(完整版)平行四边形和梯形奥数

合集下载

完整版)小学奥数几何专题

完整版)小学奥数几何专题

完整版)小学奥数几何专题小学几何面积问题一引理:如图1在ABCD中,P是AD上一点,连接PB、PC,则S△PBC=S△ABP+S△pcD= P/AD(适应长方形、正方形)。

1.已知:四边形ABCD为平行四边形,求阴影部分面积占平行四边形ABCD的面积的几分之几?无需删除)2.已知:ABCD的面积为18,E是PC的中点,求阴影部分面积。

无需删除)3.在ABCD中,CD的延长线上的一点E,DC=2DE,连接BE交AC于P点,(如图)知S△PDE=1,S△ABP=4,求平行四边形ABCD的面积。

无需删除)4.四边形ABCD中,BF=EF=ED,(如图)1) 若S四边形ABCD=15,则S阴=(无需删除)2) 若S△AEF+S△BFC=15,则S四边形ABCD=(无需删除)3) 若S△AEF=3S△BFC,则S四边形ABCD=(无需删除)5.四边形ABCD的对角线BD被E、F、G三点四等分,(如图)若四边形AECG=15,则S四边形ABCD=(无需删除)6.四边形ABCD的对角线BD被E、F、G三点四等分,(如图)若阴影部分面积为15,则S四边形ABCD=(无需删除)7.若ABCD为正方形,F是DC的中点,已知:S△BFC=1。

1) 则S四边形ADFB=(无需删除)2) S△DFE=(无需删除)3) S△AEB=(无需删除)8.直角梯形ABCD中,AE=ED,BC=18,AD=8,CD=6,且BF=2FC,S△GED=S△GFC,求阴影部分面积。

无需删除)小学几何面积问题二1.如图S△AEF=2,AB=3AE,CF=3EF,则S△ABC=(无需删除)2.如图S△BDE=30,AB=2AE,DC=4AC,则S△ABC=(无需删除)3.正方形ABCD中,E、F、G为BC边上四等份点,M、N、P为对角线AC上的四等份点(如图),若S正方形ABCD=32,则S△NGP=(无需删除)4.已知:S△ABC=30,D是BC的中点,AE=2ED,则S△BDE=(无需删除)1.在梯形ABCD中,AD//BC,OC=2AO,阴影部分的面积为4,求梯形ABCD的面积。

第5讲 平行四边形和梯形(教师版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第5讲 平行四边形和梯形(教师版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第5讲平行四边形和梯形知识点一:平行与垂直在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

a与b互相平行,记作a∥b,读作a平行于b。

两条直线相交成直角,就说这两条直线互相垂直。

这两条直线的交点叫做垂足,其中一条直线叫做另一条直线的垂线。

a与b互相垂直,记作a⊥b,读作a垂直于b。

知识点二:平行与垂直的画法过直线上(外)一点画已知直线的垂线的方法:1. 把三角尺的一条直角边与已知直线重合;2. 沿直线移动三角尺,使三角尺的顶点(或边)与已知直线重合;3. 过已知点沿三角尺的另一条直角边画一条直线;4. 在垂足处标出垂直符号。

5.点到直线的距离与平行线间的距离(1)点到直线的距离从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

(2)平行线间的距离两条平行线之间的垂直线段有无数条,长度都相等。

6.运用平行和垂直画长方形先画出一条线段,然后过这条线段的两个端点画与这条线段垂直的线段,最后连接这两条垂直线段的另外的端点。

知识点三:平行四边形与梯形1. 平行四边形的认识(1)两组对边分别平行的四边形,叫做平行四边形。

(2)从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

(3)平行四边形的两组对边分别平行并且相等。

两组对角分别相等。

(4)平行四边形有无数条高;对边之间的高长度相等;对边之间的高互相平行。

(5)平行四边形有不稳定性,容易变形。

2.梯形的认识(1)只有一组对边平行的四边形叫做梯形。

(2)两腰相等的梯形叫做等腰梯形。

(3)有一个角是直角的梯形叫做直角梯形。

(4)梯形只有一类高,为无数条。

(5)正方形是特殊的长方形;长方形和正方形是特殊的平行四边形。

(6)等腰梯形和直角梯形是特殊的梯形。

考点一:平行与垂直【例1】如图是学校的沙坑,A点是苹苹跳远时脚后跟落人沙坑的点,哪条线段的长度表示她的成绩比较合理?()A.线段AB B.线段AC C.线段AD【思路分析】跳远时测定成绩是量踏板前端到身体接触沙坑最后一个痕迹的垂线段的长度.【规范解答】解:根据分析可得:用线段AC的长度表示她的成绩比较合理.故选:B.【名师点评】此题考查了学生对跳远成绩测定方法的理解.1.(2019秋•芙蓉区期末)在正方形中,相邻的两条边()A.互相平行B.互相垂直C.相交【思路分析】正方形的特征:有4条边,4条边长度相等,4个角,都是直角;据此可知正方形的对边互相平行,相邻的两条边互相垂直.【规范解答】解:正方形中,相邻的两条边都互相垂直;故选:B.【名师点评】此题考查正方形的特征,也考查了垂直的意义.2.(2019秋•李沧区期末)一张圆形的纸对折两次后打开的折痕()A.一定互相平行B.一定互相垂直C.可能互相平行,可能互相垂直【思路分析】把一张圆形纸对一次折后打开,有一条折痕,这条折痕就是圆的一条直径,对折两次打开后,有两条折痕,这两条折痕都是圆的直径,且互相垂直.【规范解答】解:如图:一张圆形的纸对折两次后打开的折痕一定互相垂直.故选:B.【名师点评】注意折痕虽然平行,但第二次不叫对折.3.(2019秋•历下区期末)过直线外一点画已知直线的垂线,可以画()条.A.1B.2C.3D.无数【思路分析】过直线外一点有并且只有一条直线与已知直线垂直.据此可解答.【规范解答】解:因过直线外一点有并且只有一条直线与已知直线垂直,所以过直线外一点画已知直线的垂线,可以画1条.故选:A.【名师点评】本题考查了学生对过直线外一点向已知直线作垂线的唯一性的掌握情况.考点二:平行与垂直的画法【例2】(2019秋•白云区期末)在如图中找出一组平行线,用实线画出来.【思路分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,据此即可.【规范解答】解:【名师点评】此题主要考查了平行线的定义,正确把握相关定义是解题关键.1.(2019秋•绿园区期末)在图中画出和AB平行的线段,和DC垂直的线段.【思路分析】依据同一平面内,两条直线的位置关系,即垂直和平行的意义,即可进行画图.【规范解答】解:【名师点评】此题主要考查垂直与平行的意义.2.(2019秋•惠城区校级期中)过B点画出已知直线的垂线.【思路分析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.【规范解答】解:作图如下:【名师点评】本题考查了学生利用直尺和三角板作垂线的能力.3.(2018秋•白云区期末)在图中找出一组平行线,用实线画出.【思路分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,据此即可.【规范解答】解:【名师点评】此题主要考查了平行线的定义,正确把握相关定义是解题关键.考点三:平行四边形与梯形【例3】(2019秋•武昌区期末)把一个四边形撕成了三部分,其中两部分如图,这个四边形可能是()A.长方形B.正方形C.平行四边形D.梯形【思路分析】观察给出的这个四边形的两个角,一个是直角,另一个是锐角,首先排除正方形和长方形,它们的四个角都是直角;如果是平行四边形,那么有一个角是直角的平行四边形就是长方形或正方形,它的四个角都是直角,所以不是平行四边形,那么只可能是梯形,由此求解.【规范解答】解:长方形和正方形都有4个直角,而给出的图形有一个角不是直角,所以这个四边形不可能是长方形和正方形;平行四边形中有一个角是直角,那么这个平行四边形就是长方形或正方形,它的四个角都是直角,所以这个四边形不可能是平行四边形;这个图形可能是梯形,而且是直角梯形,如下图:故选:D.【名师点评】解决本题关键是熟练掌握四边形的分类以及平行四边形、长方形、正方形和梯形的特征.1.(2019秋•越秀区期末)下面的图形中,属于平行四边形的共有()个.A.1B.2C.3D.4【思路分析】根据平行四边形的含义:两组对边都平行的四边形是平行四边形.【规范解答】解:属于平行四边形的共有4个;故选:D.【名师点评】熟练掌握这些平行四边形的定义与性质是解答此题的关键.2.(2019秋•巨野县期末)下列哪一句话是错误的()A.平行线延长也可能相交B.梯形有无数条高C.平行四边形两组对边分别平行【思路分析】A、根据在同一平面内,延长之后永不相交的两条直线叫做平行线判断;B、根据梯形的高的含义,在梯形上底上任取一点,过这一点向下底作垂线段即为梯形的高.这样的线段可以作无数条,因而一个梯形能画出无数条高;C、根据平行四边形的意义,有两组对边分别平行的四边形叫做平行四边形判断;据此解答即可.【规范解答】解:由分析得出:A、平行线延长之后永不相交,所以平行线延长也可能相交说法错误;B、梯形有无数条高说法正确;C、平行四边形两组对边分别平行说法正确.故选:A.【名师点评】此题主要考查平行和垂直的基本概念的掌握情况,要逐题分析.3.(2019秋•巨野县期末)延长梯形的上底和下底,它们()A.永不相交B.相交C.无法判断【思路分析】因为梯形的上底和下底互相平行,所以延长后的两直线还是平行的,永远也不相交.据此得出答案.【规范解答】解:因为梯形的上底和下底互相平行,所以延长后的两直线还是平行的,永远也不相交;故选:A.【名师点评】解题关键是学生要理解梯形的特征:“梯形的两底平行”.一.选择题(共6小题)1.(2019秋•红安县期末)在同一平面内,若两条直线都和同一条直线垂直,那么这两条直线()A.互相垂直B.互相平行C.不能确定【思路分析】根据平行的性质:同一平面内两条直线同时垂直于一条直线,那么,这两条直线相互平行;据此解答.【规范解答】解:同一平面内两条直线同时垂直于一条直线,那么,这两条直线相互平行;故选:B.【名师点评】此题考查了垂直和平行的性质,应注意积累和理解.2.(2019秋•平山县期末)从平行四边形的一个顶点可以画这个平行四边形的()条高.A.1B.2C.无数条【思路分析】在平行四边形中,一个顶点有两条对边,则过这个顶点向对边作垂线,有两条,这两条都是平行四边形的高.【规范解答】解:如图所示,从平行四边形的一个顶点可以画这个平行四边形的2条高..故选:B.【名师点评】此题主要考查平行四边形的高的画法.3.(2019秋•西城区期末)有关平行四边形的描述错误的选项是()A.用上面4根小棒可以围成不同的平行四边形.B.将长方形拉成平行四边形,对边依然平行且相等,周长也不变.C.两个完全相同的梯形一定能拼成一个平行四边形.D.以AB为底,OM为高,只能画出一个平行四边形.【思路分析】A、依据平行四边形的意义,即“两组对边分别平行或相等的四边形,叫做平行四边形”可知:只要是两组对边相等,就能围成一个平行四边形;如图的四根小棒,因为两组分别相等,所以可以围成平行四边形,因为平行四边形具有易变形的性质,所以能围成许多不同的平行四边形,所以A正确;B、把一个长方形拉成一个平行四边形后,两组对边依然分别平行或相等,长和宽没变,所以周长不变.所以B正确.C、根据梯形的面积推导过程可知:用两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形上下底的和,高等于梯形的高,所以C正确.D、等底等高的平行四边形可以画出很多个,所以D错误.【规范解答】解:由分析可知,ABC都正确,D错误.故选:D.【名师点评】此题涉及的知识点较多,但都比较简单,属于基础题,只要认真,容易完成,注意平时基础知识的积累.4.(2019秋•潍坊期末)用木条钉成一个长方形框架,沿对角线拉成一个平行四边形.这个平行四边形与原来的长方形相比,周长____,面积____,你认为正确的答案是()A.不变不变B.不变变大C.变大变小D.不变变小【思路分析】当长方形被拉成平行四边形后,它的长和宽没变,所以周长不变,但是高变小了,根据长方形和平行四边形面积公式可解,所以面积就变小了.【规范解答】解:因为长方形被拉成平行四边形后,它的长和宽没变,所以周长不变,但是高变小了,所以面积就变小了;故选:D.【名师点评】此题主要考查平行四边形易变形的特征以及周长和面积公式的灵活应用.5.(2018秋•昆明期末)下面错误的是()A.正方形相邻的两条边互相垂直B.平行四边形具有稳定性C.长方形是特殊的平行四边形D.平行四边形和梯形都有无数条高【思路分析】根据题意,对各选项进行依次分析、进而得出结论.【规范解答】解:A、根据正方形的特征,正方形相邻的两条边互相垂直,说法正确;B、平行四边形容易变形,所以此题说法错误;C,当平行四边形的一个内角是90°时,则该平行四边形是长方形,所以长方形是特殊的平行四边形,说法正确;D、根据平行四边形高的含义和梯形高的含义:平行四边形的高是指对边之间的距离,那么,两组对边之间都可以画无数条垂直线段,所以,有无数条高;梯形虽然只有一组对边平行,但是,在这组对边里,也可以画无数条垂直线段,所以也有无数条高,所以在平行四边形和梯形内能画出无数条高,且都相等,所以平行四边形和梯形都有无数条高,说法正确;故选:B.【名师点评】此题涉及的知识点较多,但比较简单,只要认真,容易解决,注意平时基础知识的积累.6.(2020春•周村区期末)两条平行线间可以画()条垂直线段.A.1B.2C.无数【思路分析】根据平行的性质可知:两条平行线间可以画无数条垂直线段;据此解答.【规范解答】解:由分析可知:两条平行线间可以画无数条垂直线段;故选:C.【名师点评】此题考查了平行的性质,应注意灵活理解和掌握.二.填空题(共6小题)7.(2020春•周村区期末)平行四边形的对边互相平行,长方形的两条邻边互相垂直.【思路分析】根据长方形的特征,对边平行且相等,4个角都是直角,可知,长方形相邻的两条边互相垂直,相对的两边互相平行.【规范解答】解:平行四边形的对边互相平行,长方形的两条邻边互相垂直.故答案为:平行,垂直.【名师点评】此题主要考查长方形的特征.8.教室黑板的两组对边分别平行,且长度相等,邻边互相垂直.【思路分析】因为黑板是一个长方形,所以根据长方形的特征:对边平行且相等,4个角都是直角,可知,长方形相邻的两条边互相垂直,相对的两边互相平行;据此解答.【规范解答】解:根据长方形的特征可知:教室黑板面相对的两组对边分别平行且相等.相邻两边互相垂直;故答案为:平行,相等,垂直.【名师点评】此题主要考查长方形的特征.9.(2019秋•东城区期末)如图,春光小学的伸缩门应用了平行四边形易变形的特点.【思路分析】伸缩门是应用了平行四边形不稳定性,容易变形进行制作的,便于伸缩.【规范解答】解:如图,春光小学的伸缩门应用了平行四边形易变形的特点.故答案为:易变形.【名师点评】大门做成的伸缩门,这是应用了平行四边形不稳定性制作的,考查了平行四边形的特征.10.(2019秋•白云区期末)如图.(1)如果把梯形记作:梯形ABDC,那么请你在图中再找一个梯形,用这种表达方式记作:梯形AEFC.(2)如果把梯形AEFC的上底记作:AE,那么下底记作CF,高记作EF.这是一个直角梯形.【思路分析】根据梯形的含义和特征:只有一组对边平行的四边形叫做梯形;梯形只有一组对边平行,把相互平行的一组边叫做梯形的底,其中上面的叫做上底,下面的叫下底;上下底之间的距离叫做梯形的高;由此解答.【规范解答】解:(1)如果把梯形记作:梯形ABDC,那么请你在图中再找一个梯形,用这种表达方式记作:梯形AEFC.(2)如果把梯形AEFC的上底记作:AE,那么下底记作CF,高记作EF.这是一个直角梯形.故答案为:AEFC;CF,EF,直角.【名师点评】明确梯形的含义和特征,是解答此题的关键.11.(2019秋•高平市期末)图形中有两组平行线,3组垂线.【思路分析】根据平行线和垂线的定义:在同一平面内不相交的两条直线叫做平行线;当两条直线相交成90度时,这两条直线就互相垂直,它们的交点叫做垂足;据此解答即可.【规范解答】解:图形中有两组平行线,3组垂线.故答案为:两,3.【名师点评】明确平行和垂直的性质可知,是解答此题的关键.12.两个面积相等的平行四边形,它们的形状B,周长B.A.相同B.不一定相同C.相等D.不一定相等【思路分析】根据平行四边行的面积=底×高,两个平行四边形的面积相等,也就是底和高的乘积相等,但是两个长方形的底不一定相等,高也不一定相等,所以这两个平行四边行的形状不一定相同,周长也不一定相同,由此可以解答.【规范解答】解:由平行四边行的面积公式知,只要底和高的乘积相等就说明面积相等,但是两个长方形的底不一定相等,高也不一定相等,所以这两个平行四边行的形状不一定相同,周长也不一定相同.故答案为:B.【名师点评】此题考查了平行四边行的面积公式的灵活应用.三.判断题(共5小题)13.如图中共有3组平行线.×(判断对错)【思路分析】在同一个平面内,不相交的两条直线叫做平行线;据此解答.【规范解答】解:根据平行线的定义可知,如图中共有7组平行线.原题说法错误.故答案为:×.【名师点评】此题考查了对平行线的掌握.14.平行四边形具有稳定,不易变形的特性.×(判断对错)【思路分析】由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形.【规范解答】解:因为平行四边形具有不稳定性,所以容易变形;原说法错误.故答案为:×.【名师点评】此题主要考查平行四边形的特性.15.画边长3厘米的正方形时,只用量角器就可以画出来.×(判断对错)【思路分析】画边长3厘米的正方形时,需要确定边的长度,量角器无法测量或绘制线段的长度,据此判断.【规范解答】解:画边长3厘米的正方形时,需要确定边的长度,量角器无法测量或绘制线段的长度,所以原题说法错误.故答案为:×.【名师点评】本题主要考查了画指定边长的正方形,需要学生熟知各种工具的使用.16.(2019秋•郓城县期末)这样的四根小棒可以围成许多不同的平行四边形.√(判断对错)【思路分析】依据平行四边形的意义,即两组对边分别平行或相等的四边形,叫做平行四边形;据此可知:只要是两组对边相等,就能围成一个平行四边形;据此判断即可.【规范解答】解:如图的四根小棒,因为两组分别相等,所以可以围成平行四边形,因为平行四边形具有易变形的性质,所以能围成许多不同的平行四边形,所以本题说法正确;故答案为:√.【名师点评】此题关键是根据四边形的特征进行分析、解答.17.(2019秋•唐县期末)我们平常见到的电动伸缩门就是利用了平行四边形稳定性的特点.×(判断对错)【思路分析】由平行四边形的特性可知,平行四边形具有不稳定性,所以容易变形,伸缩门运用了平行四边形易变形的特性.【规范解答】解:我们平常见到的电动伸缩门就是利用了平行四边形易变性的特点,所以本题说法错误;故答案为:×.【名师点评】此题主要考查了平行四边形的特性是容易变形.四.操作题(共3小题)18.画出如图各图形所给底边上的高.【思路分析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线段,用三角板的直角可以画出平行四形的高;梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线,用三角板的直角可以画出梯形的一条高.【规范解答】解:画法如下:【名师点评】本题是考查作平行四边形、梯形的高.注意作高用虚线,并标出垂足.19.(2019秋•大田县期末)按要求完成下面各题.①先从如图中任意选出两点画出一条直线.②再通过第三点画出它的平行线和垂线【思路分析】①、把其中的两个点直接连起来就是一条直线.②、用三角板的一条直角边和已知直线重合,移动三角板使另一条直角边和已知点重合,用直尺靠紧和已知点重合的直角边,按住直尺不动,沿直尺移动三角板,过已知点画直线就是平行线.用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和已知点重合,过已知点沿直角边向已知直线画直线就是垂线.【规范解答】解:【名师点评】本题考查了学生画平行线和垂线的能力.20.(2020•海淀区)过A点作对边的垂线和平行线.【思路分析】过A点作对边的垂线和平行线,把点A的对边看作一条直线的一部分,即过直线外一点作已知直线的垂线和平行线.过A点作对边的垂线:把三角板的一直角边靠紧点A的对边,沿这条线段滑动三角板,当另一直角边经过点A时,沿这条直角边画的直线就是过A点作对边的垂线;过A点作对边的平行线:把三角板的一边靠紧点A的对边,另一边靠紧一直尺,沿直尺滑动三角板,当与点A的对边重合的一边经过已知点时,沿这边画直线就是过点A点作的对边的平行线.【规范解答】解:过A点作对边的垂线(红色)和平行线(绿色).【名师点评】过直线外一点作已知直线的垂线和平行线,三角板、三角板与直尺(或另一三角板)正确、熟练使用的配合使用是关键.五.解答题(共2小题)21.(2020春•邛崃市期末)在点子图上画出一个平行四边形.【思路分析】根据有两组对边分别平行的四边形是平行四边形,在点子图中画出即可.【规范解答】解:画图如下:【名师点评】本题考查了学生根据平行四边形的定义在点子图上画图的能力.22.(2019秋•皇姑区期末)若你把一个梯形两腰的中点进行连结,得到的这条线段就是这个梯形的中位线.(1)试画出这个梯形的中位线.(用铅笔和直尺作图)(2)量一量中位线的长度,再量一量这个梯形上底和下底的长度,你发现了什么?把你的发现写在下面?【思路分析】(1)先找到两腰的中点,再连结即可求解;(2)根据线段的测量方法量出中位线的长度,上底和下底的长度,再依此找到它们的规律即可求解.【规范解答】解:(1)如图所示:(2)我的发现:梯形中位线=上底和下底的和的一半.【名师点评】考查了梯形的特征及分类,关键是熟悉梯形中位线=上底和下底的和的一半.。

(完整版)小学奥数平面几何五种面积模型

(完整版)小学奥数平面几何五种面积模型

小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙 漏模型),共边(含燕尾模型和风筝模型),掌握五大面积模型的各种变形 知识点拨 一、等积模型① 等底等高的两个三角形面积相等;② 两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图S 1:S a:b③ 夹在一组平行线之间的等积变形,如右图E A CD足BCD ;反之,如果S ACD S A BCD ,则可知直线AB 平行于CD .④ 等底等高的两个平行四边形面积相等 (长方形和正方形可以看作特殊的平 行四边形);⑤ 三角形面积等于与它等底等高的平行四边形面积的一半;⑥ 两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相 等,面积比等于它们的咼之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在A ABC 中,D,E 分别是AB,AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在 AC 上),贝S S AABC: S A ADE (AB AC ): (AD AE )图⑵任意四边形中的比例关系(“蝶形定理”): ① S :S 2S 4 :S 3 或者 S iS 3 S 2S 4 ② AO:OC S i&: S 4S 3蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造Si S2aA BC DCD模型,一方面可以使不规则四边形的面积关系与四边 形内的三角形相联系;另一方面,也可以得到与面积 对应的对角线的比例关系.梯形中比例关系(“梯形蝶形定理”): ① S :S a 2:b 2② S 1 : S 3 : S 2: S 4 a 2: b 2: ab: ab ; ③ S 的对应份数为a b 2 . 四、相似模型(一)金字塔模型①ADAE DE AB AC BC^②ADE:& ABC所谓的相似三角形,就是形状相同,大小不同的三角形 (只要其形状不改变, 不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如 下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似 比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工 具/、・ 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD , BE , CF 相交于同一点O ,那么上述定理给出了一个新的转化面积比与线段比的手段,因 为ABO 和ACO 的形状很象燕子的尾巴,所以这个定理被称 为燕尾定理.该定理在许多几何题目中都有着广泛的运用, 它的特殊性在于,它可以存在于任何一个三角形之中,为ABO:S ACOBD:DC .二)沙漏模型AF AG ;AF 2:AG 2.三角形中的三角形面积对应底边之间提供互相联系的途径 .典型例题【例1】如图,正方形ABC 啲边长为6,AE 1.5,CF 2.长方形EFGH 勺面 积为 _______【解析】连接DE DF,则长方形EFG 啲面积是三角形DEF 面积的二倍. 三角形DEF 的面积等于正方形的面积减去三个三角形的面积,S ^ DEF 6 6 1.5 6 2 2 6 2 4.5 42 16.5 ,所以长方形 EFGH面积为33.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【解析】本题主要是让学生会运用等底等高的两个平行四边形面积相等 (长方 形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底 等高的平行四边形面积的一半.证明:连接AG .(我们通过△ ABG 把这两个长方形和正方形联系在一起).F , 、,1、. ••在正方形 ABCD 中 , S A ABG21二S A ABG 2 S WABCD (三角形面积等于与它等底等高的平行四边形面积的一半)8 8 10 6.4(厘米).同理, S A ABG2SEFGB •二正方形ABCD 与长方形EFGB 面积相等.长方形的宽D GC【例2】长方形ABCD 的面积为36cm 2, E 、F 、G 为各边中点, 意一点,问阴影部分面积是多少?【解析】解法一:寻找可利用的条件,连接 BH 、HC ,如下图:解法二:特殊点法.找H 的特殊点,把H 点与D 点重合,那么图形就可变成右图:【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边 二等分,另一组对边三等分,分别与 P 点连接,求阴影部分面积.可得:SEHB1S 2 AHB、S 1FHB — 2SCHB、 S DHG1SS DHC,S A BCD S AHBS CHB S CHD36即 S EHB SBHFSD HGAHBSCHBSCHD )1 23618;而S EHB S BHF S DHGS 阴影SEBF而S EBF12 BE BF - (- AB) (- BC) - 36 4.5 2 2 2 8S S S S 1 11 1 11 1S ABCDSAEDSBEFSCFD36— 3636362 2 2 2 2 2 2S 阴影H 为AD 边上任所以阴影部分的面积是: S 阴影 18S EBF18 4.5 13.5 这样阴影部分的面积就是DEF 的面积,根据鸟头定理,则有:【解析】(法1)特殊点法.由于P是正方形内部任意一点,可采用特殊点法,假设P点与A点重合,贝S阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的〕和1,所以阴影部分的面积为4 662(1 1) 15平方厘米.4 6(法2)连接PA、PC .由于PAD与PBC的面积之和等于正方形ABCD面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD面积的1,同理可知4 左、右两个阴影三角形的面积之和等于正方形ABCD面积的丄,所以阴6 影部分的面积为62(1 1) 15平方厘米.4 6【例3】如图所示,长方形ABCD内的阴影部分的面积之和为70, AB 8 , AD 15,四边形EFGO的面积为 _________ .【解析】利用图形中的包含关系可以先求出三角形AOE、DOG和四边形EFGO的面积之和,以及三角形AOE和DOG的面积之和,进而求出四边形EFGO 的面积.由于长方形ABCD的面积为15 8 120 ,所以三角形BOC的面积为120 1 30,所以三角形AOE和DOG的面积之和为120 - 70 20 ;4 4又三角形AOE、DOG和四边形EFGO的面积之和为120 - - 30,所以2 4四边形EFGO的面积为30 20 10 .另解:从整体上来看,四边形EFGO的面积三角形AFC面积三角形BFD 面积白色部分的面积,而三角形AFC面积三角形BFD面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部【解析】因为D 、E 、F 分别为三边的中点,所以DE 、DF 、EF 是三角形ABC 的 中位线,也就与对应的边平行,根据面积比例模型,三角形 ABN 和三角形AMC 的面积都等于三角形ABC 的一半,即为200.根据图形的容斥关系,有S ABC 鬲 即 400 S 丙 200 200 S AMHN ,所以 S WS ABN S AMCS AMHN.S AMHN,又S 阴影S ADFS 甲S 乙 S AMHN ,所以S阴影SFS^S丙SADF143 1 400 434分的面积,即120 70 50,所以四边形的面积为60 50 10 .【例4】 已知ABC 为等边三角形,面积为400, D 、E 、F 分别为三边的中点, 已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC )【巩固】如图,长方形ABCD 的面积是 阴影部分的面积为 36, E 是AD 的三等分点,AE 2ED ,则【解析】如图,连接OE . 根据蝶形定理,ON : NDS OEN — S2S COE: SCDE12 SCAE :S CDE1:1,所以OM : MA S BOE : S BAE1——S 巨形 ABCD3 411 362.7 .又 S OEDS BDE : S BAE 23 , s OEAs 1S OEM 52S OED 6,所以阴影部分面积为:1:4,所以OEA •【例5】如图,已知CD 5 , DE 7 , EF 15 , FG 6,线段AB 将图形分成两部 分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面 积是 . 连接AF , BD .根据题意可知,CF 5 7 15于是:28 S A DG2I S CBF 65; 28S ADG^IS CBF38可得s ADG 40 .故三角形ADG 的面积是40.【例6】如图在 △ ABC 中,D,E 分别是AB,AC 上的点,且AD: AB 2:5 , AE:AC 4:7 , S A ADE 16平方厘米,求△ ABC 的面积.【解析】连接 BE , s ADE : S A ABE AD :AB 2:5(2 4):(5 4),S^ ABE : S A ABC AE : AC 4 :7(45): (7 5), 所以 ADE : S A ABC(2 4): (75), 设S A ADE 8份,则S A ABC 35份,S ^ADE 16平方厘米,所以1份是2平方厘米,35份就是70平方厘米,△ ABC 的面积是70平方厘米.由此我们得到一 个重要的定理,共角定理:共角三角形的面积比等于对应角 (相等角 或互补角)两夹边的乘积之比.【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角 形ADE 的面积等于1,那么三角形ABC 的面积是多少?【解析】所以,S BEF1527SCBF S BEC27 SCBF , S AEGS ADG , SAED28箱SADGGG27 ; DG 7 15 6 28 ;连接AD . •/ BE 3 , AE 6 …AB 3BE , S V ABD 3S VBDE 又 v BD DC 4 ,…S V ABC 2S VABD ,…S V ABC 6S VBDE ,【例7】如图在△ ABC 中,D 在BA 的延长线上,E 在AC 上,且AB: AD 5:2 , AE:EC 3:2 , ADE 12平方厘米,求 △ ABC 的面积.【解析】连接 BE , ADE : ABE AD : AB 2:5(2 3):(5 3)S ABE : S ^ ABC AE:AC 3: (32) (3 5): (3 2) 5 ,所以 S ^ADE : S ^ ABC (3 2) : 5 (3 2) 6:25,设 ADE 6 份,贝S $△ ABC 25 份, S SDE 12平方厘米,所以1份是2平方厘米,25份就是50平方厘米,△ ABC 的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共 角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比…SvABC3SvABE又v AB 5AD…S vADESVABE5 SVABC15【巩固】如图,三角形 ABC 被分成了甲(阴影部分)、乙两部分, BE 3, AE 6,乙部分面积是甲部分面积的几倍?BD DC 4 ,【解析】【例8】如图,平行四边形ABCD , BE AB , CF 2CB , GD 3DC , HA 4AD ,平 行四边形ABCD 的面积是2 ,求平行四边形ABCD 与四边形EFGH 的面 积比.【例9】如图所示的四边形的面积等于多少?【解析】题目中要求的四边形既不是正方形也不是长方形, 难以运用公式直接 求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三 角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新 图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形 的面积. 因此,原来四边形的面积为12 12 144.(也可以用勾股定理) 【例10】如图所示, ABC 中, ABC 90 , AB 3 , BC 5,以AC 为一边向 ABC 外作正方形ACDE ,中心为O ,求OBC 的面积.又S ^ABC 1,所以 S ^ FBE3 .同理口」彳得 S ^ GCF 8 , S ^ DHG 15 ,S ^ AEH8•以 S EFGH S ^ AEH S ^CFG 所以 SABCD2 1. SEFGH3618S ^ DHG S ^ BEF SABCD8 8 15+3+2【解析】连接AC 、BD .根据共角定理•.•在△ ABC 禾口 △ BFE 中, ABC 与 FBE 互补, • ABC AB BC 11 1S ^FBEBE BF 门 3 .36.HEE【解析】如图,将OAB 沿着O 点顺时针旋转90,到达OCF 的位置.由于 ABC 90 , AOC 90,所以 OAB OCB 180 .而 OCF OAB , 所以 OCF OCB 180,那么B 、C 、F 三点在一条直线上.由于OB OF , BOF AOC 90,所以BOF 是等腰直角三角形,且斜边BF 为5 3 8,所以它的面积为82 - 16 .4根据面积比例模型,OBC 的面积为16 510 .8【例11】如图,以正方形的边 AB 为斜边在正方形内作直角三角形 AEB 90 , AC 、BD 交于 O . 三角形OBE 的面积.【解析】如图,连接DE ,以A 点为中心,将ADE 顺时针旋转90到ABF 的位置. 那么 EAF EAB BAF EAB DAE 90,而 AEB 也是90,所以四边 形AFBE 是直角梯形,且 AF AE 3 ,所以梯形AFBE 的面积为:1 / 2\ 3 5 312( cm ).2又因为ABE是直角三角形,根据勾股定理,AB 2 AE 2 BE 2 3 2 52 34 ,所以S ABD那么S BDE 1 2-AB 217( cm 2). 2 /S ABDS ABE S ADES ABD S AF BE17 12 5( Cm ),所以S OBE1 2 s BDE2・5 ( cm 2).ABE , 5cm ,求已知AE 、BE 的长分别为3cm 、 ES AADE ADC1 2S2 3 S ABC1BF S A ABD3,所以FE S3【例12】如下图,六边形ABCDEF中,AB ED , AF CD , BC EF,且有AB平行于ED , AF平行于CD , BC平行于EF ,对角线FD垂直于BD ,已知FD 24 厘米,BD18厘米,请问六边形ABCDEF的面积是多少平方厘米?【解析】如图,我们将BCD平移使得CD与AF重合,将DEF平移使得ED与AB重合,这样EF、BC都重合到图中的AG 了 .这样就组成了一个长方形BGFD,它的面积与原六边形的面积相等,显然长方形BGFD的面积为24 18 432平方厘米,所以六边形ABCDEF的面积为432平方厘米.【例13】如图,三角形ABC的面积是1 ,BD:DC 1:2 , AD 与BE 交于点 F .E是AC的中点,点D在BC上,且则四边形DFEC的面积等于____________ ,1方法二:连接DE,由题目条件可得到S A ABD ABC【解析】方法一:连接CF,根据燕尾定理,设BDF如图所标所以S DCEF1 份,则S ADCF5 5ABC12 122份,S A ABF BD 1S A ABF AESA ACFDC 2,S△CBFECS A ABF3份,SA AEFS A EFC13份,3131 s 1 1 s 11 1s 1—S ^ DEB二 二S^ BEC二 二 二ABC 二,22 32 3 2 12而S A CDES A ABC .所以则四边形DFEC 的面积等于—.3 2312【巩固】如图,长方形ABCD 的面积是2平方厘米,EC 2DE ,F 是DG 的中点.阴 影部分的面积是多少平方厘米?平方厘米.【例14】四边形ABCD 的对角线AC 与BD 交于点0(如图所示).如果三角形ABD的面积等于三角形BCD 的面积的1 ,且AO 2 , DO 3 ,那么CO 的长度3是DO 的长度的 _________ 倍.【解析】在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无 外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解 决;⑵通过画辅助线来改造不良四边形 .看到题目中给出条件S/ABD : S/BCD 1:3,这可以向模型一蝶形定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得 到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H , CG 垂直BD 于G ,面积比转化为高 之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝶形定理的优势,从 而主观上愿意掌握并使用蝶形定理解决问题.解法一:T AO :OC s ABD : s BDC 1: 3,二 OC 2 3 6,二 OC:OD 6:3 2:1 .解法二:作 AH BD 于H , CG BD 于G .S A DEF【解析】设S A DEF 1份,则根据燕尾定理其他面积如图所示 S阴影职BCD12512•/ sABD3S BCD ,…AH 1 CG ,…sAOD1—s DOC3D E C13y【巩固】如图,四边形被两条对角线分成 4个三角形,其中三个三角形的面 积已知,求:⑴三角形BGC 的面积;⑵AG:GC ?【例15】如图,平行四边形 ABCD 的对角线交于0点,A CEF 、△OEF 、△ODF 、 △ BOE 的面积依次是 2、4、4和6.求:⑴求厶OCF 的面积;⑵求△ GCE 的面积.【解析】⑴根据题意可知,A BCD 的面积为2 4 4 6 16,那么△ BCO 和CDO 的 面积都是16 2 8,所以A OCF 的面积为8 4 4 ;⑵由于A BCO 的面积为8, △ BOE 的面积为6,所以△ OCE 的面积为 8 6 2 ,根据 蝶 形定理EG :FG S COE : S COF 2:4 1: 2 , 所 以SGCE : SGCFEG:FG"2 ,那么S G CE1SSCEF1 2 21 23 3 •为2平方厘米,求长方形ABCD 的面积.【例16】如图,长方形ABCD 中, BE:EC 2:3 , DF : FC 1:2,三角形DFG 的面积【解析】⑴根据蝶形定理, ⑵根据蝶形定理,因为M 是AD 边上的中点,所以AM : BC 1:2 ,根据梯形蝶形定理可以知 道S A AMG : S A ABG : S A MCG : S A BCG 1 : (1 2) : (1 2) : 21: 2:2:4 , 设S △ AGM 1份,则S A MCD 1 2 3 份,所以正方形的面积为1 2 2 4 3 12份, s 阴影 2 2 4份,所以 s 阴影:S 正【解析】SVDEF【例17】(3 1 1)S丄乩(5 3 2)S长方形ABCD和8长方形ABCD因为 S VA ED 2 S 长方形 ABCD , AG : GF厘米,所以S/AFD1 2 12平方厘米.ABCD 的面积是72平方厘米.DF:FC 1:2110 因为5:1,所以S V AGD1 、SVAFD S长方形 ABCD, 所以长方形6如图,正方形ABCD 面积为3平方厘米, 阴影部分的面积.5S VGDF10 平方M 是AD 边上的中点.求图中【解析】D F连接AE , FE . 因 为 BE:EC 2:3D F1: 3, 所以S阴影1平方厘米.方形【巩固】在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF的面积为1平方厘米,那么正方形ABCD面积是平方厘米.【解析】连接DE ,根据题意可知BE: AD 1:2 ,根据蝶形定理得2S弟形(1 2)9(平方厘米),ECD 3(平方厘米),那么S WABCD 12(平方厘米)•BC:CE 3:2 ,三角形ODE的面积为6平方厘平方厘米.【解析】连接AC .由于ABCD是平仃四边形,BC:CE 3:2,所以CE::AD2:3 ,根据梯形蝶形定理,S VCOE:S AOC : S VDOE2:S VAOD 2: 23: 23: 324: 6:6:9,所以S VAO C6(平方厘米),SVAOD 9 (平方厘米),又【例18】已知ABCD是平行四边形,米.则阴影部分的面积是A DA DSVA BCS VA CD 6 9 15(平方厘米),阴影部分面积只为6 1521(平方厘米).【巩固】右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是______________ 平方厘米.【分析】连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么 SOCD SOAE .2 根据蝶形疋理,S OCD S OAE S OCE S OAD 4 9 36,故 S OCD 36, 所以S 6(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所 示(单位:平方厘米),阴影部分的面积是 _________ 平方厘米.【解析】连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么根据蝶形定理,S OCD SOAE SOCE SOAD 2816,故 SOCD 16, 所以S OCD 4(平方厘米).另解:在平行四边形ABED 中,S ADE - S Y ABED - 16 812 (平方厘米),2 2所以 SAOE SADE SAOD 128根据蝶形定理,阴影部分的面积为8 2 4 4(平方厘米).【例19】如图,长方形ABCD 被CE 、DF 分成四块,已知其中 3块的面积分别 为2、5、8平方厘米,那么余下的四边形OFBC 的面积为 ______________ 平方厘米.【解析】连接DE 、CF .四边形EDCF 为梯形,所以S EOD S V FOC,又根据蝶形定理,S EOD 4(平方厘米),S ECD 4 8 12(平方厘米).那么长方形ABCD 的面 积为12 2 24平方厘米,四边形OFBC 的面积为24 5 2 8 9(平方厘OCDS OAE .S EOD S FOC S EOF S COD , 所以 S EOD SFOC S EOF S COD 28 16,所以米).【例20】如图,ABC 是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交 于K点.已知正方形DEFG 的面积48, AK:KB 1:3,贝卩BKD 的面积是 多少?【解析】由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC 是梯形.在 梯形ADBC 中,BDK 和ACK 的面积是相等的.而AK :KB 1:3,所以ACK 的面积是ABC 面积的丄 丄,那么BDK 的面积也是 ABC 面积的-.1 3 44由于ABC 是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么 M 是BC 的中点,而且AM DE ,可见 ABM 和ACM 的面积都等于正方 形DEFG 面积的一半,所以 ABC 的面积与正方形DEFG 的面积相等,为 48. 那么BDK 的面积为48 - 12 .4【例21】下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是 AB , BC , CD , DA 的中点,如果左图中阴影部分与右图中阴影部分 的面积之比是最简分数 印,那么,(m n)的值等于 ___________n【解析】左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观 察发现两个图中的空白部分面积都比较好求, 所以可以先求出空白部 分的面积,再求阴影部分的面积.如下图所示,在左图中连接EG .设AG 与DE 的交点为M . 左图中AEGD 为长方形,可知 AMD 的面积为长方形AEGD 面积的-,所4以三角形AMD 的面积为12 1 11.又左图中四个空白三角形的面积是2 48相等的,所以左图中阴影部分的面积为1 1 4丄.8 2B F C如上图所示,在右图中连接AC 、EF .设AF 、EC 的交点为N . 可知EF // AC 且AC 2EF .那么三角形BEF 的面积为三角形ABC 面积的1,所以三角形BEF 的面积为12 1 --,梯形AEFC 的面积为---. 4 2 4 82 8 8在梯形AEFC 中,由于EF:AC 1:2,根据梯形蝶形定理,其四部分的面 积比为:12:1 2:1 2: 22 1:2: 2: 4 ,所以三角形EFN 的面积为24,那么四边形BENF的面积为1 24 i .而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为 1 14〕.6 3 那么左图中阴影部分面积与右图中阴影部分面积之比为3:2 ,2 3m 3 n 2,那E 么 m n 3 2 5 .【例22】 如图, A ABC 中,DE , FG , BC 互相平行,AD DF FB , 贝y 足 ADE : S四边形DEGF:S 四边形FGCB ________________________________________ .【巩固】 如图, DE 平行BC ,且 AD 2 , AB 5 , AE 4,求 AC 的长.3 18 12 2 4【解析】设S AADE 1份,根据面积比等于相似比的平方,所以 S A ADE : S A AFG AD : AF 1:4 , 因此S △ AFG 4份, S A ABC 9份,S A ADE : SA ABCAD 2: AB 21:9 ,进而有Sg 边形DEGF3份, S 四边形FGCB 5份,所以S A ADE:乐边形DEGF :足边形FGCB1:3: 51111422A【解析】 由金字塔模型得 AD:AB AE: ACDE: BC 2:5 ,所以 AC 4 2 5 10【巩固】如图, A ABC 中,DE , FG ,相平行,MN ,PQ ,BC 互AD DFFM MP PB , 则S A ADE : S 四 边形DEGF : S 四边形FGNM :s 四边形MNQP: S 四边形PQCB设 SA ADE1份,S A ADE : S A AFG AD 2 :AF 2 1: 4,因此 S A AFG4份,进而有 §四边形DEGF 3份,同理有S四边形FGNM5份,§四边形MNQP 7份 ,&边形PQCB 9份.【解析】 所以有S A ADE: S四边形DEGF : S 四边形FGNM : S 四边形MNQP : S 四边形PQCB1: 3: 5:7: 9【例23】 如图,已知正方形ABCD 的边长为4 , F 是BC 边的中点,E 是DC 边上 的点,且 DE:EC 1:3 ,BAF 与BE 相交于点G ,求S A ABG【解析】 【例24】FCM方法一:连接AE ,延长AF , 所以有AB:CM 沙 S ABGS A ABE方法AEFBF:FC 1:1,因此 CM 4 漏 -(411连2S A ABF : S AEFBG:GE4 2)AE, EF2 4DC 两条线交于点M ,构造出两个沙漏,再根据另 所 GB:GE 32 11 .4:7 ,所以SA ABG,根据题意有CE 3,AB: EM 4:7SA ABESA ABF蝶4 已知平行四边形ABCD 的面积是1 , 如图所示,点, BF 交EC 于M ,求 BMG 的面积.(4 42 4疋2) 32 F 是AB 、AD 的中【解析】 AD 的中点, 得 EF//BD【例25】 【解析】 FD:BC FH : HC 1:2 ,EB:CD BG:GD 1:2 所以 CH : CF GH : EF 并得G 、H 是BD 的三等分点, BG: EF BM : MF 2:3,所以 BM又因为BG 1BD ,所以S BMG3解法二:延长CE 交DA 于I 1:1,可得, BM : MF可得S AI:BC AE: EB BC: IF 2:3 , 2 1BMG —_S BDF5 3BM所以 2BF51 2 3 5BG2:3, GH ,所以1S22 5BFDABDBFD1 1S2 2S YA BCD130 °如右图, 从而可以确定 2 -BF ,5—S/ABCD41 BG - BD3丄 30M 的点的位置,(鸟头定理),如图,ABCD 为正方形,AM 形PQRS 的面积为多少?(法1)由AB //CD,有 MNPC DC,MQ QC 1MC,所以 PQ 级CNB DEFC 1cm 且 MN 2 cm ,请问四边所以PC 2PM,又器MB EC, 所以3MC i MC ,所以 S SPQR 占 S AMCF的i ,以 S SPQR1(112) (cm ).63(法 2)如图,连结 AE ,则 S ABE - 4 4 8 ( cm 2),2RB ERRB AB小 2小 216 2\而,所以2 , S ABR S ABE8( cm ).AB EFEF EF 33 3112MN MP而 S MBQ S ANS 3 43 ( cm ),因为 --- 22 DC PC 所以MP -MC ,则S MNP -24- -( cm 2),阴影部分面积等于3233【例26】如右图,三角形 ABC 中,BD:DC 4:9 , CE: EA 4:3,求 AF : FB .【解析】根据燕尾定理得S A AOB :S A AOC BD :CD 4:912:27(都有△ AOB 的面积要统一,所以找最小公倍数) 所以 S A AOC : S A BOC 27:16AF : FB【点评】本题关键是把△ AOB 的面积统一,这种找最小公倍数的方法,在我 们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达 到解奥数题四两拨千斤的巨大力量! 【巩固】 如右图,三角形 ABC 中,BD:DC 3: 4 , AE:CE 5:6,求AF :FB .【解析】根据燕尾定理得S A AOB S AOC BD :CD 3: 4 15:20S A AOB : S A BOC AE : CE 5: 615:18(都有△ AOB 的面积要统一,所以找最小公倍数) ^所以 S A AOC : S A BOC 20 :1810:9AF : FBSABR S ANS SMBQ SMNP163 3 34 -(cm 2). 33S^ AOB : SA BOCAE : CE 3: 4 12:16【巩固】如右图,三角形ABC中,BD:DC 2:3 , EA:CE 5: 4,求AF : FB .【解析】根据燕尾定理得 S ^AOB S AOC BD :CD 2:3 10:15S ^AOB : S ^ BOC AE : CE 5: 410:8(都有△ AOB 的面积要统一,所以找最小公倍数)所以 S ^ AOC : S ^BOC 15:8 AF : FB【点评】本题关键是把△ AOB 的面积统一,这种找最小公倍数的方法,在我 们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达 到解奥数题四两拨千斤的巨大力量!【例27】如右图,三角形 ABC 中,AF: FB BD: DC CE: AE 3:2,且三角形 ABC 的 面积是1,则三角形 ABE 的面积为 ____________ ,三角形AGE 的面积为 ________ ,三角形GHI 的面积为 ______ .AA的面积是1,求三角形ABC 的面积.【分析】连接AH 、BI 、CG . 由于CE: AE 3:2,所以AE 根据燕尾定理,S ACG : S ABG : S BCGSACG : S ABG 4:6:9,贝y 2 j4 _8 5 1995 ' 2AC ,5CD : BD■4 19S ACG同样分析可得S ACHEG : EB S ACG : S ACB 4:19 ,AG:GI : ID 10:5: 4 ,所以 S BIE ?S BAE @ 2 -1010 55【巩固】如右图,三角形ABC 中,故 S ABE2:32S S ABC 5SBCG : S ABG BCG19_9 19EG:GH:HBA S A S BIE 1919 AF : FB BD: DC S GHICE:EA 3:2,所以SACG : S ACH 4: 9,4:5:10 ,同样分析可得EG : EH1丄5 19 •CE: AE 3: 2,且三角形 GHIAH同理可知A CG和ABH 的面积也都等于ABC 面积的f ,所以阴影三角积的7倍.【解析】连接BG根据燕S A ABG : S A AGC BD : DC 3: 29:6得 S A BGC4(份),ABG9(份), S AGC : S A BGCAF : FB 3: 2 6:4则 S A ABC 19(份), 因此呂GCSA ABC2所以- S A GHI19 6 619SA ABC同理连接AI 、CH 得4 2, ASA ABC19 SA ABC三角形GHI 的面积是1,所以三角形ABC 勺面积是 191919【巩固】 如图, ABC 中BD 2DA , CE 2EB , AF 2FC ,那么 影三角形面积的 ___________ 倍.ABC 的面积是阴【分析】如图,连接AI .根据燕尾定理,S BCI :S ACI BD : AD 2:1 , S BCI : S ABI CF : AF 1: 2 ,所以, S ACI : S BCI : S ABI1:2:4,那么,S BCI-S ABC -S1 2 47ABC •形的面积等于 ABC 面积的1 +,所以ABC 的面积是阴影三角形面 【巩固】如图在△ ABC 中,罟EAFB FAr 求x ABC 的面积的值.ED【解析】连接BG 设S A BGC 1份,根据燕尾定理S A AGC : S A BGC AF : FB 2:1 , S A ABG : S A AGC BD : DCS A ABG 4(份),则S AABC7(份),因此 仏 ?,同理连接AI 、CH 得S A ABC7S A ABH 2 S A BIC【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置 上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很 多题目都是用“同理得到”的,即再重复一次解题思路,因此我们 有对称法作辅助线•【例28】 如图,三角形 ABC 的面积是1 , BD DE EC , CF FG GA ,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【解析】设BG 与 AD 交于点P, BG 与 AE 交于点Q BF 与AD 交于点M BF 与AE 交于点N 连接CP CQ CM CN根据燕尾疋理, 5A ABP : S A CBP AG : GC 1:2 , S A ABP : S A ACP BD : CD 1: 2 ,设1351 1 _511丄 15S 四边形MNED—S四边形NFCES四边形GFNQ3 35 70 423 21 42 63 21 6 425A ABC7 SA ABC2:1 ,得 S A AGC 2(份),7,所以S A GHISA ABC S A ABP 1(份),则 S A ABC 122 5(份),所以S A ABP S A AQG同理可得,1 ? 丄S A ABQ -, S A ABN 丄i而 S A ABG1所以S A APQ723同理, S A BPM2SS A BDM35 21,所以s四边形PQMN3570A A_2 1 3 7 5 35【巩固】如图,ABC 的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC根据对称性,可知四边形CEHJ的面积也为84,那么四边形JK |H周围的图形的面积之和为S CGKJ 2 S AGI S ABE □ 2 2 1里,所以四边形JKIH8415 3 70的面积为1 61 2 .7070[例 29】右图,△ ABC 中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M , AF 与BG 交于N ,已知△ ABM 的面积比四边形FCGN 的 面积大7.2平方厘米,则△ ABC 的面积是多少平方厘米?【解析】连接CM 、CN .1S ; SA ABC,根据燕尾定理,SA ABM : SA CBMAG : GC 1:1,SA ABM : SA ACMBD :CD1:3,所以再根据燕尾定理,S ABN : S A CBNAG :GC 1:1,所以2 ABN : S A FBNSA CBN : SA FBN4:3,所以 AN : NF4:3,那么邑遊SA AFC边的三等分点,那么四边形 JKIH 的面积是多少?【解析】连接CK 、CI 、CJ . 根据燕尾定理, S ACK : S ABK 所以 S ACK : S ABK : S CBK 类似分析可得S AGICD:BD 1 :2 , S ABK : S CBK1:2:4,那么 S ACK11,12 4 72 AG :CG 1:2, -S 3S AGK1ACK21那么,15 SCBJAF :CF2 :1S CGKJ1 1 17 — ——4 21 84,S ABJ : S ACJ BD:CD 2:1,可得S ACJABM又 S【例30】如图,面积为I 的三角形ABC 中, D E 、F 、G H I 分别是AB BC CA 的三等分点,求阴影部分面积.【解析】三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理 吧!令BI 与CD 的交点为M AF 与CD 的交点为N, BI 与AF 的交点为P, BI 与CE 的交点为Q 连接AM BN CP⑴求 S 四边形ADMI : 在A ABC 中,根据燕尾定理,同理可得另外两个顶点的四边形面积也分别是△ ABC 面积的£⑵求s 五边形DNPQE:在A ABC 中,根据燕尾定理同理另外两个五边形面积是△ ABC 面积所以&CGNS A AFC 75 1S A ABC7 4根据题意,有5S A ABC 28S A ABCS A ABC •287.2,可得 S A ABC336 (平方厘米)S A ABM : S A CBMAI : CI1:2 S A ACM : S A CB MAD : BD 1: 2设 S A ABM 则 S A CBM2 (份),S A ACM1(份),S A ABC4(份),所以S A ABM S A ACM —S A ABC, 4所以S A ADM—S A ABM3SA ABC , SA AIM12—S 12△ ABC 5 所以窃边形ADMI^')S A ABC1S AABC,SA ABN : SA ACN BF: CF 1: :2 S A ACN : S A BCNAD : BD 1:2,所以 S A ADN — S A ABN 1 1sS A ABC 1 S A ABC,同理S A 在3 A ABC 3 7 中21 1根据SA ABP : SA ACPBF:CF 1: 2 , S A ABP : S A CBPAI :CI 1:2所以S A ABP 1 S A ABC燕八S五边形DNPQESA ABP SA ADNSA BEP5 21丄S△ ABC21^S A AB Cs阴影11 33 13105705BEQ — S A ABC21【例31】如图,面积为I 的三角形ABC 中, D E 、F 、G H I 分别是AB BG CA 的三等分点,求中心六边形面积.【解析】设深黑色六个三角形的顶点分别为 N R 、P 、 在△ ABC 中根据燕尾定理,S AABR : S AACR BG : CG.S \ABR:S 4CBRAI : C I 1: 2所以 S\ ABR2S AABC 5 同理S2SSS2SA CQBS \ ABC777所以 S\ RQS2 1 -2 2 1 ,同理 S A MNP17 7 7 77根据容斥原和上题结果S 六边形11 1317 7 70 10课后练习:练习1.已知△ DEF 的面积为7平方厘米,BE CE,AD 2BD,CF 3AF ,求△ ABC 的 面积.【解析】S A BDE :S A ABC(BD BE): (BA BC)(1 1):(2 3) 1:6 , S A CEF:S A ABC (CE CF):(CB CA)(1 3):(2 4) 3:8S\ ADF :S A ABC (AD AF): (AB AC)(2 1):(3 4) 1:6设 S A ABC 24 份,则S A BDE 4份, S A ADF 4份,S A CEF9份,S A DEF24 4 4 9 7份,恰好是7平方厘米,所以$△ ABC 24平方厘米练习2.如图,四边形EFGH 的面积是66平方米,EA AB , CB BF , DC CG , HD DA ,求四边形ABCD 的面积.S 、M Q 连接CR2 :1 ,练习3.正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点, 四边形BGHF 的面积是 平方厘米.而EH :HC E M :CD ( 1 — AB 2AB) :CD 3: 2 , 而CF 1 BC 所以 S CHF 1 2 S BCE 1 S BC 2112 55S BCE1 AB BC 120 302 241177 S四边形BGHF S EBC 上EB C -S EBC —S EBC351515BM : DC MF: FD BF : FC3014.1:1 ,得 CH -CE , 5 连接BD .由共角 定理得 S A BCD : S ACGF (CD CB) : (CGS \ CGF2S^ CDB同理A BD :S A AHE1: 2,即 S A AHE2SA ABD所以AHE SA CGF2(SA CBDSA ADB )2S^边形 ABCD连接AC , 同理可以得到 S\ DHGS A BEF2S 四边形 ABCDS四边形EFGHS A AHECGFS A HDG S A BEF S四边形 ABCD 5S 四边形 ABCD所以S 四边形ABCD 66 5 13.2平方米EBG 和 【解析】欲求四边形BGHF 的面积须求出 由题意可得到: EG:GC EB:CD 1:2 , 将AB 、DF 延长交于M 点,可得: CHF 的面积.所以可得:S EBG〕S BCE3本题也可以用蝶形定理来做, FH : HD ),同样也能解出. 连接 EF ,确定H 的位置(也就是 HG BFE【解析】CF) 1:2 ,即DC。

小学奥数任意四边形、梯形与相似模型(二)

小学奥数任意四边形、梯形与相似模型(二)

板块二 梯形模型的应用梯形中比例关系(“梯形蝴蝶定理”):A BCDO ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)【例 1】 如图,22S =,34S =,求梯形的面积.S 4S 3S 2S 1【考点】梯形模型 【难度】2星 【题型】解答【巩固】 如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.3525OABCD【考点】梯形模型 【难度】2星 【题型】填空【巩固】 如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O 。

已知AB =5,CD =3,且梯形ABCD 的面积为4,求三角形OAB 的面积。

A BCDO例题精讲任意四边形、梯形与相似模型【考点】梯形模型 【难度】2星 【题型】解答 【关键词】华杯赛,决赛,15分,第3大题第,1题【例 2】 梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.OA B CD【考点】梯形模型 【难度】3星 【题型】解答【例 3】 如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且35ABD CBD =三角形的面积三角形的面积,那么OC 的长是多少?ABCDO【考点】梯形模型 【难度】2星 【题型】解答 【关键词】华杯赛【例 4】 梯形的下底是上底的1.5倍,三角形OBC 的面积是29cm ,问三角形AOD 的面积是多少?A BCDO【考点】梯形模型 【难度】2星 【题型】解答【巩固】如图,梯形ABCD 中,AOB ∆、COD ∆的面积分别为1.2和2.7,求梯形ABCD 的面积.ODCBA【考点】梯形模型 【难度】2星 【题型】解答【例 5】 在梯形ABCD 中,上底长5厘米,下底长10厘米,20=∆BOC S 平方厘米,则梯形ABCD 的面积是平方厘米。

小学奥数:任意四边形、梯形与相似模型一.专项练习及答案解析

小学奥数:任意四边形、梯形与相似模型一.专项练习及答案解析

随意四边形、梯形与相像模型例题精讲板块一 随意四边形模型随意四边形中的比率关系 (“蝴蝶定理”):DA s 1s 2 s4OBs 3C①S 1:S2S4:S3或许S1S3S2S4②AO:OCS 1S2:S4S3蝴蝶定理为我们供给认识决不规则四边形的面积问题的一个门路.经过结构模型,一方面能够使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也能够获得与面积对应的对角线的比率关系.【例1】图中的四边形土地的总面积是 52公顷,两条对角线把它分红了 4个小三角形,此中2个小三角形的面积分别是 6公顷和 7公顷.那么最大的一个三角形的面积 是多少公顷?D66 CE 77AB【考点】随意四边形模型 【难度】2星 【题型】解答 【分析】在VABE ,VCDE 中有AEBCED ,因此VABE ,VCDE 的面积比为(AEEB):(CE DE).同理有VADE ,VBCE 的面积比为(AE DE):(BEEC).所 以有SVABE ×SV CDE=SVADE ×SV BCE ,也就是说在全部凸四边形中,连结极点获得 2 条对角线,有图形分红上、下、左、右4个部分,有:上、下部分的面积之积等于左右部分的面积之积. 即SV ABE 6=SV ADE 7,因此有VABE 与VADE 的面积比为7:6,SVABE= 7 21 公顷,SV ADE = 6 18公顷.39 396 7 21 6 7明显,最大的三角形的面积为 公顷.【答案】21【例2】 如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分红四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖构成,求人工湖的面积是多少平方千米?4-3-3.随意四边形、梯形与相像模型 题库page1of8CBOAD【考点】随意四边形模型【难度】2星【题型】解答【重点词】小数报【分析】依据蝴蝶定理求得S △AOD3 12 1.5平方千米,公园四边形ABCD 的面积是12 31.5 7.5平方千米,因此人工湖的面积是 7.5 6.92 0.58平方千米【答案】0.58【例3】 一个矩形分红4个不一样的三角形(如右图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?黄绿15%【考点】随意四边形模型 【难度】3星 【题型】解答【重点词】华杯赛,初赛,第 7题【分析】黄色三角形与绿色三角形面积之和是矩形面积的 50%,而绿色三角形面积占矩形面积的15%,因此黄色三角形面积占矩形面积的 50%-15%=35%已知黄色三角形面积是 21平方厘米,因此矩形面积等于 21÷35%=60(平方厘米)【答案】60【稳固】如图,四边形被两条对角线分红 4⑴三角形BGC 的面积;⑵ AG:GC 个三角形,此中三个三角形的面积已知,求:?D13 GBC 【考点】随意四边形模型 【难度】2星 【题型】解答【分析】⑴依据蝴蝶定理, S VBGC 1 2 3,那么S VBGC 6;⑵依据蝴蝶定理,AG:GC 12:3 61:3.【答案】1:3【例4】四边形ABCD 的对角线AC 与BD 交于点O (如下图).假如三角形ABD 的面积等于三角形BCD 的面积的 1,且AO2,DO3,那么CO 的长度是DO 的长度的_________倍.3ADADHGOOBCBC【考点】随意四边形模型 【难度】3星 【题型】填空【分析】在此题中,四边形ABCD 为随意四边形,关于这类”不良四边形” ,无外乎两种处4-3-3.随意四边形、梯形与相像模型题库page2of8理方法:⑴利用已知条件,向已有模型聚拢,造不良四边形.看到题目中给出条件SVABD从而迅速解决;⑵经过画协助线来改:S1:3,这能够向模型一蝴蝶定理VBCD聚拢,于是得出一种解法.又察看题目中给出的已知条件是面积的关系,转变为边的关系,能够获得第二种解法,可是第二种解法需要一此中介来改造这个”不良四边形”,于是能够作AH垂直BD于H,CG垂直BD于G,面积比转变为高之比.再应用结论:三角形高同样,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生领会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题.解法一:∵AO:OCS ABD:S BDC1:3,∴OC236,∴OC:OD6:32:1.解法二:作AH BD于H,CG BD于G.1111∵S ABD S BCD,∴AH CG,∴S AOD S DOC,∴AO CO,∴3333OC 2 3 6,OC:OD6:32:1.【答案】2倍【例5】如图,平行四边形ABCD的对角线交于O点,△CEF、、、△OEF△ODF△BOE的面积挨次是2、4、4和6.求:⑴求△OCF的面积;⑵求△GCE的面积.A DOFGBEC【考点】随意四边形模型【难度】3星【题型】解答【分析】⑴依据题意可知,△BCD的面积为244616,那么△BCO和CDO的面积都是1628,因此△OCF的面积为844;⑵因为△BCO的面积为8,△BOE的面积为6,因此△OCE的面积为862,根据蝴蝶定理,EG:FG S COE:S COF2:41:2,所以S GCE:S GCF EG:FG1:2,那么S GCE11S CEF122.233【答案】23【例6】如图相邻两个格点间的距离是1,则图中暗影三角形的面积为.A AD DB B OC C【考点】随意四边形模型【难度】4星【题型】填空【重点词】清华附中,入学测试题【分析】连结AD、CD、BC.则可依据格点面积公式,能够获得ABC的面积为:14,ACD的面积为:31 3.5,ABD的面积为:2413.所123222以BO:OD SABC:SACD2:3.54:7,因此S ABO47S ABD4312.41111【答案】12114-3-3.随意四边形、梯形与相像模型题库page3of8【稳固】如图,每个小方格的边长都是1,求三角形ABC 的面积.ED ABC【考点】随意四边形模型 【难度】4星 【题型】解答【分析】因为BD:CE2:5 ,且BD ∥CE , 所 以DA:AC2:5,S ABC5 S DBC5 210.2 577【答案】107【例7】 如图,边长为 1的正方形ABCD 中,BE 2EC ,CFFD ,求三角形AEG 的面积.ADADGGFFB EC B EC【考点】随意四边形模型 【难度】4星【题型】解答【重点词】人大附中考题【分析】连结EF .因为BE 2EC ,CFFD,因此S DEF1 1 11( 3 )S WABCD S WABCD .2212因为S AED1S WABCD ,依据蝴蝶定理,AG:GF1:16:1,22 12因此S AGD6S GDF6S ADF6 1S WABCD3S WABCD .77 4 14因此S AGES AEDS AGD1 S WABCD 3 S WABCD2 S WABCD 2,2 14 7 7即三角形AEG 的面积是2.7【答案】27【例8】 如图,长方形ABCD 中,BE:EC 2:3,DF:FC1:2,三角形DFG 的面积为2 平方厘米,求长方形 ABCD 的面积.AG DAGDFFBECBEC【考点】随意四边形模型 【难度】4星【题型】解答【分析】连结AE ,FE .4-3-3.随意四边形、梯形与相像模型 题库page4of8因为BE:EC2:3 ,DF:FC1:2,因此S VDEF31 11.( 3 )S 长方形ABCD S 长方形ABCD5 210因为S VAED1S ,AG:GF1:1 5:1,因此S VAGD 5S VGDF 10平方厘米,因此2 长方形ABCD2 10S VAFD12平方厘米.因为S VAFD1S 长方形ABCD ,因此长方形 ABCD 的面积是 72平方厘米.【答案】726【例9】 如图,已知正方形ABCD 的边长为10厘米,E 为AD 中点,F 为CE 中点,G 为BF 中点,求三角形BDG 的面积.AEDAEDOFFGGBCBC【考点】随意四边形模型 【难度】4星 【题型】解答【分析】设BD 与CE 的交点为O ,连结BE 、DF .由蝴蝶定理可知EO:OCS VBED :S VBCD ,而S VBED1, 1S WABCD S VBCDS WABCD,因此42EO:OCS VBED :S VBCD1:2 ,故EO 1.EC3因为F 为CE 中点,因此EF12:3 ,FO:EO1:2.EC ,故EO:EF2由蝴蝶定理可知SVBFD:SVBEDFO:EO1:2,因此S VBFD11,S VBED S WABCD2 8那么S VBGD1S VBFD 1S WABCD 110 10 6.25(平方厘米).216 16【答案】6.25【例10】如图,在 ABC 中,已知M 、N 分别在边AC 、BC 上,BM 与AN 订交于O ,若AOM 、 ABO 和 BON 的面积分别是3、2、1,则 MNC 的面积是 .AMOBCN【考点】随意四边形模型 【难度】4星 【题型】填空【分析】这道题给出的条件较少,需要运用共边定理和蝴蝶定理来求解.依据蝴蝶定理得S MONSAOMSBON3 13S AOB22设S MON x ,依据共边定理我们能够得SANMSABM33 3 22,解得x22.5.,S MNC S MBCx 13x【答案】22.52【例11】正六边形A 1A 2A 3A 4A 5A 6的面积是 2009平方厘米,B 1B 2B 3B 4B 5B 6分别是正六边形各4-3-3.随意四边形、梯形与相像模型 题库page5of8边的中点;那么图中暗影六边形的面积是平方厘米.A 1B 1A 2A 1B 1A 2B 6 B 2B 6O B 2A 6A 3A 6A 3B 5B 3B 5B 3A 5B 4A 4A 5B 4A 4【考点】随意四边形模型 【难度】4星【题型】填空【重点词】迎春杯, 6年级。

梯形奥数

梯形奥数

1、如图所示.在直角三角形ABC中,E是斜边AB上的中点,D是AC的中点,DF∥EC交BC延长线于F.求证:四边形EBFD是等腰梯形.因为E,D是三角形ABC边AB,AC的中点,所以ED∥BF.此外,还要证明(1)EB=DF;(2)EB不平行于DF.解答:证明:∵E,D是△ABC的边AB,AC的中点,∴ED∥BF.∵DF∥EC,∴ECFD是平行四边形,∴EC=DF.∵E是Rt△ABC斜边AB上的中点,∴EC=EB.∴EB=DF.假设EB∥DF,∵EC∥DF,∴EC∥EB,∴这与EC与EB交于E矛盾,∴EB不平行于DF.∴EBFD是等腰梯形.2、如图所示.ABCD是梯形,AD∥BC,AD<BC,AB=AC且AB⊥AC,BD=BC,AC,BD交于O.求∠BCD的度数.由于△BCD是等腰三角形,若能确定顶点∠CBD的度数,则底角∠BCD可求.由等腰Rt△ABC可求知斜边BC(即BD)的长.又梯形的高,即Rt△ABC斜边上的中线也可求出.通过添辅助线可构造直角三角形,求出∠BCD的度数.解答:解:过D作DE⊥EC于E,则DE的长度即为等腰Rt△ABC斜边上的高AF,设AB=a,由于△ABF也是等腰直角三角形,由勾股定理知AF2+BF2=AB2,即2AF2=a2(AF=BF),∴AF2= ,∴DE2= ,又BC2=AB2+AC2=2AB2=2a2,由于BC=DB,∴在Rt△BED中,= = = ,∴= ,从而∠EBD=30°(直角三角形中30°角的对边等于斜边一半定理的逆定理).在△CBD中,∴.3、如图所示.直角梯形ABCD中,AD∥BC,∠A=90°,∠ADC=135°,CD的垂直平分线交BC于N,交AB延长线于F,垂足为M.求证:AD=BF.由MF是DC的垂直平分线,所以ND=NC.由AD∥BC及∠ADC=135°知,∠C=45°,从而∠NDC=45°,∠DNC=90°,所以ABND是矩形,进而推知△BFN是等腰直角三角形,从而AD=BN=BF.解答:解:证明:连接DN,∵N是线段DC的垂直平分线MF上的一点,∴ND=NC.已知AD∥BC及∠ADC=135°,∴∠C=45°,∴∠NDC=45°(等腰三角形性质).在△NDC中,∠DNC=90°(三角形内角和定理),∴ABND是矩形,∴AF∥ND,∠F=∠DNM=45°.∴△BNF是一个含有锐角45°的直角三角形,∴BN=BF,已证得AD=BN,∴AD=BF.4、如图所示.直角梯形ABCD中,∠C=90°,AD∥BC,AD+BC=AB,E是CD的中点.若AD=2,BC=8,求△ABE的面积.取腰AB的中点F,连接EF,利用梯形的中位线性质可得EF= (AD+BC)=5,且EF∥AD,过A作AG ⊥BC于G,交EF于H,则AH,GH分别是△AEF与△BEF的高,根据勾股定理可求出AG的长,这样S△ABE=(S△AEF+S△BEF)可求.解答:解:取AB中点F,连接EF.由梯形中位线性质知EF∥AD,过A作AG⊥BC于G,交EF于H.由平行线等分线段定理知,AH=GH且AH,GH均垂直于EF.在Rt△ABG中,由勾股定理知:AG2=AB2-BG2=(AD+BC)2-(BC-AD)2=102-62=82,∴AG=8,从而AH=GH=4,∴S△ABE=S△AEF+S△BEF= EF•AH+ EF•GH= EF•(AH+GH)= EF•AG= ×5×8=20.5、如图所示.四边形ABCF中,AB∥DF,∠1=∠2,AC=DF,FC<AD.(1)求证:ADCF是等腰梯形;(2)若△ADC的周长为16厘米(cm),AF=3厘米,AC-FC=3厘米,求四边形ADCF的周长.(1)欲证ADCF是等腰梯形,归结为证明AD∥CF,AF=DC,不要忘了还需证明AF不平行于DC.利用已知相等的要素,应从全等三角形下手.(2)计算等腰梯形的周长,显然要注意利用AC-FC=3厘米的条件,才能将△ADC的周长过渡到梯形的周长.解答:解:(1)∵AB∥DF∴∠1=∠3∵∠1=∠2∴∠2=∠3∴EA=ED∵AC=DF∴EC=EF∴△EAD及△ECF均是等腰三角形∵∠AED=∠CEF∴∠3=∠4∴AD∥CF∵FC<AD∵AC=DF,∠2=∠3,AD=AD∴△ACD≌△DFA(SAS)∴AF=DC∵AD∥CF,FC<AD,AF=DC∴四边形ADCF是等腰梯形.(2)∵△ADC的周长=AD+DC+AC=16(厘米),AF=3(厘米),FC=AC-3∴四边形ADCF的周长=AD+DC+CF+AF=AD+DC+(AC-3)+AF=(AD+DC+AC)-3+3=16(厘米)∴四边形ADCF的周长为16厘米.6、如图所示等腰梯形ABCD中,AB∥CD,AD=CB,对角线AC与BD交于O,∠ACD=60°,点S、P、Q分别是OD、OA、BC的中点.求证:△PQS是等边三角形.由于梯形ABCD是等腰梯形∠ACD=60°,可知△OCD与△OAB均为等边三角形.连接CS,BP根据等边三角形的性质可知△BCS与△BPC为直角三角形,再利用直角三角形的性质可知QS=BP= BC,由中位线定理可知,QS=BP=PS= BC,故△PQS是等边三角形.解答:证明:连CS,∵ABCD是等腰梯形,且AC与BD相交于O,∴AO=BO,CO=DO.∵∠ACD=60°,∴△OCD与△OAB均为等边三角形.∵S是OD的中点,∴CS⊥DO.在Rt△BSC中,Q为BC中点,SQ是斜边BC的中线,∴SQ= BC.同理BP⊥AC.在Rt△BPC中,PQ= BC.又SP是△OAD的中位线,∴SP= AD= BC.∴SP=PQ=SQ.故△SPQ为等边三角形.7、如图,在梯形ABCD中,AD∥BC,AD=AB=DC,BD⊥DC,求∠C的度数.根据等腰梯形在同一底上的两个角相等得到∠C=∠ABC.根据AD∥BC,AD=AB得到∠ABD=∠CBD,进一步得到∠C=2∠BCD,再根据直角三角形的两个锐角互余进行计算.解答:解:设∠CBD=x∵AD∥BC,∴∠ADB=∠CBD∵AD=AB∴∠ABD=∠ADB∴∠ABC=2∠CBD=2x又∵AB=DC,∴∠C=∠ABC=2x∵BD⊥DC,∴∠CBD+∠C=90°即x+2x=90°解得x=30°∴∠C=60°8、如图所示.梯形ABCD中,AD∥BC,AE∥DC交BC于E,△ABE的周长=13厘米,AD=4厘米.求梯形的周长.根据AD∥BC,AE∥DC可得四边形AECD是平行四边形,根据平行四边形的对边相等,即可求解.解答:解:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∴AE=CD,AD=EC=4cm,又∵△ABE的周长=AB+BE+AE=13cm,梯形ABCD的周长=AB+BC+CD+AD=AB+BE+CD+AD=AB+BE+AE+AD=13+4+4=21cm.9、梯形ABCD中,AB∥CD,∠A+∠B=90°,AB=p,CD=q,E,F分别为AB,CD的中点.求EF.过点F分别作FG∥AD,FH∥BC交AB于G,H,根据平行线的性质及三角形内角和定理可得△FGH是直角三角形,由平行四边形的判定定理可知四边形ADGF、FHBC都是平行四边形,利用勾股定理可求出GH的长,再根据直角三角形的性质可求出EF的长.解答:解:过点F分别作FG∥AD,FH∥BC交AB 于G,H,(如图)∴∠A=∠FGH,∠B=∠FHG,∵∠B+∠A=90°,∴∠FGH+∠FHG=90°,∴△FGH是直角三角形,∵FG∥AD,FH∥BC,AB∥CD,∴四边形ADFG、FHBC都是平行四边形,又∵E、F分别是两底的中点,∴AE=EB,BH=AG,∴GE=EH,∴DF=AG= ,FC=HB= ,FG=AD,FH=BC,在Rt△EGH中,即EF是Rt△FGH斜边的中线,∴EF= GH= (AB-CD)= .10、如图所示.梯形ABCD中,AD∥BC,M是腰DC的中点,MN⊥AB于N,且MN=b,AB=a.求梯形ABCD的面积.延长AM交BC延长线上点G,过点G作GH⊥NM,交NM的延长线上于点H,然后将梯形ABCD的面积转化为梯形HGBN的面积,即可求解.解答:解:延长AM交BC延长线上点G,过点G作GH⊥NM,交NM的延长线上于点H,∵AD∥BC,M是DC中点,∴△ADM≌△GCM,∴AM=MG,即点M也是GA的中点,∵∠H=∠ANM=90°,∴AB∥HG,∵点M也是GA的中点,∴△ANM≌△BHG,∴MN=MH=b,AN=HG,∴GH+BN=BN+AN=AB=a,∴梯形ABCD与梯形HGBN的面积相等,∵S梯形HGBN= (GH+BN)•HN= ×a×2×b=ab,∴S梯形ABCD=ab.11、已知:梯形ABCD中,DC∥AB,∠A=36°,∠B=54°,M,N分别是DC,AB的中点.求证:MN=1/2(AB-CD).作DE∥CB,根据已知条件求出△ADE是直角三角形,再取AE中点F,连DF,求证DMNF是平行四边形,再根据DF是直角△ADE斜边的中线,即可求得结论.解答:证明:如图,作DE∥CB,∵∠A=36°,∠B=54°,∴△ADE是直角三角形,其中AE=AB-CD,∠ADE=90°,取AE中点F,连DF,则FN=AN-AF= AB/2- (AB/2-CD/2)= CD/2,∴FN∥DM且FN=DM,∴DMNF是平行四边形,∴DF=MN,∵DF是直角△ADE斜边的中线,∴2DF=AE=AB-CD,∴2MN=AB-CD。

小学奥数 任意四边形、梯形与相似模型(二) 精选例题练习习题(含知识点拨)

小学奥数  任意四边形、梯形与相似模型(二)  精选例题练习习题(含知识点拨)

板块二 梯形模型的应用梯形中比例关系(“梯形蝴蝶定理”):A BCDO ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)【例 1】 如图,22S =,34S =,求梯形的面积.【巩固】 如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.3525OABCD【巩固】 如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O 。

已知AB =5,CD =3,且梯形ABCD 的面积为4,求三角形OAB 的面积。

例题精讲任意四边形、梯形与相似模型A BCDO【例 2】 梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.OA B CD【例 3】 如下图,四边形ABCD 中,对角线AC 和BD 交于O 点,已知1AO =,并且35ABD CBD =三角形的面积三角形的面积,那么OC 的长是多少?ABCDO【例 4】 梯形的下底是上底的1.5倍,三角形OBC 的面积是29cm ,问三角形AOD 的面积是多少?A BCDO【巩固】如图,梯形ABCD 中,AOB ∆、COD ∆的面积分别为1.2和2.7,求梯形ABCD 的面积.OD CBA【例5】在梯形ABCD中,上底长5厘米,下底长10厘米,20=∆BOCS平方厘米,则梯形ABCD的面积是平方厘米。

小学奥数第九讲-图形的面积(二)

小学奥数第九讲-图形的面积(二)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第九讲图形的面积(二)阅读与思考上讲里我们学习了几何图形中一些面积计算的相关知识和方法。

本讲我们继续探讨平面几何图形面积的计算问题。

对于较为复杂的组合图形的面积问题,要注意观察图形的特点,寻找图形中的内在联系,灵活运用典型的数学思想方法、技巧解题。

1、利用弦图分割拼补求面积:如图1 弦图是由四个相同的长方形拼成一个大正方形,大正方形的边长等于长方形的长和宽的和,小正方形的边长等于长方形的长和宽的差。

根据大小正方形的边长和长方形的长与宽之间的关系可以巧妙地解决许多面积问题。

2、利用等量代换的思想计算有部分图形重叠的组合图形面积计算问题。

这类问题需要我们认真观察图形的特点,从组合图形中重叠的部分出发,寻找图形中的内在联系,巧妙地利用已知图形面积的和与差之间的关系建立等式,等量代换。

从而巧妙地求出组合图形的面积。

3、添加合适的辅助线构造成特殊图形如平行四边形、正方形、等腰直角三角形或等积形等。

添加辅助线的一般技巧有“见中点连中线,见中线延长一半”;“四十五度旁边想直角,分割拼补成等腰”等等。

典型例题|例①|如图2 从一个正方形木板上锯下宽0.5米的一个长方形木条后,剩下的长方形面积为5平方米。

问锯下的长方形木条面积是多少?分析与解这类题可以巧妙地运用弦图来求面积。

如图2 可以看出剩下的长方形的长是原正方形的边长,它的宽比长少0.5米。

根据弦图的启发,我们可以假设有四个与剩下的长方形一样的长方形,把它们拼成如图 3 的大正方形,这个大正方形的边长是长方形的长和宽的和,阴影小正方形的边长是长方形长和宽的差,正好等于0.5米,问题迎刃而解了。

大正方形的面积=0.5×0.5+4×5=20.25,大正方形的边长为4.5米,于是剩下的长方形中长+宽=4.5,长-宽=0.5,长=(4.5+0.5)÷2=2.5(米)。

人教版四年级上数学 第五单元平行四边形和梯形 课时教案+教学反思

人教版四年级上数学 第五单元平行四边形和梯形 课时教案+教学反思

第五单元平行四边形和梯形第1课时平行与垂直【教学内容】:教材第56~57页例1。

【教学目标】:理解垂直与平行这两种直线的位置关系、认识平行线和垂线的概念。

【重点难点】:重点:认识平行与垂直的特点。

难点:对平行与垂直两种位置关系的描述。

【教学过程】:一、创设情境1.教师将两根小棒随意丢在讲台上。

提问:想一想这两根小棒落在讲台上会形成哪些图形呢?你能把这些图形画出来吗?2.引导学生先独立思考,并在纸上画一画,然后在小组中交流。

二、探究新知1.教师参与到学生的交流中,了解情况。

2.选择其中一个小组画出的图形,展示出来。

3.讨论探究。

(1)你能对这些图形进行分类吗?你分类的标准是什么?让学生根据自己的观察说一说,发表自己的意见。

学生可能会按以下几种情况来分类:①②③④(2)把不相交的两条直线再画长一些会怎样?量一量两条相交直线所组成的角分别是多少度。

教师用课件演示把不相交的两条直线延长,让学生继续观察,引导学生认识:在同一个平面内两条直线的位置情况有相交和不相交两种情况。

(板书:相交、不相交)4.构建新知。

(1)在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

课件出示三组平行线图:图中直线a与b互相平行,记作a∥b,读作a平行于b。

(2)找一找日常生活中的平行线。

让学生先在小组中议一议,相互说一说,然后分小组举例说一说生活中平行的例子。

如:电线、窗子、栅栏、门两侧、轨道两边等等。

(3)在同一平面内相交的两条直线所组成的角会是多少度?(90°或不是90°)如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

课件出示:上图中直线a与b互相垂直,记作a⊥b,读作a垂直于b。

(4)找一找日常生活中的垂线。

三、实践应用1.教材第57页“做一做”。

同桌或小组中说一说,集体订正。

2.教材“练习十”第一题。

小组中互相说一说,指名上台指一指。

四年级数学同步奥数 第八讲 三角形 、平行四边形和梯形(图形计数)

四年级数学同步奥数 第八讲 三角形 、平行四边形和梯形(图形计数)

第八讲三角形、平行四边形和梯形(图形计数)[知识概述]几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,因而,要准确计数就需要些智慧了。

实际上,图形计数问题,通常采用一种简单原始的计数方法一枚举法。

具体而言,它是指把所有要计数的对象一一列举出来,以保证列举时不重复、无遗漏,然后计算其总和,正确地解答较复杂的图形个数问题,有助于培养思维的有序性和良好的学习习惯。

例题精学例1A数一数,下图中有多少条线段?[思路分析]同学们可能会凭直觉脱口而出认为图上有4条线段,分别是AB,BC,CD和DE,其实不然,这4条我们称之为最基本的线段,每几条相邻的基本线段还可以组成新的线段,如AB,BC可以组成线段AC,要想得到正确的结果,必须有次序,有条理地数。

方法一:以线段左端点为起点,分类数的方法。

以A点为左端点的线段有:AB,AC,AD,AE,4条;以B点为左端点的线段有:BC,BD,BE,3条;以C点为左端点的线段有:CD,CE,2条;以D点为左端点的线段有:DE,1条。

所以图中共有线段:4+3+2+1=10(条)。

方法二:把图中线段AB,BC,CD,DE看成基本线段。

由一条基本线段组成的线段有:AB,BC,CD,DE,4条;由两条基本线段组成的线段有:AC,BD,CE,3条;由三条基本线段组成的线段有:AD,BE,2条;由四条基本线段组成的线段有:AE,1条。

图中一共有10条线段:4+3+2+1=10(条)。

同步精练数一数,图中各有几条线段。

一共有()条线段。

一共有()条线段。

一共有()条线段。

例2、数一数.图中有多少个角?[思路分析] 我们可以用数线段的方法类推出数角的方法。

以OA为一边的角有:∠AOB,∠BOC,∠COD和∠DOE,把它们看作基本角:由一个基本角组成的角有:∠AOB, ∠BOC,∠COD和∠DOE4个;由二个基本角组成的角有:∠AOC,∠BOD和∠COE,3个;由三个基本角组成的角有:∠AOD,∠BOE,2个;由四个基本角组成的角有:∠AOE,1个。

小学三年级奥数 第45讲:平行四边形与梯形

小学三年级奥数 第45讲:平行四边形与梯形

知识要点屋
两条对角线相互平分。

对角线将面积四等分。

【铺垫】(★★)
①下图中,AB和BC边的高分别是哪条线段?
(★★★)
②下图中以每个平行四边形相邻的两条边分别作底边,请画出底边上的高。

③如图,已知AB=5厘米,AE=3厘米,求平行四边形ABCD的面积。

如图,在平行四边形ABCD中BC=12厘米,AE垂直BC于点E,AF垂
直CD于点F,AE=6厘米,CD=9厘米。

请问:
下图阴影部分的面积为多少?
两个边长为10厘米的正方形相互错开3厘米,那么,图中阴影平行四边形
如图所示,梯形的上底长2厘米,下底长5厘米,高线长2厘米,求梯如图已知直角梯形ABCD的面积是48平方厘米,AD=6厘米,BC=10。

六年级下册小学奥数几何模块一半模型全国通用

六年级下册小学奥数几何模块一半模型全国通用

主讲老师:癸酉0311
主讲老师:癸酉0311 主讲老师:癸酉0311
总结归纳
练一练6:如图,四边形ABCD中,边上各点为所在边的五等分点,已知其中两块的面积是1.
巩固提升 作业2:如图,E为长方形ABCD边上一点,D为梯形AEFG腰上的中点,已知长方形ABCD的面积是20,求梯形AEFG的面积.
6,求四边形ABCD的面积.
基本要求 想要利用一半模型求解问题,必须找出题目中的一半模型,或自己构造出一半模型,所以就要求 我们熟练记忆各种一半模型的典型特征,下面就分类列出.
专题解析
基本形式
例1:如图,长方形被分成四个小长方形,边上各点均为任意点,已知长方形ABCD的面积是24平方厘米,求图中阴影部分的面积. 梯形和任意四边形中的一半模型,图中各点均为四边形各边中点(图3取中位线上任意一点),阴影部分的面积均为四边形面积的一半. 例5:如图,四边形ABCD中的面积是48,E、F为BC、AD的中点,若三角形CDE的面积是16,求图中阴影部分的面积. 练一练7:如图,四边形ABCD中,边上各点为所在边的五等分点,已知阴影部分的面积是10平方厘米,求四边形ABCD的面积. 想要利用一半模型求解问题,必须找出题目中的一半模型,或自己构造出一半模型,所以就要求我们熟练记忆各种一半模型的典型特征,下面就分类列出. 例2:如图,正方形ABCD的边长是8厘米,G为BC边上一点,已知DG长是10厘米,且四边形DEFG是长方形,求长方形DEFG的宽. 例4:如图,梯形ABCD中,E、F为AB、CD的中点,G为EF上一点,若三角形AEG的面积是12,三角形CFG的面积是10,求图中阴影部分的面积. 例4:如图,梯形ABCD中,E、F为AB、CD的中点,G为EF上一点,若三角形AEG的面积是12,三角形CFG的面积是10,求图中阴影部分的面积.

六年级上册奥数试题:第20讲 组合图形的计算 全国通用(含答案)

六年级上册奥数试题:第20讲 组合图形的计算 全国通用(含答案)

第20讲组合图形的计算知识网络组合图形是由一些基本图形如长方形、正方形、三角形、平行四边形、梯形、圆和扇形等组合而成的图形。

在本讲中,主要介绍长方形、正方形、三角形、平行四边形和梯形组合而成的图形。

组合图形的计算,指的是与组合图形的面积、周长等有关的问题的计算。

对五种基本图形,首先要熟记它们面积的基本公式:。

重点·难点组合图形的计算是以上述几种基本图形为基础的。

这几种基本图形的一些酝酿性质的恰当运用是本讲的重点。

这些基本性质包括:等底等高的两个三角形面积相等;等底的两个三角形面积比等于高之比;等高的两个三角形面积比等于底之比。

这三条性质都是三角形的性质,它们同样适用于平行四边形和长方形。

学法指导在求组合图形的面积时,可用一些比较常用的方法,如:直接法、相加法和相减法、翻转法、等积移位法、重叠法。

最终的目的是将这些图形转化成我们熟悉的简单规则图形的和或差。

同时,也可以构造图形,利用面积的关系来解一些代数题,如关于线段成比例等问题。

经典例题[例1]有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米,那么小正方形的面积是多少平方厘米?思路剖析先求出边长再求面积是一般解法,我们可以利用割补拼凑的方法利用图像来比较直观地求解本题。

解答如图1所示,将两个正方形的一个顶点对齐,将大正方形在小正方形外的部分分割成两个直角梯形,再拼成一个长方形。

由于两个正方形的周长相差20厘米,从而它们的每边相差,即图2中长方形的宽是5厘米。

又因为长方形的面积是两个正方形的面积之差,即为55平方厘米,从而长方形的长为55÷5=11厘米。

由图中可知,长方形的长是直角梯形的上底和下底的和;长方形的宽是直角梯形的上底和下底的差,从而小正方形的长为(11-5)÷2=3(厘米)。

所以小正方形的面积为3×3=9(平方厘米)。

[例2]如图3所示,将△ABC的各边都延长1倍到,得到一个新的,如果△ABC的面积为10,求△的面积。

小学奥数教师版4-3-5 任意四边形、梯形与相似模型(三).教师版

小学奥数教师版4-3-5 任意四边形、梯形与相似模型(三).教师版

A
B
O
D
C
E
【考点】相似三角形模型 【难度】3 星 【题型】填空 【关键词】走美杯,5 年级,决赛,第 4 题,10 分 【解析】△AOB 与△EDA 相似,对应边成比例。AB:BO AE:AD,AE AB×AD÷BO 10×10÷8 12.5(厘米)。 【答案】12.5
【例 9】 如图,已知正方形 ABCD 的边长是 12 厘米,E 是 CD 边上的中点,连接对角线 AC,交 BE 于点 O,
【例 1】 如图,已知在平行四边形 ABCD 中, AB 16 , AD 10 , BE 4 ,那么 FC 的长度是多少?
D
C
F
A
B
E
【考点】相似三角形模型 【难度】2 星 【题型】解答 【 解 析 】 图 中 有 一 个 沙 漏 , 也 有 金 字 塔 , 但 我 们 用 沙 漏 就 能 解 决 问 题 , 因 为 AB 平 行 于 CD , 所 以
【例 7】 如图, ABC 中, AE 1 AB , AD 1 AC , ED 与 BC 平行, EOD 的面积是 1 平方厘米.那么
4
4
AED 的面积是
平方厘米.
A
E
D
O
B
C
【考点】相似三角形模型 【难度】3 星 【题型】填空
【解析】因为 AE 1 AB , AD 1 AC , ED 与 BC 平行,
设 S△ADE 4 份,则 S△ABC 25 份, S△BEC 25 5 3 15 份,所以 S△ADE : S△ECB 4 :15 . 【答案】 4 :15
【例 4】 如图, △ABC 中, DE , FG , BC 互相平行, AD DF FB ,
则 S△ADE : S四边形DEGF : S四边形FGCB

(三年级)梯形和平行四边形的面积奥数题训练

(三年级)梯形和平行四边形的面积奥数题训练

(三年级)梯形和平行四边形的面积奥数题
训练
本文档旨在为三年级学生提供梯形和平行四边形的面积奥数题训练。

以下是一些练题,希望能帮助学生巩固和提高梯形和平行四边形面积计算的能力。

题目一
如图所示,ABCD是一个梯形,AB与CD平行,AD与BC不平行。

已知AD = 5 cm,BC = 8 cm,高为3 cm,请计算梯形ABCD的面积。

![梯形ABCD](image_url)
题目二
如图所示,WXYZ是一个平行四边形,已知WX = 6 cm,YZ = 4 cm,请计算平行四边形WXYZ的面积。

![平行四边形WXYZ](image_url)
题目三
如图所示,ABCD是一个梯形,AB与CD平行,AD与BC不平行。

已知AB = 12 cm,BC = 10 cm,高为6 cm,请计算梯形ABCD的面积。

![梯形ABCD](image_url)
题目四
如图所示,PQRS是一个平行四边形,已知PS = 5 cm,QR = 7 cm,请计算平行四边形PQRS的面积。

![平行四边形PQRS](image_url)
以上是本文档提供的梯形和平行四边形的面积奥数题训练,希望能对三年级学生的数学研究有所帮助。

请学生们认真思考,自行计算出每个题目的面积,并将答案写在指定的答题区域。

祝愿大家取得好成绩!。

奥数——格点与面积

奥数——格点与面积

格点与面积
例1 下图是一个格点图。

图中有长方形、三角形、平行四边形和梯形各一个。

请你利用方格网计算出它们的面积各是多少?(每个小正方形的面积是1平方厘米)
例2 在图中正方形格点中,这个宝塔图形的面积是多少?
例3 下图是一个四角形,每个小正方形的面积均为1平方厘米。

求图中阴影部分的面积。

例4、求下列图形的面积。

例5、如图,每个小正方形的面积都是1平方厘米。

则在此图中最多可以画出多少个面积是2平方厘米的格点正方形?
课堂练习
1、求下面各图形的面积。

2、求下图中各图形的面积。

3、求下图中各图形的面积。

4、下面是一个5*5的方格图,求出图中阴影部分面积的和(每小格的面积是1平方厘米)。

5、图中每个小正方形的边长都是1厘米,则在图中最多可以画出面积是3平方厘米的格点三角形多少个?
课后作业
1、计算所给图形的面积。

2、求出下面格点图形的面积。

3、在下面5*10的方格图中,连接格点,画出4个面积为7的图形,要求每个图形形状都不相同(每个小方格的面积是1)。

4、下图是由8个边长为1厘米的正方形所组成的一个图形,共有15个格点。

请以15个格点中的3个为顶点作一个面积为3.5平方厘米的三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、有一个长方形,如果长减少60厘米,或宽减少40厘米,则面积均减少3600平方厘米,这个长方形的面积是多少平方厘米?
2、一个长方形长20厘米,宽12厘米,现在把长和宽都减少4厘米,那么面积减少了多少平方厘米?
3、长方形花坛四周有一条两米宽的小路,小路的面积是132平方米,这个花坛的周长是多少米?
4、有一块长方形菜地,在菜地的中间修了一条一米宽的“十”字形小路,种菜的面积是多少?
5、一个边长为8米的正方形院子,院子中间修了一条宽2米的“十”字形小路,这条小路的面积是多少?
6、如图所示,长方形ABCD是一个长18米,宽12米的草坪,中间有一条2米宽的曲折小路,这条小路的面积是多少平方米?。

相关文档
最新文档