进水建筑物
(完整版)水工建筑物整理考点(2)
水工建筑物考试大纲(20124011)第一章绪论目前我国水利水电工程高坝建设的历史之最:世在建的最高双曲拱坝:锦屏一级水利枢纽工程,高305m。
界最高的面板堆石坝:水布垭面板堆石坝,高233m。
世界上最高碾压混凝土坝:龙滩水利枢纽,高216.5m。
最大的枢纽工程:三峡大坝各种水工建筑物的作用:一般(1)挡水建筑物:如坝、堤防、水闸及施工围堰等。
(2)泄水建筑物:如设于河床的溢流坝、泄水闸、泄水孔,设于河岸的溢洪道、泄水隧洞等。
(3)输水建筑物:如引水隧洞、引水涵管、渠道、渡槽、倒虹吸管、输水涵洞等。
(4)取(进)水建筑物:如深式进水口、进水塔和各种进水闸等。
(5)整治建筑物:如丁顺坝、潜坝、导流堤、防波堤、护底、护岸等。
专门(1)水力发电建筑物:如水电站厂房、前池、调压井等。
(2)农田水利建筑物:如专为农田灌溉用沉沙池、冲沙闸等。
(3)水运建筑物:如船闸、升船机、鱼道、过木道等。
水工建筑物、水利枢纽的定义:水工建筑物:为满足防洪、发电、灌溉、供水、航运等任务在河流的适宜段修建的建筑物。
(完成各项任务所需要的建筑物)水利枢纽:对于开发河川水资源来说,常须在河流适当地段集中修建几种不同类型与功能的水工建筑物,以控制水流并便于协调运行和管理,这一多种水工建筑物组成的综合体就称为水利枢纽。
(不同类型水工建筑物组成的综合体)防洪工程的措施,水利工程的优缺点:防洪工程的基本措施:(1)上拦:治本,拦蓄洪水控制泄量;(2)下排:治标,疏通河道,提高行洪能力。
(3)两岸分滞:设蓄滞洪区分洪减流。
(4)应着重关注水土保持。
(5)同时建立洪水预报、预警系统和洪水保险制度。
水利工程优缺点(1)工作条件的复杂性。
(2)受自然条件制约,施工难度大。
(3)对自然环境及社会环境影响大。
①利:兼顾发电、灌溉、供水、养殖、旅游、治理旱涝灾害等。
②弊:库区:淹没、滑坡坍岸、水库淤积、生态变化、水温变化、水质变化、气象变化、诱发地震、卫生条件恶化。
水工建筑物抗震设计规范
中华人民共和国行业标准SL203-97水工建筑物抗震设计规范Specificatins for seismic design of hydraulic structures1997-08-04发布1997-10-01实施中华人民共和国水利部发布中华人民共和国行业标准主编单位:中国水利水电科学研究院批准部门:中华人民共和国水利部施行日期:1997年10月1日中华人民共和国水利部关于发布《水工建筑物抗震设计规范》SL203-97的通知水科技[1997]439号根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规范》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规范》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释.本标准文本由中国水利水电出版社出版发行.一九九七年八月四日前言本规范是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规范》进行修订而成.本规范在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国内外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿.本规范为强制性行业标准,替代SDJ10-78.本规范共分11章和1个标准的附录.这次修订的主要内容有:进一步明确了规范适用的烈度范围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用范围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规范连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了内容.希望有关单位在执行本规范的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑.本规范由原能源部,水利部水利水电规划设计总院提出修订.本规范由水利部水利水电规划设计管理局归口.本规范解释单位:水利部水利水电规划设计管理局本规范修订主编单位:中国水利水电科学研究院本规范修订协编单位:电力工业部昆明勘测设计研究院,电力工业部西北勘测设计研究院,上海市水利工程设计研究院,大连理工大学,河海大学.本规范主要起草人:陈厚群,侯顺载,郭锡荣,苏克忠,王钟宁,杨佳梅,卫明,林皋,方大凤,黄家森,李瓒,梁爱虎,武清玺,王锡忠,师接劳目次1总则2术语,符号2.1术语2.2基本符号3场地和地基3.1场地3.2地基4地震作用和抗震计算4.1地震动分量及其组合4.2地震作用的类别4.3设计地震加速度和设计反应谱4.4地震作用和其它作用的组合4.5结构计算模式和计算方法4.6水工混凝土材料动态性能4.7承载能力分项系数极限状态抗震设计4.8附属结构的抗震计算4.9地震动土压力5土石坝5.1抗震计算5.2抗震措施6重力坝6.1抗震计算6.2抗震措施7拱坝7.1抗震计算7.2抗震措施8水闸8.1抗震计算8.2抗震措施9水工地下结构9.1抗震计算9.2抗震措施10进水塔10.1抗震计算10.2抗震措施11水电站压力钢管和地面厂房11.1压力钢管11.2地面厂房附录A土石坝的抗震计算1总则1.0.1为做好水工建筑物的抗震设计,减轻地震破坏及防止次生灾害,特制定本规范.1.0.2适用范围:1主要适用于设计烈度为6,7,8,9度的1,2,3级的碾压式土石坝,混凝土重力坝,混凝土拱坝,平原地区水闸,溢洪道,地下结构,进水塔,水电站压力钢管和地面厂房等水工建筑物的抗震设计.2设计烈度为6度时,可不进行抗震计算,但对1级水工建筑物仍应按本规范采取适当的抗震措施.3设计烈度高于9度的水工建筑物或高度大于250m的壅水建筑物,其抗震安全性应进行专门研究论证后,报主管部门审查,批准.1.0.3按本规范进行抗震设计的水工建筑物能抗御设计烈度地震;如有局部损坏,经一般处理后仍可正常运行.1.0.4水工建筑物工程场地地震烈度或基岩峰值加速度,应根据工程规模和区域地震地质条件按下列规定确定:1一般情况下,应采用《中国地震烈度区划图(1990)》确定的基本烈度.2基本烈度为6度及6度以上地区的坝高超过200m或库容大于100亿m3的大型工程,以及基本烈度为7度及7度以上地区坝高超过150m的大(1)型工程,应根据专门的地震危险性分析提供的基岩峰值加速度超越概率成果,按本规范1.0.6的规定取值.1.0.5水工建筑物的工程抗震设防类别应根据其重要性和工程场地基本烈度按表1.0.5的规定确定.表1.0.5工程抗震设防类别1.0.6各类水工建筑物抗震设计的设计烈度或设计地震加速度代表值应按下列规定确定:1一般采用基本烈度作为设计烈度.2工程抗震设防类别为甲类的水工建筑物,可根据其遭受强震影响的危害性,在基本烈度基础上提高1度作为设计烈度.3凡按本规范1.0.4作专门的地震危险性分析的工程,其设计地震加速度代表值的概率水准,对壅水建筑物应取基准期100年内超越概率P100为0.02,对非壅水建筑物应取基准期50年内超越概率P50为0.05.4其它特殊情况需要采用高于基本烈度的设计烈度时,应经主管部门批准.5施工期的短暂状况,可不与地震作用组合;空库时,如需要考虑地震作用时,可将设计地震加速度代表值减半进行抗震设计.坝高大于100m,库容大于5亿m3的水库,如有可能发生高于6度的水库诱发地震时,应在水库蓄水前就进行地震前期监测.1.0.8水工建筑物的抗震设计宜符合下列基本要求:1结合抗震要求选择有利的工程地段和场地.2避免地基和邻近建筑物的岸坡失稳.3选择安全经济合理的抗震结构方案和抗震措施.4在设计中从抗震角度提出对施工质量的要求和措施.5便于震后对遭受震害的建筑物进行检修.重要水库宜设置泄水建筑物,隧洞等,保证必要时能适当地降低库水位.1.0.9设计烈度为8,9度时,工程抗震设防类别为甲类的水工建筑物,应进行动力试验验证,并提出强震观测设计,必要时,在施工期宜设场地效应台阵,以监测可能发生的强震;工程抗震设防类别为乙类的水工建筑物,宜满足类似要求.1.0.10引用标准下列标准所包含的条文,通过在本标准中应用而构成本标准的条文.在标准出版时,所示版本均为有效.所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性. GBJ11-89建筑抗震设计规范GB50199-94 水利水电工程结构可靠度设计统一标准SL/T191-96 水工混凝土结构设计规范SDJ12-78 水利水电枢纽工程等级划分及设计标准(山区,丘陵区部分)SDJ21-78 混凝土重力坝设计规范SD133-84 水闸设计规范SD134-84 水工隧洞设计规范SD144-85 水电站压力钢管设计规范SD145-85 混凝土拱坝设计规范SDJ217-87 水利水电枢纽工程等级划分及设计标准(平原,海滨部分)SDJ218-84 碾压式土石坝设计规范SD303-88 水电站进水口设计规范SD335-89 水电站厂房设计规范按本规范进行水工建筑物抗震设计时,尚应符合有关标准,规范的要求.同级行业标准规范中,有关水工建筑物抗震方面的规定不符合本规范的,应以本规范为准.2术语,符号2.1术语2.1.1抗震设计:地震区的工程结构所进行的一种专项设计.一般包括抗震计算和抗震措施两个方面.2.1.2基本烈度:50年期限内,一般场地条件下,可能遭遇超越概率P50为0.10的地震烈度.一般为《中国地震烈度区划图(1990)》上所标示的地震烈度值,对重大工程应通过专门的场地地震危险性分析工作确定.设计烈度:在基本烈度基础上确定的作为工程设防依据的地震烈度.2.1.4水库诱发地震:由于水库蓄水或大量泄水而引起库区及附近发生的地震.2.1.5地震动:由地震引起的岩土运动.2.1.6地震作用:地震动施加于结构上的动态作用.2.1.7地震动峰值加速度:地震动过程中,地表质点运动加速度的最大绝对值.2.1.8设计地震加速度:由专门的地震危险性分析按规定的设防概率水准所确定的,或一般情况下与设计烈度相对应的地震动峰值加速度.2.1.9地震作用效应:地震作用引起的结构内力,变形,裂缝开展等动态效应.2.1.10地震液化:地震动引起的饱和砂土,粉土和少粘性土颗粒趋于紧密,孔隙水压力增大,有效应力趋近于零的现象.2.1.11设计反应谱:抗震设计中所采用的一定阻尼比的单质点体系,在地震作用下的最大加速度反应随体系自振周期变化的曲线,一般以其与地震动最大峰值加速度的比值表示.2.1.12动力法:按结构动力学理论求解结构地震作用效应的方法.2.1.13时程分析法:由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的方法.2.1.14振型分解法:先求解结构对应其各阶振型的地震作用效应后,再组合成结构总地震作用效应的方法.各阶振型效应用时程分析法求得后直接叠加的称振型分解时程分析法,用反应谱法求得后再组合的称振型分解反应谱法.2.1.15平方和方根(SRSS)法:取各阶振型地震作用效应的平方总和的方根作为总地震作用效应的振型组合方法.2.1.16完全二次型方根(CQC)法:取各阶振型地震作用效应的平方项和不同振型耦联项的总和的方根作为总地震作用效应的振型组合方法.2.1.17地震动水压力:地震作用引起的水体对结构产生的动态压力.2.1.18地震动土压力:地震作用引起的土体对结构产生的动态压力.2.1.19拟静力法:将重力作用,设计地震加速度与重力加速度比值,给定的动态分布系数三者乘积作为设计地震力的静力分析方法.2.1.20地震作用的效应折减系数:由于地震作用效应计算方法的简化而引入的对地震作用效应进行折减的系数.2.1.21自振周期:结构按某一振型完成一次自由振动所需的时间.对应于第-振型的自振周期称基本自振周期.2.2基本符号2.2.1作用和作用效应:ah---水平向设计地震加速度代表值;a v---竖向设计地震加速度代表值;g---重力加速度;Pw(h)---水深h处的地震动水压力代表值;F 0---建筑物单位宽度迎水面的总地震动水压力代表值;Fi---作用在质点i的水平向地震惯性力的代表值;F E---地震主动动土压力代表值;G E---产生地震惯性力的建筑物总重力作用的标准值;T i---质点i的动态分布系数;β---设计反应谱;ζ---地震作用的效应折减系数.2.2.2材料性能和几何参数:a k---几何参数的标准值;f k---材料性能的标准值;N63.5---标准贯入锤击数;N cr---临界锤击数;ρw---水体质量密度的标准值.2.2.3分项系数极限状态设计:E k---地震作用的代表值;G k---永久作用的标准值;Q k---可变作用的标准值;R---结构的抗力;S---结构的作用效应;γ0---结构重要性系数;γρ---承载能力极限状态的结构系数;γm---材料性能的分项系数;γG ---永久作用的分项系数;γQ---可变作用的分项系数;ψ---设计状况系数.2.2.4其他:T---结构自振周期;T g---特征周期;λf ---附属结构和主体结构的基本频率比值;λm---附属结构和主体结构质量比值.3场地和地基3.1场地3.1.1水工建筑物的场地选择,应在工程地质勘察和专门工程地质研究的基础上,按构造活动性,边坡稳定性和场地地基条件等进行综合评价.可按表3.1.1划分为有利,不利和危险地段.宜选择对建筑物抗震相对有利地段,避开不利地段,未经充分论证不得在危险地段进行建设.表3.1.1各类地段的划分水工建筑物开挖后的场地土类型,宜根据土层剪切波速,按表3.1.2划分.3.1.3场地类别应根据场地土类型和场地覆盖层厚度划分为四类,并宜符合表3.1.3的规定.s sm盖层厚度的各土层剪切波速,按土层厚度加权的平均值.表3.1.3场地类别的划分3.1.4在水工建筑物场地范围内,岩体结构复杂,有软弱结构面或夹泥层不利组合,边坡稳定条件较差时,应查明在设计烈度的地震作用下不稳定边坡的分布,估计可能的危害程度,提出处理措施.3.2地基3.2.1水工建筑物地基的抗震设计,应综合考虑上部建筑物的型式,荷载,水力,运行条件,以及地基和岸坡的工程地质,水文地质条件.对于坝,闸等壅水建筑物的地基和岸坡,应要求在设计烈度的地震作用下不发生失稳破坏和渗透破坏,避免产生影响建筑物使用的有害变形.3.2.2水工建筑物的地基和岸坡中的断裂,破碎带及层间错动等软弱结构面,特别是缓倾角夹泥层和可能发生泥化的岩层,应根据其产状,埋藏深度,边界条件,渗流情况,物理力学性质以及建筑物的设计烈度,论证其在设计烈度的地震作用下不致发生失隐和超过允许的变形,必要时应采取抗震措施.3.2.3地基中液化土层的判别,可按《水利水电工程地质勘察规范》中的有关规定进行评价. 3.2.4地基中的可液化土层,可根据工程的类型和具体情况,选择采用以下抗震措施:1挖除可液化土层并用非液化土置换;2振冲加密,重夯击实等人工加密的方法;3填土压重;4桩体穿过可液化土层进入非液化土层的桩基;5混凝土连续墙或其它方法围封可液化地基.3.2.5重要工程地基中的软弱粘土层,应进行专门的抗震试验研究和分析.一般情况下,地基中的软弱粘土层的评价可采用以下标准:1液性指数I L≥0.75;2无侧限抗压强度q u≤50kPa;3标准贯入锤击数N63.5≤4;4灵敏度S t≥4.3.2.6地基中的软弱粘土层,可根据建筑物的类型和具体情况,选择采用以下抗震措施:1挖除或置换地基中的软弱粘土;2预压加固;3压重和砂井排水;4桩基或复合地基.3.2.7水工建筑物地基和岸坡的防渗结构及其连接部位以及排水反滤结构等,应采取措施防止地震时产生危害性裂缝引起渗流量增大,或发生管涌,流土等险情.3.2.8岩土性质,厚度等在水平方向变化很大的不均匀地基,应采取措施防止地震时产生较大的不均匀沉陷,滑移和集中渗漏,并采取提高上部建筑物适应地基不均匀沉陷能力的措施.4地震作用和抗震计算4.1地震动分量及其组合4.1.1一般情况下,水工建筑物可只考虑水平向地震作用.4.1.2设计烈度为8,9度的1,2级下列水工建筑物:土石坝,重力坝等壅水建筑物,长悬臂,大跨度或高耸的水工混凝土结构,应同时计入水平向和竖向地震作用.4.1.3严重不对称,空腹等特殊型式的拱坝,以及设计烈度为8,9度的1,2级双曲拱坝,宜对其竖向地震作用效应作专门研究.4.1.4一般情况下土石坝,混凝土重力坝,在抗震设计中可只计入顺河流方向的水平向地震作用. 两岸陡坡上的重力坝段,宜计入垂直河流方向的水平向地震作用.4.1.5重要的土石坝,宜专门研究垂直河流方向的水平向地震作用.4.1.6混凝土拱坝应同时考虑顺河流方向和垂直河流方向的水平向地震作用.4.1.7闸墩,进水塔,闸顶机架和其它两个主轴方向刚度接近的水工混凝土结构,应考虑结构的两个主轴方向的水平向地震作用.4.1.8当同时计算互相正交方向地震的作用效应时,总的地震作用效应可取各方向地震作用效应平方总和的方根值;当同时计算水平向和竖向地震作用效应时,总的地震作用效应也可将竖向地震作用效应乘以0.5的遇合系数后与水平向地震作用效应直接相加.4.2地震作用的类别4.2.1一般情况下,水工建筑物抗震计算应考虑的地震作用为:建筑物自重和其上的荷重所产生的地震惯性力,地震动土压力,水平向地震作用的动水压力.4.2.2除面板堆石坝外,土石坝的地震动水压力可以不计.4.2.3地震浪压力和地震对渗透压力,浮托力的影响可以不计.4.2.4地震对淤沙压力的影响,一般可以不计,此时计算地震动水压力的建筑物前水深应包括淤沙深度;当高坝的淤沙厚度特别大时,地震对淤沙压力的影响应作专门研究.4.3设计地震加速度和设计反应谱4.3.1除按1.0.6规定的概率水准由专门的地震危险性分析确定水平向设计地震加速度代表值a h 外,其余应根据设计烈度按表4.3.1的规定取值.表4.3.1水平向设计地震加速度代表值a h设计烈度7 8 9a h0.1g 0.2g 0.4g注:g=9.81m/s24.3.2竖向设计地震加速度的代表值a v应取水平向设计地震加速度代表值的2/3.4.3.3设计反应谱应根据场地类别和结构自振周期T按图4.3.3采用.4.3.4各类水工建筑物的设计反应谱最大值的代表值βmax应按表4.3.4的规定取值.图4.3.3设计反应谱表4.3.4设计反应谱最大值的代表值βmax建筑物类型重力坝拱坝水闸,进水塔及其他混凝土建筑物βmax 2.00 2.50 2.254.3.5设计反应谱下限值的代表值βmin应不小于设计反应谱最大值的代表值的20%.4.3.6不同类别场地的特征周期T g应按表4.3.6的规定取值.表4.3.6特征周期T g场地类别ⅠⅡⅢⅣT g (s) 0.20 0.30 0.40 0.654.3.7设计烈度不大于8度且基本自振周期大于1.0s的结构,特征周期宜延长0.05s.4.4地震作用和其他作用的组合4.4.1一般情况下,作抗震计算时的上游水位可采用正常蓄水位;多年调节水库经论证后可采用低于正常蓄水位的上游水位.4.4.2土石坝的上游坝坡抗震稳定计算,应根据运用条件选用对坝坡抗震稳定最不利的常遇水位进行抗震计算.4.4.3土石坝的上游坝坡抗震稳定计算,需要时,应将地震作用和常遇的水位降落幅值组合.4.4.4重要的拱坝及水闸的抗震强度计算,宜补充地震作用和常遇低水位组合的验算.4.5结构计算模式和计算方法4.5.1各类水工建筑物抗震计算中,地震作用效应的计算模式应与相应设计规范规定的计算模式相同.4.5.2除了窄河谷中的土石坝和横缝经过灌浆的重力坝外,重力坝,水闸,土石坝均可取单位宽度或单个坝(闸)段进行抗震计算. 4.5.3各类工程抗震设防类别的水工建筑物,除土石坝,水闸应分别按第5,8章规定外,地震作用效应计算方法应按表4.5.3的规定采用.其中工程抗震设防类别为乙,丙类的水工建筑物,其地震作用效应的计算方法,应按本规范各类水工建筑物章节中的有关条文规定采用. 4.5.4采用动力法计算地震作用效应时,应考虑结构和地基的动力相互作用,与水体接触的建筑物,还应考虑结构和水体的动力相互作用,但可不计库水可压缩性及地震动输入的不均匀性. 表4.5.3 地震作用效应的计算方法4.5.5作为线弹性结构的混凝土建筑物,可采用振型分解反应谱法或振型分解时程分析法,此时,拱坝的阻尼比可在3%~5%范围内选取,重力坝的阻尼比可在5%~10%范围内选取,其他建筑物可取5%. 4.5.6采用振型分解反应谱法计算地震作用效应时,可由各阶振型的地震作用效应按平方和方根法组合.当两个振型的频率差的绝对值与其中一个较小的频率之比小于0.1时,地震作用效应宜采用完全二次型方根法组合:∑∑=mjjim iE SS S ρ (4.5.6-1)()()()()222222/341418ωωωωωωγζζγγζζγγζγζζζρj i j ij i j i ij ++++-+=(4.5.6-2)式中:S E ---地震作用效应;S i ,S j ---分别为第i 阶,第j 阶振型的地震作用效应; m---计算采用的振型数;ρij ---第i 阶和第j 阶的振型相关系数;ζi ,ζj ---分别为第i 阶,第j 阶振型的阻尼比; γω---圆频率比, γω=ωj /ωi ;ωi , ωj ---分别为第i 阶,第j 阶振型的圆频率. 4.5.7地震作用效应影响不超过5%的高阶振型可略去不计.采用集中质量模型时,集中质量的个数不宜少于地震作用效应计算中采用的振型数的4倍. 4.5.8采用时程分析法计算地震作用效应时,宜符合下列规定:1 应至少选择类似场地地震地质条件的2条实测加速度记录和1条以设计反应谱为目标谱的人工生成模拟地震加速度时程;2 设计地震加速度时程的峰值应按4.3.1或1.0.6的规定采用;3 不同地震加速度时程计算的结果应进行综合分析,以确定设计验算采用的地震作用效应. 4.5.9当采用拟静力法计算地震作用效应时,沿建筑物高度作用于质点i 的水平向地震惯性力代表值应按下式计算:F i =a h ζG Ei a i /g (4.5.9)式中 F i ---作用在质点i 的水平向地震惯性力代表值; a---地震作用的效应折减系数,除另有规定外,取0.25; G Ei ---集中在质点i 的重力作用标准值;T i ---质点i 的动态分布系数,应按本规范各类水工建筑物章节中的有关条文规定采用; g---重力加速度.4.6 水工混凝土材料动态性能 4.6.1除水工钢筋混凝土结构外的混凝土水工建筑物的抗震强度计算中,混凝土动态强度和动态弹性模量的标准值可较其静态标准值提高30%;混凝土动态抗拉强度的标准值可取为动态抗压强度标准值的8%. 4.6.2在混凝土水工建筑物的抗震稳定计算中,动态抗剪强度参数的标准值可取静态标准值,当采用拟静力法计算地震作用效应时,应取静态均值. 4.6.3各类极限状态下的材料动态性能的分项系数可取静态作用下的值. 4.7 承载能力分项系数极限状态抗震设计 4.7.1各类水工建筑物的抗震强度和稳定应满足下列承载能力极限状态设计式()⎪⎪⎭⎫⎝⎛≤k m k d k k E k Q k G a f R a E Q G S ,1,,,,0γγγγγψγ (4.7.1)式中:γ0---结构重要性系数,应按GB50199-94的规定取值; j---设计状况系数,可取0.85; S(·)---结构的作用效应函数; γG ---永久作用的分项系数; G k ---永久作用的标准值; γQ ---可变作用的分项系数; Q k ---可变作用的标准值;γE ---地震作用的分项系数,取1.0; E k ---地震作用的代表值; a k ---几何参数的标准值;γd---承载能力极限状态的结构系数; R(·)---结构的抗力函数; f k---材料性能的标准值; γm ---材料性能的分项系数. 4.7.2各类水工建筑物在地震作用下应验算的极限状态及其相应的结构系数,均应按本规范相应建筑物章节中的有关规定采用.。
水利名词解释(水工建筑物+灌溉)
一、水工建筑物水工建筑物水利工程中与水发生相互作用的各类建筑物的统称。
按其功能大致可分:(1)挡水建筑物,如闸、坝、堤和海塘等;(2)泄水建筑物,如溢洪道、泄洪隧洞等;(3)取水建筑物,如进水塔、进水闸等;(4)输水建筑物,如渠道、输水隧洞和管道等;(5)治导建筑物,如丁坝、顺堤等;(6)专用建筑物,如水电站和扬水站的厂房、船闸和升船机、防波堤和码头、鱼道、筏道、给水的过滤池等。
这些建筑物须承受水的各种作用,如静水压力、动水压力、渗流压力和水流冲刷等。
挡水建筑物用以拦截水流,形成水库或雍高水位,以及为阻拦河水泛滥或海水入侵而兴建的各种水工建筑物。
如各种类型的坝、水闸,以及抗御洪水(或潮水)的提防和海塘等,其中以坝为典型代表,河床式水电站的厂房、河道中船闸的闸首、闸墙和零时性围堰等,也属于挡水建筑物。
取水建筑物为灌溉、发电、供水等目的,从水库、河流、湖泊、地下水等水源取水引至下游河渠或发电厂房的水工建筑物。
如进水闸、取水泵站等。
输水建筑物连接上下游引输水设置的水工建筑物的总称。
如隧洞、输水钢管、涵管、渠道和渠系建筑物等。
具体形式选用视引水目的、取水高程,以及地形、地质条件等因素而定。
如从水库引水,以灌溉、供水为目的而设置的输水建筑物,应布置在灌溉或供水地区的一侧,以免水温过低,不利于作物生长;为发电目的而设置的输水建筑物,应满足发电输水的专门要求。
泄水建筑物为宣泄水库、河道、渠道、涝区超过调蓄或承受能力的洪水或涝水以及为泄放水库、渠道内的存水以利于安全防护或检查维修的水工建筑物。
如高水头水利枢纽中的溢流坝、溢洪道、泄洪隧洞,坝身中的中孔、底孔和涵管等;低水头水利枢纽中的滚水坝、泄水闸、冲沙闸等,以及由渠道分泄入渠洪水或多余水量的泄水闸、退水闸和由涝区排泄涝水的排水闸、排水泵站等。
具体形式选择由地形、地质、坝型和泄水量等确定。
在重力坝枢纽中,一般采用坝顶溢流、大孔口泄流或两种配合使用,并用深式泄水孔辅助泄洪或放空水库;在拱坝枢纽中,一般采用坝顶、坝身泄水孔或河岸式溢洪道和泄洪隧洞;在土石坝或结构复杂的轻型坝的枢纽中,一般采用河岸式溢洪道、泄洪隧洞或两者配合使用。
土木工程师-专业知识(水利水电)-水工建筑物
土木工程师-专业知识(水利水电)-水工建筑物[单选题]1.下游坝壳的水下部位以及上游坝壳的水位变动区内则要求坝壳料具有的性能是()。
A.防渗性能B.排水性能C.反滤D.维稳(江南博哥)正确答案:B参考解析:坝壳料主要用来保持坝体的稳定,应具有比较高的强度。
下游坝壳的水下部位以及上游坝壳的水位变动区内则要求具有良好的排水性能。
[单选题]2.面板堆石坝高坝垫层料应具有连续级配,最大粒径为80~100mm,粒径小于的颗粒含量宜为30%~50%,粒径小于的颗粒含量宜少于8%。
()A.3mm、0.065mmB.5mm、0.055mmC.5mm、0.075mmD.3mm、0.055mm正确答案:C参考解析:面板堆石坝高坝垫层料应具有连续级配,最大粒径为80~100mm,粒径小于5mm的颗粒含量宜为30%~50%,粒径小于0.075mm的颗粒含量宜少于8%。
压实后应具有内部渗透稳定性、低压缩性、高抗剪强度,并应具有良好的施工特性。
[单选题]3.土质防渗体顶部和土质斜墙上游应设()。
A.垫层B.保护层C.防渗层D.反滤层正确答案:B参考解析:土质防渗体顶部和土质斜墙上游应设保护层。
保护层厚度(包括上游护坡垫层)应不小于该地区的冻结和干燥深度,还应满足施工机械的需要。
斜墙上游保护层的填筑标准应和坝体相同,其坝坡应满足稳定要求。
[单选题]4.下列关于反滤层与过渡层作用的说法正确的是()。
A.过渡层能起到反滤层的要求,反滤层却不一定能满足过渡层要求B.反滤层可以起过渡层的作用,过渡层也能满足反滤要求C.过渡层能起到反滤层的要求,反滤层也能满足过渡层要求D.反滤层可以起过渡层的作用,过渡层却不一定能满足反滤要求正确答案:D参考解析:反滤的作用是滤土排水,防止水工建筑物在渗流逸出处遭受管涌、流土等渗流变形的破坏以及不同土层界面处的接触冲刷。
过渡层的作用是避免在刚度相差较大的两种土料之间产生急剧变化的变形和应力。
反滤层可以起过渡层的作用,而过渡层却不一定能满足反滤要求。
水工建筑物抗震设计要求规范
中华人民国行业标准SL203-97水工建筑物抗震设计规Specificatins for seismic design of hydraulic structures1997-08-04发布1997-10-01实施中华人民国水利部发布中华人民国行业标准主编单位:中国水利水电科学研究院批准部门:中华人民国水利部施行日期:1997年10月1日中华人民国水利部关于发布《水工建筑物抗震设计规》SL203-97的通知水科技[1997]439号根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释.本标准文本由中国水利水电出版发行.一九九七年八月四日前言本规是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规》进行修订而成.本规在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿.本规为强制性行业标准,替代SDJ10-78.本规共分11章和1个标准的附录.这次修订的主要容有:进一步明确了规适用的烈度围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了容.希望有关单位在执行本规的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑.本规由原能源部,水利部水利水电规划设计总院提出修订.本规由水利部水利水电规划设计管理局归口.本规解释单位:水利部水利水电规划设计管理局本规修订主编单位:中国水利水电科学研究院本规修订协编单位:电力工业部勘测设计研究院,电力工业部西北勘测设计研究院,市水利工程设计研究院,理工大学,河海大学.本规主要起草人:厚群,侯顺载,郭锡荣,苏克忠,王钟宁,佳梅,卫明,林皋, 方大凤,黄家森, 瓒,梁爱虎,武清玺,王锡忠,师接劳目次1 总则2 术语,符号2.1 术语2.2 基本符号3 场地和地基3.1 场地3.2 地基4 地震作用和抗震计算4.1 地震动分量及其组合4.2 地震作用的类别4.3 设计地震加速度和设计反应谱4.4 地震作用和其它作用的组合4.5 结构计算模式和计算方法4.6 水工混凝土材料动态性能4.7 承载能力分项系数极限状态抗震设计4.8 附属结构的抗震计算4.9 地震动土压力5 土石坝5.1 抗震计算5.2 抗震措施6 重力坝6.1 抗震计算6.2 抗震措施7 拱坝7.1 抗震计算7.2 抗震措施8 水闸8.1 抗震计算8.2 抗震措施9 水工地下结构9.1 抗震计算9.2 抗震措施10 进水塔10.1 抗震计算10.2 抗震措施11 水电站压力钢管和地面厂房11.1 压力钢管11.2 地面厂房附录A 土石坝的抗震计算1 总则1.0.1为做好水工建筑物的抗震设计,减轻地震破坏及防止次生灾害,特制定本规.1.0.2适用围:1 主要适用于设计烈度为6,7,8,9度的1,2,3级的碾压式土石坝,混凝土重力坝,混凝土拱坝,平原地区水闸,溢洪道,地下结构,进水塔,水电站压力钢管和地面厂房等水工建筑物的抗震设计.2 设计烈度为6度时,可不进行抗震计算,但对1级水工建筑物仍应按本规采取适当的抗震措施.3 设计烈度高于9度的水工建筑物或高度大于250m的壅水建筑物,其抗震安全性应进行专门研究论证后,报主管部门审查,批准.1.0.3按本规进行抗震设计的水工建筑物能抗御设计烈度地震;如有局部损坏,经一般处理后仍可正常运行.1.0.4水工建筑物工程场地地震烈度或基岩峰值加速度,应根据工程规模和区域地震地质条件按下列规定确定:1 一般情况下,应采用《中国地震烈度区划图(1990)》确定的基本烈度.2 基本烈度为6度及6度以上地区的坝高超过200m或库容大于100亿m3的大型工程,以及基本烈度为7度及7度以上地区坝高超过150m的大(1)型工程,应根据专门的地震危险性分析提供的基岩峰值加速度超越概率成果,按本规1.0.6的规定取值.1.0.5水工建筑物的工程抗震设防类别应根据其重要性和工程场地基本烈度按表1.0.5的规定确定.表1.0.5 工程抗震设防类别1.0.6各类水工建筑物抗震设计的设计烈度或设计地震加速度代表值应按下列规定确定:1 一般采用基本烈度作为设计烈度.2 工程抗震设防类别为甲类的水工建筑物,可根据其遭受强震影响的危害性,在基本烈度基础上提高1度作为设计烈度.3 凡按本规1.0.4作专门的地震危险性分析的工程,其设计地震加速度代表值的概率水准,对壅水建筑物应取基准期100年超越概率P100为0.02,对非壅水建筑物应取基准期50年超越概率P50为0.05.4 其它特殊情况需要采用高于基本烈度的设计烈度时,应经主管部门批准.5 施工期的短暂状况,可不与地震作用组合;空库时,如需要考虑地震作用时,可将设计地震加速度代表值减半进行抗震设计.1.0.7坝高大于100m,库容大于5亿m3的水库,如有可能发生高于6度的水库诱发地震时,应在水库蓄水前就进行地震前期监测.1.0.8水工建筑物的抗震设计宜符合下列基本要求:1 结合抗震要求选择有利的工程地段和场地.2 避免地基和邻近建筑物的岸坡失稳.3 选择安全经济合理的抗震结构方案和抗震措施.4 在设计中从抗震角度提出对施工质量的要求和措施.5 便于震后对遭受震害的建筑物进行检修.重要水库宜设置泄水建筑物,隧洞等,保证必要时能适当地降低库水位.1.0.9设计烈度为8,9度时,工程抗震设防类别为甲类的水工建筑物,应进行动力试验验证,并提出强震观测设计,必要时,在施工期宜设场地效应台阵,以监测可能发生的强震;工程抗震设防类别为乙类的水工建筑物,宜满足类似要求.1.0.10引用标准下列标准所包含的条文,通过在本标准中应用而构成本标准的条文.在标准出版时,所示版本均为有效.所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性. GBJ11-89 建筑抗震设计规GB50199-94 水利水电工程结构可靠度设计统一标准SL/T191-96 水工混凝土结构设计规SDJ12-78 水利水电枢纽工程等级划分及设计标准(山区,丘陵区部分)SDJ21-78 混凝土重力坝设计规SD133-84 水闸设计规SD134-84 水工隧洞设计规SD144-85 水电站压力钢管设计规SD145-85 混凝土拱坝设计规SDJ217-87 水利水电枢纽工程等级划分及设计标准(平原,海滨部分)SDJ218-84 碾压式土石坝设计规SD303-88 水电站进水口设计规SD335-89 水电站厂房设计规按本规进行水工建筑物抗震设计时,尚应符合有关标准,规的要求.同级行业标准规中,有关水工建筑物抗震方面的规定不符合本规的,应以本规为准.2 术语,符号2.1 术语2.1.1抗震设计:地震区的工程结构所进行的一种专项设计.一般包括抗震计算和抗震措施两个方面.2.1.2基本烈度:50年期限,一般场地条件下,可能遭遇超越概率P50为0.10的地震烈度.一般为《中国地震烈度区划图(1990)》上所标示的地震烈度值,对重大工程应通过专门的场地地震危险性分析工作确定.2.1.3设计烈度:在基本烈度基础上确定的作为工程设防依据的地震烈度.2.1.4水库诱发地震:由于水库蓄水或大量泄水而引起库区及附近发生的地震.2.1.5地震动:由地震引起的岩土运动.2.1.6地震作用:地震动施加于结构上的动态作用.2.1.7地震动峰值加速度:地震动过程中,地表质点运动加速度的最大绝对值.2.1.8设计地震加速度:由专门的地震危险性分析按规定的设防概率水准所确定的,或一般情况下与设计烈度相对应的地震动峰值加速度.2.1.9地震作用效应:地震作用引起的结构力,变形,裂缝开展等动态效应.2.1.10地震液化:地震动引起的饱和砂土,粉土和少粘性土颗粒趋于紧密,孔隙水压力增大,有效应力趋近于零的现象.2.1.11设计反应谱:抗震设计中所采用的一定阻尼比的单质点体系,在地震作用下的最大加速度反应随体系自振周期变化的曲线,一般以其与地震动最大峰值加速度的比值表示.2.1.12动力法:按结构动力学理论求解结构地震作用效应的方法.2.1.13时程分析法:由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程结构地震作用效应的方法.2.1.14振型分解法:先求解结构对应其各阶振型的地震作用效应后,再组合成结构总地震作用效应的方法.各阶振型效应用时程分析法求得后直接叠加的称振型分解时程分析法,用反应谱法求得后再组合的称振型分解反应谱法.2.1.15平方和方根(SRSS)法:取各阶振型地震作用效应的平方总和的方根作为总地震作用效应的振型组合方法.2.1.16完全二次型方根(CQC)法:取各阶振型地震作用效应的平方项和不同振型耦联项的总和的方根作为总地震作用效应的振型组合方法.2.1.17地震动水压力:地震作用引起的水体对结构产生的动态压力.2.1.18地震动土压力:地震作用引起的土体对结构产生的动态压力.2.1.19拟静力法:将重力作用,设计地震加速度与重力加速度比值,给定的动态分布系数三者乘积作为设计地震力的静力分析方法.2.1.20地震作用的效应折减系数:由于地震作用效应计算方法的简化而引入的对地震作用效应进行折减的系数.2.1.21自振周期:结构按某一振型完成一次自由振动所需的时间.对应于第-振型的自振周期称基本自振周期.2.2 基本符号2.2.1作用和作用效应:ah---水平向设计地震加速度代表值;a v---竖向设计地震加速度代表值;g---重力加速度;Pw(h)---水深h处的地震动水压力代表值;F 0---建筑物单位宽度迎水面的总地震动水压力代表值;Fi---作用在质点i的水平向地震惯性力的代表值;F E---地震主动动土压力代表值;G E---产生地震惯性力的建筑物总重力作用的标准值;T i---质点i的动态分布系数;β---设计反应谱;ζ---地震作用的效应折减系数.2.2.2材料性能和几何参数:a k---几何参数的标准值;f k---材料性能的标准值;N63.5---标准贯入锤击数;N cr---临界锤击数;ρw---水体质量密度的标准值.2.2.3分项系数极限状态设计:E k---地震作用的代表值;G k---永久作用的标准值;Q k---可变作用的标准值;R---结构的抗力;S---结构的作用效应;γ0---结构重要性系数;γρ---承载能力极限状态的结构系数;γm---材料性能的分项系数;γG ---永久作用的分项系数;γQ---可变作用的分项系数;ψ---设计状况系数.2.2.4其他:T---结构自振周期;T g---特征周期;λf ---附属结构和主体结构的基本频率比值;λm---附属结构和主体结构质量比值.3 场地和地基3.1 场地3.1.1水工建筑物的场地选择,应在工程地质勘察和专门工程地质研究的基础上,按构造活动性,边坡稳定性和场地地基条件等进行综合评价.可按表3.1.1划分为有利,不利和危险地段.宜选择对建筑物抗震相对有利地段,避开不利地段,未经充分论证不得在危险地段进行建设.表3.1.1 各类地段的划分3.1.2水工建筑物开挖后的场地土类型,宜根据土层剪切波速,按表3.1.2划分. 3.1.3场地类别应根据场地土类型和场地覆盖层厚度划分为四类,并宜符合表3.1.3的规定. 表3.1.2 场地土类型的划分 注:υs 为土层剪切波速;υsm 为土层平均剪切波速,取建基面下15m 且不深于场地覆盖层厚度的各土层剪切波速,按土层厚度加权的平均值. 表3.1.3 场地类别的划分3.1.4在水工建筑物场地围,岩体结构复杂,有软弱结构面或夹泥层不利组合,边坡稳定条件较差时,应查明在设计烈度的地震作用下不稳定边坡的分布,估计可能的危害程度,提出处理措施.3.2 地基3.2.1水工建筑物地基的抗震设计,应综合考虑上部建筑物的型式,荷载,水力,运行条件,以及地基和岸坡的工程地质,水文地质条件.对于坝,闸等壅水建筑物的地基和岸坡,应要求在设计烈度的地震作用下不发生失稳破坏和渗透破坏,避免产生影响建筑物使用的有害变形.3.2.2水工建筑物的地基和岸坡中的断裂,破碎带及层间错动等软弱结构面,特别是缓倾角夹泥层和可能发生泥化的岩层,应根据其产状,埋藏深度,边界条件,渗流情况,物理力学性质以及建筑物的设计烈度,论证其在设计烈度的地震作用下不致发生失隐和超过允许的变形,必要时应采取抗震措施.3.2.3地基中液化土层的判别,可按《水利水电工程地质勘察规》中的有关规定进行评价.3.2.4地基中的可液化土层,可根据工程的类型和具体情况,选择采用以下抗震措施:1 挖除可液化土层并用非液化土置换;2 振冲加密,重夯击实等人工加密的方法;3 填土压重;4 桩体穿过可液化土层进入非液化土层的桩基;5 混凝土连续墙或其它方法围封可液化地基.3.2.5重要工程地基中的软弱粘土层,应进行专门的抗震试验研究和分析.一般情况下,地基中的软弱粘土层的评价可采用以下标准:1 液性指数I L≥0.75;2 无侧限抗压强度q u≤50kPa;3 标准贯入锤击数N63.5≤4;4 灵敏度S t≥4.3.2.6地基中的软弱粘土层,可根据建筑物的类型和具体情况,选择采用以下抗震措施:1 挖除或置换地基中的软弱粘土;2 预压加固;3 压重和砂井排水;4 桩基或复合地基.3.2.7水工建筑物地基和岸坡的防渗结构及其连接部位以及排水反滤结构等,应采取措施防止地震时产生危害性裂缝引起渗流量增大,或发生管涌,流土等险情.3.2.8岩土性质,厚度等在水平方向变化很大的不均匀地基,应采取措施防止地震时产生较大的不均匀沉陷,滑移和集中渗漏,并采取提高上部建筑物适应地基不均匀沉陷能力的措施.4 地震作用和抗震计算4.1 地震动分量及其组合4.1.1一般情况下,水工建筑物可只考虑水平向地震作用.4.1.2设计烈度为8,9度的1,2级下列水工建筑物:土石坝,重力坝等壅水建筑物,长悬臂,大跨度或高耸的水工混凝土结构,应同时计入水平向和竖向地震作用.4.1.3严重不对称,空腹等特殊型式的拱坝,以及设计烈度为8,9度的1,2级双曲拱坝,宜对其竖向地震作用效应作专门研究.4.1.4一般情况下土石坝,混凝土重力坝,在抗震设计中可只计入顺河流方向的水平向地震作用. 两岸陡坡上的重力坝段,宜计入垂直河流方向的水平向地震作用.4.1.5重要的土石坝,宜专门研究垂直河流方向的水平向地震作用.4.1.6混凝土拱坝应同时考虑顺河流方向和垂直河流方向的水平向地震作用.4.1.7闸墩,进水塔,闸顶机架和其它两个主轴方向刚度接近的水工混凝土结构,应考虑结构的两个主轴方向的水平向地震作用.4.1.8当同时计算互相正交方向地震的作用效应时,总的地震作用效应可取各方向地震作用效应平方总和的方根值;当同时计算水平向和竖向地震作用效应时,总的地震作用效应也可将竖向地震作用效应乘以0.5的遇合系数后与水平向地震作用效应直接相加.4.2 地震作用的类别4.2.1一般情况下,水工建筑物抗震计算应考虑的地震作用为:建筑物自重和其上的荷重所产生的地震惯性力,地震动土压力,水平向地震作用的动水压力.4.2.2除面板堆石坝外,土石坝的地震动水压力可以不计.4.2.3地震浪压力和地震对渗透压力,浮托力的影响可以不计.4.2.4地震对淤沙压力的影响,一般可以不计,此时计算地震动水压力的建筑物前水深应包括淤沙深度;当高坝的淤沙厚度特别大时,地震对淤沙压力的影响应作专门研究.4.3 设计地震加速度和设计反应谱4.3.1除按1.0.6规定的概率水准由专门的地震危险性分析确定水平向设计地震加速度代表值a外,其余应根据设计烈度按表4.3.1的规定取值.h表4.3.1 水平向设计地震加速度代表值a h注:g=9.81m/s24.3.2竖向设计地震加速度的代表值a v应取水平向设计地震加速度代表值的2/3.4.3.3设计反应谱应根据场地类别和结构自振周期T按图4.3.3采用.4.3.4各类水工建筑物的设计反应谱最大值的代表值βmax应按表4.3.4的规定取值.图4.3.3 设计反应谱表4.3.4 设计反应谱最大值的代表值βmax建筑物类型重力坝拱坝水闸,进水塔及其他混凝土建筑物βmax 2.00 2.50 2.254.3.5设计反应谱下限值的代表值βmin应不小于设计反应谱最大值的代表值的20%.4.3.6不同类别场地的特征周期T g应按表4.3.6的规定取值.表4.3.6 特征周期T g场地类别ⅠⅡⅢⅣT g (s) 0.20 0.30 0.40 0.65 4.3.7设计烈度不大于8度且基本自振周期大于1.0s的结构,特征周期宜延长0.05s.4.4 地震作用和其他作用的组合4.4.1一般情况下,作抗震计算时的上游水位可采用正常蓄水位;多年调节水库经论证后可采用低于正常蓄水位的上游水位.4.4.2土石坝的上游坝坡抗震稳定计算,应根据运用条件选用对坝坡抗震稳定最不利的常遇水位进行抗震计算.4.4.3土石坝的上游坝坡抗震稳定计算,需要时,应将地震作用和常遇的水位降落幅值组合.4.4.4重要的拱坝及水闸的抗震强度计算,宜补充地震作用和常遇低水位组合的验算.4.5 结构计算模式和计算方法4.5.1各类水工建筑物抗震计算中,地震作用效应的计算模式应与相应设计规规定的计算模式相同.4.5.2除了窄河谷中的土石坝和横缝经过灌浆的重力坝外,重力坝,水闸,土石坝均可取单位宽度或单个坝(闸)段进行抗震计算.4.5.3各类工程抗震设防类别的水工建筑物,除土石坝,水闸应分别按第5,8章规定外,地震作用效应计算方法应按表4.5.3的规定采用.其中工程抗震设防类别为乙,丙类的水工建筑物,其地震作用效应的计算方法,应按本规各类水工建筑物章节中的有关条文规定采用.4.5.4采用动力法计算地震作用效应时,应考虑结构和地基的动力相互作用,与水体接触的建筑物,还应考虑结构和水体的动力相互作用,但可不计库水可压缩性及地震动输入的不均匀性.表4.5.3 地震作用效应的计算方法4.5.5作为线弹性结构的混凝土建筑物,可采用振型分解反应谱法或振型分解时程分析法,此时,拱坝的阻尼比可在3%~5%围选取,重力坝的阻尼比可在5%~10%围选取,其他建筑物可取5%. 4.5.6采用振型分解反应谱法计算地震作用效应时,可由各阶振型的地震作用效应按平方和方根法组合.当两个振型的频率差的绝对值与其中一个较小的频率之比小于0.1时,地震作用效应宜采用完全二次型方根法组合:∑∑=mjjim iE SS S ρ (4.5.6-1)()()()()222222/341418ωωωωωωγζζγγζζγγζγζζζρj i j ij i j i ij ++++-+=(4.5.6-2)式中:S E ---地震作用效应;S i ,S j ---分别为第i 阶,第j 阶振型的地震作用效应; m---计算采用的振型数;ρij ---第i 阶和第j 阶的振型相关系数; ζi ,ζj ---分别为第i 阶,第j 阶振型的阻尼比; γω---圆频率比,γω=ωj /ωi ;ωi , ωj ---分别为第i 阶,第j 阶振型的圆频率. 4.5.7地震作用效应影响不超过5%的高阶振型可略去不计.采用集中质量模型时,集中质量的个数不宜少于地震作用效应计算中采用的振型数的4倍.4.5.8采用时程分析法计算地震作用效应时,宜符合下列规定:1 应至少选择类似场地地震地质条件的2条实测加速度记录和1条以设计反应谱为目标谱的人工生成模拟地震加速度时程;2 设计地震加速度时程的峰值应按4.3.1或1.0.6的规定采用;3 不同地震加速度时程计算的结果应进行综合分析,以确定设计验算采用的地震作用效应.4.5.9当采用拟静力法计算地震作用效应时,沿建筑物高度作用于质点i的水平向地震惯性力代表值应按下式计算:F i=a hζG Ei a i/g(4.5.9)式中F i---作用在质点i的水平向地震惯性力代表值;a---地震作用的效应折减系数,除另有规定外,取0.25;G Ei---集中在质点i的重力作用标准值;T i---质点i的动态分布系数,应按本规各类水工建筑物章节中的有关条文规定采用;g---重力加速度.4.6 水工混凝土材料动态性能4.6.1除水工钢筋混凝土结构外的混凝土水工建筑物的抗震强度计算中,混凝土动态强度和动态弹性模量的标准值可较其静态标准值提高30%;混凝土动态抗拉强度的标准值可取为动态抗压强度标准值的8%.4.6.2在混凝土水工建筑物的抗震稳定计算中,动态抗剪强度参数的标准值可取静态标准值,当采用拟静力法计算地震作用效应时,应取静态均值. 4.6.3各类极限状态下的材料动态性能的分项系数可取静态作用下的值. 4.7 承载能力分项系数极限状态抗震设计 4.7.1各类水工建筑物的抗震强度和稳定应满足下列承载能力极限状态设计式()⎪⎪⎭⎫⎝⎛≤k m k d k k E k Q k G a f R a E Q G S ,1,,,,0γγγγγψγ (4.7.1) 式中:γ0---结构重要性系数,应按GB50199-94的规定取值; j---设计状况系数,可取0.85; S(·)---结构的作用效应函数; γG ---永久作用的分项系数; G k ---永久作用的标准值; γQ ---可变作用的分项系数; Q k ---可变作用的标准值;γE ---地震作用的分项系数,取1.0; E k ---地震作用的代表值; a k ---几何参数的标准值; γd---承载能力极限状态的结构系数;R(·)---结构的抗力函数; f k---材料性能的标准值;。
水电站基本知识
1、什么是水电站?水电站枢纽的组成。
水电站是将水能转变为电能的水力装置,它由各种水工建筑物,以及发电、变电、配电等机械、电气设备,组成为一个有机的综合体,互相配合,协同工作,这种水力装置,就是水电站枢纽或者水力枢纽,简称水电站。
它由挡水建筑物、泄水建筑物、进水建筑物、引水建筑物、平水建筑物及水电站厂房等水工建筑物共7个部分组成,机电设备则安装在各种建筑物上,主要是在厂房内及其附近。
(1)挡水建筑物。
是拦截水流、雍高水位、形成水库,以集中落差、调节流量的建筑物,例如坝和闸。
(2)泄水建筑物。
其作用主要是泄放水库容纳不了的来水,防止洪水漫过坝顶,确保水库安全运用,因而是水库中必不可少的建筑物,例如溢流坝、河岸溢洪道、坝下泄水管及隧洞、引水明渠溢水道等。
(3)进水建筑物。
使水轮机从河流或水库取得所需的流量,如进水口。
(4)引水建筑物。
引水建筑物是引水式或混合式水电站中,用来集中落差(对混合式水电站而言,则只是集中总会落差)和输送流量的工程设施,如明渠、隧洞等。
有时水轮机管道也被称为引水建筑物,但严格说来,由于它主要是输送流量的,所以与同时具有集中落差和输送流量双重作用的引水建筑物并不完全相同。
有些水电站具有较长的尾水隧洞及尾水渠道,这也属于引水建筑物。
(5)平水建筑物。
其作用是当负荷突然变化引起引水系统中流量和压力剧烈波动时,借以调整供水流量及压力,保证引水建筑物、水轮机管道的安全和水轮发电机组的稳定运行。
如引水式或混合式水电站的引水系统中设置的平水建筑物如压力池或高压池。
(6)厂区建筑物。
包括厂房、变电站和开关站。
厂房是水电站枢纽中最重要的建筑物之一,它不同于一般的工业厂房,而是是水力机械、电气设备等有机地结合在一起的特殊的水工建筑物;变电站是安装升压变压器的场所;而开关站则是安装各种高压配电装置的地方,故也称高压配电场。
(7)枢纽中的其它建筑物。
此类建筑物指对于将水能转变为电能这个生产过程没有直接作用的船闸或升船机、筏道、鱼道或鱼闸以及为灌溉或城市供水而设的取水设施等。
水泵站进水建筑物哪些及作用
泵站枢纽工程包括引水建筑物、取水建筑物、进水建筑物、泵房、出水建筑物等。
泵站进水建筑物包括哪些:泵站进水建筑物包括前池和进水池。
一、泵站进水建筑物前池1.泵站前池的作用前池是连接引渠和进水池的建筑物。
其作用是把引渠和进水池合理地衔接起来,使水流平稳且均匀地流人进水池,为水泵提供良好的吸水条件。
2.前池的类型根据水流方向,前池分为正向进水前池和侧向进水前池两大类。
(1)泵站进水建筑物正向进水前池。
正向进水前池是指前池中的水流方向和进水池水流方向一致,正向进水前池的主要特点是形状简单,施工方便,池中水流比较平稳。
因此当地形条件允许时应尽量采用正向进水前池。
但水泵机组较多时,为了保证池中有较好的流态,池长较大,工程量也较大。
这对于开挖困难的地质条件十分不利。
为此,可将正向进水前池做成折线形或曲线形。
(2)泵站进水建筑物侧向进水前池。
侧向进水前池是指前池中的水流方向和进水池水流方向侧向进水前池由于流向的改变,水流流态较差,池中易形成回流和漩涡,从而影响水泵吸水,甚至使最里面的水泵无法吸水。
3.泵站进水建筑物正向进水前池尺寸的确定(1)前池扩散角的确定。
扩散角“是影响前池水流流态及池长的主要因素,如图5 -3 (a)所示。
a值的确定应以不发生边壁脱流和工程经济合理为原则。
从工程经济上考虑,当引渠底宽6和进水池底宽B-定时,a值越大,则池长越短,工程量越小,但越容易引起边壁脱流,使池中水力条件恶化;反之,a值减小,虽然不会出现边壁脱流,但池长增大,工程量也随之增大。
二.泵站进水建筑物进水池水泵站进水建筑物进水池的作用是供水泵进水管(卧式离心泵、混流泵)或水泵(直式轴流泵)直接吸水的水池,一般设于泵房前面或泵房下面,其主要作刷是为水泵提供良好的吸水条件。
要求进水池中的水流平稳.流速分布均匀,无漩涡和回流·吾则不仅会降低水泵的效率,甚至引起水泵汽蚀,机组振动而无法工作。
影响池中水流流态的因素除前池水流流态外,主要取决于进水池几何形状、尺寸、吸水管在池中的位置以及水泵的类型等。
水电站建筑物试题库与答案
5.露天(明)钢管有哪些敷设形式?比较它们的优点及适用条件。
6.压力钢管的经济直径如何确定? 7.露天钢管上有哪些管件(附件)?各起什么作用? 8.露天钢管如何检验稳定性?如不满足应采取哪些措施? 9.作用在明钢管上的荷载有哪几类?各产生什么应力?计算应力时应选取哪几个断面?
/SHUILI/class/?.html 10.明钢管的墩座有几种类型,各有何作用? 11.镇墩和支墩的作用有何不同?二者分别设置在地面压力钢管的什么部位?
/forum-66-1.html 12.支墩有哪几种类型?各有何特点?适用什么情况?
6.沉砂池的基本原理是什么?都有哪些排沙方式?
/SHUILI/class/?.html
任务三 水电站引水建筑物
一、填空题 1.水电站的引水渠道可分为 渠道和渠道两种类型。
2.引水建筑物的功用是和。 3.引水建筑物可分为和两大类。 4.压力前池组成有、、和。
/forum-66-1.html 5.压力前池的布置方式有、和三种型式。
6.拦污栅清污方式有 和 两种。 7.开敞式进水口可分为两种: 和 。 8.开敞式进水口的位置应选择在河道稳定河段的 岸,进水闸与冲沙闸的相对位置应以 的原则进行 布置。
二、读图题 请写出下列进水口的类型
dsdddddddd fffffffffffffffffff
/SHUILI/class/?.html
/forum-66-1.html 5.压力水管上常用的阀门有、和三种。
6.明钢管的支承结构有和。 7.镇墩可分为和两种。 8.常用的支墩形式有、和三类。 9.明钢管根据其在相邻两镇墩间是否设置,有和两种敷设方式。 10.钢筋混凝土管分为、及。 11.地下压力管道有、。 12.钢管的转弯半径不易小于倍管径,明钢管底部至少高出地表面 m。 13.岔管的型式有、、、、五种。 二、判断题 1.压力水管是指从水库或水电站平水建筑物(压力前池或调压室)向水轮机输送水量的管道。 2.由一根总管在末端分岔后向电站所有机组供水是分组供水。 3.压力水管的轴线与厂房的相对方向可以采用正向、侧向、或斜向的布置,若采用正向布置, 当水管破裂后,泄流可从排水渠排走,不致直冲厂房,但管材用量增加,水头损失也较大。 4.使系统年费用(或总费用)为最小的压力水管直径称为压力水管的经济直径。 5.当薄壁钢管不能抵抗外压和满足不了运输或安装的要求时,可考虑加设刚性环。 6.选取的钢管直径越小越好。 7.钢管末端必须设置阀门。
水利工程--
提水泵站的设计参数主要是设计流量和设计扬程,它们是水泵选型和泵站建筑物设计的依据,并直接影响到泵站规模、设备投资及泵站效益。因此,设计流量和设计扬程的选择,也需要根据泵站功能,科学合理地分析计算后确定。
水利名词解释(水工建筑物灌溉)
一、水工建筑物水工建筑物水利工程中与水发生相互作用的各类建筑物的统称。
按其功能大致可分:〔1〕挡水建筑物,如闸、坝、堤和海塘等;〔2〕泄水建筑物,如溢洪道、泄洪隧洞等;〔3〕取水建筑物,如进水塔、进水闸等;〔4〕输水建筑物,如渠道、输水隧洞和管道等;〔5〕治导建筑物,如丁坝、顺堤等;〔6〕专用建筑物,如水电站和扬水站的厂房、船闸和升船机、防波堤和码头、鱼道、筏道、给水的过滤池等。
这些建筑物须承受水的各种作用,如静水压力、动水压力、渗流压力和水流冲刷等。
挡水建筑物用以拦截水流,形成水库或雍高水位,以及为阻拦河水泛滥或海水进侵而兴建的各种水工建筑物。
如各种类型的坝、水闸,以及抗御洪水〔或潮水〕的提防和海塘等,其中以坝为典型代表,河床式水电站的厂房、河道中船闸的闸首、闸墙和零时性围堰等,也属于挡水建筑物。
取水建筑物为浇灌、发电、供水等目的,从水库、河流、湖泊、地下水等水源取水引至下游河渠或发电厂房的水工建筑物。
如进水闸、取水泵站等。
输水建筑物连接上下游引输水设置的水工建筑物的总称。
如隧洞、输水钢管、涵管、渠道和渠系建筑物等。
具体形式选用视引水目的、取水高程,以及地形、地质条件等因素而定。
如从水库引水,以浇灌、供水为目的而设置的输水建筑物,应布置在浇灌或供水地区的一侧,以免水温过低,不利于作物生长;为发电目的而设置的输水建筑物,应满足发电输水的专门要求。
泄水建筑物为宣泄水库、河道、渠道、涝区超过调蓄或承受能力的洪水或涝水以及为泄放水库、渠道内的存水以利于平安防护或检查维修的水工建筑物。
如高水头水利枢纽中的溢流坝、溢洪道、泄洪隧洞,坝身中的中孔、底孔和涵管等;低水头水利枢纽中的滚水坝、泄水闸、冲沙闸等,以及由渠道分泄进渠洪水或多余水量的泄水闸、退水闸和由涝区排泄涝水的排水闸、排水泵站等。
具体形式选择由地形、地质、坝型和泄水量等确定。
在重力坝枢纽中,一般采纳坝顶溢流、大孔口泄流或两种配合使用,并用深式泄水孔辅助泄洪或放空水库;在拱坝枢纽中,一般采纳坝顶、坝身泄水孔或河岸式溢洪道和泄洪隧洞;在土石坝或结构复杂的轻型坝的枢纽中,一般采纳河岸式溢洪道、泄洪隧洞或两者配合使用。
水利资料答案
第一章一、填空题:1.水电站生产电能的过程是有压水流通过水轮机,将水能转变为旋转机械能,水轮机又带动水轮发电机转动,再将旋转机械能转变为电能.2.水头和流量是构成水能的两个基本要素,是水电站动力特性的重要表征。
3.就集中落差形成水头的措施而言,水能资源的开发方式可分为坝式、引水式和混合式三种基本方式,此外,还有开发利用海洋潮汐水能的潮汐开发方式。
4.坝式水电站较常采用的是河床式水电站和坝后式水电站。
5.引水式水电站据引水建筑物的不同又可分为无压引水式水电站和有压引水式水电站两种类型。
6.根据水能开发方式的不同,水电站有坝式水电站、引水式水电站、混合式水电站、潮汐水电站和抽水蓄能电站种类型. 7.水电站枢纽的组成建筑物有:挡水建筑物、泄水建筑物和进水建筑物、输水建筑物、平水建筑物、厂房枢纽建筑物六种. 8.我国具有丰富的水能资源,理论蕴藏量为 6。
94亿kW ,技术开发量为 5.42亿kW .二、简答题1.水力发电的特点是什么?水力发电供应电能区别于其他能源,具有以下特点:1.水能的再生;2。
水资源可综合利用;3.水能的调节;4。
水力发电的可逆性;5。
机组工作的灵活性;6。
水力发电生产成本低、效率高;7。
有利于改善生态环境。
2.水能资源的开发方式有哪些?就集中落差形成水头的措施而言,水能资源的开发方式可分为坝式、引水式和混合式三种基本方式,此外,还有开发利用海洋潮汐水能的潮汐开发方式。
3.我国水能资源的特点?从我国水能资源蕴藏分布及开发利用的现状来看,我国水能资源具有以下特点:(一)蕴藏丰富,分布不均(二)开发率低,发展迅速(三)前景宏伟4.水电站有哪些基本类型?各类水电站的组成建筑物有哪些?这些建筑物的主要功能是什么?根据水能开发方式的不同,水电站有不同的类型:(一)坝式水电站:采用坝式开发修建的水电站称为坝式水电站。
坝式水电站按大坝和水电站厂房相对位置的不同又可分为河床式、闸墩式、坝后式、坝内式、溢流式等,在实际工程中,较常采用的坝式水电站是河床式水电站和坝后式水电站。
泵站设计规范 - 7.进出水建筑物
进出水建筑物7.1 引渠7.1.1 泵站引渠的线路应根据选定的取水口及泵房位置,结合地形地质条件,经技术经济比较选定,并应符合下列规定:1 渠线宜避开地质构造复杂、渗透性强和有崩塌可能的地段,也宜避开在冻胀性、湿陷性、膨胀性、分散性,松散坡积物以及可溶盐土壤上布置渠线。
当无法避免时,则应采取相应的工程措施。
渠身宜坐落在挖方地基上,少占耕地2 渠线宜顺直。
当需设弯道时,土渠弯道半径不宜小于渠道水面宽的5倍,石渠及衬砌渠道弯道半径不宜小于渠道水面宽的3倍,弯道终点与前池进口之间宜有直线段,长度不宜小于渠道水面宽的8倍,直线段长度小于8倍时,宜采取工程措施;3 渠线宜避免穿过集中居民点、高压线塔、重点保护文物,军用通信线路、油气地下管网以及重要的铁路、公路等;4 山区渠道宜沿等高线布置,采用明渠与明流隧洞或暗渠、渡槽、倒虹吸相结合的布置,避免深挖高填。
7.1.2 引渠纵坡和断面应根据地形、地质、水力、输沙能力和工程量等条件计算确定,并应满足引水流量,行水安全,渠床不冲、不淤和引渠工程量小等要求。
7.1.3 引渠末段的超高应按突然停机,压力管道倒流水量与引渠来水量共同影响下水位壅高的正波计算确定。
必要时设置退水设施。
7.1.4 渗漏严重的土质引渠应采取防渗措施;边坡稳定性差的岩质或土岩结合引渠,应采取防护措施;季节性冻土地区的土质引渠采用衬砌时,应采取抗冻胀措施。
7.2 前池及进水池7.2.1 泵站前池布置应满足水流顺畅、流速均匀,池内不得产生涡流的要求,宜采用正向进水方式。
正向进水的前池,扩散角应小40 °,底坡不宜陡于1:4。
7.2.2 侧向进水的前池,宜设分水导流设施,可通过水工模型试验验证。
7.2.3 多泥沙河流上的泵站前池应设隔墩分为多条进水道,每条进水道通向单独的进水池。
在进水道首部应设进水闸及拦沙或水力排沙设施。
设有沉沙池的泵站,出池泥沙允许粒径不宜大于0.05mm。
7.2.4 多级泵站前池顶高可根据上、下级泵站流量匹配的要求,在最高运行水位以上预留调节高度确定。
水工建筑物知识点
弹性抗力:围岩抵抗衬砌变形的作用力,称为围岩的弹性抗力。
围岩压力与弹性抗力的不同:围岩压力是作用在衬砌上的主动力,而弹性抗力则是被动力,并且是有条件的。
9、水工随洞的特点:结构特点、水流特点、施工特点。
闸承受较高的水头,且闸下河床及岸坡为坚硬岩体时,可采用挑流消能。 当水闸闸下尾水深度较深且变化较小,河床及岸坡抗冲能力
较强时,可采用面流消能。
14.底流消能的作用:是通过增加下流水深,保证产生淹没式水跃,防止土基冲刷破坏。 底流消能的布置形式主要有:下挖式消
力池、突槛式消力池和综合式消力池。
? 2、坝址坝型选择应考虑的因素有:地形条件、地质条件、建筑材料、施工条件、综合效益。?弯道环流原理都应用在有坝引水枢纽中。(×)?无坝取水口一般设置在河道的凸岸。(×)?
无坝引
水与有坝引水的位置选择原则相同(?√)?枢纽布置就是将枢纽建筑物紧凑地布置在一起。(×)
6、隧洞灌浆按其目的不同分为回填灌浆和固结灌浆。
回填灌浆的作用:是为了将衬砌与岩石之间的空隙充填密实,使衬砌与岩石紧密结合,改善衬砌的传力条件,以便衬砌与围岩共同承受荷载。
固结灌浆的作用是提高围岩的强度和整体性,并得到可靠的弹性抗力,以改善衬砌结构的受力条件,并减少渗漏。
6、灌溉渠系一般分为干、支、斗、农、毛五级渠道,构成灌溉系统。前四级为固定渠道,最后一级为临时渠道。一般干、支、渠主要起输水作用,称为输水渠。斗、农渠起配水作用,称为配水渠道。
7、渡槽主要由槽身支撑支撑结构、
Hale Waihona Puke 第九章水利枢纽 1、水利枢纽的设计阶段有预可行性研究阶段、可行性研究阶段、招标设计阶段、施工详图阶段。
【精品文档】水工建筑物建筑分类
【专业知识】水工建筑物建筑分类【学员问题】水工建筑物建筑分类?【解答】按使用期限可分为永久性水工建筑物和临时性水工建筑物,后者是指在施工期短时间内发挥作用的建筑物,如围堰、导流隧洞、导流明渠等。
按功能可分为通用性水工建筑物和专门性水工建筑物两大类。
通用性水工建筑物主要有:①挡水建筑物,如各种坝、水闸、堤和海塘;②泄水建筑物,如各种溢流坝、岸边溢洪道、泄水隧洞、分洪闸;③进水建筑物,也称取水建筑物,如进水闸、深式进水口、泵站;④输水建筑物,如引(供)水隧洞、渡槽、输水管道、渠道;⑤河道整治建筑物,如丁坝、顺坝、潜坝、护岸、导流堤。
专门性水工建筑物主要有:①水电站建筑物,如前池、调压室、压力水管、水电站厂房;②渠系建筑物,如节制闸、分水闸、渡槽、沉沙池、冲沙闸;③港口水工建筑物,如防波堤、码头、船坞、船台和滑道;④过坝设施,如船闸、升船机、放木道、筏道及鱼道等。
有些水工建筑物的功能并非单一,难以严格区分其类型,如各种溢流坝,既是挡水建筑物,又是泄水建筑物;闸门既能挡水和泄水,又是水力发电、灌溉、供水和航运等工程的重要组成部分。
有时施工导流隧洞可以与泄水或引水隧洞等结合。
水工建筑物按其功能可分为:①通用性水工建筑物。
主要有挡水建筑物,如各种坝、堤和海塘;泄水建筑物,如各种溢流坝、溢洪道、泄水隧洞、分洪闸;进水建筑物,也称取水建筑物,如进水闸、深式进水口、水泵站;输水建筑物,如引(供)水隧洞、渠道及输水管道;河道整治建筑物,如丁坝、顺坝、护岸、导流堤。
②专门性水工建筑物。
主要有水力发电专用建筑物,如前池、调压室、压力水管、水电站厂房;灌溉和供水专用建筑物,如节制闸、沉沙池、冲沙闸;港口专用建筑物,如防波堤、码头、船坞、船台;过坝专用建筑物及设施,如船闸、升船机、筏道及鱼道等。
上述两类均属于长期使用的建筑物,称为永久性水工建筑物;另有一些仅在施工期短时间内发挥作用的建筑物,如围堰、导流隧洞等,称为临时性水工建筑物。
第六、七章 进水及引水建筑物
拦污设备(trash rack或trash screen)
1. 作用:防止有害污物、漂浮物等进入进水口,影响过 水能力。 2. 布臵: (1) 平面倾斜:倾角一般为60-70。过水断面大,易于清 污,适用于洞式、岸墙式。 (2) 平面直立:适用塔式、坝式 (3) 多边形:适用坝式相连。
塔式进水口可一 边或四周进水。
适用:当地材料坝、进
口处山岩较差、岸坡 又比较平缓.
三、 塔 式 进 水 口
塔式进水口实物图
4.坝式进水口
特征:进水口依附在坝体的上游面上,并与坝内 压力管道连接。进口段和闸门段常合二为一,布 置紧凑。 适用:混凝土重力坝的坝后式、坝内式和河床式 电站。
图6-15 设有冲水闸的进水口总体布置
1-闸墩 2-边墩 3-上游翼墙 4-下游翼墙 5-闸底板 6-拦沙坎 7-截水墙8-消力池 9-护坦 10-穿孔混凝土板 11-乱石海漫 12-齿墙 13-胸墙14-工作桥 15-拦污栅 16-检修门 17-工作闸门 18-下游检修门 19-下游闸板存放槽20-启闭机
•门宽B 等于洞径D,门高略大于洞径D。
(3)渐变段 渐变段是矩形闸门段到圆形隧洞的过渡段。 通常采用圆角过渡,圆角半径r可按直线规律变 为隧洞半径R;渐变段的长度一般为隧洞直径的
水工建筑物
绪论水工建筑物:为了满足防洪要求,获得灌溉、发电、供水等方面的效益,需要在河流的适宜地段修建不同类型的建筑物,用来控制和分配水流,这些建筑物统称为水工建筑物。
水利枢纽:不同类型水工建筑物组成的综合体成为水利枢纽。
水工建筑物根据所属工程等别及其在工程中的作用和重要性分为五级;水利枢纽根据工程规模、效益和在国民经济中的重要性分为五等。
永久性建筑物:指工程运行期间使用的建筑物。
临时性建筑物:指工程施工期间使用的建筑物,如导流建筑物、施工围堰等。
水工建筑物按作用分类:1挡水建筑物2泄水建筑物3输水建筑物4取(进)水建筑物5整治建筑物6专门建筑物挡水建筑物:指用以拦截江河,形成水库或壅高水位,以及为抗御洪水或挡潮沿江河海岸修建的堤防、海塘等。
泄水建筑物:指用以宣泄多余水量,排放泥沙和冰凌,或为人防、检修而放空水库、渠道等,以保证坝和其他建筑物的安全。
整治建筑物:指用以改善河流的水流条件,调整水流对河床及河岸的作用。
专门建筑物:指为灌溉、发电、过坝需要等而兴建的建筑物。
水利工程的特点:1工程量大,投资多,工期长2工作条件复杂3受自然条件制约,施工难度大4效益大,对环境影响也大5失事后果严重重力坝重力坝:用混凝土或石料等材料修筑,主要依靠坝体自重保持稳定的坝。
主要依靠坝体自重产生的抗滑力来满足稳定要求,同时依靠坝体自重产生的压应力来抵消由于水压力所引起的拉应力,以满足强度要求。
重力坝得到广泛采用,优点:1结构作用明确,设计方法简便,安全可靠2对地形、地质条件适应性强3枢纽泄流问题容易解决4便于施工导流5施工方便缺点:坝体剖面尺寸大,材料用量多2坝体应力较低,材料强度不能充分发挥3坝体与地基接触面积大,相应坝底扬压力大,对稳定不利4坝体体积大,由于施工期混凝土的水化热和硬化收缩,将产生不利的温度应力和收缩应力。
重力坝的设计内容:1剖面设计2稳定分析3应力分析4构造设计5地基处理6溢流重力坝和泄水孔的孔口设计7监测设计重力坝受的荷载与作用:1自重(包括固定设备重)2静水压力3扬压力4动水压力5波浪压力6泥沙压力7冰压力8土压力9温度作用10风作用11地震作用荷载:1基本荷载2特殊荷载荷载组合:1基本组合2特殊组合基本组合属于设计情况和正常情况,由同时出现的基本荷载组成;特殊组合属校核情况或非常情况,由同时出现的基本荷载和一种或几种特殊荷载组成。
水工建筑物
理想的地质条件,基岩均匀单一,有足够的强度。刚度大。透水性小能够抵挡水的侵蚀和耐风化等
土石坝的优缺点1.就地取材,节省的材料,筑坝经验丰富,对地形地质条件适应性强施工技术简单,便于操作,抗震,性能好。缺点。一般不能溢流。设溢洪道2.施工导流不便3.施工手气候影响较大
第一章水工建筑物的分类按其在枢纽中的作用分为:1挡水建筑物:用以拦截江河,形成水库或壅高水位。如拦河坝、拦河闸。2泄水建筑物:用以宣泄多余水量,排放泥沙和冰凌,或为人防、检修而放空水库等,以保证坝和其他建筑物的安全。如溢流坝、溢洪道、隧洞。3输水建筑物:为灌溉、发电和供水的需要,从上游向下游输水用的建筑物。如:引水隧洞、渠道、渡槽、倒虹吸等。4取(进)水建筑物:是输水建筑物的首部建筑物,如引水隧洞的进口段、进水闸等。整治建筑物、专门建筑物。
防渗体的作用控制坝内浸润线的位置,并保持稳定渗流,这部分的土体比坝壳其他部分更不透水。(2分)
排水体的作用是控制和引导渗流,降低浸润线,加速孔隙水压力消散,以增强坝的稳定,并保护下游免遭冻胀破坏。(2分)
上游护坡为了防止风浪淘刷、顺坡水流冲刷、冬季结冰和库区漂浮物对上游坡面的破坏,下游护坡为了避免雨水冲刷,保护下游尾水部位的坝坡免受风浪、冰层和水流的作用以及动物、冻胀干裂等因素的破坏。(2分)
宽缝重力坝的缺点:①立模较复杂,且模板用量增加;②分期导流不便;③在严寒地区,宽缝需采取保温措施。
(1分
重力坝地基处理后需要满足的要求。1.具有足够的强度2.具有抗渗性能3.亮红的整体性和均匀性。4.具有足够的耐久性。处理方法的主要包含:1.低级的开挖和清理2、提高基岩强度。坝基的加固3.坝基的.防渗和排水。碾压混凝土重力坝的特点1.施工工艺简单施工速度快2.大量节约水泥降低工程造价。3.简化温控措施减少坝体的纵缝4.简化施工导流设施,节约临时的工程费用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案2
一、讲授内容与课时分配
第三节进水池(1课时)
一、进水池的作用与设计要求
二、进水池的边壁形式及主要几何参数
三、进水池流态分析
四、进水池尺寸的确定
第四节进水流道(1课时)
一、常用进水流道简介
二、进水流道的基本流态及分类
三、进水流态对水泵工作状态的影响
四、进水流道的设计要求
五、肘形进水流道的水力设计
六、进水流道主要尺寸推荐值
二、教学重点与难点:重点介绍进水流态对水泵工作状况的影响,前池、进水池(进水流道)的水力设计与进水流态的关系。
难点为前池、进水池及进水流道内的基本流态及对进水建筑物水力设计的影响。
三、教学基本要求:了解泵站进水建筑物的组成和分析进水流态对水泵工作状况的影响,熟悉进水建筑物的作用、类型,掌握泵站进水设计要求及改善水泵进水条件的措施。
四、教学要点
第三节进水池(1课时)
一、进水池的作用与设计要求
进水池(也称开敞式进水池)是供水泵吸水管直接吸水的水工建筑物,具有自由水面,通常用于中小型泵站。
1、进水池的主要作用:
(1)进一步调整从前池进入的水流,为水泵进口提供良好的进水条件;
(2)在进水池进口设置拦污门槽,以便设置拦污栅,在水泵运行时拦污;
(3)在进水池进口设置检修门槽,在水泵需要检修时,放下检修门,可抽空进水池内的水进行检修。
2、进水池的水力设计要求
(1)合理选择进水池的结构形式;
(2)合理确定进水池的各几何参数,以保证所需的进水流态;
(3)便于清淤和管理维护;
(4)尽可能减少土建投资。
获得良好的进水流态与减少土建投资是对矛盾,需合理地兼顾两方面的要求。
二、进水池的边壁形式及主要几何参数
1、进水池有多种后壁形状,应用较多的有:矩形、多边形、半圆形及涡壳形等,如图
10-12所示。
2、矩形进水池的主要几何参数包括:进水池宽度B、喇叭管悬空高度Z、后壁距X、池长L及淹没深度Hs。
三、进水池流态分析
水流从四面汇集进入喇叭管,是进水池流动的基本特征。
进水池各几何尺寸的确定必然依据这一流动特征。
在进水池设计不当或水泵吸水管淹没深度不够的情况下,进水池可能产生旋涡。
从旋涡发生的位置加以区分,可将旋涡分为附底涡、附壁涡和水面涡三种类型。
四、进水池尺寸的确定
进水池几何尺寸的确定目前大都依赖于试验结果,由于试验条件的差异,所得试验数据常常并不一致。
随着计算流体动力学的迅速发展,已开始采用数值计算的方法研究解决进水池的水力设计问题。
我国国家标准《泵站设计规范》推荐:
池宽B=3D ;
池长L≥4D;
悬空高度C=0.6~0.8D;
后壁距L1=0.8~1.0D
淹没深度
淹没深度是影响水面涡形成的主要因素。
临界淹没深度还与喇叭管的安装方式有关。
《泵站设计规范》推荐:
1)喇叭管垂直布置时,Hs>(1.0~1.25)D;
2)喇叭管倾斜布置时,Hs>(1.5~1.8)D;
3)喇叭管水平布置时,Hs>(1.8~2.0)D。
思考题:悬空高度过大或过小如何影响对进水池流态和土建费用?
五、水泵进水池模型试验(补充内容)
1、模型试验的目的
2、模型试验相似准则
3、模型试验模拟范围
4、模型比尺的选择
5、模型试验验收标准与重点
六、进水设计对水泵进水条件影响研究(补充内容)
七、改善水泵进水条件的措施(补充内容)
1、不同的后壁形式
2、各种防涡措施 (Anti-vortex devices )
第四节进水流道(1课时)
一、常用进水流道简介
1、开敞式进水池一般适用于中小型泵站,大中型泵站为减少土建工程量,通常将进水池和吸水管合二为一,采用专门设计的进水流道。
2、进水流道的作用是为了使水流从前池进入水泵叶轮室的过程中更好地转向和加速,尽量满足水泵叶轮室进口所要求的水力设计条件。
3、常用的进水流道型式有:肘形进水流道、斜式进水流道、钟形进水流道、簸箕形进水流道等单向进水流道,此外还有双向进水流道。
二、进水流道的基本流态及分类
1.基本流态
(1)肘形进水流道主断面内的基本流态。
在流道的直线段内,流态平顺,流速逐
渐增大;进入弯曲段后,水流迅速改变方向并加速,靠近内壁处的水流流向的改变尤其剧烈,流速明显大于外壁处的流速。
由于强烈的侧收缩,在流道弯道处未出现脱流。
在圆锥段内,由于惯性力的强烈作用,较大的水流速度开始出现在流道外侧壁附近,经过圆锥段的短距离调整,在接近流道出口处,水流趋向于均匀分布。
斜式进水流道由于转弯角度小、水流所受离心力小,流态非常均匀平顺。
(2)钟形流道的高度压得很低,同时有较大的宽度和后壁空间,从而迫使水流从四周进入喇叭管。
(3)簸箕形流道流道的底部向上翘起,但由于悬空高度较低,且有较大的宽度和后壁距,水流也是从四周进入喇叭管。
2.基本流态的分类
根据进水流道的基本水动力学特性,可将进水流道分为单面进水和四面进水两大
类型。
三、进水流态对水泵工作状态的影响
水泵叶轮室进口的流态严重地影响到水泵进口速度平行四边形,从而影响到水泵的工作状态,影响到水泵的能量性能和空蚀性能。
四、进水流道的设计要求
1、为水泵进口提供良好的流态是进水流道的首要任务,《规范》对进水流道的设计提出如下要求:
1)流道型线平顺,各断面面积沿程变化应均匀合理; 2)出口断面处的流速和压力应比较均匀; 3)进口断面处流速宜取(0.8~1.0)m/s ; 4)在各种工况下,流道内不应产生涡带; 5)进口宜设检修门槽;
6)施工方便。
思考题:如何才能尽可能减少土建投资及适当兼顾施工方便等其他方面的要求。
2、进水流道水力优化设计的两个目标函数 1)流速分布均匀度
V u u
u m u a ai
a =-
-⎡⎣
⎢⎢⎤
⎦
⎥⎥⨯∑11100%2()
2) 速度加权平均角度
θ=
-⎡⎣⎢⎤⎦⎥∑∑u
arctg u u u ai
ti ai ai
900
()
五、肘形进水流道的水力设计 1、一维水力设计方法
进水流道一维水力设计方法的要点为:认为断面平均流速则等于设计流量除以断面面积;以沿流道断面中心线的各断面平均流速光滑变化为目标。
传统的肘形进水流道水力设计方法是典型的一维水力设计方法。
介绍肘形进水流道一维水力设计方法与步骤。
六、进水流道主要尺寸推荐值 1、单面进水流道主要尺寸推荐值
项 目
叶轮中心高度
0/D Hw 流道宽度 0/D B 流道长度 0/D L
15︒斜式流道 0.7~0.9 2.0~2.5 3.0~3.5 30︒斜式流道 0.8~1.0 2.0~2.5 3.0~3.5 45︒斜式流道 1.0~1.2 2.0~2.5 3.0~3.5 肘形流道
1.6~1.8
2.0~2.5
3.0~3.5
2、四面进水流道主要尺寸推荐值
项 目 叶轮中心高度
0/D H
流道宽度
0/D B
流道长度
0/D L 后壁距
0/D X
喇叭管直径 0/D D L
喇叭管高度
0/D H L
钟形流道 1.3~1.4 2.8 3.5 1.3 1.4 0.5~0.6 簸箕形流道
1.5~1.6
2.5
3.5
1.0
1.47
0.6~0.7
注意:(1)叶轮中心高度对四面流道内流态的影响也很大,进水流场的要求与土建投资的矛盾在这里表现得十分突出。
(2)四面进水流道的宽度、悬空高及后壁空间的取值对保证水流均匀地从四周进入喇叭管至关重要。