轴向拉伸和压缩 PPT课件
合集下载
轴向拉伸和压缩及连接件的强度计算PPT课件
特点
轴向拉伸和压缩时,杆件只承受 轴向力,不受其他外力作用,杆 件横截面保持为平面,无剪切和 扭转。
轴向拉伸和压缩的应用场景
01
02
03
机械制造
轴、螺栓、螺母等连接件 的设计和强度计算。
建筑行业
钢结构的稳定性分析和设 计,如钢梁、钢柱等。
石油化工
管道、压力容器等承受内 压的元件设计和安全评估。
轴向拉伸和压缩的基本原理
准确性。
材料性能研究
深入研究材料的力学性能,特别是 其非线性行为,为强度计算提供更 准确的基础数据。
设计优化与验证
结合实际应用案例,不断优化设计, 并通过实验验证来确保设计的有效 性。
05 轴向拉伸和压缩及连接件 的未来发展与展望
当前研究的热点与难点
材料性能的极限挑战
随着对高性能材料需求的增加,如何准确预测材料在轴向 拉伸和压缩下的行为以及连接件的强度成为当前研究的热 点。
但是,在实际应用中,由于材料的不 均匀性、表面粗糙度等因素的影响, 拉伸强度和压缩强度可能会有所差异 。
强度计算中的注意事项
01
材料的不均匀性
在计算强度时,需要考虑材料的不均匀性。即使是同一种材料,不同部
位的力学性能也可能存在差异。
02 03
温度的影响
温度对材料的力学性能有很大影响。在高温下,材料的屈服强度和抗拉 强度都会降低。因此,在高温环境下工作的零件,需要考虑温度对强度 的影响。
复杂应力状态
轴向拉伸和压缩及连接件在实际应用中可能面临复杂的应力状态, 如弯曲、剪切等,增加了强度计算的难度。
连接件设计
连接件的设计对整体结构的强度和稳定性至关重要,设计不当可能 导致失效或安全事故。
应用案例分析
轴向拉伸和压缩时,杆件只承受 轴向力,不受其他外力作用,杆 件横截面保持为平面,无剪切和 扭转。
轴向拉伸和压缩的应用场景
01
02
03
机械制造
轴、螺栓、螺母等连接件 的设计和强度计算。
建筑行业
钢结构的稳定性分析和设 计,如钢梁、钢柱等。
石油化工
管道、压力容器等承受内 压的元件设计和安全评估。
轴向拉伸和压缩的基本原理
准确性。
材料性能研究
深入研究材料的力学性能,特别是 其非线性行为,为强度计算提供更 准确的基础数据。
设计优化与验证
结合实际应用案例,不断优化设计, 并通过实验验证来确保设计的有效 性。
05 轴向拉伸和压缩及连接件 的未来发展与展望
当前研究的热点与难点
材料性能的极限挑战
随着对高性能材料需求的增加,如何准确预测材料在轴向 拉伸和压缩下的行为以及连接件的强度成为当前研究的热 点。
但是,在实际应用中,由于材料的不 均匀性、表面粗糙度等因素的影响, 拉伸强度和压缩强度可能会有所差异 。
强度计算中的注意事项
01
材料的不均匀性
在计算强度时,需要考虑材料的不均匀性。即使是同一种材料,不同部
位的力学性能也可能存在差异。
02 03
温度的影响
温度对材料的力学性能有很大影响。在高温下,材料的屈服强度和抗拉 强度都会降低。因此,在高温环境下工作的零件,需要考虑温度对强度 的影响。
复杂应力状态
轴向拉伸和压缩及连接件在实际应用中可能面临复杂的应力状态, 如弯曲、剪切等,增加了强度计算的难度。
连接件设计
连接件的设计对整体结构的强度和稳定性至关重要,设计不当可能 导致失效或安全事故。
应用案例分析
《轴向拉伸和压缩》课件
课程目标
掌握轴向拉伸和压缩的基 本原理和分析方法
了解轴向拉伸和压缩在实 际工程中的应用
培养学生的实验技能和实 践能力,提高解决实际问 题的能力
Part
02
轴向拉伸和压缩的基本概念
拉伸和压缩的定义
拉伸
物体在力的作用下沿力的方向伸 展或拉长的过程。
压缩
物体在力的作用下沿力的方向缩 短或压扁的过程。
拉伸和压缩的力分析
力的方向分析
在轴向拉伸和压缩过程中,力的方向 沿着杆件轴线,与杆件轴线重合。
力的作用点分析
力的作用点选择在杆件上,通常选择 在杆件的两端,以便于分析杆件受力 情况。
拉伸和压缩的变形分析
变形量分析
在轴向拉伸和压缩过程中,杆件会发生伸长或缩短的变形,变形量可以用伸长量或缩短 量来表示。
拉伸和压缩的分类
按变形程度
弹性变形和塑性变形
按外力性质
静力拉伸和压缩、动力拉伸和压缩、冲击拉伸和压缩
拉伸和压缩的物理模型
直杆拉伸与压缩模型
忽略横截面变化的简单拉伸与压缩模型。
弹性杆件模型
考虑横截面变化的弹性变形模型。
弹性体模型
考虑物体内部应力和应变的弹性变形模型。
Part
03
轴向拉伸和压缩的力学分析
2
引伸计:测量试样在拉伸
或压缩过程中的应变。
3
计算机和数据采集系统:
记录和处理实验数据。
实验步骤
准备试样
01 选择所需材料,制备标准试样
。
安装试样
02 将试样放置在试验机的夹具中
,确保试样轴线与拉伸或压缩 方向一致。
设定实验参数
03 设定初始实验条件,如加载速
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
工程力学课件 第6章 轴向拉伸与压缩
σ称为正应力,τ称为剪应力。在国际单位制中,应力的单位 是帕斯卡(Pascal),用Pa(帕)表示,1Pa=1 N/m2。由于帕斯卡这 一单位很小,工程常用kPa(千帕)、MPa(兆帕)、GPa(吉帕)来 表明。1 KPa=103Pa,1 MPa=106Pa,1 GPa=109 Pa。
工程力学
12
二、拉压杆横截面上的正应力
在应力超过比例极限以后,图形出现了一段近似水平的小锯齿
形线段bc,说明此阶段的应力虽有波动,但几乎没有增加,却发生
了较大的变形。这种应力变化不大、应变显著增加的现象称为材料
的屈服。屈服阶段除第一次下降的最小应力外的最低应力称为屈服
极限,以σs表示。
4.强度极限
经过了屈服极限阶段,图形变为上升的曲线,说明材料恢复了
工程力学
4
1.1.1 电路的组成
列出左段杆的平衡方程得 Nhomakorabea工程力学
5
若以右段杆为研究对象,如图(c)所示,同样可得
1.1.1 电路的组成
实际上,FN与F′N是一对作用力与反作用力。因此,对同一截面, 如果选取不同的研究对象,所求得的内力必然数值相等、方向相反。
这种假想地用一个截面把杆件截为两部分,取其中一部分作为 研究对象,建立平衡方程,以确定截面上内力的方法,称为截面法。 截面法求解杆件内力的步骤可以归纳如下:
1.1.1 电路的组成
(1)计算AB段杆的轴力。沿截面1-1将杆件截开,取左段杆为研 究对象,以轴力FN1代替右段杆件对左段的作用,如图(b)所示
列平衡方程
得
工程力学
7
若以右段杆为研究对象,如图(c)所示
1.1.1 电路的组成
同样可得
(2)计算BC段杆的轴力,沿截面2-2将杆件截开,取左段杆为研 究对象,如图(d)所示
工程力学
12
二、拉压杆横截面上的正应力
在应力超过比例极限以后,图形出现了一段近似水平的小锯齿
形线段bc,说明此阶段的应力虽有波动,但几乎没有增加,却发生
了较大的变形。这种应力变化不大、应变显著增加的现象称为材料
的屈服。屈服阶段除第一次下降的最小应力外的最低应力称为屈服
极限,以σs表示。
4.强度极限
经过了屈服极限阶段,图形变为上升的曲线,说明材料恢复了
工程力学
4
1.1.1 电路的组成
列出左段杆的平衡方程得 Nhomakorabea工程力学
5
若以右段杆为研究对象,如图(c)所示,同样可得
1.1.1 电路的组成
实际上,FN与F′N是一对作用力与反作用力。因此,对同一截面, 如果选取不同的研究对象,所求得的内力必然数值相等、方向相反。
这种假想地用一个截面把杆件截为两部分,取其中一部分作为 研究对象,建立平衡方程,以确定截面上内力的方法,称为截面法。 截面法求解杆件内力的步骤可以归纳如下:
1.1.1 电路的组成
(1)计算AB段杆的轴力。沿截面1-1将杆件截开,取左段杆为研 究对象,以轴力FN1代替右段杆件对左段的作用,如图(b)所示
列平衡方程
得
工程力学
7
若以右段杆为研究对象,如图(c)所示
1.1.1 电路的组成
同样可得
(2)计算BC段杆的轴力,沿截面2-2将杆件截开,取左段杆为研 究对象,如图(d)所示
杆件轴向拉伸与压缩_图文
极限应力(危险应力、失效应力):材料发生破坏或产生过大变形而 不能安全工作时的最小应力值,即材料丧失工作能力时的应力,以符号 σu表示,其值由实验确定。
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
《轴向拉伸与压缩》课件
轴向拉伸的应用范围
建筑工程
轴向拉伸在钢筋混凝土结构中的应用,增加结构的承载能力。
材料制备
轴向拉伸用于制备高强度材料、纤维材料、复合材料等。
模具设计
轴向拉伸在模具设计中的应用,增强产品的形状和结构。
轴向拉伸的原理与方法
1
应力-应变关系
介绍轴向拉伸应力和应变之间的关系。
2
材料性能分析
通过实验和测试,评估材料的拉伸性能和变形行为。念 轴向拉伸的应用范围 轴向拉伸的原理与方法 轴向压缩的概念 轴向压缩的应用范围 轴向压缩的原理与方法
背景介绍
轴向拉伸和压缩是一种重要的力学变形方式,在工程应用中起着至关重要的作用。本节将介绍轴向拉伸 和压缩的背景和意义。
轴向拉伸的概念
轴向拉伸是指在材料中施加一个沿着轴向方向的拉力,使材料沿轴向伸长的 力学变形方式。
3
工程应用案例
展示轴向拉伸在工程实践中的应用案例。
轴向压缩的概念
轴向压缩是指沿着轴向方向对材料施加的压缩力,使材料沿轴向缩短的力学 变形方式。
轴向压缩的应用范围
桥梁建设
砖瓦制造
汽车制造
轴向压缩在桥梁建设中的应用, 提升桥梁的稳定性和承载能力。
轴向压缩用于砖瓦制造过程中, 提高瓦片的密度和强度。
汽车制造中的轴向压缩应用, 改善车身结构和安全性能。
轴向压缩的原理与方法
1 应变率分析
2 压缩强度测试
分析材料在轴向压缩中 的变形速率和应变过程。
通过实验和测试,评估 材料在轴向压缩条件下 的强度和稳定性。
3 工程实践案例
展示轴向压缩在工程实 践中的应用案例和成果。
轴向拉伸和压缩.ppt
第三节 强度计算
根据强度条件,可以解决的三类实际工程问题。
1、校核杆件强度 已知:Nmax,A,[σ]。验算构件是否满足强度条件 2、设计截面 已知:Nmax,[σ]。根据强度条件,求:A 3、确定最大载荷 已知:A,[σ]。根据强度条件,求: Nmax
第三节 强度计算
例题1 一直径d =14mm的圆杆,许用应力[σ]=170MPa,受轴向拉力 P =2.5kN作用,试校核此杆是否满足强度条件。
P 200
11
N11 A11
17.5103 0.2 0.2
4.375105 Pa
G1 1
1
N22 P G1 G2 27.5kN
22
N22 A22
27.5103 0.4 0.4
1.719105 Pa
2
G2
400 2
第二节 受轴向拉伸或压缩时横截面上的内力和应力
3、斜横向线仍保持为直线,—变形后横截面仍保 持为平面(平截面假设)。
第二节 受轴向拉伸或压缩时横截面上的内力和应力
横截面上的应力分布:
F
σ
1、正应力的概念:
内力在横截面上的分布集度
N
A
单位:
帕斯卡 Pa (=N/m2)
常用单位: MPa=106 Pa GPa=109 Pa
第二节 受轴向拉伸或压缩时横截面上的内力和应力
8kN N33
解:
X 0
N11 N 22
60 18 6
0
N33 8 18 6 0
N11 6kN
N22
12kN
N33 4kN
第二节 受轴向拉伸或压缩时横截面上的内力和应力
3、轴力图
反映轴力与截面位置关系的图线
材料力学 第二章 轴向拉压应力PPT课件
第二章 轴向拉伸和压缩
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
《材料力学拉压》PPT课件
F
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
2材料力学轴向拉压.ppt课件
斜FA 布p纵α上切截=。截应c±面面力o4A5上FA上成so的截对p面全A dFA应Ac力mmm oia 可nxp9s i分0AAn 4α45解—A —59 ——为d0 c2 正横 斜Ao20 截截应s面面p力面面9 和积A 积0 4 4切550 应2F2力
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
材料力学课件_轴向拉伸和压缩
用 截 面 法 求 出 各 段 轴 力
4
N4
P4
③根据轴力图的作法即可画出轴力图
N
单位:KN
x
0
选一个坐标系,用其横坐标 表示横截面的位置,纵坐标 表示相应截面上的轴力。 拉力绘在x轴的上侧, 压力绘在x轴的下侧。
思考题
在画轴力图之前,能否使用理论力学中学过 的力的平移原理将力平移后再作轴力图?
max
应力正负号规定
N max A
规定拉应力为正,压应力为负(同轴力相同) 。
2、公式(2-1)的应用范围:
①外力的合力作用必须与杆件轴线重合
②不适用于集中力作用点附近的区域
③当杆件的横截面沿轴线方向变化缓
慢,而且外力作用线与杆件轴线重 合时,也可近似地应用该公式。
如左图
N x x A x
1 2 3
4
0 R 10KN
② 用截面法求AB段轴力,保留1-1截面左部
X 0
N1 R 0
N1 10NK
同理可求出BC、CD、DE段内的轴力分别为:
N 2 R P1 50KN 拉力 N 4 20KN 拉力
N 3 P3 P4 5KN 压力
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由 杆件处于平衡状态可知,内力合力的作用线也必 然与杆件的轴线相重合。
(2)定义:上述内力的合力N就称为轴力 (其作用线因与杆件的轴线重合而得名)。
2.轴力正负号规定:
①规定引起杆件拉伸时的轴力为正,即拉力为正;
F
}F
F/2 F/2
F/2 F/2
} F
F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
F F
m
F
FN
x
F
x
0 FN
轴力图:为了清楚地看到轴力沿杆长的变化规律,可以用图线 的方式表示轴力的大小与横截面位置的关系。这样的图线称为 轴力图。
FN
o
例如前面例题的轴力图
F
x
x轴表示横截面位置,FN轴表示对应该位置的轴力大小。
F
FN F x
O
例 2-1 (书例2-1) 一等直杆受四个轴向外力作用,如图所示。试 作轴力图 1F2=25kN 2 F3=55kN F4=20kN F1=10kN
1. 内力的概念
F F
产生 外力 变形
迫使 晶粒距离改变
产生
附加内力
内力:指由外力作用所引起的、物体内相邻部 分之间分 布内力系的合力。(附加内力) 研究内力方法:截面法
2. 轴力和轴力图
取左: Fx 0
m
F
F
FN F 0
F
m
FN
得 FN F FN 称为轴力 取右: Fx 0 得
Fx1 F l
FR
FN 2
F x1 0 F x1 2l
O
l
FN
F F
F x1
F
x
课堂练习:
1. 若将图(a)中的F力由D截面移到C截面(图b),则有( C )
a
2F A 2F A B
C
F B
C
D F D
b
( A) 整个杆的轴力都不变化 ( B) AB段的轴力不变,BC、CD段的轴力变为零 (C) AB、BC段的轴力不变,CD段的轴力变为零 ( D) A端的约束反力发生变化
FN 2 30 20 0
1 B
40 kN
2C
30 kN
F
x
0
得
3-3截面
FN 2 10 kN(拉) FN 3 20 0 FN 3 20 kN(压)
O
FN2
30 kN
20 kN
Fx 0
得
FN / kN 50
FN3
20 kN
10
x
20
例2- 3 (书例2-2) 一受力如图所示的阶梯形杆件,q为沿轴 F 线均匀分布的荷载。试作轴力图。 q
2. 横截面面积为A,长度为l,材料比重为 的立柱受力如图所示。 若考虑材料的自重,则立柱的轴力图是( B )。
F F F F
l/2
l
l/2
F Al A F Al B q 5F / l F Al C F Al D
3. 作图示杆的轴力图
§2.3
横截面上的正应力
1. 应力的概念
单凭轴力的大小还不足以判断杆件的受力程度,例如:两根材 料相同但粗细不同的杆,在相同的拉力下,随着拉力的增加, 则细杆一定先强度不足而破坏。
F F
FN
F
F F
FN
F
这说明拉压杆的强度除了与轴力的大小有关外,还与横截面的尺 寸有关。 从工程实用的角度,把单位面积上内力的大小,作为衡量受力程 度的尺度,并称为应力。
第二章 轴向拉伸和压缩
目
§2-1
§2-1 §2-3 §2-4 §2-5
录
概述
拉压杆的内力 横截面上的应力 斜截面的应力 拉压杆的变形和位移
§2-6
§2-7 §2-8 §2-9 §2-10 §2-11
应变能
材料在拉压时的力学性能 应力集中 强度计算 拉压超静定问题 装配应力和温度应力
§2-1
轴向拉伸与压缩的概念和实例
3F l
FN
F
l
F
l l
3F
4F
x
F
思考题.图示杆长为l,受分布力 q = kx 作用,方向如图,试画出
杆的轴力图。
q(x) l x q O 解:设坐标原点在自由端,x 轴向右
为正。取左侧x段为研究对象,内力
FN(x)为:
q(x)
x
x
ql
FN (x)
–
kl 2 2
x
FN O
1 2 FN (x) kxdx kx 0 2 1 2 FN (x),max kl 2
应力的一般性定义 (书26页)
F
p
c
c
A
c
pm
F A
F A
A上的平均应力
c点总应力
应力:分布内力在一点处的集度 应力单位: Pa 帕
p lim
A 0
应力分量
正应力(normal stress)
F
l
解:首先求出A端反力FR
F
x
0
F 2ql 2F FR 0
FR
A
l
BF F F F
2l
C
l 3
D
F
FR 3F 2ql F
由截面法可得AB、CD段轴力:
1
2 q 2 q
F 1
3
FN 2
x
FN 1 FR F FN 3 F
0
F
FN 2 qx1 2F FR 01F2=25kN 2 F3=55kN 3 1
F4=20kN
F
x
0
FN 3 F4 0
B
2
C
FN 3
3 D
F4=20kN
FN 3 F4 20kN 压力
FN 1 10kN FN 2 35kN FN 3 20kN
O
FN / kN
35
x
10 20
几点说明: (2)轴力大小与截面面积无关
轴向拉压的受力特点 作用于杆件上的外力或外力合力的作用线与杆件轴线重合。 轴向拉压的变形特点 杆件产生沿轴线方向的伸长或缩短。
F
F
F
F
拉绳
P
课堂练习:图示各杆BC段为轴向拉伸(压缩)的是( A )
A
A B
C
F D
B
A B
C
F D
C
F A B
C
D
§2-2
拉(压)杆的内力
A F1=10kN
1
B
FN 1
2
C
D
F
x
0
FN 1 F1 0 FN1 F1 10kN 拉力
F2=25kN
FN 2
F1=10kN
F
x
0
FN 2 F1 F2 0
FN 2 F1 F2 10kN 25kN 35kN 拉力
F1=10kN A
x
F 0 FN
FN
F FN
F
x
轴力正负号规定:
F
FN FN
拉力
均为正 故FN 和FN
F
压力
上述求解拉(压)杆轴力的方法称为截面法,其基本步骤是:
① 截开:在需求内力的截面处,假想地用该截面将杆件一分为二。
②代替:任取一部分,另一部分对其作用以内力代替。(假设为正)
③平衡:建立该部分平衡方程,解出内力。
(1)荷载将杆件分成几段,就取几段截面来研究 (3)集中力作用处轴力图发生突变,突变值等于该集中力
例 2-2 试作轴力图
解:1-1截面
1
40 kN
2
30 kN
3 20 kN 3D 20 kN
F
x
0
得
2-2截面
FN 1 40 30 20 0 A FN 1 50kN 拉 FN1
F F
m
F
FN
x
F
x
0 FN
轴力图:为了清楚地看到轴力沿杆长的变化规律,可以用图线 的方式表示轴力的大小与横截面位置的关系。这样的图线称为 轴力图。
FN
o
例如前面例题的轴力图
F
x
x轴表示横截面位置,FN轴表示对应该位置的轴力大小。
F
FN F x
O
例 2-1 (书例2-1) 一等直杆受四个轴向外力作用,如图所示。试 作轴力图 1F2=25kN 2 F3=55kN F4=20kN F1=10kN
1. 内力的概念
F F
产生 外力 变形
迫使 晶粒距离改变
产生
附加内力
内力:指由外力作用所引起的、物体内相邻部 分之间分 布内力系的合力。(附加内力) 研究内力方法:截面法
2. 轴力和轴力图
取左: Fx 0
m
F
F
FN F 0
F
m
FN
得 FN F FN 称为轴力 取右: Fx 0 得
Fx1 F l
FR
FN 2
F x1 0 F x1 2l
O
l
FN
F F
F x1
F
x
课堂练习:
1. 若将图(a)中的F力由D截面移到C截面(图b),则有( C )
a
2F A 2F A B
C
F B
C
D F D
b
( A) 整个杆的轴力都不变化 ( B) AB段的轴力不变,BC、CD段的轴力变为零 (C) AB、BC段的轴力不变,CD段的轴力变为零 ( D) A端的约束反力发生变化
FN 2 30 20 0
1 B
40 kN
2C
30 kN
F
x
0
得
3-3截面
FN 2 10 kN(拉) FN 3 20 0 FN 3 20 kN(压)
O
FN2
30 kN
20 kN
Fx 0
得
FN / kN 50
FN3
20 kN
10
x
20
例2- 3 (书例2-2) 一受力如图所示的阶梯形杆件,q为沿轴 F 线均匀分布的荷载。试作轴力图。 q
2. 横截面面积为A,长度为l,材料比重为 的立柱受力如图所示。 若考虑材料的自重,则立柱的轴力图是( B )。
F F F F
l/2
l
l/2
F Al A F Al B q 5F / l F Al C F Al D
3. 作图示杆的轴力图
§2.3
横截面上的正应力
1. 应力的概念
单凭轴力的大小还不足以判断杆件的受力程度,例如:两根材 料相同但粗细不同的杆,在相同的拉力下,随着拉力的增加, 则细杆一定先强度不足而破坏。
F F
FN
F
F F
FN
F
这说明拉压杆的强度除了与轴力的大小有关外,还与横截面的尺 寸有关。 从工程实用的角度,把单位面积上内力的大小,作为衡量受力程 度的尺度,并称为应力。
第二章 轴向拉伸和压缩
目
§2-1
§2-1 §2-3 §2-4 §2-5
录
概述
拉压杆的内力 横截面上的应力 斜截面的应力 拉压杆的变形和位移
§2-6
§2-7 §2-8 §2-9 §2-10 §2-11
应变能
材料在拉压时的力学性能 应力集中 强度计算 拉压超静定问题 装配应力和温度应力
§2-1
轴向拉伸与压缩的概念和实例
3F l
FN
F
l
F
l l
3F
4F
x
F
思考题.图示杆长为l,受分布力 q = kx 作用,方向如图,试画出
杆的轴力图。
q(x) l x q O 解:设坐标原点在自由端,x 轴向右
为正。取左侧x段为研究对象,内力
FN(x)为:
q(x)
x
x
ql
FN (x)
–
kl 2 2
x
FN O
1 2 FN (x) kxdx kx 0 2 1 2 FN (x),max kl 2
应力的一般性定义 (书26页)
F
p
c
c
A
c
pm
F A
F A
A上的平均应力
c点总应力
应力:分布内力在一点处的集度 应力单位: Pa 帕
p lim
A 0
应力分量
正应力(normal stress)
F
l
解:首先求出A端反力FR
F
x
0
F 2ql 2F FR 0
FR
A
l
BF F F F
2l
C
l 3
D
F
FR 3F 2ql F
由截面法可得AB、CD段轴力:
1
2 q 2 q
F 1
3
FN 2
x
FN 1 FR F FN 3 F
0
F
FN 2 qx1 2F FR 01F2=25kN 2 F3=55kN 3 1
F4=20kN
F
x
0
FN 3 F4 0
B
2
C
FN 3
3 D
F4=20kN
FN 3 F4 20kN 压力
FN 1 10kN FN 2 35kN FN 3 20kN
O
FN / kN
35
x
10 20
几点说明: (2)轴力大小与截面面积无关
轴向拉压的受力特点 作用于杆件上的外力或外力合力的作用线与杆件轴线重合。 轴向拉压的变形特点 杆件产生沿轴线方向的伸长或缩短。
F
F
F
F
拉绳
P
课堂练习:图示各杆BC段为轴向拉伸(压缩)的是( A )
A
A B
C
F D
B
A B
C
F D
C
F A B
C
D
§2-2
拉(压)杆的内力
A F1=10kN
1
B
FN 1
2
C
D
F
x
0
FN 1 F1 0 FN1 F1 10kN 拉力
F2=25kN
FN 2
F1=10kN
F
x
0
FN 2 F1 F2 0
FN 2 F1 F2 10kN 25kN 35kN 拉力
F1=10kN A
x
F 0 FN
FN
F FN
F
x
轴力正负号规定:
F
FN FN
拉力
均为正 故FN 和FN
F
压力
上述求解拉(压)杆轴力的方法称为截面法,其基本步骤是:
① 截开:在需求内力的截面处,假想地用该截面将杆件一分为二。
②代替:任取一部分,另一部分对其作用以内力代替。(假设为正)
③平衡:建立该部分平衡方程,解出内力。
(1)荷载将杆件分成几段,就取几段截面来研究 (3)集中力作用处轴力图发生突变,突变值等于该集中力
例 2-2 试作轴力图
解:1-1截面
1
40 kN
2
30 kN
3 20 kN 3D 20 kN
F
x
0
得
2-2截面
FN 1 40 30 20 0 A FN 1 50kN 拉 FN1