点和两点间的顶点恰好构成一个三角形,利用三角形的三边关系可以得出结论.解:将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是三角形的两边之和大于第三边.故答案为:小;三角形的两边之和大于第三边15.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是2a.(用含a的代数式表示)【分析】根据题意和题目中的图形,可以得到图2中小长方形的长和宽,从而可以得到阴影部分正方形的边长.解:由图可得,图2中每个小长方形的长为3a,宽为a,则阴影部分正方形的边长是:3a﹣a=2a,故答案为:2a.16.如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为10 .【分析】先根据线段的和差关系求得CD,再根据中点的定义求得BD,再根据线段的和差关系求得AB.解:∵AC=4,AD=7,∴CD=7﹣4=3,∵D是线段CB的中点,∴BD=3,∴AB=AD+BD=7+3=10.故答案为:10.17.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(﹣2)的值为 4 .【分析】根据f(2)=6,可得:8m+2n+5=6,所以8m+2n=1,据此求出f(﹣2)的值为多少即可.解:∵f(2)=6,∴8m+2n+5=6,∴8m+2n=1,∴f(﹣2)=﹣8m﹣2n+5=﹣(8m+2n)+5=﹣1+5=4故答案为:4.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表洗衣机单价(元/台)烘干机单价(元/台)A品牌7000 11000B品牌7500 10000 表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择B品种的洗衣机和B品种的烘干机支付总费用最低,支付总费用最低为12820 元.【分析】根据题意分四种方案:A品牌洗衣机和A品牌烘干机;A品牌洗衣机和B品牌烘干机;B品牌洗衣机和A品牌烘干机;B品牌洗衣机和B品牌烘干机.分别计算出支付总费用即可得出答案.解:购买A品牌洗衣机和A品牌烘干机费用=(7000+11000)×0.8﹣7000×0.8×13%﹣400=13272(元);购买A品牌洗衣机和B品牌烘干机费用=(7000+10000)×0.8﹣7000×0.8×13%=12872(元);购买B品牌洗衣机和A品牌烘干机费用=(7500+11000)×0.8﹣7500×0.8×13%=14020(元);购买B品牌洗衣机和B品牌烘干机费用=(7500+10000)×0.8﹣7500×0.8×13%﹣400=12820(元);综上所述,选择购买B品牌洗衣机和B品牌烘干机支付总费用最低,支付总费用最低为12820元.故答案为:B;B;12820.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)19.计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(﹣)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(﹣)3=﹣3×4﹣1+(﹣)=﹣12﹣1+(﹣)=﹣13.20.解方程:(1)3x﹣2=﹣6+5x;(2)=1.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.解:(1)移项,合并同类项,可得:﹣2x=﹣4,系数化为1,可得:x=2.(2)去分母,可得:3(3x+2)﹣2(x﹣5)=6,去括号,可得:9x+6﹣2x+10=6,移项,合并同类项,可得:7x=﹣10,系数化为1,可得:x=﹣.21.先化简,再求值:2(2xy2﹣x2y)﹣(x2y+6xy2)+3x2y,其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=4xy2﹣2x2y﹣x2y﹣6xy2+3x2y=﹣2xy2,当x=2,y=﹣1时,原式=﹣4.22.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.【分析】(1)画射线AC,线段BC即可;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD即可;(3)利用刻度尺取线段CD的中点E,连接BE即可.解:如图所示:(1)射线AC,线段BC即为所求作的图形;(2)线段AB及延长线,点D以及线段CD即为所求作的图形;(3)点E以及线段BE即为所求作的图形.四、解答题(本题共10分,第23题4分,第24题6分)23.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.【分析】(1)若x=﹣2,y=3,根据﹣2<3,把x、y的值代入|x|﹣3y即可.(2)若x=4,输出结果m的值与输入y的值相同,则y=m,分两种情况:4>m;4≤m,求出y的值是多少即可.解:(1)∵x=﹣2,y=3,﹣2<3,∴x<y,∴m=|﹣2|﹣3×3=﹣7.(2)∵x=4,输出结果m的值与输入y的值相同,∴y=m,①4>m时,∵|4|+3m=m,解得m=﹣2,符合题意.②4≤m时,∵|4|﹣3m=m,∴4﹣3m=m,解得m=1,不符合题意,∴y=﹣2.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:名次球队场次胜场负场总积分1 中国11 11 0 322 美国11 10 1 283 俄罗斯11 8 3 234 巴西11 21(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.【分析】(1)依据中国队11场胜场中只有一场以3﹣2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.解:(1)中国队的总积分=3×10+2=32;故答案为:32;(2)设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x﹣5)场,依题意可列方程3x+2(x﹣5)+1=21,3x+2x﹣10+1=21,5x=30,x=6,则积2分取胜的场数为x﹣5=1,所以取胜的场数为6+1=7,答:巴西队取胜的场数为7场.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为a+b=0 ;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为a<c<d<b(用“<”连接)【分析】(1)①根据M为线段AB的中点,点M与原点O重合,可知a与b互为相反数,则a+b=0;②根据M为线段AB的中点,可知m为a和b的平均数,从而可以用a、b的代数式表示出来;(2)①根据a+b=c+d,可以在图2中标出点D的位置;②根据①中画出的数轴可以得到a,b,c,d的大小关系.解:(1)①∵M为线段AB的中点,点M与原点O重合,∴a与b的关系为:a+b=0,故答案为:a+b=0;②∵M为线段AB的中点,∴点M表示的有理数m的值:;(2)①∵a+b=c+d,a<b,c<d,∴点D的位置的如下图2所示,;②由图2可得,a<c<d<b,故答案为:a<c<d<b.26.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD 的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是45°或|β﹣45°|.【分析】(1)根据画法写出了已知和求证,即可完成证明;(2)根据小聪的画法,画出一个∠AOH,使∠AOH与∠BOH互余即可;(3)根据∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),画出图形即可写出锐角∠MPN的度数.解:(1)证明:点O在直线AD上,∴∠AOB+BOD=180°.即∠AOB+∠BOC+∠COD=180°.∴∠AOC+∠COD=180°.OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180°∴∠AOC与∠BOC互补.(2)如图所示即为所求作的图形.(3)如图,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.锐角∠MPN的度数是45°∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β﹣45°|.故答案为:45°或|β﹣45°|.27.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为1011 ,M2(58)+M2(9653)的值为1101 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有38 个.【分析】(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,所以M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,求出M2(23)+M2(12)=11,M2(23+12)=11,可得M2(23)+M2(12)=M2(23+23);M2(23)=01,M2(65)=01,求出M2(23)+M2(65)=10,M2(23+65)=00,可得M2(23)+M2(65)≠M2(23+65);M2(23)=01,M2(97)=11,求出M2(23)+M2(97)=100,M2(23+297)=100,可得M2(23)+M2(97)=M2(23+97);②模二结果是10有:12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:77,97,79,99满足题意;模二结果是01有:27,29,47,49,67,69,87,89满足题意;模二结果是00有:20,22,24,26,40,42,44,46,60,62,64,66满足题意;38个.解:(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,∴M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,∴M2(23)+M2(12)=11,M2(23+12)=11,∴M2(23)+M2(12)=M2(12+23),∴12与23满足“模二相加不变”,∵M2(23)=01,M2(65)=01,∴M2(23)+M2(65)=10,M2(23+65)=00,∴M2(23)+M2(65)≠M2(23+65),∴65与23不满足“模二相加不变”,∵M2(23)=01,M2(97)=11,∴M2(23)+M2(97)=100,M2(23+97)=100,∴M2(23)+M2(97)=M2(23+97),∴97与23满足“模二相加不变”;②模二结果是10有:12,32,52,72,92,14,34,54,74,94,16,36,56,76,96,18,38,58,78,98,10,30,50,70,90共25个,它们与模二数23的和是11,∴12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:11,31,51,71,91,13,33,53,73,93,15,35,55,75,95,17,37,57,77,97,19,39,59,79,99共30个,它们与模二数23的和是100,∴77,97,79,99满足题意;模二结果是01有:21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89共20个,它们与模二数23的和是10,∴27,29,47,49,67,69,87,89满足题意;模二结果是00有20,22,24,26,28,40,42,44,46,48,60,62,64,66,68,80,82,84,86,88共20个,它们与模二数23的和是01,∴20,22,24,26,40,42,44,46,60,62,64,66满足题意;∴共有38个.。

济宁市人教版七年级上册数学期末考试试卷及答案

济宁市人教版七年级上册数学期末考试试卷及答案

济宁市人教版七年级上册数学期末考试试卷及答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107 C .6.5×108 D .65×106 2.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.53.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23B .3C .2-D .2274.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x+= C .10040062x x += D .1004006x 2x+= 5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 7.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)8.估算15在下列哪两个整数之间( ) A .1,2 B .2,3 C .3,4 D .4,5 9.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4 C .﹣2 D .﹣4 10.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒11.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .212512.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题13.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 14.若3750'A ∠=︒,则A ∠的补角的度数为__________. 15.若a a -=,则a 应满足的条件为______.16.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.17.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 18.|﹣12|=_____. 19.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.24.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.27.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)28.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.29.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

【解析版】2020—2021学年山东省济宁市七年级上期末数学试卷

【解析版】2020—2021学年山东省济宁市七年级上期末数学试卷

【解析版】2020—2021学年山东省济宁市七年级上期末数学试卷一、选择题(每小题3分,共30分)1.假如+20%表示增加20%,那么﹣6%表示()A.增加14% B.增加6% C.减少6% D.减少26%2.关于x的方程2m=x﹣3m﹣2的解为x=5,则m的值为()A. B. C. D.3.下列判定错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数确实是分数4.下列去括号结果正确的是()A. a2﹣(3a﹣b+2c)=a2﹣3a﹣b+2c B. 3a﹣[4a﹣(2a﹣7)]=3a﹣4a﹣2a+7C.(2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4x D.﹣(2x﹣y)+(x﹣1)=﹣2x﹣y+x﹣15.“中国梦”成为2020年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为()A. 468×105 B. 4.68×105 C. 4.68×107 D. 0.468×1086.把方程3x+去分母正确的是()A. 18x+2(2x﹣1)=18﹣3(x+1)B. 3x+(2x﹣1)=3﹣(x+1)C. 18x+(2x﹣1)=18﹣(x+1) D. 3x+2(2x﹣1)=3﹣3(x+1)7.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为() A. 105元 B. 100元 C. 108元 D. 118元8.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A. 30x﹣8=31x+26 B. 30x+8=31x+26 C. 30x﹣8=31x﹣26 D. 30x+8=31x﹣269.下列四个生活、生产现象:①用两个钉子就能够把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来说明的现象有()A.①② B.①③ C.②④ D.③④10.观看下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…依照其中的规律,得出的第10个单项式是()A.﹣29x10 B. 29x10 C.﹣29x9 D. 29x9二、填空题(每小题3分,共15分)11.若3x m+5y与x3y是同类项,则m= .12.如图,从A地到B地共有五条路,你应选择第条路,因为.13.若x,y互为相反数,a、b互为倒数,则代数式的值为.14.AB=4cm,BC=3cm,假如O是线段AC的中点.线段OB的长度为.15.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,则∠AOD= .三、解答题(共55分)16.运算:(1)(2).17.先化简,后求值.(1),其中.(2)3(3a2﹣2b)﹣2(5a2﹣3b),其中a=﹣3,b=﹣1.18.解方程或求值.(1)1﹣4x=2(x﹣1)(2)﹣1=(3)已知与互为相反数,求的值.19.请你在答题卷相应的位置上画出下面几何体的三视图.20.如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.①求∠EOD的度数.②若∠BOC=90°,求∠AOE的度数.21.有一批零件加工任务,甲单独做40小时完成,乙单独做30小时完成,甲做了几小时后另有任务,剩下的任务由乙单独完成,乙比甲多做了2小时,求甲做了几小时?22.已知:点A、B、C在一条直线上,线段AB=6cm,线段BC=4cm,若M,N分别为线段AB、BC的中点,求MN的长.23.问题解决:一张长方形桌子可坐6人,按如图方式将桌子拼在一起.(1)2张桌子拼在一起可坐人,3张桌子拼在一起可坐人,…n 张桌子拼在一起可坐人.(2)一家餐厅有40张如此的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人.24.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在那个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”依照以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?2020-2020学年山东省济宁市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.假如+20%表示增加20%,那么﹣6%表示()A.增加14% B.增加6% C.减少6% D.减少26%考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,因此假如+20%表示增加20%,那么﹣6%表示减少6%.解答:解:依照正数和负数的定义可知,﹣6%表示减少6%.故选C.点评:解题关键是明白得“正”和“负”的相对性,确定一对具有相反意义的量.2.关于x的方程2m=x﹣3m﹣2的解为x=5,则m的值为()A. B. C. D.考点:一元一次方程的解.分析:把x=5代入方程得到一个关于m的方程,解方程即可求得.解答:解:把x=5代入方程得:2m=5﹣3m﹣2,解得:m=.故选D.点评:本题考查了方程的解的定义,明白得定义是关键.3.下列判定错误的是()A.若x<y,则x+2010<y+2010B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0,则x=1,y=3D.一个有理数不是整数确实是分数考点:单项式;有理数;非负数的性质:绝对值;有理数大小比较;非负数的性质:偶次方.分析:分别依照单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义对各选项进行逐一分析即可.解答:解:A、∵x<y,∴x+2010<y+2010,故本选项正确;B、∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣,故本选项错误;C、∵|x﹣1|+(y﹣3)2=0,∴x﹣1=0,y﹣3=0,解得x=1,y=3,故本选项正确;D、∵整数和分数统称为有理数,∴一个有理数不是整数确实是分数,故本选项正确.故选:B.点评:本题考查的是单项式,熟知单项式系数的定义、不等式的性质、非负数的性质即及有理数的定义是解答此题的关键.4.下列去括号结果正确的是()A. a2﹣(3a﹣b+2c)=a2﹣3a﹣b+2c B. 3a﹣[4a﹣(2a﹣7)]=3a﹣4a﹣2a+7C.(2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4x D.﹣(2x﹣y)+(x﹣1)=﹣2x﹣y+x﹣1考点:去括号与添括号.分析:依照去括号法则去括号,再判定即可.解答:解:A、a2﹣(3a﹣b+2c)=a2﹣3a+b﹣2c,故本选项错误;B、3a﹣[4a﹣(2a﹣7)]=3a﹣4a+2a﹣7,故本选项错误;C、(2x﹣3y)﹣(y+4x)=2x﹣3y﹣y﹣4x,故本选项正确;D、﹣(2x﹣y)+(x﹣1)=﹣2x+y+x﹣1,故本选项错误;故选C.点评:本题考查了去括号法则的应用,注意:当括号前是“+”时,把括号和它前面的“+”去掉,括号内的各项都不改变符号,当括号前是“﹣”时,把括号和它前面的“﹣”去掉,括号内的各项都改变符号.5.“中国梦”成为2020年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为()A. 468×105 B. 4.68×105 C. 4.68×107 D. 0.468×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于46800000有8位,因此能够确定n=8﹣1=7.解答:解:46 800 000=4.68×107.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.把方程3x+去分母正确的是()A. 18x+2(2x﹣1)=18﹣3(x+1) B. 3x+(2x﹣1)=3﹣(x+1)C. 18x+(2x﹣1)=18﹣(x+1) D. 3x+2(2x﹣1)=3﹣3(x+1)考点:解一元一次方程.分析:同时乘以各分母的最小公倍数,去除分母可得出答案.解答:解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).故选:A.点评:本题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.7.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为() A. 105元 B. 100元 C. 108元 D. 118元考点:一元一次方程的应用.专题:销售问题.分析:设进价为x,则依题意:标价的9折出售,仍可获利10%,可列方程解得答案.解答:解:设进价为x,则依题意可列方程:132×90%﹣x=10%•x,解得:x=108元;故选C.点评:本题考查一元一次方程的应用,关键在于找出题目中的等量关系,依照等量关系列出方程解答.8.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A. 30x﹣8=31x+26 B. 30x+8=31x+26 C. 30x﹣8=31x﹣26 D. 30x+8=31x﹣26考点:由实际问题抽象出一元一次方程.专题:应用题.分析:应依照实际人数不变可列方程,解出即可得出答案解答:解:由题意得:30x+8=31x﹣26,故选D.点评:列方程解应用题的关键是找出题目中的相等关系.9.下列四个生活、生产现象:①用两个钉子就能够把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来说明的现象有()A.①② B.①③ C.②④ D.③④考点:线段的性质:两点之间线段最短.专题:应用题.分析:由题意,认真分析题干,用数学知识说明生活中的现象.解答:解:①②现象能够用两点能够确定一条直线来说明;③④现象能够用两点之间,线段最短来说明.故选D.点评:本题要紧考查两点之间线段最短和两点确定一条直线的性质.10.观看下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…依照其中的规律,得出的第10个单项式是()A.﹣29x10 B. 29x10 C.﹣29x9 D. 29x9考点:单项式.专题:规律型.分析:通过观看题意可得:n为奇数时,单项式为负数.x的指数为n时,2的指数为(n ﹣1).由此可解出本题.解答:解:依题意得:(1)n为奇数,单项式为:﹣2(n﹣1)x n;(2)n为偶数时,单项式为:2(n﹣1)x n.综合(1)、(2),本数列的通式为:2n﹣1•(﹣x)n,∴第10个单项式为:29x10.故选:B.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.二、填空题(每小题3分,共15分)11.若3x m+5y与x3y是同类项,则m= ﹣2 .考点:同类项;解一元一次方程.分析:依照同类项的定义(所含有的字母相同,同时相同字母的指数也相同的项叫同类项)可得:m+5=3,解方程即可求得m的值.解答:解:因为3x m+5y与x3y是同类项,因此m+5=3,因此m=﹣2.点评:判定两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.12.如图,从A地到B地共有五条路,你应选择第③条路,因为两点之间,线段最短.考点:线段的性质:两点之间线段最短.分析:依照连接两点的所有线中,直线段最短解答.解答:解:依照图形,应选择第(3)条路,因为两点之间,线段最短.点评:此题考查知识点两点之间,线段最短.13.若x,y互为相反数,a、b互为倒数,则代数式的值为﹣2 .考点:代数式求值;相反数;倒数.分析:依照互为相反数的两个数的和等于0可得x+y=0,互为倒数的两个数的积等于1可得ab=1,然后代入代数式进行运算即可得解.解答:解:∵x,y互为相反数,∴x+y=0,∵a、b互为倒数,∴ab=1,因此,3x+3y﹣=3×0﹣=﹣2.故答案为:﹣2.点评:本题考查了代数式求值,相反数的定义,倒数的定义,是基础题,熟记概念是解题的关键.14.AB=4cm,BC=3cm,假如O是线段AC的中点.线段OB的长度为0.5cm .考点:两点间的距离.分析:先依照O是线段AC的中点求出OC的长度,再依照OB=OC﹣BC即可得出结论.解答:解:∵AB=4cm,BC=3cm,假如O是线段AC的中点,∴OC=(AB+BC)=×(4+3)=,∴OB=OC﹣BC=3﹣=0.5cm.故答案为:0.5cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,则∠AOD= 100°.考点:角平分线的定义.专题:运算题.分析:先依照角平分线的定义得到∠COD=∠BOC=25°,然后依照∠AOD=∠AOC+∠COD进行运算.解答:解:∵OD平分∠BOC,∴∠COD=∠BOC=×50°=25°,∴∠AOD=∠AOC+∠COD=75°+25°=100°.故答案为100°.点评:本题考查了角平分线的定义:从一个角的顶点动身,把那个角分成相等的两个角的射线叫做那个角的平分线.三、解答题(共55分)16.(6分)(2020秋•济宁期末)运算:(1)(2).考点:有理数的混合运算.专题:运算题.分析:(1)原式利用乘法分配律运算即可得到结果;(2)原式先运算乘方运算,以及括号中的运算,再运算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=3+1﹣27+6=﹣17;(2)原式=﹣1﹣××(2﹣9)=﹣1+=.点评:此题考查了有理数的混合运算,有理数的混合运算第一弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行运算,然后利用各种运算法则运算,有时能够利用运算律来简化运算.17.先化简,后求值.(1),其中.(2)3(3a2﹣2b)﹣2(5a2﹣3b),其中a=﹣3,b=﹣1.考点:整式的加减—化简求值.专题:运算题.分析:(1)原式去括号合并得到最简结果,把x与y的值代入运算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入运算即可求出值.解答:解:(1)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6;(2)原式=9a2﹣6b﹣10a2+6b=﹣a2,当a=﹣3时,原式=﹣9.点评:此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.18.解方程或求值.(1)1﹣4x=2(x﹣1)(2)﹣1=(3)已知与互为相反数,求的值.考点:解一元一次方程.分析:(1)(2)按照解一元一次方程的步骤与方法求得未知数的数值即可;(3)由与互为相反数,得出=0,解方程求得y的数值,进一步代入求得答案即可.解答:(1)1﹣4x=2(x﹣1)解:1﹣4x=2x﹣2﹣4x﹣2x=﹣2﹣1﹣6x=﹣3x=;(2)﹣1=解:3(y+1)﹣12=2(2y+1)3y+3﹣12=4y+23y﹣4y=2﹣3+12﹣y=11y=﹣11;(3)解:=0,4(4y+5)﹣12﹣3(5y+2)=016y﹣15y=﹣20+12+6y=﹣2,把y=﹣2代入=2.点评:此题考查解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项,合并同类项,系数化为1.19.请你在答题卷相应的位置上画出下面几何体的三视图.考点:作图-三视图.专题:作图题.分析:主视图从左往右3列正方形的个数依次为1,2,1;左视图3列正方形的个数依次为2,1,1.俯视图从左往右3列正方形的个数依次为1,3,2.解答:解:作图如下:点评:考查三视图的画法;用到的知识点为:三视图分别是从物体正面,左面,上面看得到的平面图形.20.如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.①求∠EOD的度数.②若∠BOC=90°,求∠AOE的度数.考点:角平分线的定义.分析:(1)依照OD平分∠BOC,OE平分∠AOC可知∠DOE=∠DOC+∠EOC=(∠BOC+∠AOC)=∠AOB,由此即可得出结论;(2)先依照∠BOC=90°求出∠AOC的度数,再依照角平分线的定义即可得出结论.解答:解:(1)∵∠AOB=120°,OD平分∠BOC,OE平分∠AOC,∴∠EOD=∠DOC+∠EOC=(∠BOC+∠AOC)=∠AOB=×120°=60°;(2)∵∠AOB=120°,∠BOC=90°,∴∠AOC=120°﹣90°=30°,∵OE平分∠AOC,∴∠AOE=∠AOC=×30°=15°.点评:本题考查的是角平分线的定义,即从一个角的顶点动身,把那个角分成相等的两个角的射线叫做那个角的平分线.21.有一批零件加工任务,甲单独做40小时完成,乙单独做30小时完成,甲做了几小时后另有任务,剩下的任务由乙单独完成,乙比甲多做了2小时,求甲做了几小时?考点:一元一次方程的应用.分析:设甲做了x小时,依照题意得等量关系:甲x小时的工作量+乙(x+2)小时的工作量=1,再依照等量关系列出方程即可.解答:解:设甲做了x小时,依照题意得,,解那个方程得x=16,答:甲做了16小时.点评:此题要紧考查了一元一次方程的应用,关键是正确明白得题意,找出题目中的等量关系,列出方程.22.已知:点A、B、C在一条直线上,线段AB=6cm,线段BC=4cm,若M,N分别为线段AB、BC的中点,求MN的长.考点:两点间的距离.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再依照正确画出的图形解题.解答:解:①如图:∵M为AB的中点,AB=6cm,∴MB=AB=3cm,∵N为BC在中点,AB=4cm,∴NB=BC=2cm,∴MN=MB+NB=5cm.②如图:∵M为AB的中点,AB=6cm,∴MB=AB=3cm,∵N为BC的中点,AB=4cm,∴NB=BC=2cm,∴MN=MB﹣NB=1cm.综上所述,MN的长为5cm或1cm…(7分)点评:考查了两点间的距离,由于B的位置有两种情形,因此本题MN的值就有两种情形,做这类题时学生一定要思维细密.23.问题解决:一张长方形桌子可坐6人,按如图方式将桌子拼在一起.(1)2张桌子拼在一起可坐8 人,3张桌子拼在一起可坐10 人,…n张桌子拼在一起可坐2n+4 人.(2)一家餐厅有40张如此的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐112 人.考点:规律型:图形的变化类.专题:规律型.分析:(1)依照所给的图,正确数出即可.在数的过程中,能够发觉多一张桌子多2个人,依照这一规律用字母表示即可;(2)结合(1)中的规律,进行表示出代数式,然后代值运算.解答:解:(1)2张桌子拼在一起可坐2×2+4=8人,3张桌子拼在一起可坐2×3+4=10人,那么n张桌子拼在一起可坐(4+2n)人;(2)因为5张桌子拼在一起,40张可拼40÷5=8张大桌子,再利用字母公式,得出40张大桌子共坐8×(4+2×5)=112人.点评:此类题一定要结合图形发觉规律:多一张桌子多2个人.把这一规律运用字母表示出来即可.24.某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在那个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”依照以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?考点:二元一次方程组的应用.专题:阅读型;方案型.分析:(1)依照题目给出的条件得出的等量关系是:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;由此可列出方程组求解;(2)可依照“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.解答:解:(1)设平安公司60座和45座客车每天每辆的租金分别为x元,y元.由题意列方程组解得答:平安公司60座和45座客车每天每辆的租金分别为900元,700元;(2)九年级师生共需租金:5×900+1×700=5200(元)答:共需资金5200元.点评:解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的等量关系:60座客车每辆每天的租金﹣45座客车每辆每天的租金=200元,4辆60座的一天的租金+2辆45座的一天的租金=5000元;列出方程组,再求解.。

2020-2021学年七年级上学期期末数学试卷(附答案解析)

2020-2021学年七年级上学期期末数学试卷(附答案解析)

2020-2021学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.a(a≠0)的相反数是()D. |a|A. aB. −aC. 1a2.若|a|=a,则表示a的点在数轴上的位置是()A. 原点的左边B. 原点或原点的左边C. 原点或原点右边D. 原点3.下列两个单项式中,是同类项的一组是()A. 4x2y与4y2xB. 2m与2nC. 3xy2与(3xy)2D. 3与−154.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A. 4.21×105B. 42.1×104C. 4.21×10−5D. 0.421×1065.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A. B. C. D.6.若关于x的方程mx m−2−m+3=0是一元一次方程,则m的值为()A. m=1B. m=2C. m=3D. m=47.下列说法正确的是()A. 如果AC=CB,能说点C是线段AB的中点B. 将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C. 连接两点的直线的长度,叫做两点间的距离D. 平面内3条直线至少有一个交点8.如图,由4个相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.9.如图,EF//MN,AC,BD交于点O,且分别平分∠FAB,∠ABN,图中与∠1互余的角有()A. 1个B. 2个C. 3个D. 4个10.某美术兴趣小组有x人,计划完成y个剪纸作品,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个,现有下列方程:①5x+9=4x−15;②y−95=y+154;③y+95=y−154;④5x−9=4x+15.其中正确的是()A. ①②B. ②④C. ②③D. ③④二、填空题(本大题共5小题,共15.0分)11.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为−2,则输出的结果为______ .12.单项式−3πxy22的系数是______ .13.由11x−9y−6=0,用x表示y,得y=______ ,y表示x,得x=______ .14.若关于x的方程是一元一次方程,则这个方程的解是____15.已知P,Q两点都在数轴上(点P在点Q的右侧),若点P所表示的数是3,并且PQ=6,则点Q所表示的数是______ .三、解答题(本大题共6小题,共55.0分)16.化简:3x2−3+x−2x2+5.17.解方程:(1)6x−2(2x−7)=−1(2)x=1+x+1.318.已知为的三边,且满足,试判断的形状。

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答

济宁市七年级上册数学期末试题及答案解答一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107 C .6.5×108 D .65×106 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104C .3.84×105D .3.84×1063.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1394.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 6.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -7.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y8.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .19.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°11.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 14.化简:2xy xy +=__________.15.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.16.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.若a a -=,则a 应满足的条件为______.20.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.21.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.22.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 23.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、压轴题25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.28.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)29.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.30.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.31.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.∵AB a ,C 、D 分别是AB 、BC 的中点, ∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a π, 故选:D. 【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.6.C解析:C 【解析】 【分析】根据题意可以用代数式表示m 的2倍与n 平方的差. 【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2, 故选:C . 【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.7.D解析:D 【解析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.11.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a 2﹣4ab +4b 2=0,即(a ﹣2b )2=0,∴a =2b ,故选B .【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.12.C解析:C【解析】【分析】根据MN =CM +CN =12AC +12CB =12(AC +BC )=12AB 即可求解. 【详解】解:∵M 、N 分别是AC 、BC 的中点,∴CM =12AC ,CN =12BC , ∴MN =CM +CN =12AC +12BC =12(AC +BC )=12AB =4. 故选:C .【点睛】本题考查了线段中点的性质,找到MC 与AC ,CN 与CB 关系,是本题的关键二、填空题13.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 14..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.15.5【解析】【分析】首先求出AC 的长度是多少,根据点D 是AC 的中点,求出AD 的长度是多少;然后求出AE 的长度,即可求出线段ED 的长度为多少.【详解】解:∵AB =5,BC =3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.16.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b - 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.18.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 19.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a aa0∴≥,≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.20.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.21.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.22.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.23.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.24.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、压轴题25.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52, 所以数列−4,−3,2的最佳值为52; 对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52, 所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52, 所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52, 所以数列2,−3,−4的最佳值为12 ∴数列的最佳值的最小值为223-=12, 数列可以为:−3,2,−4或2,−3,−4. 故答案为:12,−3,2,−4或2,−3,−4. (3)当22a+=1,则a =0或−4,不合题意; 当92a-+=1,则a =11或7;当a =7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意; 当972a-++=1,则a =4或10.∴a =11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.27.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.28.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即。

济宁市嘉祥县2020年人教版七年级上期末数学试卷含答案解析(A卷全套)

济宁市嘉祥县2020年人教版七年级上期末数学试卷含答案解析(A卷全套)

2020学年山东省济宁市嘉祥县七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.42.下列说法错误的是( )A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是03.下列各图不是正方体表面展开图的是( )A.B.C.D.4.若代数式3a4b2x与0.2b3x﹣1a4能合并成一项,则x的值是( )A.B.1 C.D.05.下列说法中,正确的是( )A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式6.若代数式4x﹣5与的值相等,则x的值是( )A.1 B.C.D.27.下列说法中正确的是( )A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OA到点C8.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( ) A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.测量运动员的跳远成绩时,皮尺与起跳线保持垂直9.我校初一所有学生参加2020年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A.30x﹣8=31x+26 B.30x+8=31x+26 C.30x﹣8=31x﹣26 D.30x+8=31x﹣2610.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b二、填空题(本题5个小题,每小题3分,共15分)11.一个多项式加上3+x﹣2x2,得到x2﹣1,则这个多项式是__________.12.近似数1.02×105精确到了__________位.13.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是__________.14.已知∠α=37°50′,∠β=52°10′,则∠β﹣∠α=__________.15.如图,∠AOC=∠BOD=110°,若∠AOB=150°,∠COD=m°,则m=__________.三、解答题(本题7个小题,共55分)16.(1)计算:﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3(2)化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2)17.(1)若x是方程4﹣4(x﹣3)=2(9﹣x)的解;y是方程6(2y﹣5)+2020(1﹣2y)的解,求2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy]的值.(2)解方程:=1﹣.18.(1)按要求作图:如图1,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④画直线BD与直线AC相交于点O.(2)如图2,OA的方向是北偏东10°,OB的方向是北偏西40°,OD是OB的反向延长线.•①OD的方向是__________;‚②若OC是∠AOD的平分线,则OC的方向是__________.19.已知数轴上点A,B,C所表示的数分别是4,﹣5,x.(1)求线段AB的长.(2)若A、B、C三点中有一点是其他两点所连接线段的中点,求x的值.2020校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件12020价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?21.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.22.“水是生命之源”,某城市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费: 用水量/月单价(元/m3)不超过2020 2.8超过2020的部分 3.8另:每立方米用水加收0.2元的城市污水处理费(1)如果1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费__________元.(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,这样该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?2020学年山东省济宁市嘉祥县七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.2.下列说法错误的是( )A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.3.下列各图不是正方体表面展开图的是( )A.B.C.D.【考点】几何体的展开图.【分析】根据正方体展开图的常见形式选择.【解答】解:A、是正方体的展开图,B、是正方体的展开图,C、折叠有两个正方形重合,不是正方体的展开图,D、是正方体的展开图,故选C.【点评】本题考查了几何体的展开图,熟记正方体展开图的11种形式是解题的关键.4.若代数式3a4b2x与0.2b3x﹣1a4能合并成一项,则x的值是( )A.B.1 C.D.0【考点】同类项.【分析】由题意知,3a4b2x与0.2b3x﹣1a4是同类项,又所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得x的值.【解答】解:由同类项的定义可知2x=3x﹣1,解得x=1.故选B.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.5.下列说法中,正确的是( )A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式【考点】单项式;多项式.【分析】根据单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项正确;B、﹣的系数是﹣,次数是3,故本选项错误;C、是整式,故本选项错误;D、多项式2x2y﹣xy是三次二项式,故本选项错误.故选A.【点评】本题考查了单项式的知识:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.6.若代数式4x﹣5与的值相等,则x的值是( )A.1 B.C.D.2【考点】解一元一次方程.【专题】计算题.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.下列说法中正确的是( )A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OA到点C【考点】直线、射线、线段.【分析】分别利用直线、射线、线段的性质分析得出答案.【解答】解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OA到点C,错误,可以反向延长射线.故选:C.【点评】此题主要考查了直线、射线、线段,正确把握相关性质是解题关键.8.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( ) A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.测量运动员的跳远成绩时,皮尺与起跳线保持垂直【考点】线段的性质:两点之间线段最短.【分析】根据两点之间,线段最短,两点确定一条直线,垂线段最短进行分析.【解答】解:A、把弯曲的公路改直,就能缩短路程根据两点之间,线段最短,故此选项正确;B、用两个钉子就可以把木条固定在墙上,根据两点确定一条直线,故此选项错误;C、利用圆规可以比较两条线段的大小关系,根据线段的和差,故此选项错误;D、测量运动员的跳远成绩时,皮尺与起跳线保持垂直,根据垂线段最短;故选:A.【点评】此题主要考查了直线和线段的性质,以及垂线段的性质,关键是掌握直线和线段、垂线段的性质定理.9.我校初一所有学生参加2020年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A.30x﹣8=31x+26 B.30x+8=31x+26 C.30x﹣8=31x﹣26 D.30x+8=31x﹣26【考点】由实际问题抽象出一元一次方程.【分析】设座位有x排,根据题意可得等量关系为:总人数是一定的,据此列方程.【解答】解:设座位有x排,由题意得,30x+8=31x﹣26.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.10.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题(本题5个小题,每小题3分,共15分)11.一个多项式加上3+x﹣2x2,得到x2﹣1,则这个多项式是3x2﹣x﹣4.【考点】整式的加减.【分析】用x2﹣1减去3+x﹣2x2,求解即可.【解答】解:x2﹣1﹣(3+x﹣2x2)=x2﹣1﹣3﹣x+2x2=3x2﹣x﹣4.故答案为:3x2﹣x﹣4.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.12.近似数1.02×105精确到了千位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数1.02×105精确到了千位.故答案为千.【点评】本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是1.【考点】整式的加减.【分析】先根据题意列出整式相加减的式子,再合并同类项,令xy的系数为0即可得出k 的值.【解答】解:(2x2﹣4xy﹣y2)﹣(﹣4kxy+5)=2x2﹣4xy﹣y2+4kxy﹣5=2x2﹣(4﹣4k)xy﹣y2+﹣5,∵多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,∴4﹣4k=0,解得k=1.故答案为:1.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.14.已知∠α=37°50′,∠β=52°10′,则∠β﹣∠α=14°2020【考点】度分秒的换算.【分析】把已知的度数代入式子计算,度与度对应相减,分与分对应相减,被减数的分小于减数的分,根据1度等于60分借1度计算即可.【解答】解:∠β﹣∠α=52°10′﹣37°50′=14°2020故答案为:14°2020【点评】本题考查的是度分秒的换算,两个度数相减,度与度,分与分对应相减,被减数的分小于减数的分,根据1度等于60分借1度进行计算.15.如图,∠AOC=∠BOD=110°,若∠AOB=150°,∠COD=m°,则m=70.【考点】角的计算.【分析】首先根据∠AOC=∠BOD=110°,∠AOB=150°,求出∠BOC的度数是多少;然后根据∠COD=∠BOD﹣∠BOC,求出m的值是多少即可.【解答】解:∵∠AOC=∠BOD=110°,∠AOB=150°,∴∠BOC=150°﹣110°=40°,∴∠COD=∠BOD﹣∠BOC=110°﹣40°=70°∴m=70.故答案为:70.【点评】此题主要考查了角的计算,要熟练掌握,解答此题的关键是求出∠BOC的大小.三、解答题(本题7个小题,共55分)16.(1)计算:﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3(2)化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2)【考点】有理数的混合运算;整式的加减.【分析】(1)先算乘方和绝对值,再算乘除,最后算加减;(2)先去括号,进一步合并得出答案即可.【解答】解:(1)原式=﹣4×3+36×(﹣)﹣÷(﹣)=﹣12﹣15+1=﹣26;(2)原式=5a2b﹣15ab2﹣2a2b+14ab2=(5﹣2)a2b﹣(15﹣14)ab2=3a2b﹣ab2.【点评】此题考查有理数的混合运算,整式的加减,掌握运算顺序与符号的判定是解决问题的关键.17.(1)若x是方程4﹣4(x﹣3)=2(9﹣x)的解;y是方程6(2y﹣5)+2020(1﹣2y)的解,求2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy]的值.(2)解方程:=1﹣.【考点】一元一次方程的解;整式的加减—化简求值;解一元一次方程.【分析】(1)先化简多项式,然后解方程求得x、y的值,最后代入计算即可;(2)先利用分数的基本性质,将方程中分母化为整数,然后再解方程即可.【解答】(1)解:原式=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy,方程4﹣4(x﹣3)=2(9﹣x),去括号得:4﹣4x+12=18﹣2x,移项合并得:2x=﹣2,解得:x=﹣1,方程6(2y﹣5)+2020(1﹣2y),去括号得:12y﹣30+2020﹣8y,移项合并得:202014,解得:y=0.7,当x=﹣1,y=0.7时,原式=﹣6﹣7=﹣13.(2)解:方程整理得:,去分母得:34﹣40x=6﹣12﹣2020移项合并得:202040,解得:x=2.【点评】本题主要考查的是方程的解和解一元一次方程,掌握解一元一次方程的步骤和方法是解题的关键.18.(1)按要求作图:如图1,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④画直线BD与直线AC相交于点O.(2)如图2,OA的方向是北偏东10°,OB的方向是北偏西40°,OD是OB的反向延长线.•①OD的方向是南偏东40°;‚②若OC是∠AOD的平分线,则OC的方向是北偏东75°.【考点】作图—复杂作图;方向角.【分析】(1)根据题中要求画出射线CD、直线AD、线段AB、直线BD、直线AC,然后标出O点位置;(2)①利用对顶角相等和方向角的定义得到OD的方向;②先计算出∠AOD的度数,再利用角平分线计算出∠AOC的度数,然后根据方向角的定义得到OC的方向.【解答】解:(1)如图1,(2)如图2,①OD的方向是南偏东40°;②∵∠AOD=180°﹣40°﹣10°=130°,而OC是∠AOD的平分线,∴∠AOC=×130°=65°,∴OC的方向是北偏东75°.故答案为南偏东40°;北偏东75°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了方向角.19.已知数轴上点A,B,C所表示的数分别是4,﹣5,x.(1)求线段AB的长.(2)若A、B、C三点中有一点是其他两点所连接线段的中点,求x的值.【考点】一元一次方程的应用;数轴.【分析】(1)直接利用数轴上两点之间距离求法得出答案;(2)分别利用当C为AB的中点以及当B为AC的中点和当A为BC的中点,分别得出答案.【解答】解:(1)由数轴可得:AB=4﹣(﹣5)=9;(2)①当C为AB的中点,则4﹣x=x﹣(﹣5),解得:x=﹣;②当B为AC的中点,则4﹣(﹣5)=﹣5﹣x,解得:x=﹣14;③当A为BC的中点,则x﹣4=4﹣(﹣5)解得:x=13.【点评】此题主要考查了一元一次方程的应用,根据题意结合分类讨论求出是解题关键.2020校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件12020价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【考点】一元一次方程的应用.【专题】销售问题.【分析】设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.【解答】解:设每件衬衫降价x元,依题意有1202000+(12020)×100=80×500×(1+45%),解得x=2020答:每件衬衫降价2020,销售完这批衬衫正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出合适的等量关系,列出方程求解.21.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.【考点】余角和补角.【分析】(1)根据余角的性质,可得答案;(2)根据余角的定义,可得∠ACE,根据角的和差,可得答案;(3)根据补角的定义,可得答案.【解答】解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.【点评】本题考查了余角和补角,利用了余角的性质,补角的性质,角的和差.22.“水是生命之源”,某城市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费: 用水量/月单价(元/m3)不超过2020 2.8超过2020的部分 3.8另:每立方米用水加收0.2元的城市污水处理费(1)如果1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费57元.(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,这样该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?【考点】一元一次方程的应用.【分析】(1)该用户1月份用水量没有超过2020,直接用单价×用水量即可;(2)设该用户2月份用水xm3,由题意,得2020+4×(x﹣202080,求出x的值即可;(3)首先设出用户3月份实际用水am3,然后求出a的值,根据表格水价求出该用户3月份实际应该缴纳水费.【解答】解:(1)根据表格数据可知:该用户1月份应该缴纳水费19×3=57元;(2)设该用户2月份用水xm3,由题意,得2020+4×(x﹣202080,解得:x=25.答:该用户2月份用水25m3;(3)设该用户3月份实际用水am3因为58.8<2020,所以该用户上交水费的单价为3元/m3.由题意,得70%a×3=58.8.解得:a=28.因为28>2020所以该用户3月份实际应该缴纳水费为:2020+4×(28﹣202092元.答:该用户3月份实际应该缴纳水费92元.【点评】本题考查了单价×数量=总价的数量关系的运用,列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时由单价×数量=总价的关系建立方程是关键.。

2020-2021学年山东省济宁市七年级上期末数学试卷(附答案解析)

2020-2021学年山东省济宁市七年级上期末数学试卷(附答案解析)

2020-2021学年山东省济宁市七年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.数1,0,−23,﹣2中最大的是()A.1B.0C.−23D.﹣22.数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣2 3.已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定4.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=12y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=−53,然后小明很快补好了这个常数,这个常数应是()A.−32B.32C.52D.25.实数a,b在数轴上的位置如图所示,则下列式子错误的是()A.ab<0B.a+b>0C.ba<−1D.|a|>b6.下列运算中,正确的是()A.﹣22=﹣4B.3﹣|﹣2|=5C.2a+3b=5ab D.﹣(a﹣b)=﹣a﹣b7.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC= 12AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角B.∠1=∠3C.∠1的余角等于75°29′D.∠2=45°9.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元10.从点O引出n(n≥2)条射线组成如下图形,当n=2时,构成1个角;当n=3时,构成3个角;当n=4时,构成6个角;……,当n=20时共有多少个角?()A.190B.231C.401D.801二.填空题(共5小题,满分15分,每小题3分)11.已知代数式2a2b n+3与﹣3a m﹣1b2是同类项,则m+n=.12.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为千米/小时.13.某正方体的平面展开图如图所示,a与其对面的数字互为相反数,则a的值为.14.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有人.15.如图1,边长为a的大正方形中有一个边长为b的小正方形,若将图1中的阴影部分拼成一个矩形如图2,比较两图中阴影部分的面积,写出一个正确的等式:.三.解答题(共7小题,满分55分)。

2020-2021年七年级数学上册期末试卷 含解析

2020-2021年七年级数学上册期末试卷  含解析

七年级(上)期末数学试卷一.选择题(共10小题)1.﹣3的相反数是()A.3 B.C.﹣3 D.﹣2.下列每组单项式是同类项的是()A.xy与yz B.﹣x与﹣2xyC.3x2y与﹣2xy2D.2xy与﹣yx3.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×1074.下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.5.若|m﹣2|+(n+3)2=0,则m﹣n的值为()A.﹣5 B.﹣1 C.1 D.56.若x=1是关于x的方程2x+5a=3的解,则a的值为()A.B.4 C.1 D.﹣17.已知一个角的余角等于40°,则这个角的补角等于()A.140°B.130°C.120°D.50°8.一件工作,甲单独完成需20天时间,乙单独完成需15天时间.现有甲先做4天,剩下的甲、乙合作,还需x天,列方程为()A.﹣﹣=1 B.++=1C.+﹣=1 D.﹣+=19.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b<a D.﹣a<﹣b<b<a 10.按下列程序输入一个数x,若输入的数x=﹣1,则输出结果为()A.1 B.2 C.3 D.4二.填空题(共6小题)11.比较大小:﹣﹣.12.如图所示的四条射线中,表示南偏西60°的是.13.已知x=1是方程ax+3bx﹣2019=0的解,则代数式2a+6b的值为.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?设有x个人共同买鸡,根据题意列一元一次方程.15.如图,C是线段AB上一点,AC=5,BC=7,点M、N分别是线段AC、BC的中点,则MN =.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三.解答题(共8小题)17.计算.(1)(﹣2)+7+(+8)+(﹣9)(2)(﹣12)×(﹣)18.解方程.(1)5x﹣7=3x+5(2)x+=3﹣19.先化简,再求值.3(2a2b﹣3ab2)﹣2(ab2+5a2b),其中a=,b=﹣2.20.若方程(|m|﹣2)x2﹣(m+2)x+8=0是关于x的一元一次方程.(1)求m的值;(2)若它与方程5x+ax=12有相同的解,求a的值.21.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.(1)若∠AOD=75°,求∠AOE的度数.(2)若∠DOE=36°,求∠EOC的度数.22.某商场开展春节促销活动出售A、B两种商品,活动方案如下两种:A B标价90元/件100元/件方案一每件按标价的30%返利每件按标价的15%返利方案二所购商品一律按标价的20%返利(1)某单位购买A商品40件,B商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少2件,若两方案的实际付款一样,求x的值.23.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使∠COD=90°.(1)如图1,过点O作射线OE,使OE是∠AOD的角平分线,求证:∠BOD=2∠COE;(2)如图2,过点O作射线OE,使OC是∠AOE的角平分线,另作射线OF,使OF是∠COD 的平分线,若∠EOC=3∠EOF,求∠AOE的度数.24.如图,已知点A、B、C是直线l上的三个点,线段AB=8厘米.(1)若AB=2BC,求线段AC的长度;(2)若点C是线段AB的中点,点P、Q是直线l上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、B同时出发在直线上运动,则经过多少秒时线段PQ的长为5厘来?参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.3 B.C.﹣3 D.﹣【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.2.下列每组单项式是同类项的是()A.xy与yz B.﹣x与﹣2xyC.3x2y与﹣2xy2D.2xy与﹣yx【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:A、xy与yz所含字母不同,不是同类项,故此选项不符合题意.B、﹣x与﹣2xy所含字母不同,不是同类项,故此选项不符合题意.C、3x2y与﹣2xy2所含字母相同,但相同字母的指数不同,不是同类项,故此选项不符合题意;D、2xy与﹣yx所含字母相同且相同字母的指数也相同,它们是同类项,故本选项符合题意;故选:D.3.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,数据4400000用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据4400000用科学记数法表示为:4.4×106.故选:A.4.下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有B是三棱柱的展开图.故选:B.5.若|m﹣2|+(n+3)2=0,则m﹣n的值为()A.﹣5 B.﹣1 C.1 D.5【分析】直接利用非负数的性质得出m,n的值,进而得出答案.【解答】解:∵|m﹣2|+(n+3)2=0,∴m﹣2=0,n+3=0,解得:m=2,n=﹣3,∴m﹣n=2﹣(﹣3)=5.故选:D.6.若x=1是关于x的方程2x+5a=3的解,则a的值为()A.B.4 C.1 D.﹣1【分析】把x的值代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+5a=3,解得:a=,故选:A.7.已知一个角的余角等于40°,则这个角的补角等于()A.140°B.130°C.120°D.50°【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【解答】解:根据余角的定义,这个角的度数=90°﹣40°=50°,根据补角的定义,这个角的补角度数=180°﹣50°=130°.故选:B.8.一件工作,甲单独完成需20天时间,乙单独完成需15天时间.现有甲先做4天,剩下的甲、乙合作,还需x天,列方程为()A.﹣﹣=1 B.++=1C.+﹣=1 D.﹣+=1【分析】设还需x天完工,根据甲完成的工作量+乙完成的工作量=总工作量(单位1),即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设还需x天完工,依题意,得:++=1.故选:B.9.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b<a D.﹣a<﹣b<b<a 【分析】根据图示,可得:﹣1<b<0,a>1,所以0<﹣b<1,﹣a<﹣1,据此将a、b、﹣a、﹣b用“<”连接即可.【解答】解:根据图示,可得:﹣1<b<0,a>1,∴0<﹣b<1,﹣a<﹣1,∴﹣a<b<﹣b<﹣a.故选:C.10.按下列程序输入一个数x,若输入的数x=﹣1,则输出结果为()A.1 B.2 C.3 D.4【分析】根据运算程序算出第一,二,三,四次运算结果,由第四次运算结果为4>0即可得出结论.【解答】解:∵﹣1×(﹣2)﹣4=﹣2,∴第一次运算结果为﹣2;∵(﹣2)×(﹣2)﹣4=0,∴第二次运算结果为0;∵0×(﹣2)﹣4=﹣4,∴第三次运算结果为﹣4;∵(﹣4)×(﹣2)﹣4=4,∴第四次运算结果为4;∵4>0,∴输出结果为4.故选:D.二.填空题(共6小题)11.比较大小:﹣<﹣.【分析】应先算出两个负数的绝对值,比较两个绝对值,进而比较两个负数的大小即可.【解答】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.12.如图所示的四条射线中,表示南偏西60°的是OC.【分析】根据方向角的定义,即可解答.【解答】解:由图可知,射线OC表示南偏西60°.故答案为:OC.13.已知x=1是方程ax+3bx﹣2019=0的解,则代数式2a+6b的值为4038 .【分析】根据一元二次方程根的定义得到a+3b=2019,再把2a+6b变形为2(a+3b),然后利用整体代入的方法计算.【解答】解:∵x=1是方程ax+3bx﹣2019=0的解,∴a+3b﹣2019=0,∴a+3b=2019,∴2a+6b=2(a+3b)=2×2019=4038.故答案为:4038.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?设有x个人共同买鸡,根据题意列一元一次方程.9x﹣11=6x+16【分析】设有x个人共同买鸡,根据买鸡需要的总钱数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.15.如图,C是线段AB上一点,AC=5,BC=7,点M、N分别是线段AC、BC的中点,则MN = 6 .【分析】根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案.【解答】解:由点M、N分别是线段AC、BC的中点,得MC=AC=×5=,NC=BC=×7=.由线段的和差,得MN=MC+NC=6;故答案为:6.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.三.解答题(共8小题)17.计算.(1)(﹣2)+7+(+8)+(﹣9)(2)(﹣12)×(﹣)【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)(﹣2)+7+(+8)+(﹣9)=(﹣2)+7+8+(﹣9)=4;(2)(﹣12)×(﹣)=8+(﹣21)+10=﹣3.18.解方程.(1)5x﹣7=3x+5(2)x+=3﹣【分析】(1)先移项,再合并同类项,系数化为1即可求解;(2)根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,为使方程逐渐向x=a形式转化.【解答】解:(1)5x﹣3x=5+72x=12x=6.(2)6x+3(x+1)=18﹣2(2x﹣1)6x+3x+3=18﹣4x+26x+3x+4x=18+2﹣313x=17x=19.先化简,再求值.3(2a2b﹣3ab2)﹣2(ab2+5a2b),其中a=,b=﹣2.【分析】根据整式的加减法则进行化简,再将值代入化简后的整式求解即可.【解答】解:原式=6a2b﹣9ab2﹣2ab2﹣10a2b=(6a2b﹣10a2b)+(﹣9ab2﹣2ab2)=﹣4a2b﹣11ab2当a=,b=﹣2时,原式=﹣4×()2×(﹣2)﹣11××(﹣2)2=4××2﹣11××4=2﹣22=﹣20.20.若方程(|m|﹣2)x2﹣(m+2)x+8=0是关于x的一元一次方程.(1)求m的值;(2)若它与方程5x+ax=12有相同的解,求a的值.【分析】(1)根据一元一次方程的定义列出方程组,求出m的值即可;(2)将m的值代入得原方程,求出x的值,再把x的值代入方程5x+ax=12,求出a的值即可.【解答】解:(1)∵方程(|m|﹣2)x2﹣(m+2)x+8=0是关于x的一元一次方程,∴,∴m=2;(2)当m=2时,原方程为﹣4x+8=0,∴x=2,将x=2代入方程5x+ax=12中,10+2a=12,∴a=1.21.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.(1)若∠AOD=75°,求∠AOE的度数.(2)若∠DOE=36°,求∠EOC的度数.【分析】(1)由∠AOC与∠BOC互余可得∠AOC+∠BOC=90°,根据角的和差关系可得∠BOD=15°,再根据角平分线的定义可得∠BOC=30°,从而得出∠AOC的度数,然后根据∠AOE=2∠EOC即可求出∠AOE的度数;(2)设∠EOC=x,则∠AOE=2x,根据题意列方程求解即可.【解答】解:(1)∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,即∠AOB=90°,∵∠AOD=75°,∴∠BOD=15°,又∵OD平分∠BOC,∠∴∠BOC=30°,∴∠AOC=60°,又∵∠AOE=2∠EOC,∴;(2)∠EOC=x,则∠DOC=∠DOE﹣∠EOC=36°﹣x,∵OD平分∠BOC,∴∠BOC=2∠DOC=2(36°﹣x),又∵∠AOE=2∠EOC,∴∠AOE=2x,∴2x+x+2(36°﹣x)=90°,∴x=18°.即∠EOC=18°.22.某商场开展春节促销活动出售A、B两种商品,活动方案如下两种:A B标价90元/件100元/件方案一每件按标价的30%返利每件按标价的15%返利方案二所购商品一律按标价的20%返利(1)某单位购买A商品40件,B商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少2件,若两方案的实际付款一样,求x的值.【分析】(1)分别求出方案一和方案二的返利,然后选择省钱的方案,求出所省的钱数;(2)分别表述出方案一和方案二返利,根据返利相等构建方程即可解决问题.【解答】解:(1)方案一返利:40×90×30%+20×100×15%=1380(元),方案二返利:(40×90+20×100)×20%=1120(元),∵1380﹣1120=260,∴选用方案一更划算,能便宜260元;(2)设某单位购买A商品x件,则90×30%×x+100×15%×(2x﹣2)=[90x+100(2x﹣2)]×20%解得x=10,答:x的值为10.23.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使∠COD=90°.(1)如图1,过点O作射线OE,使OE是∠AOD的角平分线,求证:∠BOD=2∠COE;(2)如图2,过点O作射线OE,使OC是∠AOE的角平分线,另作射线OF,使OF是∠COD 的平分线,若∠EOC=3∠EOF,求∠AOE的度数.【分析】(1)根据角的和差定义证明即可.(2)设∠EOF=x,构建方程求出x即可解决问题.【解答】(1)证明:∵OE是∠AOD的平分线,∴∠AOD=2∠EOD,∴∠BOD=180°﹣∠AOD=180°﹣2∠DOE=2(90°﹣∠DOE)=2∠COE.(2)解:设∠EOF=x,则∠EOC=3x,∴∠COF=∠EOC+∠EOF=4x,∵OF平分∠COD,∠COD=90°,∴∠COF=45°,即4x=45°,∴x=11.25°,∵OC平分∠AOE,∴∠AOE=2∠AOC=6x=67.5°.24.如图,已知点A、B、C是直线l上的三个点,线段AB=8厘米.(1)若AB=2BC,求线段AC的长度;(2)若点C是线段AB的中点,点P、Q是直线l上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、B同时出发在直线上运动,则经过多少秒时线段PQ的长为5厘来?【分析】(1)根据线段的和差倍分即可得到结论;(2)由于BC=4厘米,点P、Q分别从点C、点B同时出发在直线上运动,当线段PQ的长为5厘米时,可分四种情况进行讨论:点P向左、点Q向右运动;点P、Q都向右运动;点P、Q都向左运动;点P向右、点Q向左运动;都可以根据线段PQ的长为5厘米列出方程,解方程即可.【解答】解:(1)点C在点B的左侧,如图1,∵AB=8厘米,AB=2BC,∴BC=4厘米,∴AC=AB﹣BC=8﹣4=4厘米;点C在点B的右侧,如图2,∵AB=8厘米,AB=2BC,∴BC=4厘米,∴AC=AB+BC=8+4=12厘米;(2)∵点C是线段AB的中点,∴BC=4厘米,设运动时间为t秒,PQ=5厘米.①如果点P向左、点Q向右运动时,如图3,由题意,得:t+2t=5﹣4,解得t=;②点P、Q都向右运动时,如图4,由题意,得:2t﹣t=5﹣4,解得t=1;③点P向右、点Q向左运动,如图5,由题意,得:2t﹣4+t=5,解得t=3;④点P、Q都向左运动,如图6由题意,得:2t﹣t=5+4,解得t=9.综上所述,经过或1或3秒或9秒时线段PQ的长为5厘米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

济宁市嘉祥县2020—2021年七年级上期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)1.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.42.下列说法错误的是( )A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是03.下列各图不是正方体表面展开图的是( )A.B.C.D.4.若代数式3a4b2x与0.2b3x﹣1a4能合并成一项,则x的值是( )A.B.1 C.D.05.下列说法中,正确的是( )A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式6.若代数式4x﹣5与的值相等,则x的值是( )A.1 B.C.D.27.下列说法中正确的是( )A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OA到点C8.下列生活、生产现象中,能够用差不多事实“两点之间,线段最短”来说明的是( ) A.把弯曲的公路改直,就能缩短路程B.用两个钉子就能够把木条固定在墙上C.利用圆规能够比较两条线段的大小关系D.测量运动员的跳远成绩时,皮尺与起跳线保持垂直9.我校初一所有学生参加2020年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A.30x﹣8=31x+26 B.30x+8=31x+26 C.30x﹣8=31x﹣26 D.30x+8=31x﹣2610.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b二、填空题(本题5个小题,每小题3分,共15分)11.一个多项式加上3+x﹣2x2,得到x2﹣1,则那个多项式是__________.12.近似数1.02×105精确到了__________位.13.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是__________.14.已知∠α=37°50′,∠β=52°10′,则∠β﹣∠α=__________.15.如图,∠AOC=∠BOD=110°,若∠AOB=150°,∠COD=m°,则m=__________.三、解答题(本题7个小题,共55分)16.(1)运算:﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3(2)化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2)17.(1)若x是方程4﹣4(x﹣3)=2(9﹣x)的解;y是方程6(2y﹣5)+20=4(1﹣2y)的解,求2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy]的值.(2)解方程:=1﹣.18.(1)按要求作图:如图1,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④画直线BD与直线AC相交于点O.(2)如图2,OA的方向是北偏东10°,OB的方向是北偏西40°,OD是OB的反向延长线.•①OD的方向是__________;‚②若OC是∠AOD的平分线,则OC的方向是__________.19.已知数轴上点A,B,C所表示的数分别是4,﹣5,x.(1)求线段AB的长.(2)若A、B、C三点中有一点是其他两点所连接线段的中点,求x的值.20.某校七年级社会实践小组去商场调查商品销售情形,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场预备采取促销措施,将剩下的衬衫降价销售.请你帮商场运算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?21.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判定∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有如何样的数量关系,并说明理由.22.“水是生命之源”,某都市自来水公司为了鼓舞居民节约用水,规定按以下标准收取水费:用水量/月单价(元/m3)不超过20m3 2.8超过20m3的部分 3.8另:每立方米用水加收0.2元的都市污水处理费(1)假如1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费__________元.(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,如此该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?2020-2021学年山东省济宁市嘉祥县七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1 B.2 C.3 D.4【考点】正数和负数.【分析】依照小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题要紧考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.2.下列说法错误的是( )A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】依照相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判定即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,把握有关的概念和法则是解题的关键.3.下列各图不是正方体表面展开图的是( )A.B.C.D.【考点】几何体的展开图.【分析】依照正方体展开图的常见形式选择.【解答】解:A、是正方体的展开图,B、是正方体的展开图,C、折叠有两个正方形重合,不是正方体的展开图,D、是正方体的展开图,故选C.【点评】本题考查了几何体的展开图,熟记正方体展开图的11种形式是解题的关键.4.若代数式3a4b2x与0.2b3x﹣1a4能合并成一项,则x的值是( )A.B.1 C.D.0【考点】同类项.【分析】由题意知,3a4b2x与0.2b3x﹣1a4是同类项,又所含字母相同且相同字母的指数也相同的项是同类项,依照同类项的定义中相同字母的指数也相同,可求得x的值.【解答】解:由同类项的定义可知2x=3x﹣1,解得x=1.故选B.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.5.下列说法中,正确的是( )A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式【考点】单项式;多项式.【分析】依照单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项正确;B、﹣的系数是﹣,次数是3,故本选项错误;C、是整式,故本选项错误;D、多项式2x2y﹣xy是三次二项式,故本选项错误.故选A.【点评】本题考查了单项式的知识:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.6.若代数式4x﹣5与的值相等,则x的值是( )A.1 B.C.D.2【考点】解一元一次方程.【专题】运算题.【分析】依照题意列出方程,求出方程的解即可得到x的值.【解答】解:依照题意得:4x﹣5=,去分母得:8x﹣10=2x﹣1,解得:x=,故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.下列说法中正确的是( )A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BA D.延长射线OA到点C【考点】直线、射线、线段.【分析】分别利用直线、射线、线段的性质分析得出答案.【解答】解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OA到点C,错误,能够反向延长射线.故选:C.【点评】此题要紧考查了直线、射线、线段,正确把握相关性质是解题关键.8.下列生活、生产现象中,能够用差不多事实“两点之间,线段最短”来说明的是( ) A.把弯曲的公路改直,就能缩短路程B.用两个钉子就能够把木条固定在墙上C.利用圆规能够比较两条线段的大小关系D.测量运动员的跳远成绩时,皮尺与起跳线保持垂直【考点】线段的性质:两点之间线段最短.【分析】依照两点之间,线段最短,两点确定一条直线,垂线段最短进行分析.【解答】解:A、把弯曲的公路改直,就能缩短路程依照两点之间,线段最短,故此选项正确;B、用两个钉子就能够把木条固定在墙上,依照两点确定一条直线,故此选项错误;C、利用圆规能够比较两条线段的大小关系,依照线段的和差,故此选项错误;D、测量运动员的跳远成绩时,皮尺与起跳线保持垂直,依照垂线段最短;故选:A.【点评】此题要紧考查了直线和线段的性质,以及垂线段的性质,关键是把握直线和线段、垂线段的性质定理.9.我校初一所有学生参加2020年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是( )A.30x﹣8=31x+26 B.30x+8=31x+26 C.30x﹣8=31x﹣26 D.30x+8=31x﹣26【考点】由实际问题抽象出一元一次方程.【分析】设座位有x排,依照题意可得等量关系为:总人数是一定的,据此列方程.【解答】解:设座位有x排,由题意得,30x+8=31x﹣26.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读明白题意,找出合适的等量关系,列方程.10.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b)B.2a﹣b C.a+b D.a﹣b【考点】比较线段的长短.【专题】运算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情形下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题(本题5个小题,每小题3分,共15分)11.一个多项式加上3+x﹣2x2,得到x2﹣1,则那个多项式是3x2﹣x﹣4.【考点】整式的加减.【分析】用x2﹣1减去3+x﹣2x2,求解即可.【解答】解:x2﹣1﹣(3+x﹣2x2)=x2﹣1﹣3﹣x+2x2=3x2﹣x﹣4.故答案为:3x2﹣x﹣4.【点评】本题考查了整式的加减,解答本题的关键是把握去括号法则和合并同类项法则.12.近似数1.02×105精确到了千位.【考点】近似数和有效数字.【分析】依照近似数的精确度求解.【解答】解:近似数1.02×105精确到了千位.故答案为千.【点评】本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字差不多上那个数的有效数字.近似数与精确数的接近程度,能够用精确度表示.一样有,精确到哪一位,保留几个有效数字等说法.13.已知多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,则k的值是1.【考点】整式的加减.【分析】先依照题意列出整式相加减的式子,再合并同类项,令xy的系数为0即可得出k 的值.【解答】解:(2x2﹣4xy﹣y2)﹣(﹣4kxy+5)=2x2﹣4xy﹣y2+4kxy﹣5=2x2﹣(4﹣4k)xy﹣y2+﹣5,∵多项式2x2﹣4xy﹣y2与﹣4kxy+5的差中不含xy项,∴4﹣4k=0,解得k=1.故答案为:1.【点评】本题考查的是整式的加减,熟知整式的加减实质上确实是合并同类项是解答此题的关键.14.已知∠α=37°50′,∠β=52°10′,则∠β﹣∠α=14°20′.【考点】度分秒的换算.【分析】把已知的度数代入式子运算,度与度对应相减,分与分对应相减,被减数的分小于减数的分,依照1度等于60分借1度运算即可.【解答】解:∠β﹣∠α=52°10′﹣37°50′=14°20′.故答案为:14°20′.【点评】本题考查的是度分秒的换算,两个度数相减,度与度,分与分对应相减,被减数的分小于减数的分,依照1度等于60分借1度进行运算.15.如图,∠AOC=∠BOD=110°,若∠AOB=150°,∠COD=m°,则m=70.【考点】角的运算.【分析】第一依照∠AOC=∠BOD=110°,∠AOB=150°,求出∠BOC的度数是多少;然后依照∠COD=∠BOD﹣∠BOC,求出m的值是多少即可.【解答】解:∵∠AOC=∠BOD=110°,∠AOB=150°,∴∠BOC=150°﹣110°=40°,∴∠COD=∠BOD﹣∠BOC=110°﹣40°=70°∴m=70.故答案为:70.【点评】此题要紧考查了角的运算,要熟练把握,解答此题的关键是求出∠BOC的大小.三、解答题(本题7个小题,共55分)16.(1)运算:﹣22×|﹣3|+(﹣6)2×(﹣)﹣|+|÷(﹣)3(2)化简:5(a2b﹣3ab2)﹣2(a2b﹣7ab2)【考点】有理数的混合运算;整式的加减.【分析】(1)先算乘方和绝对值,再算乘除,最后算加减;(2)先去括号,进一步合并得出答案即可.【解答】解:(1)原式=﹣4×3+36×(﹣)﹣÷(﹣)=﹣12﹣15+1=﹣26;(2)原式=5a2b﹣15ab2﹣2a2b+14ab2=(5﹣2)a2b﹣(15﹣14)ab2=3a2b﹣ab2.【点评】此题考查有理数的混合运算,整式的加减,把握运算顺序与符号的判定是解决问题的关键.17.(1)若x是方程4﹣4(x﹣3)=2(9﹣x)的解;y是方程6(2y﹣5)+20=4(1﹣2y)的解,求2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy]的值.(2)解方程:=1﹣.【考点】一元一次方程的解;整式的加减—化简求值;解一元一次方程.【分析】(1)先化简多项式,然后解方程求得x、y的值,最后代入运算即可;(2)先利用分数的差不多性质,将方程中分母化为整数,然后再解方程即可.【解答】(1)解:原式=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy,方程4﹣4(x﹣3)=2(9﹣x),去括号得:4﹣4x+12=18﹣2x,移项合并得:2x=﹣2,解得:x=﹣1,方程6(2y﹣5)+20=4(1﹣2y),去括号得:12y﹣30+20=4﹣8y,移项合并得:20y=14,解得:y=0.7,当x=﹣1,y=0.7时,原式=﹣6﹣7=﹣13.(2)解:方程整理得:,去分母得:34﹣40x=6﹣12﹣20x,移项合并得:20x=40,解得:x=2.【点评】本题要紧考查的是方程的解和解一元一次方程,把握解一元一次方程的步骤和方法是解题的关键.18.(1)按要求作图:如图1,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④画直线BD与直线AC相交于点O.(2)如图2,OA的方向是北偏东10°,OB的方向是北偏西40°,OD是OB的反向延长线.•①OD的方向是南偏东40°;‚②若OC是∠AOD的平分线,则OC的方向是北偏东75°.【考点】作图—复杂作图;方向角.【分析】(1)依照题中要求画出射线CD、直线AD、线段AB、直线BD、直线AC,然后标出O点位置;(2)①利用对顶角相等和方向角的定义得到OD的方向;②先运算出∠AOD的度数,再利用角平分线运算出∠AOC的度数,然后依照方向角的定义得到OC的方向.【解答】解:(1)如图1,(2)如图2,①OD的方向是南偏东40°;②∵∠AOD=180°﹣40°﹣10°=130°,而OC是∠AOD的平分线,∴∠AOC=×130°=65°,∴OC的方向是北偏东75°.故答案为南偏东40°;北偏东75°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种差不多作图的基础上进行作图,一样是结合了几何图形的性质和差不多作图方法.解决此类题目的关键是熟悉差不多几何图形的性质,结合几何图形的差不多性质把复杂作图拆解成差不多作图,逐步操作.也考查了方向角.19.已知数轴上点A,B,C所表示的数分别是4,﹣5,x.(1)求线段AB的长.(2)若A、B、C三点中有一点是其他两点所连接线段的中点,求x的值.【考点】一元一次方程的应用;数轴.【分析】(1)直截了当利用数轴上两点之间距离求法得出答案;(2)分别利用当C为AB的中点以及当B为AC的中点和当A为BC的中点,分别得出答案.【解答】解:(1)由数轴可得:AB=4﹣(﹣5)=9;(2)①当C为AB的中点,则4﹣x=x﹣(﹣5),解得:x=﹣;②当B为AC的中点,则4﹣(﹣5)=﹣5﹣x,解得:x=﹣14;③当A为BC的中点,则x﹣4=4﹣(﹣5)解得:x=13.【点评】此题要紧考查了一元一次方程的应用,依照题意结合分类讨论求出是解题关键.20.某校七年级社会实践小组去商场调查商品销售情形,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场预备采取促销措施,将剩下的衬衫降价销售.请你帮商场运算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【考点】一元一次方程的应用.【专题】销售问题.【分析】设每件衬衫降价x元,依照销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.【解答】解:设每件衬衫降价x元,依题意有120×400+(120﹣x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,解答本题的关键是读明白题意,找出合适的等量关系,列出方程求解.21.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判定∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有如何样的数量关系,并说明理由.【考点】余角和补角.【分析】(1)依照余角的性质,可得答案;(2)依照余角的定义,可得∠ACE,依照角的和差,可得答案;(3)依照补角的定义,可得答案.【解答】解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.【点评】本题考查了余角和补角,利用了余角的性质,补角的性质,角的和差.22.“水是生命之源”,某都市自来水公司为了鼓舞居民节约用水,规定按以下标准收取水费:用水量/月单价(元/m3)不超过20m3 2.8超过20m3的部分 3.8另:每立方米用水加收0.2元的都市污水处理费(1)假如1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费57元.(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,如此该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?【考点】一元一次方程的应用.【分析】(1)该用户1月份用水量没有超过20m3,直截了当用单价×用水量即可;(2)设该用户2月份用水xm3,由题意,得20×3+4×(x﹣20)=80,求出x的值即可;(3)第一设出用户3月份实际用水am3,然后求出a的值,依照表格水价求出该用户3月份实际应该缴纳水费.【解答】解:(1)依照表格数据可知:该用户1月份应该缴纳水费19×3=57元;(2)设该用户2月份用水xm3,由题意,得20×3+4×(x﹣20)=80,解得:x=25.答:该用户2月份用水25m3;(3)设该用户3月份实际用水am3因为58.8<20×3,因此该用户上交水费的单价为3元/m3.由题意,得70%a×3=58.8.解得:a=28.因为28>20,因此该用户3月份实际应该缴纳水费为:20×3+4×(28﹣20)=92元.答:该用户3月份实际应该缴纳水费92元.【点评】本题考查了单价×数量=总价的数量关系的运用,列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时由单价×数量=总价的关系建立方程是关键.。

相关文档
最新文档