理论力学14动能定理1
动能定理原理
动能定理原理
动能定理是物理学中的一个重要定理,它描述了物体的动能与其速度的关系。
根据动能定理,一个物体的动能等于其质量与速度平方的乘积的一半。
动能定理可以表示为以下公式:
动能 = 1/2 ×质量 ×速度²
其中,动能用K表示,质量用m表示,速度用v表示。
根据动能定理,当一个物体的速度增加时,它的动能也会增加。
同样地,当一个物体的质量增加时,它的动能也会增加。
这说明物体的动能与其速度和质量直接相关。
动能定理的应用广泛。
在机械工程中,我们可以根据物体的动能来计算其所需的能量或者进行能量转化的分析。
在运动学中,我们可以利用动能定理来计算物体的速度或者质量。
在碰撞分析中,动能定理也起到了重要的作用。
需要注意的是,动能定理只适用于质点的分析,即只考虑物体的整体运动而忽略其形状和内部结构的影响。
在实际应用中,我们需要结合具体情况来确定使用动能定理的合理性与准确性。
总之,动能定理是一个重要的物理定律,在物体的运动分析和能量转化的研究中具有广泛的应用价值。
它为我们理解物体运动和能量转化的过程提供了重要的理论基础。
高一物理《运动和动能定理》知识点总结
高一物理《运动和动能定理》知识点总结
一、动能的表达式
1.表达式:E k =12
m v 2. 2.单位:与功的单位相同,国际单位为焦耳,符号为J.
3.标矢性:动能是标量,只有大小,没有方向.
二、动能定理
1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.
2.表达式:W =12m v 22-12
m v 12.如果物体受到几个力的共同作用,W 即为合力做的功,它等于各个力做功的代数和.
3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.
三.对动能定理的理解
(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.
(2)W 与ΔE k 的关系:合外力做功是物体动能变化的原因.
①合外力对物体做正功,即W >0,ΔE k >0,表明物体的动能增大;
②合外力对物体做负功,即W <0,ΔE k <0,表明物体的动能减小;
如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.
③如果合外力对物体不做功,则动能不变.
(3)物体动能的改变可由合外力做功来度量.。
第八章 动能定理
第八章动能定理引言应用动力学基本方程是解决运动变化与力之间的关系的基本方法,但在许多实际问题中,特别是研究运动过程较复杂的质点系问题时,要列出每一个质点的运动方程十分困难。
动能定理建立了物体动能变化与受力所作的功之间的关系,应用动能定理解决动力学问题,淡化了具体的运动过程,使计算得到简化。
在物理中,质点的动能定理已作为重点内容进行了研究。
在理论力学中,动能定理的基本意义与物理所讲的完全相同。
为了避免重复,在本章,重点对动能定理的应用范围进行拓宽。
基本要求1、加深对功和动能概念的理种功和动能的求法,2、加深对动能定理的理解,理的应用。
3、了解功率和效率的概念第一节力的功一、功的概念物体受力的作用后,其运动状态将发生改变,这种改变不仅与力的大小和方向有关,还与物体在力的作用下所走过的路程有关。
功就是描述力在一段路程中对物体的积累效应,我们将(不变的)力F在物体运动方向上的投影F cos 与物体所走过的路程S的乘积,称为力F在路程S中对物体所作的功。
即:W F S =cos α在上式中,α表示力F 与运动方向的夹角,α<90°时,力作正功;反之力做负功。
可见,功是一个只有大小、正负而没有方向的量,是一个代数量。
功的单位由力和路程的单位来确定,在国际单位制中,功的单位是焦耳(J ),即:焦耳=牛顿⨯米(1J 1N m =⋅)若在变力F作用下物体沿曲线运动,则可将路程S 分成为无限多个小微段dS,并将dS 视为直线,将该微段内的力F视为常力。
力在此微段上所作的功称为元功,用dW 表示。
即dW F dS =⋅cos α若求变力F在一段路程S 上所作的功,可对元功积分。
即:W dW F dSSS ==⎰⎰cos α二、几种常见力的功 1、重力的功重力的功等于物体的重力与物体重心始末位置的高度差的乘积,即W G h =±可见,重力的功只与物体的始末位置有关,而与物体运动的具体路径无关。
理论力学动能定理
12
2
mi ri 2
即
T
1 2
J z 2
(3)平面运动刚体的动能
速度瞬心为P
T
1 2
J
p 2
1 2
(JC
md 2 ) 2
得
T
1 2
mvC2
1 2
JC
2
即:平面运动刚体的动能等于随质心平移的动能
与绕质心转动的动能之和。
§14-3 动能定理
1、质点的动能定理
将 m d F 两端点乘 dt dr ,
1.势力场
力场 F F x, y, z 如:重力场、弹性力场、万有引力场
势力场: 物体在力场内运动,作用于物体的力的功只 与力作用点的始、末位置有关,与路径无关。
2.势能:在势力场中,质点从点M运动到任选的点M0,
有势力所作的功。
V M0 F dr M
M 0 称零势能点
4.摩擦力的功
(1) 动滑动摩擦力的功
W
M1M2F
ds
M1M
2
f
'Nds
N=常量时, W= –f´N S, 与质点的路径有关。
(2) 圆轮沿固定面作纯滚动时,滑动摩擦力的功 正压力 N ,摩擦力 F 作用于速度瞬心C,瞬心的元位移
dr vCdt0 W Fdr FvCdt0
dt
得 m d F dr
由于 m d d(1 m2 ), F dr w,
2 因此 d(1 m 2 ) w
2
上式称为质点动能定理的微分形式,即质点
动能的微分等于作用在质点上力的元功。
理论力学第13章动能定理
在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词
动能定理
2013年7月14日 理论力学CAI 矢量动力学基础 EXIT
9
矢量动力学基础/动能定理/动能/解1
[解1]
惯性基
Oe
质点m 动能
? vm 2 R
y m
m
vm
dm R2 R2 2RRcos( )
R 2 2 cos
vm d m R 2 2 cos 1 2 Tm mvm m 2 R 2 1 cos 2
x
1 2 1 T mvC J Cz 2 2 2
2013年7月14日 理论力学CAI 矢量动力学基础
k
k
刚体的动能等于将质量集中于质心的质点动 能与绕过质心瞬时轴的转动动能之简单叠加
7
矢量动力学基础/动能定理/动能
• 平面运动刚体动能另一表达式 vC z 平面运动刚体
Pk
Fk C
r rk 0 C rC 0
lk
rk
lk
刚体重力的功
k W mg (rC rC 0 ) e : W mg T (rC rC 0 )
W mg( zC zC 0 )
W g mk (rk rk 0 )
矢量动力学基础/动能定理
动能定理
• 动能 • 力的功 • 势力场与势能 • 动能定理
2013年7月14日 理论力学CAI 矢量动力学基础
1
矢量动力学基础/动能定理/动能
动能
• 质点系的动能
• 刚体的动能
2013年7月14日 理论力学CAI 矢量动力学基础
2
矢量动力学基础/动能定理/动能
质点系的动能
定义
• 力的元功
理论力学 动能定理
第11章动能定理即质点系的动能等于其随质心平BCθABθCPA2rOr C力的功2rOr CAP2rOr CAP2rOr CAPs汽车驱动问题能量角度:汽缸内气体爆炸力是内力,不改变汽车的动量,但使汽车的动能增加。
动量角度:地面对后轮的摩擦力是驱动力,使汽车的动量增加,但不做功,不改变汽车的动能。
内力不能改变质点系的动量和动量矩,但可以改变能量;外力能改变质点系的动量和动量矩,但不一定能改变能量。
例题11-8水平悬臂梁AB,B端铰接滑轮B,匀质滑轮质量m1,半径r;绳一端接滚,轮C,半径r,质量m2视为质量集中在边缘;绳另端接重物D,质量m3。
求重物加速度。
CωDv BωCv 解:末位置是一般位置hconst 01==T T =2T 2321D v m 221B B J ω+221CP J ω+运动学关系rr v v B C C D ωω===2121rm J B =2222222rm r m r m J P=+=2321222121Dv m m m T ⎟⎠⎞⎜⎝⎛++=gh m W 312=CωDv BωCv h1212W T T =−gh m T v m m m D 30232122121=−⎟⎠⎞⎜⎝⎛++对t 求导h g m vv m m m D D &&33210)221(=−++Dv h =&D D a v=&gm m m m a D 3213221++=例11-9匀质圆盘和滑块的质量均为m。
圆盘的半径为r。
杆平行于斜面,其质量不计。
斜面的倾斜角为θ。
圆盘、滑块与斜面的摩擦因数均为μ。
圆盘在斜面上作纯滚动。
试求滑块下滑加速度。
1212W T T =−01=T 2222212121mvJ mv T A ++=ω解()sF F mgs mgs W B A +−+=θθsin sin 12θμcos mg F F B A ==取导221,mrJ v r A ==ω2245mvT =()θμθcos sin 2452−=gs v a v v s==&&,()θμθcos sin 54−=g a F A 是静摩擦力,理想约束,不作功。
理论力学:4-14动能定理
第十四章动能定理主要内容:功是力沿路程累积效应的度量。
代数量2π2π2π§14-1力的功(自然形式表达式)(矢量式)(直角坐标表达式)•合力的功重力的功仅与质点运动开始和终了位置的高度差有关,而与运动轨迹无关。
1.重力的功•常见力的功质点系总的质量重力的功也与质心运动轨迹的形状无关2.弹簧力的功r =⋅r d r kk弹簧的变形量功只决定于弹簧在起始及终了位置的变形量与质点的运动路径无关3.定轴转动刚体上作用力的功4.平面运动刚体上力的功随同质心C的平动绕通过质心的转动22.14.2(0[3000212−−××1瞬时量m §14-2质点和质点系的动能1.质点的动能2.质点系的动能)(i i i mv v m v m ===∑)(ωi i i i r m v m ==∑3.刚体的动能ωJ C + C v m +v C =∵圆盘的动能2(1A O m mR +A R O400mmoωA(11022A O v J mv A A A ωω=+,RO400mmωoωAA O R O400mm(c)rωoωA()(d dt m =⋅v v Wmv d δ=)21(2动能定理的微分形式点乘M M W mv mv =−21222121动能定理的积分形式§14-3动能定理21质点系动能定理的微分形式∑∑⇒=i i i m d W v m δ2( )2(2∑=−W T T 12质点系动能定理的积分形式M M•质点系内力的功当质点系内质点间的距离可变化时,内力的元功之和不为零。
•理想约束(1)光滑固定面与柔索约束(2)光滑铰链或轴承约束(3)刚性连接的约束(4)刚体作只滚不滑的运动时应用动能定理的解题步骤:(一般取整个系统)区分主动力与约束力,在理想约束情况下约束力不做功,并考虑内力作功和是否为零。
起点终点质点系动能定理2212121C J J ++ωω2,,==ϕωM v m m C (0)32(21=−+)32()sin (21112m m R sgR m M +−θ例2:已知:求:解:取研究对象受力分析ϕW=M12运动分析01=T =2T 222)31(21ωl m 2121)21(21ωr m +21121v m +=12212)92(121ωl m m +=例2:已知:动齿轮半径r ,质量m 1,视为均质圆盘;曲柄质量m 2,长l ,作用一常力偶矩M 。
理论力学13-动能定理
动能定理是理论力学中重要的定理之一,描述了物体动能的变化与外力做功 的关系。它为解决各种实际问题提供了有力的工具。
动能的定义与计算方法
动能定义
动能是物体由于运动而具有的能量。
动能计算方法
动能等于物体质量与速度平方的乘积乘以常数1/2。
举例
例如,一个质量为m的物体速度为v,它的动能为Ek=1/2mv^2。
碰撞实验
通过观察简谐摆的运动过程, 可以验证动能定理在实验中 的有效性和准确性。
利用碰撞实验可以验证动能 定理在不同碰撞情况下的适 用性。
滚动小球实验
通过观察滚动小球的动能变 化,可以验证动能定理在滚 动运动中的应用。
结论和要点
结论
动能定理是描述物体动能变化与外力做功关系的重要定理。
要点
动能定理的表达式是功等于动能的变化量,可以通过实验验证。
动能定理的提出及其重要性
1 提出背景
动能定理最早由牛顿提出,是牛顿运动定律的一部分。
2 重要性
动能定理能够精确描述物体动能的变化与外力做功的关系,对研究运动学和动力学等科 学领域具有重要意义。
动能定理的表达式及推导过程
动能定理表达式 推导过程 推导公式
功等于动能的变化量 根据牛顿第二定律和功的定义推导得出 W = ΔK = (1/2)mvf^2 - (1/2)mvi^2
动能定理在实际问题中的应用
1
碰撞问题
2
动能定理在研究碰撞问题中起到关 键作用,如弹性碰撞和非弹性碰撞。
3
机械能守恒
动能定理与势能定理结合可以帮助 解决机械能守恒的问题。
动能定理与其他物理定律的 关系
动能定理与动量定理、能量守恒定 律等相互关联,共同构成了理论力 学的核心部分。
理论力学课件:动能定理
动能定理
【例12-8】 C618车床的主轴转速n=42r/min时,其切削力
P=14.3kN,若工件直径d=115mm,电动机到主轴的机械效率
η=0.76。求此时电动机的功率为多少?
解 由式(12-12)得切削力P 的功率:
动能定理
12.5 势力场 势能及机械能守恒定理
动能定理
动能定理
12.4 功率 功率方程
1.功率
在单位时间内力所做的功称为功率。它是衡量机器工作
能力的一个重要指标。
δW 是dt时间内力的元功,则功率为
动能定理
由于元功为δW =Ft·ds,因此
即,力的功率等于切向力与力作用点速度的乘积
力矩的元功为δW =M·dφ,则
即,力矩的功率等于力矩与物体转动角速度的乘积。
动能定理
动能定理
12.1 力的功
12.2 质点 质点系的动能
12.3 质点与质点系的动能定理
12.4 功率 功率方程
12.5 势力场 势能及机械能守恒定理
12.6 动力学普遍定理及综合应用
思考题
动能定理
12.1 力 的 功
工程实际中,一物体受力的作用所引起运动状态的变化,
不仅取决于力的大小和方向,而且与物体在力的作用下经过
的功。
动能定理
图12-15
动能定理பைடு நூலகம்
【例12-4】 在图12-16中,为测定摩擦系数f,把矿车置于
斜坡上的A 点处,让其无初速下滑。当它达到B 点时,靠惯性
又往前滑行一段路程,在C 点处停止。求摩擦系数f0,已知S1、
S2 和h。
图12-16
动能定理
理论力学答案完整版(清华大学出版社)10
子 C 沿水平轨道滚动而不滑动,试求重物 A 的加速度。
解: 取整个系统为研究对象,自由度为 1。设重物速度为 vA ,则轮
题 10-9 图
的角速度 ω = vA ,轮心速度为 R−r
vO
=
R
r −
r
vA 。系统的动能为
( ) T
拉格朗日方程的普遍形式
d dt
∂L ∂q& j
− ∂L ∂q j
= Q′j
( j = 1,2,..., m)
式中 Q′j 为非有势力对应的广义力。
矢量方法
动量法:动量定理
动量矩定理 质心运动定理 定轴转动微分方程 平面运动微分方程
质点系统动力学
动静法
动能定理
能量方法
拉格朗日方程
3 保守系统拉格朗日方程的初积分
10-3 质量为 m1 的匀质杆,长为 l,一端放在水平面上, 另一端与质量为 m2、半径为 r 的匀质圆盘在圆盘中心 O 点 铰接。圆盘在地面上作纯滚动,圆心速度为 v。求系统在此
题 10-3 图
位置的动能。
解:杆作平移,动能为
T1
=
1 2
m1v2
;
圆盘作纯滚动,动能为
T2
=
1 2
m2v2
+
1 2
mivi
⋅ vi
,
其中 n 为系统中的质点数目,可以是有限或无穷,mi 和 vi 分别为各质点的质量和速度。 平
移刚体的动能 T = 1 mv2 , 2
其中 m 为平移刚体的质量。
定轴转动刚体的动能
T
=
1 2
理论力学基础 动能定理
M2 M1
(
Fx
dx
Fy
dy
Fzdz)
鞍山科技大学机械工程与自动化学院工程力学系
理论力学
第十二章 动能定理
三、重力之功 Fx Fy 0 Fz mg
W12
z2 z1
mgdz
mg(z1
z2 )
质点系
第
一 节
W m g(z z )
12
i
i1
i2
力
的
功
由 mzC mi zi
量分别为m和2m,且OC=AC=BC=l,滑块A和
第 B重量均为m。常力偶M作用在曲柄上,设=0
三 节 动
时系统静止,求曲柄角速度和角加速度 (以转角
表示)。
vB
能
定 理
K
vA
鞍山科技大学机械工程与自动化学院工程力学系
理论力学
第十二章 动能定理
例题六 图示系统中,滚子A 、滑轮B 均质,重
量和半径均为Q 及r,滚子沿倾角为 的斜面向
W d r F
三
节 m d v d r mdv d r mdv v mvdv
动 能 定
dt
d
(
1
dt
mv2 )
理
2
动能定理的微分形式: W d ( 1 mv2 )
2
动能定理的积分形式:
W
1 2
mv22
1 2
mv12
鞍山科技大学机械工程与自动化学院工程力学系
下滚动而不滑动,借跨过滑轮B的不可伸长的绳
第 索提升重P的物体,同时带动滑轮B绕O轴转动,
理论力学动能定理
的等效力(其力矢为力系的主矢)在质心的位移上所作
的功。
③ 作用在定轴转动刚体上的力的功
作用在定轴转动刚体上的力系的元功为
dW dWi ω M z (Fi )dt M z (Fi )d M z d
作用在定轴转动刚体上的力系的功等于力系向转轴 简化的等效力偶(其力偶矩为力系对转轴的主矩)在刚 体的角位移上所作的功。
drAB
B
drAB // FB
y
drAB可以分解为平行于FB与垂直于FB的两部分,即
drAB drAB // drAB
内力元功之和
dW i FB drAB FB (drAB// drAB ) FBdrAB //
当A、B的距离变化时,内力的元功之和不等于零。
工程中常用的弹簧力的功就是内力的功。设弹簧的
② 作用在平移刚体上的力的功
设力F在质点系上的作用点的速度为v,则在时间dt
内,力F的元功为
dW F dr F vdt
刚体平移时,在任一瞬时刚体上的各点的速度相同, 则作用在刚体上的力系的元功为
dW Fi dri Fi vdt Fi drC FR drC
例如质点系在重力场中各质点的z坐标为 时为零势能点位置,则各质点z坐标为 时的势能为
z10 , z20 ,, zn0
z1 , z2 , , zn
V mi g ( zi zi 0 )
质点系的重力势能可写为
V mg ( zC zC 0 )
(4) 有势力的功
设某个有势力的作用点在质点系的运动过程中,从 点M1到点M2,该力所作的功为W12。若取M0为零势能点, 则从M1到M0和从M2到M0有势力所作的功分别为M1和M2 位置的势能V1和V2。因有势力的功与轨迹形状无关,而 由M1经过M2到达M0时,有势力的功为
动能定理
解:设系统从初始到任意位置,重
物上升s。画出所有主动力和相关运
动量,如图。
s
OB
设初始动能:T0 = 0 任意位置动能:
A C
Q va
T TP TB TA
1 P v2 1 1 Q r 2 2
2g 22g
vC aC
Q
P
s
1 2
Q g
vC2
1 2
8/27
五、约束力的功 ①柔性体约束
F
提问:约束力作功吗?
绳索始终紧绷,从B点到切点(记为C) 可视为刚体,做平面一般运动 , 依基点法速度公式
vB vC vBC
由速度投影定理
vC vB cos
若限定柔性体约束 为质点系内部约束
不可伸长的绳索, 其约束力元功之和 为零
drC drB cos
WN 0
在一定意义下,约束力不作功,这给
理想约束
我们分析解决问题带来很大方便。
10/27
§9-3 质系和刚体的动能
动能:描述物体(整体)机械运动强度的量。
一、质点 T 1 mv2
2
二、质点系
T
1 2
mi vi 2
三、平动刚体
T 1 Mv2 2
四、定轴转动刚体
T
1 2
I z 2
11/27
五、柯尼希定理——“动能的合成”
注:力偶作用的刚体可作任意运动。
力矩:
W
2 1
mO
(
F
)d
注:仅限于定轴转动刚体。
v
a
7/27
三、力系的功 功是标量,故
( A)
Rr
M
W Wi s W Wi
F' F
理论力学——动能定理
解:在运动过程中,T 的大小不变,但方向 在变,因此T 的元功为
δWT T cosa d x
cosa (20 x) (20 x)2 152
因此T在整个过程中所作的功为
O
力F在刚体从角j1转到j2所作的功为
W12
j2 j1
M
zdj
Mz可视为作用在刚体上的力偶
例1 如图所示滑块重P=9.8 N,弹 簧刚度系数k=0.5 N/cm,滑块在A 位置时弹簧对滑块的拉力为2.5 N, 滑块在20 N的绳子拉力作用下沿光 滑水平槽从位置A运动到位置B,求 作用于滑块上所有力的功的和。
OC作定轴转动,规尺AB作平面运动。首先对 vA
运动进行分析,O1是AB的速度瞬心,因:
运动分析
A
vc O1C AB OC AB
AB
O1
系vA统分O析1AAB 2a cosj a
TA
1 2
mAvA2
ma 2 2
2
vC C
vB O1BAB 2asinj 3a
T
A
15 cm
B
20 cm
PT
F
a
N
20
20
WT 0 T cosa d x 0 20
20 x d x 200 N cm
(20 x)2 152
再计算F的功:
由题意:
d1
2.5 0.5
5cm
T
A
15 cm
B
20 cm
理论力学-动能定理
● 定轴转动刚体的动能
刚体以角速度 绕定轴 z 转动时,其上-点的速度
为:
vi ri
因此,定轴转动刚体的动能为
T 1 2
i
mi (ri )2
12(
2
i
miri2 )
1 2
J z
2
其中 J z miri2 为刚体对定轴z的转动惯量。
质点系的动能与刚体的动能
刚体的动能
● 平面运动刚体的动能
M z (F ) F R ——力 F 对轴 z 的矩
于是,力在刚体上由 1 转到 2 时所作的功为
W12
2 1
M
z
(
F
)
d
力的功
作用在刚体上力的功、力偶的功 定轴转动刚体上外力偶的功
若力偶矩矢量为 M ,则力偶所作之功为
W M zd
W12
2 1
M
zd
其中Mz 为力偶矩矢 M 在 z 轴上的投影,即力偶对转轴 z 的矩。
dT dt
P输入
P输出 P损耗
P输入
dT dt
P输出
P损耗
第12章 动能定理
功率方程 、机械效率
任何机器在工作时都需要从外界输入功率,同时也不可避免的 要消耗一些功率,消耗越少则机器性能越好。工程上,定义机械
效率为
P有效
P有用 100%=
dT dt
100% 1
P输入
P输入
其中
P有效
dT dt
止状态。现在圆盘A的质心处加一不计质量的弹簧,弹簧刚 度系数为k 求:系统的等效质量、等效刚度与系统的固有频率。
动能定理及其应用
动能定理应用举例——例 题 4
解:这是一个单自由度振动的刚体 系统,现研究怎样将其简化为弹簧 -质量模型。
理论力学:动能定理
9. 动能定理动能:是描述质系运动强度的一个物理量,任一质点在某瞬时的动能为212i i m v 。
质点动能定理的微分形式:作用于质点上力的元功等于质点动能的微分。
质点动能定理的积分形式:作用于质点上的力在有限路程上的功等于质点动能的改变量。
力的元功:力在一无限小位移中力所做的功。
力在有限路程上的功:力在此路程上元功的定积分21d M M W =⋅⎰F r 。
理想约束:约束力的元功的和等于零的约束。
质系动能定理的微分形式:在质系无限小的位移中,质系动能的微分等于作用于质系全部力所做的元功之和,即d δF T W =∑。
质系动能定理的积分形式:质系在任意有限路程的运动中,起点和终点动能的改变量,等于作用于质系的全部力在这段路程中所做功的和,即21i T T W -=∑。
质点系的动能:组成质点系的各质点动能的算术和,即2112ni i i T m v ==∑。
柯尼西定理:平面运动刚体的动能等于随质心平动的动能与绕通过质心的转轴转动的动能之和。
功率:在单位时间内所做的功。
力场:如质点在某空间内任一位置都受有一个大小和方向完全由所在位置确定的力作用,具有这种特性的空间就称为力场。
势力场或保守力场:如质点在某一力场内运动时,力场力对于质点所做的功仅与质点起点与终点位置有关,而与质点运动的路径无关,则这种力场称为势力场或保守力场。
质点在势力场内所受的力称为势力或保守力。
势能:在势力场中,质点由某一位置M 运动到选定的参考点M 0的过程中,有势力所做的功,以V 表示,即0x d d d d M M y z MMV F x F y F z =⋅=++⎰⎰F r 。
保守系统:具有理想约束,且所受的主动力皆为势力的质系。
机械能:质系在某瞬时的动能与势能的代数和。
机械能守恒定律:保守系统在运动过程中,其机械能保持不变。
即,质系的动能和势能可以互相转化,但总的机械能保持不变。
质点和质点系的动能定理
由动能定理,有
M
m2 g
sin
r
m2 g
cos
r
1 4
m1
2m2
r 22
得
2 M m2gr(sin f cos )
r
m1 2m2
将上式两边对时间t求导,并注意d/dt=ω,得鼓轮的角加速度为
2[M m2gr(sin f cos )]
r 2 (m1 2m2 )
目录
动能定理\质点和质点系的动能定理 【例8.6】 物块A质量为m1,挂在不可伸长的绳索上,绳索跨过定
T1=0
设物块下滑s=2m时的速度为v,其动能为
T2
1 2
mv2
51v2
在物块由静止到下滑2m 的过程中,
作用于物块上的重力的功为
W1 mg sin s 1000 N
2 2 m 1414 J 2
摩擦力的功为
W2 mg cos f s 1000 N
2 0.1 2 m -141.4 J 2
目录
动能定理\质点和质点系的动能定理
【解】 取鼓轮和重物组成的
质点系为研究对象,其上作用的 外力有:重物的重力m2g,斜面 的法向反力FN,摩擦力Ff,鼓轮 上的力矩M,以及鼓轮的重力和 轴承处的约束反力(图中未画 出)。
开始时,系统处于静止,其动能为
T1=0
设当鼓轮转过角时的角速度为,则重物的速度为 v=r
目录
动能定理\质点和质点系的动能定理 【例8.5】 一不变的力矩M作用在铰车的鼓轮上,轮的半径为r,
质量为m1。缠绕在鼓轮上的绳子系一质量为m2的重物,使其沿倾角
为的斜面上升(如图)。已知重物与斜面间的动摩擦因数为f,绳
子质量不计,鼓轮可视为均质圆柱。在开始时,此系统处于静止。
第十二章 动能定理
③ 作用在纯滚轮上的摩擦力的功 接触点为瞬心,滑动摩擦力 作用点没动,此时滑动摩擦 力也不做功。
W F d rp 0
如果不是纯滚动,有相对滑 动,则摩擦力作负功。
13
§13 - 2 质点和质点系的动能 1 质点的动能
T
2 2
1 2
mv
2
动能是恒正的标量,
单位:
是瞬时量。
2
kg m / s kg m / s m N m J
( mi ri )
2
所以,刚体定轴转动的动能为:
Jz
T
1 2
J z
2
15
(3) 平面运动刚体的动能
设刚体作平面运动,如图。
C
由定轴转动刚体动能的公式
T
1 2
1
J p
2
rc p
2 C
由平行轴定理,有: 所以:
2
J p JC m r
1 2
2 C 2
T J C m r
m2g
2
d T [] 2vB d vB
Wi m3 g d s
2
vB
ds
m3g
d vB ds 两边同除d t,得: []v m3 g B dt dt m3 所以: a g B []
29
例 3
已知:两相同均质杆, m, l , 水平面光滑。初始静 止,高为h。设杆在铅垂 面内落下。 求:铰链D与地面接触时 的速度。
1
FDy
vo
F
m1g
FDx m2g m3g
2
vB
FN
受力如图。 求加速度可用动能定理的微分形式。
计算一般位置的动能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
故得作用于系统上的所有力所作的总功
A
W W1 W2 9.8π J 8π2 J 110 J
mA g
mB g
第二节 动能
一、质点的动能 定义: 1 mv2
2 单位: J(焦耳), 1 kg m2 s2 1 N m 1 J
二、质点系的动能 质点系的动能定义为质点系中所有质点动能的总和,记作 T,即
弹性力的功
W2
1 2
k
12
2 2
2
3 1
2
k l02
C
60 30
故得作用于系统上的所有力所作的总功
W W1 W2 mg
3 1 l0
2
3 1
2
k l02
[例2] 如图,圆盘的半径 r = 0.5 m,可绕水平轴 O 转动。在绕过圆
盘的绳上悬挂两物块 A、B,质量 mA = 3 kg、mB = 2 kg。在圆盘上
解:1)物块 D 的重力的功 物块 D 下降的高度差
z1 z2 2l0 sin60 sin30
3 1 l0
故得物块 D 的重力的功
W1 mg z1 z2 mg 3 1 l0
C
60 30
2)弹性力的功 弹簧的初变形量
1 0
弹簧的末变形量
2 2l0cos30 l0 3 1 l0
[例4] 如图,定滑轮B(可视为匀质圆盘)和匀质圆柱体 C 的质量
均为 m1、半径均为 R,重物 A 的质量为m2,圆柱体 C 沿倾角为
的斜面作纯滚动,已知重物 A 的速度为v。假设绳与轮间无相对滑 动,并不计绳的质量,试求系统的动能。
解: 重物 A 平移,速度为v
滑轮B 绕定轴转动,角速度为
B
v R
式中,k 称为弹簧的刚度系数。 弹性力的功
O
x
x0
O
x0
F x
x
W
1k 2
12 22
式中,1 = x1-x0 、 2 = x2-x0 ,分别为弹簧的初、末变形量。
说明: 弹性力的功为状态参量,与路径无关。
3. 绕定轴转动刚体上力(力偶)的功
W
M 2
1
z
F d
若 Mz F Const,则有
T
1 2
mi
vi
2
三、刚体的动能 1. 平移刚体
T 1 mv2 2
2. 绕定轴转动刚体
T
1 2
J z 2
式中,Jz 为刚体对转轴 z 的转动惯量
3. 平面运动刚体
T
1 2
JP2
或者
T
1 2
JC 2
1 2
mvC2
式中,JP 为刚体对速度瞬心轴 P 的转动惯量 JC 为刚体对质心轴 C 的转动惯量 vC 为刚体的质心 C 的速度
1 2
m1R2
v
2
R
3 4
m1v2
故系统的动能
T
TA
TB
TC
1 2
m2
2m1 v2
F
r
s
M2
二、变力的功
1. 自然坐标形式
元功 总功
δW F dr F cos ds
W s2 F cos ds s1
M1 M ds dr M M 2
r
r Fxdx Fydy Fzdz
总功
W
M2 M1
Fxdx Fydy Fzdz
式中,Fx、Fy、Fz 分别为力 F 在 x、y、z 轴上的投影
[例3] 如图,质量为 m、长为 l 的匀质杆绕定轴 O 摆动,已知摆动
方程为 = 0 sinbt,其中 0、b 为常数,试计算该杆在任一瞬时的
动能。
解:杆件对轴O 的转动惯量
JO
1 ml 2 3
角速度
d
dt
0bcosbt
故得该杆在任一瞬时的动能
O
l
T
1 2
J O 2
1 6
ml 202b2cos2bt
W Mz F 2 1
z
d
r ds
F
[例1] 如图,两等长的杆 AC、BC 在 C 处铰接,并悬挂质量为 m 的 物块D。一刚度系数为 k 的弹簧连于两杆的中点,弹簧的自然长度 l0 = AC/2,且 AC = BC 。若不计两杆自重,试求当 ∠CAB 由 60°变为 30°时,作用与系统上的所有力所作的总功。
vC
C R
C
圆柱体 C 作平面运动,其质心速度
vC v ,角速度
C
vC
R
v
R
B
BR
Av
重物 A 的动能 滑轮 B 的动能
TA
1 2
m2v2
TB
1 2
J
2
BB
1 2
1 2
m1R2
v R
2
1 4
m1v2
vC
C R
C
B
BR
Av
圆柱体 C 的动能
TC
1 2
m1vC2
1 2
JCC2
1 2
m1v2
1 2
z
M1 x1, y1, z1
三、几种常见力的功 1. 重力的功
W mg z1 z2 mgh
式中,h 为重心的高度差
h
mg
M 2 x2 , y2 , z2
y
x
说明 (1)重心下降作正功,上升作负功。 (2)重力的功为状态参量,与路径无关。
2. 弹性力的功
弹性力 F k x x0 i
作用一力偶,力偶矩按 M = 4 的规律变化(M 以 N·m 计, 以 rad
计)。设绳与盘之间无相对滑动,试求转角由 0 到 2 时,作用于系
统上的所有力所作的总功。
解:1)物块的重力的功
W1 mAg r mB g r 9.8π J
M
O
2)力偶的功
W2
2π
M d
0
2π
4 d
8π2
J
0
第十四章 动能定理
从能量的角度来分析和处理质点与质点系的动力学问题,主要用于 求解速度(角速度)和加速度(角加速度)。
第一节 力的功
一、常力在直线运动中的功
定义 W F r Fs cos
M1
为常力 F 在路程 s 上作的功
其中, 为力F 与位移 r 正方向之间的夹角
说明 (1)功为代数量 (2)功的单位为 J(焦耳),1 J = 1 N·m