生物化学总结
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/962eedacf605cc1755270722192e453611665b03.png)
生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。
- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。
- 糖类:单糖、二糖、多糖的结构和功能。
- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。
2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。
- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。
- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。
3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。
- 柠檬酸循环(TCA循环):反应步骤、能量产生。
- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。
- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。
- 氨基酸代谢:脱氨基作用、尿素循环。
- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。
5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。
- 基因调控:表观遗传学、非编码RNA、microRNA。
6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。
- 克隆技术:载体选择、限制性内切酶、连接酶。
- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。
- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。
7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。
- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。
- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/82ffa7b6a98271fe900ef9d1.png)
生物化学知识点总结第一部分:名词解释1.蛋白质:是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.氨基酸: 含有氨基和羧基的一类有机化合物的通称。
3.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
4.肽键:一个氨基酸的a-羧酸与另一个氨基酸的a-氨基脱水缩和形成的化学键。
5.蛋白质的别构效应:又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
6.蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响寡聚体中另一个亚基与配体结合的现象。
7.蛋白质的变性:蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质的变性。
8.凝胶过滤:利用具有网状结构的凝胶的分子筛作用利用各蛋白质分子大小不同来进行分离9.层析:待分离的蛋白质溶液经过一个固定物质时,根据待分离的蛋白质颗粒的大小,电荷多少及亲和力使待分离的蛋白质在两相中反复分配,并以不同流速经固定相而达到分离蛋白质的目的。
10.胶原蛋白:胶原纤维经过部分降解后得到的具有较好水溶性的蛋白质。
P62 11.结构域:相对分子质量较大的蛋白质三级结构通常可分割成一个或数个球状或者纤维状的区域,折叠得较为紧密,各行期能,成为结构域。
12.免疫球蛋白:是一组具有抗体活性的蛋白质血清中含量最丰富的蛋白质之一 13.波尔效应:pH对血红蛋白氧亲和力的这种影响。
14.热休克蛋白:是在从细菌到哺乳动物中广泛存在一类热应急蛋白质。
当有机体暴露于高温的时候,就会由热激发合成此种蛋白,来保护有机体自身。
15.次级键:除了典型的强化学键(共价键、离子键和金属键)等依靠氢键、盐键以及弱的共价键和范德华作用力(即分子间作用力)相结合的各种化学键的总称。
16.肽平面:肽键具有一定程度的双键(C-N键)性质(参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面)。
生物化学学习心得总结
![生物化学学习心得总结](https://img.taocdn.com/s3/m/d3a08dbab1717fd5360cba1aa8114431b90d8e2b.png)
生物化学学习心得总结生物化学是讨论生物的化学组成和生命过程中各种化学改变的科学,是讨论生命的化学本质的科学。
也是讨论生命现象的重要手段。
生物化学不但可以在生物体内讨论各种生命现象,还可以在体外讨论生命现象的某个过程。
下面是第一我为大家收集整理的生物化学学习心得总结,欢迎大家阅读。
生物化学学习心得总结篇1生物化学是一门进展很快的专业基础课,而且是进展特别快速的前沿学科,由于新理论、新学问、新技术的不断消失,使生物化学的讨论日新月异,不断有新的讨论成果产生,它的讨论范围很广,涉及整个生物界,只要有生命存在,就有生化的过程,我校所学的是医用生化,它集中了动物生化和微生物生化的学问,生化的进展促进了医学的进展,是医学课程中很重要的课程,由于生物化学是从有机化学和生理学中脱离而进展起来的,其内容比较抽象,缩写符号多,代谢反应错综冗杂且互相联系,理论点多、面广,因此师生普遍反映生物化学是一门难教、难学的课程。
因此,如何将这些浅显难以理解的生物化学内容形象化、详细化、生动化,是我们每一位生物化学老师应当不断探究的问题。
通过多年教学,我觉得在教学中应留意以下几个方面。
一、强化集体备课,激发群体思维对于教材中的重点及难点章节实行集体备课,在备课时要发挥骨干老师的辐射作用,开展以他们为主讲人的备课活动,在集体备课前主讲人要广泛收集教学素材,注意理论和实践结合,胜利的集体备课能让全部生化老师群体受益,取长补短,互相启发,相互促进,从而保持教学多元化。
二、授课时多结合临床病例,激发同学的学习爱好生物化学较强的理论性和抽象性是同学感到生物化学枯燥及学习被动的主要缘由。
爱好是学习的动力,是力求熟悉事物的心理倾向,激发学习生物化学的爱好是特别重要的。
所以教学内容要侧重于将生物化学的基本理论、基本学问与临床工作联系起来,既能激发同学的学习爱好,又有助于生物化学课程与后期临床课程和临床实践的亲密协作。
如在讲授酶时,把酶作用的最适温度概念和高烧对人体的危害、冬眠疗法、高温灭菌、低温保存生物制品等医疗工作措施联系起来。
生化知识点总结大全
![生化知识点总结大全](https://img.taocdn.com/s3/m/9985f6b4f605cc1755270722192e453610665bce.png)
生化知识点总结大全生物化学是研究生物分子、细胞和组织等生物学基本单位在化学层面上的结构、功能和相互关系的一门学科。
生物化学知识的掌握对于理解生物体内各种生理过程以及疾病的发生、发展和治疗都具有重要意义。
下面将对生化知识点进行总结,包括生物大分子、酶和代谢、细胞信号传导、遗传信息的传递和表达等内容。
一、生物大分子1. 蛋白质蛋白质是由氨基酸组成的大分子,是生物体内最重要的大分子之一。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,分别代表了氨基酸序列、局部结构、全局结构和蛋白质的组装形式。
蛋白质在生物体内担任着结构、酶、携氧等多种重要功能。
2. 核酸核酸是构成生物体遗传信息的重要大分子。
核酸包括DNA和RNA两类,其中DNA是生物体内遗传信息的主要携带者,而RNA则参与了蛋白质的合成过程。
核酸的结构包括磷酸、核糖和碱基,它们通过磷酸二酯键相连而形成长链状结构。
3. 脂类脂类是一类绝缘性物质,其分子结构包含甘油酯和磷脂,具有水、油双亲性,是细胞膜的主要构成成分。
脂类还包括胆固醇和脂蛋白,它们在人体内参与了能量储存、细胞膜形成、传递体内信息等多种生理活动。
二、酶和代谢1. 酶的分类和特性酶是一类生物催化剂,可以加速生物体内的化学反应。
酶根据其作用的基质可以分为氧化还原酶、水解酶、转移酶等多种类型;根据作用反应的特点还可以分为氧化酶、脱氢酶、水合酶等。
酶的活性受到PH值、温度、离子浓度等因素的影响。
2. 代谢途径代谢是生物体维持生命活动所必需的化学反应过程,包括物质的合成、降解和转化等步骤。
常见的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化等。
这些代谢途径通过调控酶的活性来维持生物体内各种代谢物质的平衡。
三、细胞信号传导1. 受体的结构和功能受体是细胞膜上的一类蛋白质,可以感知外界信号并将其转化为细胞内信号传导的起始物质。
受体的结构包括外部配体结合区、跨膜区和细胞内信号传递区,它可以通过配体结合激活下游信号分子,从而引发细胞内的生理反应。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/7764f3e0970590c69ec3d5bbfd0a79563c1ed4f7.png)
两性化合物: 在同一分子中带有性质相反的酸、碱两种解离基团的化合物。
等电点: 当溶液pH为某一pH值时, 氨基酸分子中所含的正负数目正好相等, 净电荷为0。
这一pH值即为氨基酸的等电点, 简称pI。
在等电点时, 氨基酸既不向正极也不向负极移动, 即氨基酸处于两性离子状态。
①pI 〉pH: 分子显正电性。
氨基酸在等电点时溶解度最小, 易发生沉淀在等电点pH条件下, 蛋白质为电中性, 比较稳定。
其物理性质如导电性、溶解度、粘度和渗透压等都表现为最低值, 易发生絮结沉淀。
在近紫外区(200-400nm)只有酪氨酸、苯丙氨酸和色氨酸有吸收光的能力。
通过离子交换、电泳、或等电沉淀等技术进行氨基酸的分离、制备或分析鉴定。
除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外, 所有α-氨基酸和蛋白质都能和茚三酮反应生成紫色物质。
但能与茚三酮发生紫色反应的不一定是氨基酸和蛋白质,2.4-二硝基氟苯反应、丹磺酰氯反应、苯异硫氰酸酯反应亦称Edman反应用来鉴定蛋白质或多肽的N-末端氨基酸残基。
层析法是生化最为有效的常用分离氨基酸的方法层析法由三个基本条件构成:⊙水不溶性惰性支持物⊙流动相能携带溶质沿支持物流动⊙固定相是附着在支持物上的水或离子基团。
能对各种溶质的流动产生不同的阻滞作用。
蛋白质的一级结构指蛋白质多肽连中氨基酸的排列顺序, 包括二硫键的位置。
它是蛋白质生物功能的基础。
组成肽链的氨基酸单元称为氨基酸残基肽键中的C-N键具有部分双键性质, 不能自由旋转组成肽键的四个原子和与之相连的两个(碳原子都处于同一个平面内, 此刚性结构的平面叫肽平面或酰胺平面氨基酸的顺序是从N-端的氨基酸残基开始, 以C-端氨基酸残基为终点的排列顺序。
肽链N-末端和C-末端氨基酸残基的确定2,4-二硝基氟苯(DNFB)法丹磺酰氯(DNS)法羧肽酶法: 从多肽链的C-端逐个的水解氨基酸肼解法:多肽与肼在无水条件下加热, C-端氨基酸即从肽链上解离出来, 其余的氨基酸则变成肼化物。
生物化学各章知识点总结
![生物化学各章知识点总结](https://img.taocdn.com/s3/m/64eb65a5afaad1f34693daef5ef7ba0d4a736dd2.png)
生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。
生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。
2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。
(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。
(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。
(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。
二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。
(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。
蛋白质的构象变化直接影响着蛋白质的功能。
2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。
其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。
三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。
(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。
2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。
(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。
(完整word版)生物化学部分总结
![(完整word版)生物化学部分总结](https://img.taocdn.com/s3/m/b0b86ee964ce0508763231126edb6f1afe00714e.png)
第19章代谢总论1、分解代谢: 有机营养物, 不管是从环境获得的, 还是自身储存的, 通过一系列反应步骤变为较小的, 较简单的物质的过程称为分解代谢。
2、合成代谢: 又称生物合成, 是生物体利用小分子或大分子的结构原件建造成自身大分子的过程。
3、ATP储存自由能为生物体的一切生命活动提供能量。
满足以下四方面的需要: ①生物合成、②肌肉收缩、③营养物逆浓度梯度跨膜运送、④在DNA、RNA、蛋白质能生物合成中, 以特殊方式起递能作用。
4、能够直接提供自由能推动生物体多种化学反应的核苷酸类分子除ATP外, 还有GTP, UTP, CTP。
GTP对G蛋白的活化, 蛋白质的生物合成, 蛋白质的寻靶作用, 蛋白质的转运等等都作为推动力提供自由能。
5、FMN, 黄素腺嘌呤单核苷酸, FAD, 黄素腺嘌呤二核苷酸, 它们是另一类在传递电子和氢原子中起作用的载体。
FMN和FAD都能接受两个电子和两个氢原子, 它们在氧化还原反应中, 特别是在氧化呼吸链中起着传递电子和氢原子的作用。
6、辅酶A, 简写为CoA, 分子中含有腺嘌呤、D-核糖、磷酸、焦磷酸、泛酸和巯基乙胺。
在水解时释放出大量的自由能。
第20章遗传缺欠症缺乏尿黑酸氧化酶, 导致酪氨酸的代谢中间物尿黑酸不能氧化而随尿排出体外, 在空气中使尿变成黑色。
苯丙酮尿症, 是苯丙氨酸发生异常代谢的结果, 这是尿中出现苯丙氨酸。
但酪氨酸的代谢仍然正常。
通过以上两种不正常的代谢现象, 是苯丙氨酸的代谢途径得到了阐明。
第21章生物能学1、高能磷酸化合物的类型.碳氧键..氮磷键型-如胍基磷酸化合物。
1.磷酸肌酸。
2.磷酸精氨酸..硫酯键型-活性硫酸基.1.3’-腺苷磷酸5’-磷酰硫酸.2.酰基辅酶A..甲硫键型-活性甲硫氨.2、ATP水解释放的自由能收到许多因素的影响。
当ph升高时ATP释放的自由能明显升高。
还受到Mg2+等其他一些2价阳离子的复杂的影响。
3、ATP在磷酸基团转移中作为中间递体而起作用。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/2e9e46255e0e7cd184254b35eefdc8d376ee1490.png)
生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学.其研究内容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达.生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题1生物化学的发展史分为哪几个阶段生物化学的发展主要包括三个阶段:①静态生物化学阶段20世纪之前:是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段20世纪初至20世纪中叶:是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段20世纪中叶以后:这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系.2组成生物体的元素有多少种第一类元素和第二类元素各包含哪些元素组成生物体的元素共28种第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素.第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素.第二章蛋白质1. 名词解释1蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物2氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点3蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点4N端与C端:N端也称N末端指多肽链中含有游离α-氨基的一端,C端也称C末端指多肽链中含有α-羧基的一端5肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽6氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基7肽单元肽单位:多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转8结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域.结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离区别于蛋白质亚基③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同9分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病10蛋白质的变构效应:蛋白质或亚基因与某小分子物质相互作用而发生构象变化,导致蛋白质或亚基功能的变化,称为蛋白质的变构效应酶的变构效应称为别构效应11蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应12蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构.造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解14蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性2. 问答题1组成生物体的氨基酸数量是多少氨基酸的结构通式、氨基酸的等电点及计算公式组成生物的氨基酸有22种,组成人体和大多数生物的为20种,结构通式如右图.氨基酸的等电点指当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点,计算公式如下:中性氨基酸)''(2121pKpKpI+=一氨基二羧基氨基酸)''(2121pKpKpI+=二氨基一羧基氨基酸)''(2132pKpKpI+=2氨基酸根据R基团的极性和在中性条件下带电荷的情况如何分类并举例分类名称结构缩写丙氨酸AlaA缬氨酸ValV非极性氨基酸疏水,8种非极性氨基酸疏水,8种亮氨酸LeuL异亮氨酸IleI脯氨酸ProP甲硫氨酸也称蛋氨酸MetM苯丙氨酸PheF色氨酸TrpW极性氨基酸亲水,12种甘氨酸中性氨基酸,不带电GlyG丝氨酸中性氨基酸,不带电SerS苏氨酸中性氨基酸,不带电ThrT半胱氨酸中性氨基酸,不带电CysC酪氨酸中性氨基酸,不带电TyrY极性氨基酸亲水,12种天冬酰胺中性氨基酸,不带电AsnN谷氨酰胺中性氨基酸,不带电GlnQ天冬氨酸酸性氨基酸,带负电AspD谷氨酸酸性氨基酸,带负电GluE极性氨基酸亲水,12种赖氨酸碱性氨基酸,带正电LysK精氨酸碱性氨基酸,带正电ArgR组氨酸碱性氨基酸,带正电HisH3蛋白质中氮含量是多少,如何测定粗蛋白的氮含量各种蛋白质的氮含量很接近,平均为16%.生物样品中,每得得1g氮就相当于100/16=6.25g蛋白质.通常采用定氮法测量蛋白质含量,其中较为经典的是凯氏定氮法粗蛋白测定的经典方法4蛋白质的二级结构有哪几种形式其要点包括什么蛋白质的二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲四种.①α-螺旋要点:多肽链主链围绕中心轴形成右手螺旋,侧链伸向螺旋外侧;每圈螺旋含个氨基酸,螺距为;每个肽键的亚胺氢和第四个肽键的羰基氧形成的氢键保持螺旋稳定,氢键与螺旋长轴基本平行②β-折叠要点:多肽链充分伸展,相邻肽单元之间折叠形成锯齿状结构,侧链位于锯齿的上下方;两段以上的β-折叠结构平行排列,两链间可以顺向平行,也可以反向平行;两链间肽键之间形成氢键,以稳固β-折叠,氢键与螺旋长轴垂直③β-转角要点:肽链内形成180°回折;含4个氨基酸残基,第一个氨基酸残基与第四个氨基酸残基形成氢键;第二个氨基酸残基常为Pro脯氨酸④无规卷曲要点:没有确定规律性的肽链结构;是蛋白质分子的一些没有规律的松散的肽链构象,对蛋白质分子的生物功能有重要作用,可使蛋白质在功能上具有可塑性5一个螺旋片段含有180个氨基酸残基,该片段中共有多少圈螺旋计算该片段的轴长螺旋数为180/=50,轴长为×50=27nm6维持蛋白质一级结构的作用力有哪些维持空间结构的作用力有哪些维持蛋白质一级结构的作用力主要的化学键:肽键,有些蛋白质还包括二硫键维持空间结构的作用力:氢键、疏水键、离子键、范德华力等统称次级键非化学键和二硫键7简述蛋白质结构与功能的关系蛋白质的一级结构:一级结构是空间构象的基础;同源蛋白质在不同生物体内的作用相同或相似的蛋白质的一级结构的种属差异揭示了进化的历程,如细胞色素C;一级结构的变化引起分子生物学功能的减退、丧失,造成生理功能的变化,甚至引起疾病;肽链的局部断裂是蛋白质的前体激活的重要步骤蛋白质的空间结构:变构蛋白可以通过空间结构的变化使其能够更充分、更协调地发挥其功能,完成复杂的生物功能;蛋白质的变性与复性与其空间结构关系密切;蛋白质的构象改变可影响其功能,严重时导致疾病的发生蛋白质构象病,如疯牛病8简述蛋白质的常见分类方式根据分子形状分类:球状蛋白质、纤维状蛋白质、膜蛋白质根据化学组成分类:简单蛋白质、结合蛋白质结合蛋白质=简单蛋白质+非蛋白质组分辅基根据功能分类:酶、调节蛋白、贮存蛋白、转运蛋白、运动蛋白、防御蛋白和毒蛋白、受体蛋白、支架蛋白、结构蛋白、异常蛋白9简述蛋白质的主要性质①两性解离和等电点:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团.当蛋白质溶液处于某一pH时,蛋白质解离成正负离子的趋势相等,即成为兼性离子,净电荷为0,此时溶液的pH为蛋白质的等电点②蛋白质的胶体性质:蛋白质属生物大分子,其分子直径可达1-100nm之间,为胶粒范围之内,因而具有胶体的性质③蛋白质的变性、沉淀和凝固:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,称为变性.若变性程度较轻,除去变性因素后蛋白质仍可恢复或部分恢复其原有的构象及功能,称为复性.在一定条件下,蛋白疏水侧链暴露在外,肽链因互相缠绕继而聚集,因而从溶液中析出,称为蛋白质的沉淀,变性的蛋白易于沉淀,有时蛋白质发生沉淀,但并不变性.蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易溶解于强酸和强碱中,称为蛋白质的凝固作用④蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有波长的特征性吸收峰,其吸收率和蛋白质浓度成正比用来测含量⑤蛋白质的显色反应:经水解产生的氨基酸可发生于茚三酮的反应;蛋白质和多肽分子中的肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色称为双缩脲反应,用以检测水解程度第三章核酸1. 名词解释1核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物,在大多数情况下,核苷是由核糖或脱氧核糖的C1β-羟基与嘧啶碱或嘌呤碱的N1或N9进行缩合生成的化学键称为β,N糖苷键2核苷酸:核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核苷酸两类,由于与磷酸基团羧基缩合的位置不同,分别生成2’-核苷酸、3’-核苷酸和5’-核苷酸最常见为5’-核苷酸3核酸的一级结构:核苷酸通过3’,5’-磷酸二酯键连接成核酸即多聚核苷酸,DNA的一级结构就是指DNA分值中脱氧核糖核苷酸的排列顺序及连接方式,RNA的一级结构就是指RNA分子中核糖核苷酸的排列顺序及连接方式4DNA的复性与变性:核酸的变性指核酸双螺旋区的多聚核苷酸链间的氢键断裂,形成单链结构的过程,使之是失去部分或全部生物活性,但其变性并不涉及磷酸二酯键的断裂,所以其一级结构并不改变.能够引起核酸变性的因素很多,升温、酸碱度改变、甲醛和尿素都可引起核酸变性.注意,DNA的变性过程是突变性的.复性指变性核酸的互补链在适当的条件下重新地和成双螺旋结构的过程5分子杂交:在退火条件下,不同来源的DNA互补链形成双链,或DNA单链和RNA单链的互补区域形成DNA-RNA杂合双链的过程称为分子杂交6增色效应:核酸变性后,260nm处的紫外吸收明显增加,这种现象称为增色效应7减色效应:核酸复性后,紫外吸收降低,这种现象称为减色效应8基因与基因组:基因指遗传学中DNA分子中最小的功能单位,某物种所含有的全部遗传物质称为该生物体的基因组,基因组的大小与生物的复杂性有关9Tm熔解温度:通常把加热变形使DNA的双螺旋结构失去一半时的温度或紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度,又称熔解温度或熔点10Chargaff定律:①所有的DNA分子中A=T,G=C,即A/T=G/C=1②嘌呤的总数等于嘧啶的总数相等即A+T=G+C③含氮基与含酮羰基的碱基总数相等A+C=G+T④同一种生物的所有体细胞DNA 的碱基组成相同,与年龄、健康状况、外界环境无关,可作为该物种的特征,用不对称比率A+T/G+C衡量⑤亲缘越近的生物,其DNA碱基组成越相近,即不对称比率越相近11探针:在核酸杂交的分析过程中,常将已知顺序的核苷酸片段用放射性同位素或荧光标记,这种带有一定标记的已知顺序的核酸片段称为探针2. 问答题1某DNA样品含腺嘌呤%按摩尔碱基计,计算其余碱基的百分含量由已知A=%,所以T=A=%,因此G+C=%,又G=C,所以G=C=%2DNA和RNA在化学组成、分子结构、细胞内分布和生理功能上的主要区别是什么①化学组成:DNA的基本单位是脱氧核糖核苷酸,每一分子脱氧核糖核苷酸包含一分子磷酸,一分子脱氧核糖和一分子含氮碱基,DNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T四种;RNA的基本单位是核糖核苷酸,每一分子核糖核苷酸包含一分子磷酸、一分子核糖和一分子含氮碱基,RNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、尿嘧啶U四种.②分子结构:DNA为双链分子,其中大多数是是链状结构大分子,也有少部分呈环状;RNA为单链分子.③细胞内分布:DNA90%以上分布于细胞核,其余分布于核外如线粒体、叶绿体、质粒等;RNA 在细胞核和细胞液中都有分布.④生理功能:DNA分子包含有生物物种的所有遗传信息;RNA主要负责DNA遗传信息的翻译和表达,分子量要比DNA小得多,某些病毒RNA也可作为遗传信息的载体3简述DNA双螺旋结构模型的要点及生物学意义DNA双螺旋结构的要点:①DNA分子由两条多聚脱氧核糖核苷酸链DNA单链组成.两条链沿着同一根轴平行盘绕,形成右手双螺旋结构.螺旋中两条链的方向相反,其中一条链的方向为5’→3’ ,另一条链的方向3’→5’.②碱基位于螺旋的内侧,磷酸和脱氧核糖位于螺旋外侧,碱基环平面与轴垂直,糖基环平面与碱基环平面呈90°角.③螺旋横截面的直径为2nm,每条链相邻碱基平面之间的距离为,每10个核酸形成一个螺旋,其螺距高度为.④维持双螺旋的力是链间的碱基对所形成的氢键,碱基的互相结合具有严格的配对规律,嘌呤碱基的总数等于嘧啶碱基的总数生物学意义:双螺旋结构模型提供了DNA复制的机理,解释了遗传物质自我复制的机制.模型是两条链,而且碱基互补.复制之前,氢键断裂,氢键断裂,两条链彼此分开,每条链作为一个模板复制除一条新的互补链,这样就得到了两对链,解决了遗传复制中样板的分子基础4DNA的三级结构在原核生物和真核生物中各有什么特征绝大多数原核生物的DNA都是共价封闭的环状双螺旋,如果再进一步盘绕则形成麻花状的超螺旋三级结构.真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体,属于DNA的三级结构5细胞内含哪几种主要的RNA其结构和功能是什么细胞内的主要RNA是mRNA、tRNA和rRNA.mRNA:单链RNA,功能是将DNA的遗传信息传递到蛋白质合成基地——核糖核蛋白体tRNA:单链核酸,但在分子中的某些局部部位也可形成双螺旋结构,保守性最强.二级结构由于局部双螺旋的形成而呈现三叶草形,三级结构由三叶草形折叠而成,呈倒L型.功能是将氨基酸活化搬运到核糖体,参与蛋白质的合成rRNA:细胞中含量最多RNA总量的80%,与蛋白质组成核蛋白体,作为蛋白质生物合成的场所.在原核生物中,有5S、16S、23S,16S 的rRNA参与构成蛋白体的小亚基,5S和23S的rRNA参与构成核蛋白体的大亚基;在真核生物中,rRNA有四种5S、、18S、28S,其中18S参与构成核蛋白体小亚基,其余参与构成核蛋白体大亚基6简述tRNA的二级结构要点tRNA的二级结构呈三叶草形,包含以下区域:①氨基酸接受区:包含tRNA的3’-末端和5’-末端,3’-末端的最后三个核苷酸残基都是CCA,A为核苷,氨基酸可与之形成酯,该去区在蛋白质合成中起携带氨基酸的作用②反密码区:与氨基酸接受区相对的一般含有七个核苷酸残基的区域,中间的三个核苷酸残基称为反密码子③二氢尿嘧啶区:该区域含有二氢尿嘧啶④T ψC区:该区与二氢尿嘧啶区相对,假尿嘧啶核苷-胸腺嘧啶核糖核苷组成环TψC由7个核苷酸组成,通过由5对碱基组成的双螺旋区TψC臂与tRNA其余部分相连,除个别例外,几乎所有的tRNA在此环中都含有TψC⑤可变区:位于反密码去与TψC 之间,不同的tRNA在该区域中变化较大7简述核酸的主要性质①一般理化性质:固体DNA为白色纤维状固体,RNA为白色粉末状固体,均溶于水,不溶于一般的有机溶剂,在70%乙醇中形成沉淀,具有很强的旋光性,DNA粘度较大,RNA粘度小得多②两性和等电点:由于核酸分子中既具有酸性基团,有具有碱性基团,因而核酸具有两性性质.DNA的等电点为4至,RNA的等电点2至RNA存在核苷酸内的分子内氢键,促进电离③紫外吸收:核酸的吸收峰为260nm左右的紫外线④核酸的水解:核酸的水解有碱水解和酶水解两种方式,前者通过在碱性条件下没有选择性地断裂磷酸二酯键完成,后者可采用DNA水解酶或RNA水解酶,可以有选择性地切断磷酸二酯键限制性核酸内切酶或者没有选择性地切断⑤核酸的变性:核酸的变性本质上是氢键的断裂,变成单链结构.DNA的热变性过程是突变的,在很窄的温度区间内完成,其熔解温度满足Tm—=100G+C;RNA由于只有局部的双螺旋区,所以变性行为引起的性质变化不明显⑥核酸的复性:在适当条件下,变性核酸的互补链能够重新结合成双螺旋结构,DNA的生物活性只能得到部分恢复,且出现减色效应,将热变性的DNA骤然冷却时,DNA不可能复性,缓慢冷却可以复性,分子量越大复性越困难,浓度越大,复性越困难⑦核酸的分子杂交:在退火条件下,不同来源的DNA互补链能够形成双链或者DNA单链和RNA单链的互补区形成DNA-RNA 杂合双链⑧含氮碱基的性质:存在酮式-烯醇式或氨式-亚胺式的互变异构,具有芳环、氨、酮、烯醇等相应的化学性质,并且具有弱碱性第四章糖1. 名词解释糖:糖指多羟基醛或者多羟基酮及其衍生物或缩聚物的总称,俗称碳水化合物2. 问答题1简述糖的功能及分类并举例说明糖的功能:糖是生物体的能源物质,是细胞的结构组分,具有细胞识别、机体免疫、信息传递的作用.糖的分类:根据大小分为单糖大约20种、寡糖2-10种、多糖和糖缀合物.单糖按照其中碳原子的数目分为丙糖醛糖如甘油醛,酮糖如二羟丙酮、丁糖醛糖如赤藓糖,酮糖如赤藓酮糖、戊糖醛糖如核糖,酮糖如核酮糖、己糖醛糖如葡萄糖、半乳糖、甘露糖,酮糖如果糖、山梨糖、庚糖景天酮糖.寡糖按照所含糖基多少分为二糖蔗糖、麦芽糖、乳糖、三糖棉籽糖…六糖.多糖分为均多糖淀粉、糖原、甲壳素、纤维素和杂多糖半纤维素、粘多糖.糖缀合物分为糖蛋白和糖脂两类2说明麦芽糖组成淀粉的基本单位、纤维二糖组成纤维素的基本单位所含单糖的种类、糖苷键的类型.一分子麦芽糖中含有两分子α-葡萄糖1-C和4-C上的羟基均在环平面下方,糖苷键为1-4糖苷键;一分子纤维二糖中含有两分子β-葡萄糖1-C和4-C上的羟基均在环平面上方,糖苷键为1-4糖苷键3列举出四种多糖的名称均多糖由一种单糖聚合而成:淀粉有直链淀粉和支链淀粉两种,后者存在1-6糖苷键,两者均是植物细胞的能源储存形式、糖原动物及细菌的储能物质,贮存于动物的肝脏和肌肉中,结构于支链淀粉类似,遇碘显红紫色、纤维素葡萄糖β1-4糖苷键连接而成的无分支的同多糖,形成植物细胞细胞壁、甲壳素2-N-乙酰-D-氨基葡萄糖β1-4糖苷,基本单位为β-葡萄糖的2-C上经过氨基修饰后的产物杂多糖由几种不同的单糖聚合而成:半纤维素存在于植物细胞壁中的所有杂多糖的总称、粘多糖糖胺聚糖.是含氨基己糖的杂多糖的总称,表现为一定的粘性和酸性,如透明质酸和肝素、药物多糖中药的有效成分、其他杂多糖如琼脂和果胶第五章脂类及生物膜1. 名词解释脂:指由酸和醇发生脱水酯化反应形成的化合物,包括某些不溶于水的大分子脂肪酸和大分子的醇类,分为简单脂不与脂肪酸结合的脂,如固醇类、萜类、前列腺素和结合脂与脂肪酸结合的脂,如三酰甘油酯、磷脂酰甘油酯、鞘脂、蜡和脂蛋白2. 问答题1简述脂的功能.①脂是生物细胞重要的储能物质,因为其具有热值高、不溶于水、易于聚集的特点②位于体表的脂类具有机械性的保护作用③脂类磷脂酰甘油酯是组成细胞膜的主要成分④简单的脂类在体内是维生素及激素的前体物质2简述生物膜的流动镶嵌模型生物膜分为细胞膜和细胞器膜,其共同特点是单层的生物膜细胞膜是流动的磷脂双分子层构成的连续体,蛋白质无规则地分布在磷脂双分子层中.脂类的流动性使得生物膜具有一定的流动性,方便蛋白质的运动,也使得细胞可变形;膜的流动性与脂的种类和温度有关.蛋白质是选择性透过的运输通道,同时也是细胞间信息传递、识别的受体.细胞器膜的结构与细胞膜类似,但由于功能的分化而多为双层膜,内层膜出现扩大现象,成为新陈代谢的部位.第6章酶1. 名词解释1酶:酶是一类具有高效性和专一性的生物催化剂2单酶单纯蛋白酶:除了蛋白质外,不含有其他物质的酶,如脲酶等一般水解酶3全酶结合蛋白酶:含酶蛋白脱辅酶,决定反应底物的种类,即酶的专一性和非蛋白小分子物质传递氢、电子、基团,决定反应的类型、性质的酶.酶蛋白与辅助因子单独存在时,没有催化活力,两部分结合称为全酶4辅酶:与酶蛋白结合较松、容易脱离酶蛋白、可用透析法除去的小分子有机物或金属离子等辅助因子,如辅酶I和辅酶II 5辅基:与酶蛋白结合较为紧密、不能通过透析除去,需要经过一定的化学处理才能与蛋白分开的小分子物质,如细胞色素氧化酶中的铁卟啉※辅酶可辅基之间没有严格的界限,只是辅酶和辅基与酶蛋白结合的牢固程度不同。
生物化学必看知识点总结
![生物化学必看知识点总结](https://img.taocdn.com/s3/m/e00d3f8802768e9951e738fe.png)
生物化学必看知识点总结(一)生物大分子的结构和功能1、组成蛋白质的20种氨基酸的化学结构和分类。
2、氨基酸的理化性质。
3、肽键和肽。
4、蛋白质的一级结构及高级结构。
5、蛋白质结构和功能的关系。
6、蛋白质的理化性质(两性解离、沉淀、变性、凝固及呈色反应等)。
7、分离、纯化蛋白质的一般原理和方法。
8、核酸分子的组成,5种主要嘌呤、嘧啶碱的化学结构,核苷酸。
9、核酸的一级结构。
核酸的空间结构与功能。
10、核酸的变性、复性、杂交及应用。
11、酶的基本概念,全酶、辅酶和辅基,参与组成辅酶的维生素,酶的活性中心。
12、酶的作用机制,酶反应动力学,酶抑制的类型和特点。
13、酶的调节。
14、酶在医学上的应用。
(二)物质代谢及其调节1、糖酵解过程、意义及调节。
2、糖有氧氧化过程、意义及调节,能量的产生。
3、磷酸戊糖旁路的意义。
4、糖原合成和分解过程及其调节机制。
5、糖异生过程、意义及调节。
乳酸循环。
6、血糖的来源和去路,维持血糖恒定的机制。
7、脂肪酸分解代谢过程及能量的生成。
8、酮体的生成、利用和意义。
9、脂肪酸的合成过程,不饱和脂肪酸的生成。
10、多不饱和脂肪酸的意义。
11、磷脂的合成和分解。
12、胆固醇的主要合成途径及调控。
胆固醇的转化。
胆固醇酯的生成。
13、血浆脂蛋白的分类、组成、生理功用及代谢。
高脂血症的类型和特点。
14、生物氧化的特点。
15、呼吸链的组成,氧化磷酸化及影响氧化磷酸化的因素,底物水平磷酸化,高能磷酸化合物的储存和利用。
16、胞浆中NADH的氧化。
17、过氧化物酶体和微粒体中的酶类。
18、蛋白质的营养作用。
19、氨基酸的一般代谢(体内蛋白质的降解,氧化脱氨基,转氨基及联合脱氨基)。
20、氨基酸的脱羧基作用。
21、体内氨的来源和转运。
22、尿素的生成--鸟氨酸循环。
23、一碳单位的定义、来源、载体和功能。
24、甲硫氨酸、苯丙氨酸与酪氨酸的代谢。
25、嘌呤、嘧啶核苷酸的合成原料和分解产物,脱氧核苷酸的生成。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/543dbe49df80d4d8d15abe23482fb4daa58d1de9.png)
生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。
蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、结构蛋白、免疫蛋白等。
在生物体内,蛋白质不断地受到合成和降解的调控。
2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。
DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。
核酸的功能包括遗传信息的传递、蛋白质的合成控制等。
3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。
生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。
在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。
4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。
脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。
二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。
酶的结构包括活性位、辅基和蛋白质结构。
酶的功能包括催化特定的反应、特异性和高效性等。
2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。
酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。
酶动力学研究为理解生物化学反应提供了重要的信息。
三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。
2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。
3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/0e134cfce45c3b3566ec8b36.png)
第一章1、掌握蛋白质的元素组成、基本组成单位,氨基酸成肽的连接方式;熟悉氨基酸的通式与结构特点。
元素组成:碳、氢、氧、氮、硫(C、H、O、N、S )以及磷、铁、铜、锌、碘、硒组成单位:氨基酸连接方式:脱水缩合通式:结构特点:不同的氨基酸其侧链(R)结构各异。
2、GSH由哪三个氨基酸残基组成?有何生理功能?组成:谷氨酸、半胱氨酸、甘氨酸生理功能:在谷胱甘肽过氧化物酶的催化下,GSH科还原细胞被产生的H2O23、蛋白质一、二、三、四级结构的定义及维系这些结构稳定的作用键?一级结构:蛋白质多肽链中氨基酸残基的排列顺序。
作用键:肽键二级结构:多肽链的主链骨架中若肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象。
作用键:氢键三级结构:多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。
作用键:次级键四级结构:由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象。
作用键:氢键、离子键4、蛋白质二级结构的基本形式?并试述α-螺旋的结构特点。
基本形式:α-螺旋、β-折叠、β-转角和无规卷曲。
结构特点:①螺旋的走向为顺时针方向,右手螺旋。
②形成氢键,一稳固α-螺旋结构。
5、何为蛋白质的变性?蛋白质变性后理化性质有何改变?变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物学活性的丧失。
改变:溶解度降低、溶液的粘滞度增高、不容易结晶、易被酶消化。
6、蛋白质在溶液中稳定的因素、等电点及定量方法。
因素:水化膜、电荷等电点:在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点。
7、距离说明蛋白质一级结构与功能的关系。
蛋白质的一级结构决定蛋白质空间结构,进而决定蛋白质的生物学功能。
第二章核酸的结构和功能1、掌握核酸的分子组成以及核苷酸之间的连接方式。
生化知识点总结
![生化知识点总结](https://img.taocdn.com/s3/m/f304699277eeaeaad1f34693daef5ef7bb0d126b.png)
生化知识点总结生物化学(Biochemistry)是研究生命体内的各种化学物质和化学反应的科学。
它主要研究生命体内分子之间的相互作用、分子结构和功能、代谢途径、遗传信息的传递等。
1. 生物大分子:生物化学主要研究四种生物大分子,分别是蛋白质、核酸、多糖和脂质。
蛋白质是构成生物体的主要结构组分,也是生物体内许多生物化学反应的催化剂。
核酸是存储和传递遗传信息的分子。
多糖主要包括多糖、寡糖和单糖,是生物体内能量和结构材料的重要来源。
脂质是生物体内重要的能量储备和细胞膜的主要组成物质。
2. 酶:酶是生物体内催化化学反应的蛋白质,它能够加速生物体内各种化学反应的速率。
酶可通过调整反应底物的空间构型、降低反应的活化能和提供催化媒介等方式来促进反应。
生物体内有数千种不同的酶,它们通常都高度选择性地催化某一类反应。
3. 代谢途径:代谢是指生物体内各种化学反应的总称。
代谢途径包括有氧呼吸、无氧呼吸、光合作用等。
有氧呼吸是指在氧气存在下,有机物进一步氧化产生二氧化碳和能量。
无氧呼吸是指在缺氧的条件下,有机物的分解产生能量。
光合作用是指将光能转化为化学能,通过合成有机物来储存能量。
4. DNA和RNA:DNA(脱氧核糖核酸)和RNA(核糖核酸)是两种重要的核酸。
DNA是存储和传递遗传信息的分子,它由四种不同的碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳟嘌呤)组成,通过它们的不同排列形成基因序列。
RNA参与了蛋白质的合成过程,通过与DNA相互配对来复制并传递遗传信息。
5. 蛋白质结构:蛋白质的结构可以分为四个层次:一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列。
二级结构是指通过氢键和静电作用形成的局部折叠,常见的二级结构有α-螺旋和β-折叠。
三级结构是指蛋白质的全局折叠形态。
四级结构是多个蛋白质亚基的组合形成的复合物。
6. 遗传密码:遗传密码是DNA上的碱基序列与蛋白质合成之间的翻译体系。
DNA上的三个碱基(核苷酸)形成一个密码子,每个密码子对应一个特定的氨基酸。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/eb7bccb05ff7ba0d4a7302768e9951e79a896916.png)
生物化学知识点总结生物化学是研究生物体化学组成和生命过程中化学变化规律的科学,它是生命科学领域的重要基础学科。
以下是对生物化学一些重要知识点的总结。
一、生物大分子(一)蛋白质1、组成元素:主要由碳、氢、氧、氮,有些还含有硫、磷等元素。
2、基本组成单位:氨基酸。
氨基酸通过脱水缩合形成肽链,肽链经过盘曲折叠形成具有一定空间结构的蛋白质。
3、蛋白质的结构层次:一级结构是指氨基酸的排列顺序;二级结构有α螺旋、β折叠等;三级结构是指整条肽链的空间构象;四级结构是指由多个亚基组成的蛋白质中各个亚基的空间排布及相互作用。
4、蛋白质的性质:具有两性电离、胶体性质、变性与复性、沉淀等。
(二)核酸1、分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
2、组成元素:碳、氢、氧、氮、磷。
3、基本组成单位:核苷酸。
核苷酸由含氮碱基、戊糖和磷酸组成。
4、 DNA 的结构:双螺旋结构,两条反向平行的多核苷酸链围绕同一中心轴相互缠绕。
5、 RNA 的种类及功能:信使 RNA(mRNA)指导蛋白质合成;转运 RNA(tRNA)转运氨基酸;核糖体 RNA(rRNA)参与核糖体的组成。
(三)糖类1、分类:单糖(如葡萄糖、果糖、半乳糖)、二糖(如蔗糖、麦芽糖、乳糖)和多糖(如淀粉、糖原、纤维素)。
2、功能:主要的能源物质,也参与细胞结构的组成。
(四)脂质1、分类:脂肪、磷脂、固醇(如胆固醇、性激素、维生素 D)。
2、功能:脂肪是良好的储能物质;磷脂是生物膜的重要成分;固醇在调节生命活动中发挥重要作用。
二、酶1、本质:大多数是蛋白质,少数是 RNA。
2、特性:高效性、专一性、作用条件温和。
3、影响酶活性的因素:温度、pH、抑制剂、激活剂等。
4、酶的作用机制:降低化学反应的活化能。
三、生物氧化1、概念:物质在生物体内氧化分解并释放能量的过程。
2、呼吸链:由一系列递氢体和递电子体组成,其功能是传递电子和氢,生成水并释放能量。
3、 ATP 的生成:主要通过氧化磷酸化和底物水平磷酸化两种方式生成。
(完整版)生物化学重点总结
![(完整版)生物化学重点总结](https://img.taocdn.com/s3/m/4f39a3dcbd64783e08122b95.png)
第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a—-羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。
等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。
三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链(R)的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸. 3,紫外吸收法(280 nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸,苯丙氨酸,或酪氨酸。
5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构.DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构.三、填空题1,核酸可分为 DNA 和 RNA 两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸,由戊糖、含氮碱基和磷酸 3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA 一级结构和二级结构有何异同?4,叙述DNA双螺旋结构模式的要点.DNA双螺旋结构模型的要点是:1,DNA是一平行反向的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相交接触。
腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C),碱基平面与线性分子的长轴相垂直。
一条链的走向是5’→3',另一条链的走向就一定是3’→5’;2,DNA是一右手螺旋结构;3,DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/d6c730c880c758f5f61fb7360b4c2e3f57272565.png)
生物化学知识点总结第二章一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。
如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章一、名词解释1.核苷酸:2.增色效应:由于DNA变性后波长260nm的吸光度值会增加,这种现象称为增色效应3.DNA的变性: DNA的变性是指在某些理化因素作用下,DNA分子中碱基对之间的氢键断裂,使DNA双链结构解开变成单链的过程。
生物化学总结终极版
![生物化学总结终极版](https://img.taocdn.com/s3/m/ca62f69e49649b6649d74730.png)
名词解释(10*3)1、必需氨基酸:人体必需的氨基酸,自身不能合成,必须从外界摄取的氨基酸。
包括苯丙氨酸、甲硫氨酸(蛋氨酸)、赖氨酸、苏氨酸、色氨酸、亮氨酸、异亮氨酸、缬氨酸。
2、等电点:当溶液浓度为某一pH值时,氨基酸分子中所含的-NH3+和-COO-数目正好相等,净电荷为0,这一pH值即为氨基酸的等电点,简称pI。
在等电点时,氨基酸既不向正极也不向负极移动,即氨基酸处于两性离子状态。
3、两性解离:氨基酸在结晶形态或在水溶液中,并不是以分子形式存在,而是离解成两性离子。
在两性离子中,氨基是以质子化(-NH3+)形式存在,羧基是以离解状态(-COO-)存在。
向溶液中加入酸时,-COO-负离子在电场中向负极移动,加入碱时,-NH3+正离子在电场中向负极移动,这一过程称为两性解离。
4、米氏常数Km:当酶反应速度达到最大反应速度一半时的底物浓度。
5、增色效应:核酸变性后,由于双螺旋解体,藏于螺旋内部的碱基暴露出来,这样就使得变性后的DNA对260nm紫外光的吸光率比变性前明显升高,这种现象称为增色效应。
6、减色效应:变性的核酸复性后,其溶液的A260值减小,最多可减小至变性前的A260值,这种现象程减色效应。
7、分子杂交:热变性的DNA单链,在复性时并不一定与同源DNA互补链形成双螺旋结构,它也可以与在某些区域有互补序列的异源DNA单链形成双螺旋结构,这种技术叫做分子杂交。
8、活性中心:酶分子中直接与底物结合并催化底物发生化学反应的部位(小区),称为酶的活性中心。
9、酸碱催化:H+离子或OH-离子对化学反应速度表现出的催化作用。
10、共价催化:指酶活性中心处的极性基团,在催化底物发生反应的过程中,首先以共价键与底物结合,生成一个活性很高的共价型的中间产物,反应速度明显加快。
包括亲核催化和亲电催化。
11、亲核催化:指酶分子中具有非共用电子对的亲核基团,攻击底物分子中具有部分正电性的原子,并与之作用形成共价键而产生不稳定的过渡态中间物。
(完整版)生物化学知识点总结
![(完整版)生物化学知识点总结](https://img.taocdn.com/s3/m/8d39b76549649b6649d74774.png)
生物化学知识点总结一、蛋白质蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。
6.25称作蛋白质系数。
样品中蛋白质含量=样品中含氮量×6.25蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。
脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。
氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。
肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。
生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。
1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。
由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。
寡肽:10个以下氨基酸脱水缩合形成的肽多肽:10个以上氨基酸脱水缩合形成的肽蛋白质与多肽的区别:蛋白质:空间构象相对稳定,氨基酸残基数较多多肽:空间构象不稳定,氨基酸残基数较少蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。
??-螺旋的结构特点:1)以肽键平面为单位,以α-碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。
2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。
3)每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,氢键的方向与中心轴大致平行,是稳定螺旋的主要作用力4)肽链中的氨基酸R基侧链分布在螺旋的外侧,R基团的大小、性状及带电荷情况都对螺旋的形成与稳定起作用。
生物化学知识点总结完整版
![生物化学知识点总结完整版](https://img.taocdn.com/s3/m/e60bab01e55c3b3567ec102de2bd960590c6d9fe.png)
生物化学知识点总结完整版生物化学是研究生物体在细胞、组织和器官水平上的化学过程的一门学科。
它涉及了生命体内物质的合成、降解和转化过程,以及这些过程对生命活动的调控和影响。
生物化学知识点包括了生物分子的结构及功能、生物体内的代谢过程、遗传信息的传递及表达等内容。
下面就对生物化学的一些重要知识点进行总结:一、生物分子的结构和功能1. 蛋白质:蛋白质是生物体内最丰富的一类生物大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着结构支持、酶催化、运输、信号传导等重要功能。
2. 碳水化合物:碳水化合物是生物体内最基本的能量来源,也是构成细胞壁、核酸、多糖等物质的重要成分。
3. 脂类:脂类是生物体内主要的能量储存物质,同时也是细胞膜的主要构成成分。
4. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA两类,它们负责存储遗传信息和传递遗传信息。
二、生物体内的代谢过程1. 糖代谢:糖代谢是生物体内重要的能量来源,包括糖原合成、糖原降解、糖酵解等过程。
2. 脂质代谢:脂质代谢包括脂肪酸的合成、分解和氧化,以及胆固醇的合成和降解。
3. 蛋白质代谢:蛋白质代谢包括蛋白质合成、降解和氨基酸的代谢。
4. 核酸代谢:核酸代谢包括核苷酸的合成和降解过程。
5. 能量代谢:生物体内能量的产生主要依靠有机物的氧化和磷酸化过程。
这些过程包括糖酵解、三羧酸循环和氧化磷酸化等。
三、遗传信息的传递和表达1. DNA的结构和功能:DNA是双螺旋结构,由脱氧核苷酸通过磷酸二酯键连接而成。
DNA负责存储遗传信息,并通过转录和翻译的过程进行表达。
2. RNA的结构和功能:RNA是单链结构,由核糖核苷酸通过磷酸二酯键连接而成。
RNA包括mRNA、tRNA和rRNA等,它们分别参与遗传信息的转录、转运和翻译。
3. 蛋白质合成的过程:蛋白质合成包括转录和翻译两个过程。
转录是指DNA的信息转录成RNA的过程,而翻译是指mRNA上的密码子与tRNA上的反密码子匹配,从而在核糖体上合成蛋白质的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一生物化学概述(一)生物化学研究的基本内容1 静态生物化学:蛋白质,核酸,酶2 动态生物化学:生物氧化,三大代谢3 信息代谢:DNA的复制,RNA的转录,蛋白质的生物合成(二)生物化学的发展简史课本P2-3二蛋白质化学(一)蛋白质的概念及生物学意义1 肽键连接生物大分子(一定结构和功能)2 意义:结构成分、催化、运输、储存、运动、免疫、调节、遗传、其他(二)氨基酸1 氨基酸的基本结构和性质●COOHNH3+ C HR●性质a)两性解离:H+ H+H2N—CH2—COO- H3N+—CH2—COO- H3N+—CH2—COOHOH- OH-阴性离子(R-)兼性离子(R+-)阳性离子(R+)PH>PI PH=PI PH<PI公式:中性氨基酸:酸性氨基酸:碱性氨基酸:b)光学性质:20种氨基酸都不吸收可见光,但是()、()、()在近紫外光区有光吸收,因为它们的R 基团含有()。
蛋白质由于含有这些氨基酸,一般最大光吸收在()处,因此可利用()测定蛋白质的含量。
c)化学性质:•茚三酮反应:弱酸性、加热脯氨酸、羟脯氨酸:黄色其他氨基酸、有游离α-氨基的肽:蓝紫色•2,4-二硝基氟苯反应(Sanger反应):弱碱性、暗处、室温或40℃aa的α-氨基与DNPB反应:黄色的DNP-AA•异硫氰酸苯脂反应(Edman反应):弱碱性、40℃aa的α-氨基与PITC反应:PTC-AA成酰胺:氨基酸酯+氨——氨基酸酰胺脱羧:2 根据R基团极性对20种蛋白质氨基酸的分类及三字符缩写非极性aa:Ala Phe Leu Ile Val Met Trp Pro -------------------------蛋白质疏水核心酸性aa(带负电):Asp Glu极性aa:碱性aa(带正电):Lys Arg His 蛋白质表面非解离aa(不带电):Gly Ser Thr Cys Tyr Asn Gln酶的活性中心:His、Ser(三)蛋白质的结构和功能1 肽的概念和理化性质概念:氨基酸肽键连接蛋白质:肽链较长,通常在50个AA以上.如胰岛素51AA,目前发现的最大蛋白质是肌巨蛋白(titin),Mr约3000kDa,相当于34350AA,但大多数蛋白质通常为300-500AA。
多肽:肽链长度在20-50AA之间.如胰高血糖素(29AA),促肾上腺皮质激素(ACTH,39AA);但是界限也很难划分。
寡肽:肽链长度在20个AA以下.如徐缓激肽(9AA),具有强的血管扩张作用;脑啡肽(5AA),除镇痛外,尚有调节体温、心血管、呼吸等功能;二肽和三肽已具有活性,如天冬酰苯丙氨酸甲酯(2AA)具甜味;精氨酰-甘氨酰-天冬氨酸(RGD),抗粘着的能力。
一些单个氨基酸也具有重要功能,如甘氨酸,谷氨酸作为神经递质。
•每种肽有其晶体,熔点很高。
•酸碱性质:游离末端α-NH2、游离末端α-COOH、侧链上可解离基团。
•肽等电点计算方法:以及在溶液中所带电荷的判断方法与AA一致,但复杂。
•肽的化学反应:茚三酮反应、Sanger反应、Edman反应;还可发生双缩脲反应。
双缩脲反应:双缩脲(NH2-CO-NH-CO-NH2)在(碱性)溶液中可与(铜)离子产生(紫红色)的络合物。
多肽或蛋白质中有多个肽键,也能与铜离子发生双缩脲反应,游离氨基酸无此反应。
2 蛋白质的初级结构蛋白质的一级结构指蛋白质多肽连中AA的排列顺序,包括二硫键的位置。
主要由(肽键)维系。
(实验题)N端:Sanger法(2、4-二硝基氟苯反应)、DNS法(丹磺酰氯末端分析法)、苯异硫氰酸酯法(Edman reaction) 、氨肽酶法C端:肼解法、还原法、羧肽酶法3 蛋白质的高级结构(二级结构、超二级结构和结构域、三级结构、四级结构)二级结构:指多肽链中主链原子的局部空间排布即构象,不涉及侧链的位置。
主要由(氢键)维系α-螺旋(与DNA比较)A.几乎都是(右手)螺旋。
B. 每圈(3.6)个氨基酸残基,高度(0.54)nm。
C. 每个残基绕轴旋转100°,沿轴上升(0.15)nm。
D. 氨基酸残基侧链R基向外。
E. 相邻螺圈之间形成链内氢链,氢键的取向几乎与中心轴平行。
F. 肽键上C=O与它前面(N端)(第三个)残基上的N-H间形成氢键。
C、R基较小,且不带电荷的氨基酸利于α-螺旋的形成。
如多聚Ala,在pH7的水溶液中自发卷曲成α-螺旋。
D、Pro中止α-螺旋)β-折叠两个或多个几乎完全伸展的肽链平行排列;相邻肽链间通过N–H 与C=O 形成规则的氢键,α-C位于折叠顶点;相邻β折叠层之间的距离约为(0.35)nm;相邻残基的R 基团向着相反的方向;平行式(parallel)和反平行式(antiparallel)两种β-转角肽链出现的180°回折A. 4个连续的氨基酸残基组成B. 主链骨架180°折叠C. 第一个氨基酸残基的C=O与(第四个)氨基酸残基的N-H形成氢键。
D. 多数由亲水氨基酸残基组成(特别是Gly、Pro)E. 主要存在于球状蛋白分子的表面无规卷曲指无一定规律的松散盘曲的肽链结构。
酶的功能部位常包含此构象。
超二级结构指蛋白质中相邻的二级结构单位(α-螺旋或β-折叠或β-转角)组合在一起,形成有规则的、在空间上能够辨认的二级结构组合体。
基本类型:αα、βαβ、βββ结构域指多肽链在二级结构或超二级结构的基础上,进一步卷曲、折叠形成几个相对独立、近似球形的三维实体。
约含100-200个AA残基,组织层次位于超二级结构和三级结构之间。
三级结构是指多肽链在二级结构、超二级结构、结构域的基础上,进一步盘绕、折叠形成的包括主链和侧链构象在内的特征三维结构。
主要由(各种非共价键)和(疏水键)维系,(二硫键)也很重要。
氢键范德华力:分子间及基团间作用力离子键(盐键)二硫键:二硫键不指导多肽链的折叠,但三级结构形成后,二硫键可稳定构象。
疏水键(疏水相互作用):在水介质中球状蛋白质的折叠总是倾向于把疏水残基埋藏在分子的内部。
这一现象称为疏水相互作用。
疏水键,在蛋白质三级结构中起着重要作用,它是使蛋白质多肽链进行折叠的主要驱动力。
四级结构多个具有三级结构的(亚基),通过非共价键聚集形成的特定构象。
一般情况下,具有四级结构的蛋白质含有的肽链不会太多,故称这类蛋白质为寡聚蛋白。
实质:蛋白质的四级结构实际上研究亚基之间的相互作用、空间排布及亚基接触部位的空间布局。
蛋白质四级结构中,亚基之间的作用力主要包括:各种非共价键和疏水键(最重要)。
!注意:不包括二硫键!4 蛋白质的结构和功能的关系推断预测氨基酸序列(一级结构)空间结构(高级结构)功能2 蛋白质的两性电离和等电点3 蛋白质的胶体性质1-100nm,丁达尔效应,布朗运动,不透过半透膜4 蛋白质的紫外吸收特性:280nm,原因()5 蛋白质的变性与复性(与DNA比较)变性:一级结构不改变,高级结构,理化性质,生物功能改变复性:变性不剧烈,除去变形因素后,高级结构,理化性质,生物功能恢复(五)蛋白质的分离与纯化1 蛋白质的抽提原理及方法2 蛋白质分离与纯化的主要方法:电泳、层析和离心3 蛋白质的定量方法三、核酸化学(一)核酸的种类和组成单位核酸:DNA:脱氧核糖核酸RNA:核糖核酸核苷酸:磷酸—————————————————————核苷:戊糖:脱氧核糖、核糖-(5-羟基)——————缩合成核苷酸碱基:A/G/C/T/U(二)核酸的分子结构1.DNA的分子结构(与蛋白质比较):DNA的一级结构:1.定义:指DNA分子中脱氧核苷酸的排列顺序。
2.DNA的碱基组成(Chargaff定则):(1)A=T,G=C 即A+G=T+C(2)DNA的碱基组成具有种的特异性,即不同生物物种的DNA具有自己独特的碱基组成,但没有组织和器官的特异性。
二级结构(注意和蛋白质比较):指DNA的两条多聚核苷酸链间通过氢键形成的双螺旋结构,主要由(DNA链的碱基形成的氢键和碱基堆积力维系,离子键和范德华力也起一定作用)结构特点:(简答题)A反平行,右手双股螺旋,一条5’→3’,另一条3’→5’。
大沟和小沟。
B(碱基)位于内侧。
(磷酸)与(脱氧核糖)在外侧。
磷酸与脱氧核糖通过(3’、5’-磷酸二酯键)相连,碱基平面与纵轴(垂直),糖环平面与纵轴(平行)。
C两条核苷酸链依靠碱基间形成的(氢键)结合在一起。
配对规律,A-T,G-C,称为碱基互补。
A和T之间形成(2)个氢键,G与C之间形成(3)个氢键。
D螺旋横截面的直径约为(2)nm,每条链相邻两个碱基平面之间的距离为(0.34) nm,每圈(10)个核苷酸,螺旋旋转一圈高度为(3.4 )nm。
B-DNA:右手双螺旋,典型双螺旋DNA。
相对湿度为(92%)时的DNA钠盐。
接近DNA在细胞中的构象。
A-DNA:右手双螺旋,外形粗短。
相对湿度为(75%以下)时DNA纤维。
RNA-RNA、RNA-DNA杂交分子具有。
Z-DNA:左手双螺旋DNA。
天然B-DNA的局部区域可以形成Z-DNA。
三级结构指在DNA双螺旋二级结构的基础上通过扭曲和折叠所形成的特定构象,包括不同二级结构单元间相互作用、单链和二级结构单元间相互作用以及DNA的拓扑特征。
超螺旋是DNA三级结构的一种类型,其拓扑学公式:L=T+WL链环数(linking number):一条链以右手螺旋绕另一条链缠绕的次数tRNA(转运RNA,transfor RNA)的结构1.tRNA的一级结构:分子量25kDa左右,大约由70-90个核苷酸组成,沉降系数为4S左右。
分子中含有较多的修饰成分。
3 ′-末端都具有CpCpAOH。
5 ′端多为pG,也有pC。
2.tRNA的二级结构tRNA的二级结构大都呈“三叶草”形状,一般具有四臂四环:包括氨基酸接受臂、反密码(环)臂、二氢尿嘧啶(环)臂、T C(环)臂和可变环。
氨基酸接受臂:包含有tRNA的3’-末端和5’-末端, 3’-末端的最后3个核苷酸残基都是CCAOH,氨基酸可与其成酯,该区在蛋白质合成中起携带氨基酸的作用。
反密码环:与氨基酸接受区相对,一般环中含有7个核苷酸残基,其中环中正中的3个核苷酸残基称为反密码子,与mRNA上的密码子反向配对。
故tRNA的功能是在蛋白质生物合成中(转运氨基酸)和(识别密码子)。
3.tRNA的三级结构在三叶草型二级结构的基础上,突环上未配对的碱基由于整个分子的扭曲而配成对目前已知的tRNA的三级结构均为倒L形。
mRNA(信使RNA,messengerRNA)的结构mRNA一级结构真核:单顺反子,5’ -末端有“帽子”和非编码区、3 ’ -末端有polyA片段和非编码区原核:多顺反子,5’-末端无“帽子”有非编码区、 3 ’-末端无polyA片段有非编码区(病毒除外)顺反子: mRNA上具有翻译功能的核苷酸顺序。