外文翻译---电动汽车外转子定子pm无刷电机驱动器的比较_New

合集下载

轮毂式电动汽车驱动系统外文文献翻译、中英文翻译、外文翻译

轮毂式电动汽车驱动系统外文文献翻译、中英文翻译、外文翻译

轮毂式电动汽车驱动系统外文文献翻译、中英文翻译、外文翻译The wheel type electric car is a type of electric car thatutilizes a driving system。

There are two main forms of this system: the direct driving type ___。

This system is installed on the wheel hub of the motor。

___。

n。

main cer。

___。

it allows for the ___。

making electric control technology possible。

As a result。

the wheel type electric car is expected to e the ___ electric cars.2.Advantages and disadvantagesThe wheel type electric car has many advantages。

First。

it has a simple and compact structure。

Second。

it has high n efficiency。

which improves the overall performance of the car。

Third。

it has good ___。

it has a low noise level。

However。

there are also some disadvantages。

First。

the cost of the wheel type electric car is relatively high。

Second。

the maintenance costis also high。

Third。

the wheel type electric car has ___.The wheel type electric car has a simple and compact structure。

完整版附录电动汽车术语和缩略语

完整版附录电动汽车术语和缩略语

电动汽车的术语和英文缩写一、电动汽车术语1.电动汽车electric vehicle=EV 2.纯电动汽车battery electric vehicle=BEV 由电动机驱动的汽车。

电动机的驱动电能来源于车载可充电蓄电池或其他能量储存装置。

3.混合动力电动)汽车hybrid electric vehicle=HEV够至少从可消耗的燃料或可再充电能(能量储存装置)下述两类车载储存的能量中获得动力的汽车4.串联式混合动力(电动)汽车series hybrid electric vehicle=SHEV 车辆的驱。

动力只来源于电动机的混合动力(电动)汽车。

5.并联式混合动力(电动)汽车parallel hybrid electric vehicle=PHEV 车辆的驱动力由电动机及发动机同时或单独供给的混合动力(电动)汽车。

6.混联式合动力(电动)汽车combined hybrid electric vehicle 同时具有串联式、并联式驱动方式的混合动力(电动)汽车。

7.燃料电池电动汽车fuel cell electric vehicle=FCEV 以燃料电池作为动力电源的汽车。

8.辅助系统auxiliary system 驱动系统以外的其它用电或采用电能操纵的车载系统。

例如灯具、风窗玻璃刮水电机、音响等。

9. 车载能源on-board energy soure 变换器和储能装置的组合。

10. 驱动系统propulsion system 车载能源和动力系的组合。

11. 动力系powertrain动力单元与传动系的组合。

12. 前后方向控制器drive direction control通过驾驶员操作,用来选择汽车行驶方向(前进或后退)的专用装置。

例如操纵杆或按钮开关。

13. 电池承载装置battery carrier为承放动力蓄电池而设置的装置。

有移动式和固定式之分。

14.电平台electrical chassis 一组电气相联的可导电部分,其电位作为基准电位。

电动汽车用外转子永磁无刷直流电动机及计算机辅助设计的开题报告

电动汽车用外转子永磁无刷直流电动机及计算机辅助设计的开题报告

电动汽车用外转子永磁无刷直流电动机及计算机辅助设计的开题报告一、选题背景和研究意义近年来,环保和节能已经成为全球的热点话题。

汽车尤其是传统燃油汽车的大量使用给环境带来了很大的负面影响,如大量的空气污染和温室气体排放,同时对石油资源的需求也越来越大。

因此,电动汽车作为一种新型的绿色交通工具,已经开始逐步替代传统燃油汽车,成为未来交通工具发展的新方向。

电动汽车的关键要素之一就是电动机,因此电动汽车的发展需要电动机技术的支持。

由于电动汽车的高效、节能和环保的特性,各大汽车厂商以及科技公司纷纷投入大量的精力和资金进行电动汽车技术的研究和开发。

其中,外转子永磁无刷直流电动机因具有高效、高性能、轻量化等优点,被广泛应用于电动汽车领域。

电动汽车的电动机设计需要兼顾电动机的高效性、输出功率、负荷能力以及制造成本等因素,因此需要对电动机进行计算机辅助设计。

计算机辅助设计是利用计算机软件辅助完成设计任务,减少设计时间和维护成本,提高设计质量和效率的一种设计方法。

因此,本文选取电动汽车用外转子永磁无刷直流电动机及计算机辅助设计作为研究对象,旨在探究电动汽车用外转子永磁无刷直流电动机的设计和计算机辅助设计方法,并为电动汽车电动机的设计提供参考。

二、研究内容1. 外转子永磁无刷直流电动机的原理和特点。

2. 电动汽车用外转子永磁无刷直流电动机的设计方法和计算机辅助设计流程。

3. 电动汽车用外转子永磁无刷直流电动机的性能分析与仿真。

4. 电动汽车用外转子永磁无刷直流电动机的实验研究。

5. 电动汽车用外转子永磁无刷直流电动机的优化设计。

三、研究方法1. 文献调研和资料收集:通过查找相关文献和资料,了解外转子永磁无刷直流电动机的原理、设计方法和计算机辅助设计流程,以及电动汽车用电动机的性能指标和应用要求。

2. 软件仿真技术:使用COMSOL Multiphysics或Ansys等软件进行电动汽车用外转子永磁无刷直流电动机的性能分析和仿真,验证设计的可行性和优化结果。

新能源汽车驱动电机分类选型、优缺点和技术发展路线解析

新能源汽车驱动电机分类选型、优缺点和技术发展路线解析

新能源汽车驱动电机分类选型、优缺点和技术发展路线解析新能源汽车驱动电机主要分为三类:直流无刷电机(BLDC)、感应电机和永磁同步电机(PMSM)。

1. 直流无刷电机:直流无刷电机采用稀土磁材料,具有体积小、功率密度高、启动转矩大等优点。

它的控制简单、成本较低,适用于小型和中型的电动汽车。

但直流无刷电机存在换向损耗、转速范围局限等问题,且转矩-速度特性难以控制。

2. 感应电机:感应电机具有结构简单、可靠性高的特点。

它采用感应转子,没有永磁体,无需传感器,维护成本低。

感应电机适用于大型电动汽车,但在低转速和高转速区域有不理想的性能,且对电机控制要求较高。

3. 永磁同步电机:永磁同步电机采用永磁体作为励磁源,具有高效率、高能量密度和大启动转矩等优点。

它的控制复杂,需要较高的电机控制算法和精确的转子位置传感器。

永磁同步电机适用于中型和大型电动汽车,但永磁体的价格较高,且在高温环境下容易磁化损耗。

不同类型的驱动电机在优缺点和技术发展路线上有所不同:- 直流无刷电机的优点是体积小、功率密度高,但其换向损耗较大,转速范围相对有限。

- 感应电机的优点是结构简单、可靠性高,但在低速和高速性能不理想,电机控制要求较高。

- 永磁同步电机的优点是高效率、高能量密度和大启动转矩,但缺点是控制复杂,需要较高的电机控制算法和精确的转子位置传感器。

在技术发展路线上,目前的趋势是发展高效、轻量化的驱动电机,提高电机的功率密度,同时降低成本。

同时,新材料和新工艺的开发也是一个重要方向,以提高电机的热稳定性和可靠性。

此外,电机控制算法和系统集成技术的不断提升也是未来的发展方向,以实现更精确和高效的电机控制。

总体而言,新能源汽车驱动电机的发展主要集中在提高性能、降低成本和提高可靠性方面。

BLDC与PMSM的比较

BLDC与PMSM的比较

逆变器—永磁无刷电机系统示意图
7
无刷直流电机的数学模型
电压方程:
⎡u AN ⎤ ⎡ R 0 0 ⎤ ⎡i A ⎤ ⎢u ⎥ = ⎢ 0 R 0 ⎥ ⎢i ⎥ + ⎢ BN ⎥ ⎢ ⎥⎢ B ⎥ ⎢ ⎣u CN ⎥ ⎦ ⎢ ⎣ 0 0 R⎥ ⎦⎢ ⎣iC ⎥ ⎦ ⎡L − M p⎢ ⎢ 0 ⎢ ⎣ 0 0 L−M 0 0 ⎤ ⎡i A ⎤ ⎡e A ⎤ ⎡u ON ⎤ ⎢i ⎥ + ⎢e ⎥ + ⎢u ⎥ 0 ⎥ ⎥ ⎢ B ⎥ ⎢ B ⎥ ⎢ ON ⎥ L−M⎥ ⎦⎢ ⎣iC ⎥ ⎦ ⎢ ⎣ eC ⎥ ⎦ ⎢ ⎣u ON ⎥ ⎦
α 为旋转因子,α = cos120D + j sin 120D
16
矢量控制基础——坐标变换
Bs
三相/2相变换:根据变换前后功率不
β
i Sβ
变的约束条件,以定子电流为例:
IS

i Sα
α
As
⎡ ⎢ ⎡iα ⎤ ⎢ ⎢i ⎥ = 2 ⎢ ⎢ β⎥ 3⎢ ⎥ ⎢ i ⎢ ⎣ 0⎦ ⎢ ⎣
⎡ ⎢ ⎢ =⎢ ⎢ ⎢ ⎢ ⎣
12
无刷直流电机的基本控制系统
电流闭环控制结构
I ref
+

位置
PID 调节器
Ia
无刷直流 电动机
I phase
MAX
数字低通 滤波
转矩闭环控制结构
ωr
M ref
ABS ( I a , I b )
Ib
位置
1 k2
I ref
+
PID

无刷直流 电动机
Ia
调节器
I phase
MAX

基于人工智能在永磁无刷直流电机驱动中的应用 毕业论文外文翻译

基于人工智能在永磁无刷直流电机驱动中的应用  毕业论文外文翻译

附录B:Artificial intelligence applications in Permanent Magnet Brushless DCmotor drivesR. A. Gupta· Rajesh Kumar· Ajay Kumar BansalPublished online: 25 December 209© Springer Science Business Media B .V. 2009Abstract Permanent Magnet Brushless DC (PMBLDC) machines are more popular due its simple structure and low cost. Improvements in permanent magnetic materials and power electronic devices have resulted in reliable, cost effective PMBLDC drives, for many applications. Advances in artificial intelligent applications like neural network, fuzzy logic, Genetic algorithm etc. have made tremendous impact on electric motor drives. The brushless DC motor is a multivariable and non-linear system. In conventional PMBLDC drives speed and position sensing of brushless DC motors require high degree of accuracy. Unfortunately, traditional methods of control require detailed modelling of all the motor parameters to achieve this. The Intelligent control techniques like, fuzzy logic control/Neural network control etc. uses heuristic input–output relations to deal with vague and complex situations. This paper presents a literature survey on the intelligent control techniques for PMBLDC motor drives. Various AI techniques for PMBLDC motor drive sare described. Attempt is made to provide a guideline and quick reference for the researchers and practicing engineers those are working in the area of PMBLDC motor drives.Keywords PMBLDC·Artificial intelligent ·Intelligent control ·Fuzzy ·Neural network1 IntroductionThe permanent magnet (PM) brushless DC (BLDC) machine is increasingly being used for various applications and its market is rapidly growing. This is mainly due to its high torque, compactness, and high efficiency. Permanent magnet brushlessmotors have found wider applications due to their high power density and ease of control. Advances in high-energy Permanent Magnet materials and power electronics have widely enhanced the applications of PMBLDC in variable speed drives similar to ac machines (Singh and Kumar 2002; Bose 1992). Recently, the PMBLDC motor has evolved as a replacement of the standard brush type dc machine in many servo applications due to its high efficiency, low maintenance and good controllability (Mohan et al. 1995). Several models of this drive have been presented and discussed (Putta Swamy e t a l. 1995).Moreover, PMBLDC motors are a type of synchronous motors means that the magnetic fields generated by both the stator and the rotor have the same frequency therefore, PMBLDC motors do not exper ience the “ slip” that is norm ally seen in induction motors (Hendershot and Miller 1994 ). The research is going on to identification of a suitable speed controller for the PMBLDC motor. Many control strategies have been proposed (Kaynak 2001; Miller 1989) in classical linear theory. As the PMBLDC machine h as nonlinear model, the linear PID may no longer be suitable. This has resulted in the increased demand for modern nonlinear control structures like self-tuning controllers, state-feedback controllers, model reference adaptive systems and use of multi-variable control structure. Most of these controllers use mathematical models and are sensitive to parametric variations. Very few adaptive controllers have been practically employed in the control of electric drives due to their complexity and inferior performance.The design of current and speed controllers for permanent magnet brushless DC(PMBLDC) motor drive remains to large extent a mystery in the motor drives field. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed as well as nonlinearity present in the developed torque due to magnetic saturation of the rotor.The PMBLDC machines can be categorized based on the permanent magnets mounting and shape of the back-EMF. The permanent magnets can be surface mounted on the rotor or installed inside of the rotor (interior permanent magnet), and the back-EMF shape can either be sinusoidal or trapezoidal. The surface mountedPM (SMPM) machine is easy to build. Also, from the machine design point of view, skewed poles can be easily magnetized on this round rotor to minimize cogging torque. Typically, for this type of motor, the inductance variation by rotor position is negligibly small since there is no magnetic saliency. The interior permanent magnet (IPM) machine is a good candidate for high-speed and traction applications. It is noted that there is an inductance variation by rotor position for this type of motor because of the magnetic saliency.This paper will give bigger focus on the artificial intelligent applications to PMBLDC motor drives. In this paper, conventional and recent advancement of AI operation methods for P M BLDC drives are presented.2 Modelling of PMBLDC motorThe PMBLDC motor is modelled in the stationary reference frame using 3 -phase abc variables (Pillay and Krishnan 1989). The general volt-ampere equation be expressed as:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c b a c b c b a c b e e e i i i dt d M L M L M L i i i R R R V V a a 000000000000Vwhere R , L , M are the resistance, inductance and mutual inductance of stator windings and x V ,x e ,x i are phase voltage, back-EMF voltage and phase current of each phase of stator respectively. The electromagnetic torque is expressed asFig. 1 Three phase back EMF function[]c cn b bn a an r e i e i e i e 1T ++=ωThe interaction of e T with the load torque determines how the motor speed builds up:dtd J B r r L ωω++=T Te where is L T load torque in N -m, B is the frictional coefficient in N -ms/ rad, and J is the moment of inertia, kg-㎡.The per phase back emf in the PMBLDC motor is trapezoidal in nature and are the functions of the spee d and rotor position angle (θ r ). The normalized functions of back emfs are shown in Fig. 1. From this, the phase back emfan e can be expressedas: E e an = o r o 1200<<θ()E E e an --⎪⎭⎫ ⎝⎛=θππ6 o r o 180120<<θ E e an -= o r o 300180<<θ()E E e an +-⎪⎭⎫ ⎝⎛=πθπ26 o r o 360300<<θWhereωb k E =and an e can be described by E and normalized back emf function ()r a f θshown in Fig. 1. ()r a an Ef e θ= . The back emf function of other two phases bn e and cn e are defined in similar way using E and thenormalized back emf function()r f θb and ()r c θf as shown in F ig. 1.3 .Artificial intelligenceHuman abilities in controlling the complex systems, has encouraged scientists to pattern from human neural network and decision making systems. Firstly there searches began in two separate fields and resulted in establishment of the fuzzy systems and artificial neural networks (Giridharan e t a l. 2006). There are primarily three concepts prevailing over the intelligent control:• Fuzzy logic control• Neural network based control• Neuro fuzzy control (hybrid control)In the first concept, the controller is represented as a set of rules, which accepts/gives the inputs/outputs in the form of linguistic variables. The main advantages of such a controller are:Fig. 2 PMBLDC motor AI controllers scheme(1) Approximate knowledge of plant is required(2) Knowledge representation and inference is simple.(3) Implementation is fairly easy.The artificial intelligence mainly has two functions in PMBLDC motor drivesa. Artificial intelligence control—As controllerb. Sensorless operations—for variable estimationIn these the conventional controllers like PI,PID etc. are replaced or combined with AI controllers. All artificial-intelligence-based control strategies, such as fuzzy logic control, neural network control, neurofuzzy control, and genetic control, are classified as artificial intelligent control (AIC). Among them, the fuzzy logic control and the neural network control are most mature and attractive for the PMBLDC drives since they can effectively handle the system’s nonlinearities and sensitivities to parameter variations (Fig. 2).附录C 中文译文基于人工智能在永磁无刷直流电机驱动中的应用摘要由于其结构简单和低成本的原因,永磁无刷直流电机越来越受到青睐。

新能源汽车常用电机类型名称

新能源汽车常用电机类型名称
3
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)
结合了直流电机和交流电机的优点,具有较高的效率、较好的动力性能和较低的维护需求,是ss DC Motor, BLDC)
将直流电机和无刷电机结合的电机类型,具有较长的使用寿命、较低的维护成本和较好的控制性能,在新能源汽车中得到了广泛应用。
新能源汽车常用电机类型名称
序号
电机类型名称
简要描述
1
直流电机(DC Motor)
最早用于电动汽车的电机类型,结构简单,运行效率较高,但转速和转矩特性限制了其在新能源汽车中的广泛应用。
2
交流异步电机(AC Asynchronous Motor)
在新能源汽车中应用广泛,具有较高的能效比和较低的运行成本。但在启动和低速运行时,转矩较低,需要配合减速器使用。
5
开关磁阻电机(Switched Reluctance Motor, SRM)
一种特殊的无刷直流电机,具有较高的转矩密度和较低的制造成本,但控制策略较为复杂。
6
轮毂电机(Hub Motor)
将驱动电机集成在汽车轮毂中的电机类型,具有较高的扭矩传递效率和较低的转动惯量,可以使汽车实现更好的动力性能和控制性能,但制造成本和维护成本相对较高。
7
无位置传感器电机(No-position Sensor Motor)
无需机械位置传感器的电机类型,其控制策略基于转子位置的估算。具有较高的能效比、较低的维护成本和较好的控制性能,在新能源汽车中得到了广泛应用。

无刷电机驱动的工作原理

无刷电机驱动的工作原理

无刷电机驱动的工作原理无刷电机驱动器(Brushless Motor Driver)是一种能够控制无刷电机转速和位置的电路装置。

相比传统的有刷直流电机驱动器,无刷电机驱动器无需以机械接触的方式来实现电刷和电机转子之间的同步,具有结构简单、可靠性高、寿命长等优点。

本文将从无刷电机原理、无刷电机驱动器的工作原理以及无刷电机驱动器的类型等方面进行详细解析。

一、无刷电机原理无刷电机的工作原理基于电磁感应的原理,利用磁场的作用力来实现电机的转动。

无刷电机由定子、转子和传感器等主要组成部分。

定子上绕有若干组线圈,通过施加不同频率、不同相位的电流,产生旋转电磁场。

转子上的永磁体被旋转电磁场作用力推动,从而带动电机的转动。

二、无刷电机驱动器的工作原理无刷电机驱动器作为无刷电机的控制核心,起到了控制电机转速和方向的作用。

无刷电机驱动器通常由功率电路、控制逻辑电路和电源电路三部分组成。

1. 功率电路:无刷电机驱动器的功率电路主要由多个功率MOSFET和驱动电路组成。

每个功率MOSFET控制着一个线圈,通过调整电流与电压的变化,来改变线圈的磁场,从而实现电机的转动。

驱动电路则负责产生用于控制功率MOSFET导通和关断的小信号脉冲。

2. 控制逻辑电路:无刷电机驱动器需要通过控制逻辑电路对电机的转速和方向进行控制。

通过对传感器测量的数据进行处理,控制逻辑电路可以判断旋转角度和速度,并将控制信号发送给功率电路,使其在合适的时间点打开或关闭相应的功率MOSFET。

3. 电源电路:无刷电机驱动器的电源电路负责为控制逻辑电路和功率电路提供稳定的电源。

一般情况下,电源电路采用整流、滤波和稳压等电路结构,将输入电源(一般为直流电源)转换为电机所需的电压和电流。

无刷电机驱动器的工作原理可以简单概括为:控制逻辑电路通过传感器测量的数据来判断电机的转速和位置,并将控制信号传递给功率电路。

功率电路根据控制信号的驱动,控制功率MOSFET的开关,以改变线圈的电流和磁场大小,从而控制电机的运动。

直流无刷电机外文资料原文及译文

直流无刷电机外文资料原文及译文

直流无刷电机外文资料原文及译文前言无刷电机是今天工业和科技界的热点之一。

与传统的有刷电机相比,无刷电机具有很多显著的优点,例如高效率、高精度、高速度和低能耗。

在本文中,我们将介绍一种新型的无刷直流电机,探讨其优点和应用领域。

直流无刷电机的概述直流无刷电机是一种基于电机和电控技术的新型动力装置。

由于其高效率、高精度、高速度和低能耗等优点,在自动化、机械制造、航空航天、家电等领域得到广泛的应用。

与传统的有刷电机相比,它具有以下显著的优点:•由于无刷电机的转子不接触刷子,因此无摩擦、无热产生,寿命更长;•无刷电机的转速控制比有刷电机更加精确;•由于无刷电机的效率更高,能源利用率更高,所以它的使用成本更低。

以下是一份来自IEEE Transactions on Industrial Electronics杂志的论文摘要,介绍了一种基于磁场操作的无刷直流电机。

原文摘要Title: Design and Implementation of a Magnetically Operated Brushless DC MotorAbstract: In this paper, we present a new type of brushless DC motor that is operated by a magnetic field. Traditional brushless DC motors rely on electronic control circuits, which can be complex and expensive. This new motor design eliminates the need for electronic control by using a magnetic operation principle.The motor consists of a permanent magnet rotor and a stator with a three-phase winding. The motor is driven by a magnetic field, which is created by the interaction of the rotor’s magnetic field and the stator’s magnetic field. The mot or is designed to operate efficiently at high speeds and with high torque.We have implemented the proposed motor design and tested it extensively. The results show that the motor operates as intended and demonstrates improved performance compared to traditional brushless DC motors. This new motor design has potential applications in the automotive, aerospace, and robotics industries.译文摘要标题:一种基于磁场操作的无刷直流电机的设计与实现摘要:在本文中,我们介绍了一种新型的基于磁场操作的无刷直流电机。

电动车的电机的用途

电动车的电机的用途

电动车的电机的用途英文回答:Electric Motor Applications in Electric Vehicles.Electric motors play a pivotal role in electric vehicles (EVs), serving as the driving force that propels the vehicle forward. Unlike conventional vehicles powered by internal combustion engines, EVs rely on electric motors to convert electrical energy from the battery into mechanical energy. This innovative technology offers numerous advantages, including improved efficiency, reduced emissions, and enhanced performance.Types of Electric Motors in EVs.There are several types of electric motors used in EVs, each with unique characteristics and applications. The most common types include:Permanent Magnet Synchronous Motors (PMSMs): PMSMs are widely used in EVs due to their high efficiency and compact design. They rely on permanent magnets fixed to the rotor, eliminating the need for a field winding and reducing energy losses.Induction Motors (IMs): IMs are a simple and robust type of electric motor commonly used in industrial applications. They are characterized by their ability to operate at variable speeds, making them suitable for EVs with regenerative braking systems.Switched Reluctance Motors (SRMs): SRMs offer high torque at low speeds and are relatively inexpensive to manufacture. They are particularly suited for EVs used in urban areas where frequent stops and starts are common.Axial Flux Motors (AFMs): AFMs are unique in their design, with the stator and rotor arranged in an axial configuration. This allows for a more compact and lightweight motor, which can be beneficial for EVs with limited space constraints.Functions of Electric Motors in EVs.Electric motors in EVs perform the following essential functions:Propulsion: The primary function of the electric motor is to provide motive power to the vehicle. It converts electrical energy into mechanical energy, which is then transmitted to the wheels through a gearbox.Regenerative Braking: During braking, the electric motor acts as a generator, converting the kinetic energy of the vehicle into electrical energy. This energy is stored in the battery, extending the vehicle's range.Hill Climbing: Electric motors provide high torque at low speeds, enabling EVs to climb hills efficiently. The instant torque delivery provides a responsive and smooth driving experience.Noise Reduction: Compared to combustion engines,electric motors operate quietly, reducing noise pollution and enhancing the overall driving comfort.Advantages of Electric Motors in EVs.The adoption of electric motors in EVs offers several advantages, including:Efficiency: Electric motors are inherently more efficient than combustion engines. They convert over 90% of electrical energy into mechanical energy, compared to around 30% for gasoline engines.Emissions Reduction: EVs produce zero tailpipe emissions, contributing to improved air quality and mitigating climate change.Performance: Electric motors deliver instant torque and can accelerate quickly and smoothly. They also have a wider operating range, allowing for more efficient and responsive driving.Maintenance Costs: Electric motors have fewer moving parts than combustion engines, resulting in reduced maintenance costs and increased reliability.Conclusion.Electric motors are the heart of electric vehicles, enabling them to deliver efficient, emission-free, andhigh-performance transportation. As the technology continues to evolve, we can expect even more advanced and innovative electric motor designs that will further enhance the driving experience and accelerate the adoption of EVs.中文回答:电动汽车中电动机的用途。

【专业英语翻译】用于混合动力电动汽车的控制和驱动系统永磁双机械端口电机

【专业英语翻译】用于混合动力电动汽车的控制和驱动系统永磁双机械端口电机

IV. EXPERIMENTS
PM-DMPM实验系 统由PM-DMPM、控制 和驱动系统、测力计、 热散逸系统和电脑。
1. Test of Phase Current Wavt Tracking Performance
3.Test of Efficiency
Fig.11显示了外电机和内部 电机的控制和驱动系统效 率地图。可以看出这两个 外部电机子系统和内部电 机子系统有更高的效率, 在其额定条件下尤其如此。
Company
LOGO
A Control and Drive System for Permanent Magnetic Dual Mechanical Port Electric Machine Used in Hybrid Electric Vehicles
用于混合动力电动汽车的控制和驱动系统永磁 双机械端口电机
Company
这篇文章讨论了两种电磁控制方案:均匀磁场和 非均匀磁场。对于非均匀磁场,分析和证明表明在 外部电机和内部电机之间没有电磁耦合。因此,对 于非均匀电磁模型,永磁DMPM可以被当做两个独 立的永磁同步电机,而且控制方式较均匀磁场容易。 FOC(磁场定向控制)被用作DMPM控制算法。 外部电机的功能是补偿发动机输出力矩与车辆要求 力矩之间的不同;内部电机的功能是补偿发动机速 度与车辆速度之间的不同。考虑到这样的原因,外 部电机采用力矩控制,内部电机采用速度控制如图 所示
LOGO
作为一种在混合动力电动汽车 (HEV)方面新颖的电变量 传输(EVT),双机械端口电机(DMPM)最近研发。 在这片文章里,由逆变器单元(inverter unit)和控制单 元(control unit)组成的控制和驱动系统永磁 DMPM(PMDMPM)设计和开发。

电动汽车CPPM无刷电机及其控制器研究的开题报告

电动汽车CPPM无刷电机及其控制器研究的开题报告

电动汽车CPPM无刷电机及其控制器研究的开题报告
一、选题背景及意义
随着环保意识的不断提高,传统燃油汽车逐渐被电动汽车所取代。

电动汽车以其零排放、低噪音的优势成为了未来汽车行业的发展趋势。

其中,无刷电机是电动汽车
动力系统的核心组件之一,其能够使电动汽车具备高速、高效、低噪音等优点。

因此,无刷电机的设计和控制在电动汽车领域具有重要的研究价值。

二、研究目的
本研究旨在设计一种适用于电动汽车的无刷电机和控制器,研究其性能和优化控制算法,提高电动汽车的动力性能和行驶里程。

三、研究内容
(1)无刷电机原理和分类:介绍无刷电机的发展历程、原理和分类,并选择合
适的电机类型。

(2)电机参数设计:根据电动汽车的需求,设计相应的电机参数,比如定子、
转子的尺寸、磁极数等。

(3)无刷电机控制器设计:根据电机参数设计相应的控制器,并实现控制策略
优化。

(4)性能测试与分析:对设计好的无刷电机及其控制器进行实验测试,测试性
能并进行分析和评价。

四、预期成果及应用价值
预期成果:设计出一种适用于电动汽车的无刷电机及其控制器,实现了控制策略优化,优化了电动汽车动力性能和行驶里程。

应用价值:该研究成果可以推广到电动汽车制造及相关产业,推动电动汽车行业的可持续发展,提升我国电动汽车行业的竞争力。

外文翻译 ---永磁同步电机和无刷直流电动机

外文翻译 ---永磁同步电机和无刷直流电动机

译文:永磁同步电机和无刷直流电动机R. 克里希南美国弗吉尼亚理工大学电气和计算机工程系序言:永磁交流电机驱动器上的图书主要集中在机械的设计,并仅按一个基本的方式叙述了这些驱动器的控制和转换。

在过去二十年来,研究和开发的控制策略及其随后的应用,已被杂志刊物报导,并在学术会议上提出。

基于这些出版物和会议的知识尚未被系统地写成书刊传播到工业和学术界。

随着与这些驱动系统相关的电力电子技术被关注,三相桥逆变器已被用作标准使用很长一段时间。

随着时间的推移,对它的理解和控制有显著的变化。

成本最小化,已成为新兴的大批量应用的主要焦点,因此有必要考察子系统成本。

虽然控制器的成本已经根据它们的应用变得标准化,成本最小化的明显目标是转换器和电机。

近来,新的电源转换器拓扑结构也正在考虑低成本的驱动系统。

本书专门为永磁交流机器并侧重于控制和低成本的转换器拓扑及时地补充了这方面知识。

牢记这一点,这本书涉及的内容已发展了好几年。

本书的一些章节,在弗吉尼亚理工大学被广泛用于博士生水平教学,以及丹麦的奥尔堡大学,美国和其它国家的企业进行试点教学。

这本书分为三个部分。

第一部分涵盖的电机、电源设备、逆变器及其控制(第1和第2章)的基础。

第二和第三部份分别专门讨论永磁同步(第3至第8章)和无刷直流电动机驱动器(第9至第14章)。

要了解永磁交流驱动器必须由电机的基础开始。

第1章从基本介绍了同步电机的特点和它们的工作点、电机转子配置、同步电机和无刷直流电机之间的差异、绕组以及分布在齿和槽的磁通密度、有关于电机尺寸、磁铁和定子励磁、扭矩和输出功率、寄生电感的表达式。

此外,还包括了表征电机的铁心损耗,它们的计算和测量,和建模和控制策略的方案。

本书更侧重于正弦波电机而不是梯形波电机,因为前者与其它交流电机无论是在运作上还是操作和控制的法则上与其它交流电机密切相关。

若只考虑变量的基本组成部分,正弦波和梯形波永磁电机的行为是一致的。

尽管它们之间有一些重大的差异,适用的原则是显而易见的。

2024年汽车驱动电机定子转子市场需求分析

2024年汽车驱动电机定子转子市场需求分析

汽车驱动电机定子转子市场需求分析简介本文对汽车行业中驱动电机定子转子市场的需求进行分析。

驱动电机是现代电动汽车的核心组成部分,定子转子作为驱动电机的关键部件,在市场需求中扮演着重要的角色。

通过深入研究相关数据和趋势,我们将分析当前和未来汽车驱动电机定子转子的市场需求,并提出相关建议。

市场概况近年来,随着电动汽车的快速发展,汽车驱动电机市场逐渐壮大。

根据市场研究机构的报告,预计到2025年,全球电动汽车市场规模将超过1000万辆。

而驱动电机作为电动汽车的核心部件,其市场需求将得到进一步的增长。

驱动电机定子转子市场需求分析1. 技术要求的提升随着电动汽车市场的竞争加剧,汽车制造商对驱动电机的技术要求也在不断提高。

定子转子作为驱动电机的关键部件之一,其性能对整个驱动系统的效率和可靠性起着重要作用。

因此,市场对定子转子的技术要求将持续提升,包括功率密度的提高、材料的优化和制造工艺的改进等。

2. 节能环保的需求在全球关注节能减排和环境保护的背景下,电动汽车作为替代传统燃油车的重要选择,受到越来越多消费者的青睐。

同时,驱动电机定子转子的设计和制造也需要符合节能环保的要求。

市场需求中将对节能效果和环境友好性提出更高要求,包括减少能耗、降低噪音和减少对环境的污染等。

3. 物流和交通需求的增加随着城市化进程的加快和人口的增长,交通拥堵和物流配送成为当今社会面临的挑战。

电动汽车作为未来交通工具的重要发展方向,将成为解决交通和物流问题的关键。

这将进一步推动驱动电机定子转子市场的需求增长,以适应电动汽车的大规模普及和物流配送的快速发展。

市场前景和建议随着电动汽车市场的快速发展和驱动电机技术的不断进步,驱动电机定子转子市场的需求将持续增长。

未来,我们预计在以下几个方面有望获得市场机会:1.技术创新:不断推动驱动电机定子转子技术的创新和进步,包括新材料的应用、制造工艺的改进和优化等。

2.提升性能:注重提高驱动电机定子转子的功率密度、效率和可靠性,以满足消费者需求和市场竞争的要求。

电动汽车驱动用外转子DSPM电机研究

电动汽车驱动用外转子DSPM电机研究
T S2 I2  ̄A D P控制的 D P M 30k 4 S S M转子位置信号检测的方案 ;并讨论 了 置脉冲信号 电路 与 D P之 间 位 S
的接 t问题。 : /
关键 词 :电动汽 车 ;外转子双 凸极永磁 电机 ;T 30 F4 7 MS2 L2 0 A;位 置信 号检测
中图分 类号 :T 3 1 P 7 M 5 ;T 23 文 献标 志 码 :A 文 章编 号 : 10 —8 8 2 1 )20 9 —4 0 164 ( 00 0 -0 80
0 引 言
双 凸极永 磁 电机 ( S M) 随 着功 率 电子 学 和 DP 是 微 电子 学的飞速 发 展在 9 0年代 出现 的 一种 新 型 可
1 1/ 2 8极 外 转 子 D P 电机 介 绍 SM
11 结 . 构
图1 为一 台三 相 1/ 28极 外转 子 双 凸 极永 磁 电 机 截 面图 。图 中只画 出了 A相绕 组 ,i 相 电流 , 为 为 电机 A相 电动势 。定 子极 弧为定 子 齿距 的 1 / 2 ,即 1。 械 角 ,这样 可 以保 证 定 转 子 重 叠 角 之 5机
进 行 了系列 的理 论 和 实 验 研 究 。双 凸极 永 磁 电 机 的定 转 子结 构 外 形 与 开 关 磁 阻 电机 相 似 ,呈 双 凸 极结 构 ,不 同 之 处 在 于 它 的 定 子 上 放 人 永 磁 体 ,
转子无 绕组 和永磁体 。研究 证 明 D P 具有 控制 灵 SM 活 、动 态 响 应 快 、 调 速 性 能 好 、转 矩 电 流 比 大 、
极弧 ,可 有 利 于 电流 换 相 。 另外 ,任 一 相 定 子 绕
组所交链 的磁 链仅 与该相 磁导 成正 比。

外转子无刷电机应用场景

外转子无刷电机应用场景

外转子无刷电机应用场景
外转子无刷电机由于其高效、低噪音、寿命长等优点,在众多领域都有广泛的应用。

以下是一些常见的应用场景:
1. 电动汽车领域:由于其高效能和高扭矩特性,外转子无刷电机在电动汽车行业中扮演着重要角色。

它为电动汽车提供了出色的加速性能和续航里程。

众多电动汽车制造商如特斯拉、宝马等都采用了外转子无刷电机技术,为车主带来更加出色的驾驶体验。

2. 家庭电器领域:外转子无刷电机在家庭电器行业中也有广泛应用,如洗衣机、空调、冰箱等。

这些家电通过外转子电机的驱动,具备更高的运行效率和更低的能耗。

并且外转子电机的可靠性和寿命较长,减少了用户维修和更换的频率,为用户节省了不少费用。

3. 工业机械领域:在工业机械领域,外转子无刷电机具备高效、节能、稳定等特点,非常适合用于工业生产中的传输、驱动和控制等方面。

无论是在制造业、能源行业或其他工业领域,外转子无刷电机都能为企业提供强大的驱动力和节能效益。

4. 风能产业领域:随着可再生能源的快速发展,风能产业成为热门领域。

外转子电机技术在风力发电系统中得到了广泛应用。

其高效率和可靠性使得风力发电机组的发电效果达到最大化。

5. 模型制造:由于外转子结构的电机具有高效率、高功率密度、长寿命等优点,所以在模型制造中被广泛使用。

比如在遥控飞机、无人机等模型中,采用外转子无刷电机可以提高整个系统的效率,并且减少了噪音。

总之,外转子无刷电机因其高效、低噪音、寿命长等优点而被广泛应用于各个领域。

随着技术的不断进步和应用需求的不断增长,外转子无刷电机的应用前景将更加广阔。

电动汽车驱动用外转子DSPM电机研究

电动汽车驱动用外转子DSPM电机研究

电动汽车驱动用外转子DSPM电机研究
唐文武;陈世元
【期刊名称】《微电机》
【年(卷),期】2010(043)002
【摘要】外转子双凸极永磁电机用于电动汽车驱动有许多优势,从控制的角度给出了基于TMS320LF2407A DSP控制的DSPM转子位置信号检测的方案;并讨论了位置脉冲信号电路与DSP之间的接口问题.
【总页数】4页(P98-101)
【作者】唐文武;陈世元
【作者单位】华南理工大学,广州,510640;华南理工大学,广州,510640
【正文语种】中文
【中图分类】TM351;TP273
【相关文献】
1.一种电动汽车驱动用外转子混合励磁无刷电机的研究 [J], 李优新;黎勉;王鸿贵;邓先泉;王杨满
2.EV驱动用DSPM电机的一种新型分段电流斩波方式 [J], 颜浩;陈世元
3.电动汽车用外转子轮毂电机的设计研究 [J], 雷良育;胡烨;宋志强;陈永飞;张辉
4.增程式电动汽车高效紧凑型外转子永磁同步发电机设计 [J], 王升平;吴柏禧;景玉军;郭美华
5.电动汽车用可变磁通外转子轮毂直驱永磁电机研究 [J], 刘建林;冯垚径;李芳;刘波;冯洲
因版权原因,仅展示原文概要,查看原文内容请购买。

bpmor电机 -回复

bpmor电机 -回复

bpmor电机-回复BPMOR电机,是一种高效、可靠的电机系统,具有广泛的应用领域。

在本文中,我们将一步一步回答有关BPMOR电机的问题,并介绍其特点、优势以及适用场景。

第一步:什么是BPMOR电机?BPMOR电机,全称为Brushless Permanent Magnet Outer Rotor Motor(无刷永磁外转子电机),是一种采用永磁物质作为励磁源的电机系统。

与传统的直流电机相比,BPMOR电机省去了由刷子提供电流的环节,因此具有更高的效率和可靠性。

第二步:BPMOR电机的工作原理是什么?BPMOR电机的工作原理基于磁场和电流之间的相互作用。

当电流通过电机的线圈时,线圈产生的磁场与永磁体的磁场相互作用,从而产生旋转力矩。

由于电机的设计结构,磁场产生的旋转力矩可以直接作用于电机的转子,从而实现高效能的转动。

第三步:BPMOR电机的特点有哪些?1. 高效能:BPMOR电机的无刷设计消除了能量损失,因此具备更高的能量转换效率。

相比传统的直流电机,BPMOR电机能够更好地利用电能,减少能源浪费。

2. 高可靠性:由于采用了永磁物质作为励磁源,BPMOR电机的励磁系统更加可靠。

相比传统电机的刷子和弹簧,永磁物质不容易磨损,并且不会产生摩擦和火花,因此电机的寿命更长。

3. 高转矩:BPMOR电机能够提供更高的输出转矩,即使在低速或高负载的情况下,也能保持良好的性能。

这使得BPMOR电机在需要大转矩的应用中表现出色。

4. 低噪音:由于无刷设计,BPMOR电机减少了电机运行过程中产生的噪音。

这使得它在对噪音敏感的应用中更加适用,如医疗设备、办公室设备等。

第四步:BPMOR电机的优势是什么?1. 节能环保:由于高效能的设计,BPMOR电机能够更有效地利用电能,减少能源消耗和碳排放。

这使得它成为推动可持续发展的重要设备之一。

2. 高精度控制:BPMOR电机采用无刷设计,电机转速和功率输出可以更精确地控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文翻译---电动汽车外转子定子pm无刷电机驱动器的比较————————————————————————————————作者:————————————————————————————————日期:1Comparison of Outer-Rotor Stator-Permanent-Magnet BrushlessMotor Drives for Electric VehiclesK.T. Chau1, Senior member IEEE, Chunhua Liu1, and J.Z. Jiang2 1 Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China2 Department of Automation, Shanghai University, Shanghai, 200072, ChinaAbstract—In this paper, two emerging outer-rotor stator-permanent-magnet (PM) brushless motor drives, namely the doubly-salient PM motor drive and the PM hybrid brushless motor drive, are firstly quantitatively compared, which are particularly attractive for serving as in-wheel motor drives for electric vehicles. In order to enable a fair comparison, these two motor drives are designed with the same peripheral dimensions and based on the same outer-rotor 36/24-pole topology. By utilizing the circuit-field-torque time-stepping finite element method for analysis, their steady-state and transient performances are critically compared. Moreover, the cost analysis of these two machines is conducted to evaluate their cost effectiveness.Index Terms—Electric vehicle, Finite element method, Machinedesign, Permanent-magnet motor drive.I. INTRODUCTIONIn recent years, permanent-magnet (PM) brushless motordrives have been widely used in electric vehicles (EVs) [1-2].The doubly-salient PM (DSPM) motor drive and PM hybridbrushless (PMHB) motor drive are two emerging stator-PMbrushless motor drives which offer high mechanical integrityand high power density, hence suitable for EV applications [3].Their outer-rotor motor structures are particularly attractive fordirect driving of EVs, especially for serving as in-wheel motordrives for EVs [4]. However, a quantitative comparison of thesewo motor drives is absent in literature.The purpose of this paper is to newly compare two emergingouter-rotor stator-PM brushless motor drives, namely the DSPMand PMHB types. Based on the same peripheral dimensions,both motor drives are designed with the identical outer-rotor36/24-pole topology. By using the circuit-field-torquetime-stepping finite element method (CFT-TS-FEM) [5], thesteady-state and transient performances of both motor drives arecompared and analyzed. Moreover, the correspondingcosteffectiveness will be revealed and discussed.Section II will introduce the motor drive systems and their configurations. In Section III, the design and cost effectiveness of two motor drives will be compared. Section IV will discuss the analysis approach of these two motor drives. The comparison of their performances will be given in Section V. Finally, a conclusion will be drawn in Section VI.II.SYSTEM CONFIGURATION AND OPERATION MODES Fig. 1 shows the schemes of these two outer-rotor stator-PM motor drives when theyserve as the in-wheel motor drives for EVs, especially for motorcycles. Itcan be seen that these in-wheel motor drives effectively utilize theouter-rotor nature and directly couple with the tire rims. So, thesetopologies can fully utilize the space and materials of the motor drives,hence greatly reducing the size and weight for EV applications.Fig. 1. Topologies of proposed in-wheel motor drives. (a) DSPM. (b) PMHB The two motor drives configurations are shown in Figs. 2 and 3. It can be found that they have the similar three-phase full bridge driver for the armature windings; while the difference is the H-bridge driver for the DC field windings of the PMHB motor drive. Hence, their operation principles are very similar, except that the controllable field current of the PMHB motor drive. For both motor drives, when the air-gap flux linkage increases with the rotor angle, a positive current is applied to the armature windings, resulting in a positive torque. When the flux linkage decreases, a negative current is applied, also resulting in a positive torque. For the PMHB motor drive, it can accomplish online flux regulation by tuning the bidirectional DC fieldcurrent.When these two motor drives act as in-wheel motor drives and are installed in the EVs, they operate at three modes within the speed range of 0~1000rpm, namely the starting, the cruising, and the charging.•When the EV operates at the starting mode, it needs a high torque for launching or accelerating within a short time. For the DSPM motor drive, since its PM volume is much more than that of PMHB motor one, it can provide a sufficiently high torque for the EV starting. For the PMHB motor drive, the positive DC field current will be added to produce the magnetic field together with the PM excited field, hence it also able to offer the high torque for the EV to overcome the starting resistance and the friction force on the road.•When the EV runs downhill or works in braking condition, it works in the charging mode. In this mode, these two machines can play the role of electromechanical energy conversion, which recover or regenerate the braking energy to recharge the battery module. Furthermore, for the PMHB machine drive, it can fully utilize its flux controllable ability to maintain the constant output voltage for directly charging the battery, which is more flexible than the DSPM machine drive.•When the EV runs in the cruising mode or in the steady speed, these stator-PM motor drives will enter the constant-power region. This speed range usually covers 400rpm~1000rpm for the DSPM in-wheel motor drive. But for the PMHB motor drive, it not only can effectively extend its operating speed range up to 4000rpm which is enough to cover the conventional speed range requirement, but also can regulate its magnetic field situation which can make the power module working at the optimal operation point.Fig. 2. Configuration of DSPM motor drives.Fig. 3. Configuration of PMHB motor drive.III. COMPARISON OF MOTOR DRIVES STRUCTURES AND FEATURESThe two stator-PM motor drives structures are shown in Figs. 2 and 3. It can be seen that they have the same peripheral dimensions and the identical outer rotor, as well as the same 36/24 pole and armature windings. The major difference is their stators and field excitations. The DSPM motor drive is simply excited by PMs, which is located in the stator. But for the PMHB motor drive, it has double-layer stator and double excitations. Its outer-layer stator accommodates the armature windings,whereas its inner-layer stator contains PMs and DC field windings together to produce the magnetic field [6]. Their similar structures achieve many advantages when they serve as the in-wheel motor drives for EVs.•The outer-rotor nature can make the machine directly connect with the tire rim, which totally eliminates the mechanical gear transmission and processes high mechanical integrity. Hence, it reduces the power loss, the system complication, and the total cost.•These motor drives fully utilize the whole space, which makes them compact and effective. They arrange the stator to locate the windings and excitations, hence resulting in the robust outer rotor.•The concentrated armature windings with 36/24 fractional-slot structure can shorten the magnetic flux path and the span of end-windings, which lead to reduce both iron and copper materials. Moreover, this arrangement of windings can significantly reduce the cogging torque which usually occurs at conventional PM motor drives. Their different constructions also make them have distinct features. •For the DSPM motor drive, it has simpler structure than the PMHB one. Also its control strategy is simpler. But this simple structure limits its flexibility due to its uncontrollable airgap flux.•For the PMHB motor drive, since it fully takes advantage of double excitations (both PMs and DC field windings), it can offer flexible airgap flux control, including flux strengthening or weakening. In addition, the air-bridge is present to shunt with each PM, hence amplifying the fluxweakening ability. The corresponding field excitation inevitably causes additional power loss. Nevertheless, this reduction of efficiency can be partially compensated by the efficiency improvement due to airgap flux control. By properly tuning the airgap flux density, the efficiency can be online optimized at different speeds and loads.Fig. 4. Control strategies. (a) DSPM. (b) PMH B.Fig. 4 shows the control strategies of these two stator-PM motor drives, indicating that the PMHB motor drive has an additional flux controller to regulate the airgap flux.The pole selection of the DSPM motor drive is governed by the following equations:Ns = 2mk and Nr=Ns- 2k (1)where m is the number of phases, k the integer, Ns the number of stator poles, and Nrthe number of rotor poles. The pole selection of the PMHB motor drive is given by: sN=4mp and r N=2Ns/m (2)where p is the number of pole pairs of the DC field windings.Therefore, when the suitable parameters are selected, namely m= 3, p= 3, and k= 6 , the poles of these stator-PM motor drives lead to be s N=36,and r N=24 . It can be found that forthree-phase armature windings of the PMHB motor drive, all the other parameters can be obtained according to the value of p. Hence, the aforementioned equation (2) can be used to simply determine the other possible slot-tooth combination for the PMHB motor drive.IV. ANAL YSIS APPROACHThe CFT-TS-FEM can be used to analyze the steady-state and ransient performances of both machine drives. For each machine drive, the mathematic model consists of three sets of equations: the electromagnetic field equation of the machine, the circuit equation of the armature windings, and the motion equation of the motor drive. The electromagnetic field equation of both machine drives is given by [7]:where Ω is the field solution region, v the reluctivity, σ the electrical conductivity, J the current density, A the magnetic vector potential component along the z axis, and rxB andryB the PM remanent flux density components along the x axis and y axis, respectively.It should be noted that for the PMHB machine drive, the DC field current excitation is regarded as a component added together with the PM component as the magnetization.The circuit equation of the armature windings at motoring is governed by:where u is the impressed voltage, R the resistance per phase winding, i the phase current, Le the inductance of the end winding, l the axis length of iron core, S the conductor area of eachthe total cross-sectional area of conductors of each phase turn of phase winding, and ewinding.The motion equation of both motor drives is given by:where m J is the moment of inertia, e T the electromagnetic torque, l T the load torque, λ the damping constant, and ω the mechanical speed.After discretization, the above three sets of equations can be solved at each step. Hence, the steady-state and transient performance of both machine drives can be deduced. Fig. 5 shows the no-load magnetic field distributions of both machine drives. It can be seen that the DSPM machine has a constant field pattern, whereas the PMHB machine exhibits different field patterns at different field excitations (−350 A-turns, 0 A-turns, and +1000 A-turns). It verifies that PMHB motor drive has the flux controllable ability.Fig. 5. Magnetic field distributions. (a) DSPM. (b) PMHB with −350 A-turn. (c) PMHB with 0 A-turn. (d) PMHB with +1000 A-turns.V. COMPARISON OF MOTOR DRIVE PERFORMANCES Based on the same peripheral dimensions and the identical outer-rotor configuration, the two stator-PM motor drives are designed. Their corresponding design data are listed in Table I.Since the DSPM motor can accommodate more PMs than the PMHB one, its power density is 167% of the PMHB one. However, this merit in power density is offset by the high cost of PMs. From Table I, it can be seen that the DSPM motor utilizes the PM volume up to 502% of the PMHB one. Based on the present international rates, the PM material cost of the DSPM motor is US$116.3 as shown in Table II, which is much higher than the US$22.3 of the PMHB one. Hence, it leads to the total material cost of the DSPM motor is over 174% of the PMHB one. The corresponding cost per unit power and per unit torque of the PMHB motor is significantly less than that of the DSPM one. Thus, the PMHB motor is much more cost-effective than that of the DSPM one.TABLE IPARAMETERS OF DSPM AND PMHB MOTOR DRIVESArmature current density 5 A/mm2Armature phases 3Rotor outside diameter 270.0 mmRotor inside diameter 221.2 mmAir-gap length 0.6 mmStack length 80.0 mmPM excitation Nd-Fe-BPM remanent flux density 1.1TField excitation - DC field windingsRated power 3.2 kW 2 kWRated torque 34 Nm 20 NmRated voltage 380 V 220 VShaft diameter 70 mm 40 mmSpeed 900 rpm 0-4000 rpmPower density 122 W/kg 73 W/kgPM volume 284.8 cm3 54.7 cm3DC winding volume -230.2 cm3TABLE IICOSTING OF DSPM AND PMHB MACHINESItems DSPMPMHB machinemachinePM cost 116.3 USD 22.3 USDDC winding cost - 20.0 USDArmature winding cost 27.8 USD 27.8 USDIron cost 25.8 USD 27.1 USDTotal material cost 169.9 USD 97.2 USDCost per unit torque 5.0 USD/Nm 4.9 USD/NmCost per unit power 53.1 USD/kW 48.6 USD/kWBy using the CFT-TS-FEM, the electromagnetic characteristics of the two motor drives are calculated and compared. Fig. 6 shows the airgap flux density distributions of both motor drives, indicating that the PMHB motor drive can offer a very wide range of flux control (up to 9 times). Then, the flux linkage of the DSPM machine at full magnetization level is shown in Fig. 7(a), whereas those of the PMHB machine are computed at different magnetization levels with various field currents and shown in Fig. 7(b). It can be seen that the two motor drives have the similar forms of flux linkages, but have different amplitudes.Due to the use of more PMs, the DSPM motor drive can definitely produce higher torque than the PMHB motor one. Nevertheless, as shown in Fig. 8, the PMHB motor drive can utilize flux strengthening to achieve the torque up to 85.7% of the DSPM motor one, even though its PM volume is only 19.2% of the DSPM one. Also, since the PMHB motor drive inherentlyprovides low airgap flux density than the DSPM motor one while they have a similar tooth-slot structure, the PMHB motor drive can offer significantly lower cogging torque than that the DSPM motor one as depicted in Fig. 9. It also illustrates that the cogging torque of both motor drives is small due to the use of concentratedarmature windings with 36/24 fractional-slot structure.When the two motor drives run in the starting mode, their transient torque responses (normalized by the rated values) are compared as shown in Fig. 10. When they start a load torque of 40 Nm, their armature currents can still be limited to 2 times the rated value. It can be also found that the PMHB motor drive can produce much higher starting torque in the presence of flux strengthening at 750 A-turn.When both of the stator-PM machines work in the generation mode, their no-load EMF waveforms at different speeds are shown in Fig. 11. Because of uncontrollable flux, the DSPM machine generates speed-dependent EMF waveforms. On the contrary, the PMHB machine can uniquely achieve constant-amplitude EMFs by the use of flux strengthening at 250 rpm and flux weakening at 1000rpm, which covers all the constant-power speed range of the in-wheel EV drive. Hence, the PMHB machine can keep the constant output voltage for directly charging the battery.Fig. 6. Airgap flux density distributions. (a) DSPM. (b) PMHB.VI. CONCLUSIONTwo emerging stator-PM motor drives (the DSPM and the PMHB types) have been quantitatively compared. Based on the same peripheral dimensions and outer-rotor 36/24-pole topology, the two motor drives have undergone detailed performance analysis. Compared with the DSPM motor drive, the PMHB motor drive takes the definite merit of flux controllability, hence achieving better constant-power profile, lower cogging torque, higher starting torque and constant voltage generation over a wide speed range. Also, with the view of material cost, the PMHB machine is more cost-effective than the DSPM one to produce the desired power.ACKNOWLEDGMENTThis work was supported and funded by a grant (HKU 114/06E) from the Research Grants Council, Hong Kong pecial Administrative Region, China.REFERENCES[1] K.T. Chau and C.C. Chan, “Emerging energy-efficient technologies for hybrid electric vehicles,” IEEE Proceedings, V ol. 95, No. 4, April 2007, pp. 821-835.[2] Z.Q. Zhu and D. Howe, “Electrical machines and drives for elect ric, hybrid and fuel cell vehicles,” IEEE Proceedings, V ol. 95, No. 4, April 2007, pp. 746-765.[3] K.T. Chau, C.C. Chan, and C. Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Transactions on Industr ial Electronics, Vol. 55, No. 6, June 2008, pp. 2246-2257.[4] C.C. Chan and K.T. Chau, Modern Electric Vehicle Technology. Oxford: Oxford University Press, 2001.[5] Y. Wang, K.T. Chau, C.C. Chan, and J.Z. Jiang, “Transient analysis of a new outer-rotor permanent-magnet brushless dc drive using circuit-field-torque time-stepping finite element method,” IEEE Transactions on Magnetics, V ol. 38, No. 2, March 2002, pp. 1297-1300.[6] C. Liu, K.T. Chau, J.Z. Jiang, and L. Jian, “Design of a new outer-rotor permanent magnet hybrid machine for wind power generation,” IEEE Transactions on Magnetics, V ol. 44, No. 6, June 2008, pp. 1494-1497.[7] S.J. Salon, Finite Element Analysis of electrical Machines, Kluwer Academic Publishers, 1995.电动汽车外转子定子PM无刷电机驱动器的比较K.T. Chau1, Senior member IEEE, Chunhua Liu1, and J.Z. Jiang2 1Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong,China2Department of Automation,Shanghai University,Shanghai,200072,China摘要本文两个新兴外转子定子PM( PM )的无刷电机驱动器,即双凸极PM 电机驱动器和PM无刷电机驱动器混合,定量地比较,首先,这是特别有吸引力的为电动汽车服务的轮电机驱动器。

相关文档
最新文档