专题-物理-L16-弹簧和细绳连接体问题
专题16 连接体问题 2022届高中物理常考点归纳
专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。
(1)求放手后A、B一起运动中绳上的张力F T。
(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。
解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。
【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。
支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。
【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。
(补课专用)专题--连接体问题与弹簧
【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( )A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C .有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力的作用【解析】故选D . 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。
现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( ) 【解析】答案为BA .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动?【解析】(1)F=8N 。
(2)同理F=11N 。
【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少?【解析】即:F 1=Fsinθ/4【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为:【解析】故B 正确。
高考经典物理模型:绳子受力突变问题
高考经典物理模型:绳子受力突变问题
与绳子相连的物体,如弹簧、细绳等,其基本物理量如弹力、速度、能量等,都有可能发生突变。
这种突变比较隐蔽,容易产生误解,因此我们需要认真理解和把握这类情况,以便在分析和处理类似问题时能够更全面、更准确地考虑问题,从而更好地解决问题。
一、绳子的弹力可能发生突变。
与弹簧不同,细绳的弹力是可变的。
因此,在处理问题时要注意区分细绳和弹簧的不同之处。
例如,在图1所示的问题中,我们需要区分细绳和弹簧的特点,才能正确地解答问题。
在细绳未剪断前,小球所受重力、弹簧的拉力和细绳的拉力是平衡的。
而在细绳剪断后,弹簧的形变不会改变,因此弹力仍保持原值。
小球的加速度方向沿水平向右,与竖直方向夹角为θ。
若弹簧改用细绳,则在OA线
剪断瞬间,细绳OB的形变会突变,小球会有沿圆弧切线方向
的加速度,重力与绳OB的拉力的合力必沿切线方向,夹角为α。
二、与绳子相连的物体,速度可能发生突变。
由于绳子的形变可能发生突变,物体的速度也会随之发生变化。
因此,在处理这类问题时,我们需要仔细分析,以避免出现错误。
例如,在图2所示的问题中,小球从O点正上方以速度v 水平向右弹出,经过一段时间后落到与O点等高的位置。
在这个过程中,小球做平抛运动,速度发生了突变。
我们可以通过计算小球的运动轨迹和速度,求解细绳上的拉力大小。
弹簧连接体问题解题思路
弹簧连接体问题解题思路
弹簧连接体问题一般可以通过以下步骤来解决。
Step 1: 理清问题条件
首先,要明确问题中给出的条件,包括弹簧的初始长度、劲度系数、外力等。
理解问题条件有助于正确理解问题,并为后续计算提供必要的信息。
Step 2: 确定平衡条件
弹簧连接体问题通常要求找出弹簧达到平衡的位置或最大伸缩位移。
为了做到这一点,需要找出使得合力为零的位置。
根据牛顿第三定律,弹簧的弹性力与外力之和必须为零。
Step 3: 应用弹簧公式
根据弹簧的劲度系数和伸缩位移量,可以使用胡克定律来计算弹簧的伸缩力。
弹簧公式为:
F = -kx
其中F是伸缩力,k是劲度系数,x是伸缩位移量。
通过求解这个方程,可以找出使得合力为零的伸缩位移量。
Step 4: 检查解的合理性
对于弹簧连接体问题,解可以是正数或负数。
正数表示弹簧被拉伸,负数表示弹簧被压缩。
需要检查解是否符合实际情况,比如弹簧是否可伸缩到给定的位移范围内。
Step 5: 解释解的物理意义
最后,需要解释解的物理意义。
这可能涉及到伸缩位移对系统其他部分的影响,比如连接物体的位移、速度和加速度等等。
通过以上步骤,可以解决弹簧连接体问题并得出准确的答案。
需要注意的是,问题的复杂程度可能不同,可能需要更多的计算或考虑更多的物理因素。
高考物理专题复习弹簧和连接体
弹簧及连接体(综合较难)类型 弹簧的伸长量和弹力的计算【例题】如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为( ) A.m 1g k 1 B.m 2g k 1 C.m 1g k 2 D.m 2g k 2答案C类型 瞬时性问题【例题】如图所示,天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球.两小球均保持静止.当突然剪断细绳时,上面小球 A 与下面小球 B 的加速度为 ( )A. a A =g , a B =gB. a A =g ,a A =0C. a A =2g ,a B =0D. a A =0 ,a B =g答案:C类型 动量与能量的结合例1.如图所示,绝缘材料制作的轻质弹簧劲度系数为k ,一端固定在墙壁上,另一端与带正电、电量为q 的滑块A 连接,滑块B 为绝缘材质,不带电,B 与滑块A 接触而不粘连,两滑块质量相等。
水平面光滑不导电,整个装置处于匀强电场中,电场强度为E ,最初电场水平向左,此时装置保持静止,现突然将电场方向变化为水平向右,大小不变,在以后的过程中,两滑块在某处分离后,滑块A 作简谐运动。
求:(1)两滑块分离时弹簧的形变量; (2)滑块B 获得的最大动能。
【解析】(1)A 、B 一起向右加速运动,对整体:qE ﹣kx =2maF AB =ma两滑块分离时,F AB =0,加速度为零; 由此得:x =qEk(2)分离时,弹簧的势能与最初位置弹簧的势能相等。
所以,这一过程有:qE •2x =122mv 2,B 获得的最大动能为E k =12mv 2,由此得E k =2()qE k。
答:(1)两滑块分离时弹簧的形变量为qE k(2)滑块B 获得的最大动能为2()qE k例4.如图所示,倾角为θ的光滑斜面下端固定一绝缘轻弹簧,M 点固定一个质量为m 、带电量为﹣q 的小球Q 。
高中物理中的弹簧问题归类剖析
高中物理中的弹簧问题归类分析 (教师版 )有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常有的理想化物理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力.弹簧一端受力为F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为F .【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量m 不可以忽视,弹簧及挂钩质量不计,施加水平方向的力 F 1、 F 2 ,且 F 1F 2 ,则弹簧秤沿水平方向的加快度为,弹簧秤的读数为.【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 2 ma ,即 aF 1F 2m仅以轻质弹簧为研究对象,则弹簧两头的受力都F 1 ,所以弹簧秤的读数为F 1 .说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的.F 1 F 2F 1 【答案】 am二、质量不行忽视的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况.【分析】 弹簧在水平力作用下向右加快运动,据牛顿第二定律得其加快度F, 取弹簧左部随意长度 x 为研究aM图 3-7-2对象,设其质量为m 得弹簧上的弹力为:x M Fx Fx FT x ma 【答案】 T xL MLL三、 弹簧的弹力不可以突变( 弹簧弹力刹时 ) 问题弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结,因弹簧形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变.即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变.【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B =【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对木块 B 的作使劲3F CB mg .以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变,F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直向下,刹时加快度为【答案】 01.5g .说明:差别于不行伸长的轻质绳中张力瞬时能够突变 .【例 4】如图 3-7-4 所示,质量为住,使小球恰巧处于静止状态 . 当m 的小球用水平弹簧连结, 并用倾角为 300 的圆滑木板AB 忽然向下撤退的瞬时,小球的加快度为 ( )AB 托A. 0B. 大小为 2 3g ,方向竖直向下3C.大小为2 3g ,方向垂直于木板向下3图 3-7-4D. 大小为2 3g ,方向水平向右3【分析】 末撤退木板前, 小球受重力 G 、弹簧拉力 F 、木板支持力 F N 作用而均衡, 如图 3-7-5所示,有 F Nmg.cosG 和弹力 F 保持不变 ( 弹簧弹力不可以突变 ) ,而木板支持力 F N 立刻撤退木板的瞬时,重力 消逝 , 小球所受 G 和 F 的协力大小等于撤以前的 F N ( 三力均衡 ) ,方向与 F N 相反,故加快度方 向为垂直木板向下,大小为F N g2 3 gamcos3【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为 k 的弹簧遇到的压力为F 1 时压缩量为 x 1 ,弹簧遇到的拉力为 F 2 时伸长量为x 2 ,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力 F 1 变成拉力 F 2 ,弹簧长度将由压缩量x 1 变成伸长量 x 2 ,长度增添量为 x 1 x 2 .由胡克定律有 : F 1 k( x 1 ) , F 2kx 2 .则: F 2 ( F 1 ) kx 2( kx 1 ) ,即 F k x说明 :弹簧受力的变化与弹簧长度的变化也相同按照胡克定律, 此时 x 表示的物理意义是弹簧长度的改变量,其实不是形变量 .【例 5】如图 3-7-6 所示,劲度系数为 k 1 的轻质弹簧两头分别与质量为 m 1 、m 2 的物块 1、2 拴接,劲度系数为 k 2 的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于均衡状态 . 现将物块 1 迟缓地竖直上提,直到下边那个弹簧的下端刚离开桌面. 在此过程中,物块 2 的重力势能增添了 , 物块 1 的重力势能增添了.【分析】由题意可知,弹簧k 2 长度的增添量就是物块2 的高度增添量,弹 图 3-7-6簧 k 2 长度的增添量与弹簧 k 1 长度的增添量之和就是物块 1 的高度增添量 .由物体的受力均衡可知,弹簧 k 2 的弹力将由本来的压力 (m 1 m 2 ) g 变成 0, 弹簧 k 1 的弹力将 由本来的压力 m 1 g 变成拉力 m 2 g , 弹力的改变量也为 ( m 1 m 2 )g . 所以 k 1 、 k 2 弹簧的伸长量分别为 : 1( m 1m 2 ) g 和 1(m 1 m 2 )gk 1k 2故物块 2 的重力势能增加了1m2 (m1 m2 )g 2,物块 1 的重力势能增加了k2( 1 1)m1 (m1m2 ) g2k1 k2【答案】1m2 (m1 m2 ) g2(11)m1 (m1m2 )g 2 k2k1k2五、弹簧形变量能够代表物体的位移弹簧弹力知足胡克定律F kx ,此中x为弹簧的形变量,两头与物体相连时x 亦即物体的位移,所以弹簧能够与运动学知识联合起来编成习题.【例 6】如图3-7-7 所示,在倾角为的圆滑斜面上有两个用轻质弹簧相连结的物块A、B ,其质量分别为 m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态, 现开始用一恒力 F 沿斜面方向拉A使之向上运动,求 B 刚要走开C时 A 的加快度 a 和从开始到此时 A 的位移 d (重力加快度为 g ).【分析】系统静止时 , 设弹簧压缩量为x1,弹簧弹力为 F1,分析A受力可知 : F1kx1 m A g sinm A g sin解得 : x1k在恒力 F 作用下物体 A 向上加快运动时,弹簧由压缩渐渐变成伸图 3-7-7长状态 . 设物体B刚要走开挡板 C 时弹簧的伸长量为x2,分析物体B 的受力有: kx2m B g sin, 解得 x2m B g sink设此时物体 A 的加快度为a,由牛顿第二定律有: F m A g sin kx2m A aF(m A m B )g sin解得 : a mA因物体 A 与弹簧连在一同,弹簧长度的改变量代表物体 A 的位移,故有 d x1x2,即(m A m B ) g sindk(m A m B )g sin【答案】 dk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时辰要与当时的形变相对应 .一般应从弹簧的形变分析下手,先确立弹簧原长地点、现长地点及临界地点,找出形变量 x 与物体空间地点变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长地点对应的形变量有关.以此来分析计算物体运动状态的可能变化.联合弹簧振子的简谐运动,分析波及弹簧物体的变加快度运动,常常能达到事半功倍的效果.此时要先确立物体运动的均衡地点,差别物体的原长地点,进一步确立物体运动为简谐运动.联合与均衡地点对应的答复力、加快度、速度的变化规律,很简单分析物体的运动过程.【例 7】如图 3-7-8 所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m 的物体B相连,开始时 A 和 B 均处于静止状态,此时弹簧压缩量为x0,一条不行伸长的轻绳绕过轻滑轮,一端连结物体 A 、另一端C握在手中,各段绳均恰巧处于挺直状态,物体 A 上方的一段绳索沿竖直方向且足够长 . 此刻 C 端施加水平恒力F使物体A从静止开始向上运动 .( 整个过程弹簧一直处在弹性限度之内).(1) 假如在 C 端所施加的恒力大小为3mg ,则在物体B刚要走开地面时物体 A 的速度为多大?(2) 若将物体B的质量增添到 2m,为了保证运动中物体 B 一直不走开地图 3-7-8面,则 F 最大不超出多少 ?【分析】 由题意可知,弹簧开始的压缩量x 0 mg ,k 物体 B 刚要走开地面时弹簧的伸长量也是x 0mg.(1)若F 3mg , 在弹簧伸长到kx 0 时,物体 B 走开地面, 此时弹簧弹性势能与施力前相等,F 所做的功等于物体 A 增添的动能及重力势能的和 .即: F 2x mg 2 x 0 1mv 2 得: v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不走开地面, 类比竖直弹簧振子, 物体 A 在竖直方向上除了受变化的弹力外,再遇到恒定的重力和拉力. 故物体 A 做简谐运动 .在最低点有: F 0 mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体A 的加快度 .在最高点,物体 B 恰巧不走开地面, 此时弹簧被拉伸, 伸长量为 2x 0 ,则 : k(2 x 0 ) mg F 0ma 2而 kx 0mg ,简谐运动在上、下振幅处a 1 a 2 ,解得:3mg F 02也能够利用简谐运动的均衡地点求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为均衡地点,即伸长量为所在处. 由 mgkxF 0 , 解得:23mg .F 02【答案】 2 2 gx 03mg2说明 : 差别原长地点与均衡地点 .和原长地点对应的形变量与弹力大小、方向、弹性势能有关 ,和均衡地点对应的位移量与答复大小、方向、速度、加快度有关.七.与弹簧有关的临界问题经过弹簧相联系的物体,在运动过程中常常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰巧要走开地面;互相接触的物体恰巧要离开等 .此类问题的解题要点是利用好临界条件,获得解题实用的物理量和结论.【例 8】如图 3-7-9 所示, A 、B 两木块叠放在竖直轻弹簧上,已知木块 A 、B 的质量分别为 0.42kg 和 0.40kg ,弹簧的劲度系数 k 100N / m ,若在 A 上作用一个竖直向上的力 F ,使A 由静止开始以2 的加快度竖直向上做匀加快运动( g 10 m / s 2 )求:(1) 使木块 A 竖直做匀加快运动的过程中,力 F 的最大值 ; (2) 若木块由静止开始做匀加快运动, 直到 A 、B 分别的过程中, 弹簧的弹性 势能减少了 0.248J ,求这一过程中 F 对木块做的功 .【分析】 本题难点在于可否确立两物体分别的临界点. 当 F 0 ( 即不加竖直 图 3-7-9向上 F 力) 时,设木块 A 、B 叠放在弹簧上处于均衡时弹簧的压缩量为 x , 有 :kx (m A m B )g , 即 x(m A m B )g①k对木块 A 施加力 F , A 、 B 受力如图 3-7-10所示,对木块 A 有:F Nm A g m A a②对木块 B 有: kx 'Nm B g m B a ③可知,当 N 0 时,木块 A 、B 加快度相同,由②式知欲使木块 A 匀加快运动,随 N 减小 F 增大,当N 0 时 , F 获得了最大值 F m , 即 :F m m A (a又当 N0 时, A 、B 开始分别,由③式知,弹簧压缩量kx'm B (a g) ,则 x'm B (a g ) ④k木块 A 、 B 的共同速度: v 2 2a( x x ') ⑤ 由题知,此过程弹性势能减少了 W P E PJ图 3-7-10设F力所做的功为W F,对这一过程应用功能原理,得:W 1(mAm )v2(m m) g( x x ') EPF2B AB联立①④⑤⑥式,且PE J,得:W F10 2J【答案】( 1)F m W F102JN【例 9】如图 3-7-11所示,一质量为M 的塑料球形容器,在 A 处与水平面接触 . 它的内部有向来立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 m 的小球在竖直方向振动,当加一直上的匀强电场后,弹簧正幸亏原长时,小球恰巧有最大速度. 在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加快度和容器对桌面的最大压力.图 3-7-11【分析】因为弹簧正幸亏原长时小球恰巧速度最大,所以有: qE mg①小球在最高点时容器对桌面的压力最小,有:kx Mg②此时小球受力如图 3-7-12所示,所受协力为 F mg kx qE③由以上三式得小球的加快度a Mg .m明显,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加快度,解以上式子得:kx Mg所以容器对桌面的压力为:图 3-7-12 F N Mg kx2Mg .【答案】Mg2Mg m八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储藏必定的弹性势能,所以弹簧的弹性势能能够与机械能守恒规律综合应用,我们用公式E P 12kx2计算弹簧势能,弹簧在相等形变量时所拥有的弹性势能相等一般是考试热门 .弹簧弹力做功等于弹性势能的减少许.弹簧的弹力做功是变力做功,法求解 :(1) 因该变力为线性变化,能够先求均匀力,再用功的定义进行计算(2) 利用 F x 图线所包围的面积大小求解;(3) 用微元法计算每一小段位移做功,再累加乞降;(4) 依据动能定理、能量转变和守恒定律求解.一般能够用以下四种方;因为弹性势能仅与弹性形变量有关,弹性势能的公式高考取不作定量要求,所以,在求弹力做功或弹性势能的改变时,一般从能量的转变与守恒的角度来求解.特别是波及两个物理过程中的弹簧形变量相等时,常常弹性势能的改变能够抵消或代替求解.【例 10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块 A 和B 大小可忽视,它们分别带有Q A和Q B的电荷量,质量分别为m A和 m B . 两物块由绝缘的轻弹簧相连,一个不行伸长的轻绳越过滑轮,一端与 B 连结,另一端连结轻质小钩. 整个装置处于场强为 E 、方向水平向左的匀强电场中, A 、B开始时静止,已知弹簧的劲度系数为k ,不计全部摩擦及A、B 间的库仑力,A、B所带电荷量保持不变, B 不会遇到滑轮.(1) 若在小钩上挂质量为 M 的物块 C 并由静止开释,可使物块不会走开 P , 求物块 C 降落的最大距离 h .A 对挡板P 的压力恰为零,但(2) 若 C 的质量为 2M , 则当 A 刚走开挡板 P 时, B 的速度多大 ?【分析】 经过物理过程的分析可知,当物块A 刚走开挡板 P 时, 弹力恰巧与 A 所受电场力均衡,弹簧伸长量必定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中, 弹簧长度的变化及弹性势能的改变相同,能够代替求解.图 3-7-13设开始时弹簧压缩量为x 1 ,由均衡条件kx 1 Q B E , 可得 x 1Q B Ek①设当 A 刚走开挡板时弹簧的伸长量为Q A E ②x 2 , 由 kx 2 Q A E ,可得 : x 2降落的最大距离为 :k故 C 12③h xx由①②③三式可得 :hE(Q A Q B )④k(2) 由能量守恒定律可知, 物块 C 着落过程中, C 重力势能的减少许等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgHQ B EhE 弹⑤当 C 的质量为 2M 时,设 A 刚走开挡板时 B 的速度为 v ,则有:2MgH Q B EhE 弹1(2 M m B )v 2 ⑥2由④⑤⑥三式可得A 刚走开 P 时B 的速度为 :v2MgE (Q A Q B ) ⑦k (2 M m B )【答案】( 1) h E (Q A Q B ) (2) v 2MgE (Q A Q B )kk (2 Mm B )【例 11】如图 3-7-14所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不行伸长的轻绳一端绕过轻滑轮连结物体 A ,另一端连结一轻挂钩 . 开始时各段绳都处于挺直状态, 物体 A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为 m 2 的物体 C 并从静止开释,已知它恰巧能使物体 B 走开地面但不持续上涨 . 若将物体 C 换成另一质量为 (m m ) 的物体 D ,仍从上述初始地点由静止释1 2放,则此次物体 B 刚离地时物体 D 的速度大小是多少 ?已知重力加快度为 g【分析】 开始时物体 A 、B 静止,设弹簧压缩量为x 1 ,则有: kx 1 m 1g悬挂物体 C 并开释后,物体 C 向下、物体 A 向上运动,设物体B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2m 2 gB 不再上涨表示此时物体A 、C 的速度均为零,物体 C 己降落到其最低点 , 与初 状态对比,由机械能守恒得弹簧弹性势能的增添量为:E m 2 g (x 1 x 2 ) m 1g (x 1 x 2 )物体 C 换成物体 D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关 图 3-7-14系得:1( m 2 m 1 )v 21m 1v 2 ( m 2 m 1 )g ( x 1 x 2 ) m 1 g( x 1 x 2 )E联立上式解得题中所 求速度为:222m 1 (m 1 m 2 ) g22m 1 ( m 1m 2 )g 2【答案】 vv(2 m 1 m 2 )k(2 m 1 m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转变守恒的联合常常在一些题目中需要综合使用.九、弹簧弹力的双向性弹簧能够伸长也能够被压缩,所以弹簧的弹力拥有双向性,亦即弹力既可能是推力又可能是拉力,这种问题常常是一题多解.【例 12】如图3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为 1200 ,已知弹簧 a 、 b 对证点的作使劲均为F ,则弹簧 c 对证点作使劲的大小可能为( ) A 、 0 B、 F mg C 、 F mg D 、 mg F 【分析】 因为两弹簧间的夹角均为图 3-7-151200,弹簧 a 、 b 对证点作使劲的协力 仍为 F ,弹簧 a 、b 对证点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确立,故 上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加快度、动能和弹性势能之间存在着特别关系,弹簧振子类问题往常就是考察这些关系,各物理量的周期性变化也是考察的要点 .【例 13】如图 3-7-16 所示,一轻弹簧与一物体构成弹簧振子,物体在同一竖图 3-7-16直线上的 A 、B 间做简谐运动,O 点为均衡地点 ; C 为 AO 的中点,已知OC h ,弹簧振子周期为 T , 某时辰弹簧振子恰巧经过 C 点并向上运动 , 则此后时辰开始计时,以下说法中正确的选项是 ( )A 、 tT时辰,振子回到 C 点4B 、 t T时间内,振子运动的行程为4h2C 、 t3T时辰,振子的振动位移为8 D 、 t 3T8 时辰,振子的振动速度方向向下【分析】 振子在点 A 、 C 间的均匀速度小于在点 C 、O 间的均匀速度, 时间大于 T,选项 A 、C8 错误 ; 经 T振子运动 O 点以下与点 C 对称的地点,总行程为 4h,选项 B 正确 ; 经 t3T振子在28点 O 、B 间向下运动,选项 D 正确 .【答案】 B D十一、弹簧串、并联组合弹簧串连或并联后劲度系数会发生变化,弹簧组合的劲度系数能够用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特色要掌握 :弹簧串连时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、k 2 的轻弹簧竖直悬挂,下端用圆滑细绳连结, 并有一圆滑的轻滑轮放在细线上; 滑轮下端挂一重为 G的物体后滑轮降落,求滑轮静止后重物降落的距离.【分析】 两弹簧从形式上看仿佛是并联,但因每根弹簧的弹力相等,故两弹簧实为串连; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1G , 图 3-7-1722k 1x 2G ,两弹簧伸长量之和 xx 1 x 2 ,故重物降落的高度为x G( k 1 k 2 )2k 2 : h4k 1k 22【答案】 G(k1k2 )4k1k2。
专题:连接体问题(整体法和隔离法)
专题:连接体问题(整体法和隔离法)一、什么是连接体问题特征:两物体紧靠着或者依靠一根细绳(一根弹簧)相连接后一起做匀加速运动(1)用细线连接的物体系(2)相互挤压在一起的物体系(3)用弹簧连接的物体系二、连接体问题如何处理1.对整体写牛顿第二定律2.把其中任意一个物体隔离写牛顿第二定律三、常见的连接体问题的类型1.计算连接体的加速度2.计算连接体之间的拉力大小3.根据绳子的最大拉力判断水平拉力F的大小4.放在不同平面上判断拉力的变化、加速度的变化5.两个相反方向的力作用与两个物体上,撤去其中一个力后判断物体加速度变化和绳子拉力变化6.在连接体上的某个物体上再放一个物体判断拉力的变化、加速度的变化7.三个物体的连接体问题【典型例题剖析】例1:如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平力F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N11计算:(1)计算N1的大小(2)若将F作用在物体B上,AB间的相互作用力N2变为多少?(3)计算N 1与N 2之和,N 1与N 2之比(4)若物体A 、B 与地面的动摩擦因数为μ,分析AB 的加速度如何变化,AB 之间相互作用力如何变化?例2:如图所示,置于水平地面上的相同材料的质量分别为m 和m 0的两物体用细绳连接,在m 0上施加一水平恒力F ,使两物体做匀加速直线运动,对两物体间细绳上的拉力,下列说法正确的是( )A .地面光滑时,绳子拉力大小等于mFm 0+mB .地面不光滑时,绳子拉力大小等于mFm 0+mC .地面不光滑时,绳子拉力大于mFm 0+mD .地面不光滑时,绳子拉力小于mFm 0+m答案 AB例3:(多选)如图所示,质量为ml 的物体和质量为m 2的物体,放在光滑水平面上,用仅能承受6N 的拉力的线相连。
m l =2kg ,m 2=3kg 。
现用水平拉力F 拉物体m l 或m 2,使物体运动起来且不致把绳拉断,则F 的大小和方向应为( ) A .10N ,水平向右拉物体m 2B .10N ,水平向左拉物体m 1C .15N ,水平向右拉物体m 2D .15N ,水平向左拉物体m 1 答案:BC例4:如图所示,在水平地面上有A 、B 两个小物体,质量分别为m A =3.0kg 、m B =2.0kg ,它们与地面间的动摩擦因数均为μ=0.10。
高一物理弹簧和连接体问题
1、如图所示,B物体的质量是A物体质量的1/2,
在不计摩擦阻力的情况下,A物体自H高处由静止开始
下落.以地面为参考平面,当物体A的动能与其势能相
等时,物体距地面的高度是( )
v
√ mAA.g(H5 H−Bh.)2=5H12(mC.A+4m5HB
D.H3
) v 2+
mAgh
=
1 2
mA v 2
vh
mB
mgh
=
1 2
mv2
物块B上升的最大高度: H=h+S
三式连立解得 H=1.2S
例3、长为L质量分布均匀的绳子,对称地悬挂在
轻小的定滑轮上,如图所示.轻轻地推动一下,让绳
子滑下,那么当绳子离开滑轮的瞬间,绳子的速度
为
.
解:由机械能守恒定律得:取初 态时绳子最下端为零势能参考面:
(绳子初态的机械能=绳子末态时的机械能)
m1
m2
复习精要
轻弹簧是一种理想化的物理模型,以轻质弹簧为载体, 设置复杂的物理情景,考查力的概念,物体的平衡, 牛顿定律的应用及能的转化与守恒,是高考命题的重 点,此类命题几乎每年高考卷面均有所见,,在高考复 习中应引起足够重视.
(一)弹簧类问题的分类
1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时, 使其发生形
三、机械能守恒定律的常用的表达形式:
1、E1=E2
( E1、E2表示系统的初、末态时的机械能)
2、 Δ EK=−ΔEP (系统动能的增加量等于系统势能的减少量)
3、 Δ EA=−ΔEB (系统由两个物体构成时,A的机械能的增量 等于B的机械能的减少量)
说明:
在运用机械能守恒定律时,必须选取 零势能参考面,而且在同一问题中必须选 取同一零势能参考面。但在某些机械能守 恒的问题中,运用式1 (E1=E2)求解不太方便, 而运用式2 (Δ EK=−ΔEP ) 、 3 (Δ EA=−ΔEB )较为简 单。运用式2、3的一个最大优点是不必选 取零势能参考面,只要弄清楚过程中物体 重力势能的变化即可。
牛顿第二定律应用:连接体与弹簧问题教案
3.如图所示,A 、B 两木块用轻绳连接,放在光滑水平面上,在水平外力F =12 N 作用下从静止开始运动,轻绳中的拉力F 1=3 N ,已知A 木块的质量是m 1=6 kg ,则( ) A .B 木块的质量m 2=18 kg B .B 木块的质量m 2=2 kg C .B 木块的加速度a 2=2 m / s 2D .经过时间2 s ,A 木块通过的距离是1 m4.如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面向右做匀加速直线运动,这时弹簧长度为1L ;若用水平恒力F 拉B ,使A 、B 一起向左做匀加速直线运动,此时弹簧长度为2L .则下列关系式正确的是( ) A .2L <1L B .2L >1LC .2L = 1LD .由于A 、B 质量关系未知,故无法确定1L 、2L 的大小关系 5.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示,已知人的质量为70kg ,木板的质量是10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。
取重力加速度g=10m/s 2.当人以440N 的力拉绳时,人与吊板的加速度a 和人对吊板的压力F 分别为( ) A . a=1.0m/s 2,F=260N B . a=1.0m/s 2,F=330N C . a=3.0m/s 2,F=110N D . a=3.0m/s 2,F=50N6.A 、B 二物块相靠,放于倾角为 的斜面上,如图所示,A 、B 与斜面的动摩擦因数都相同.同时由静止释放.A 、B 向下滑动,下面的说法中正确的是( ) A .A 、B 共同向下滑的加速度大于A 单独滑的加速度 B .A 、B 共同向下滑的加速度小于A 单独滑的加速度 C .A 、B 共同向下滑的加速度等于A 单独滑的加速度D .A 、B 共同向下滑的加速度等于B 单独滑的加速度7.如图所示,物体A 、B 叠放在粗糙的水平桌面上,水平外力F 作用在B 上,使AB 一起沿水平桌面向右加速运动,设A 、B 之间的摩擦力为f 1,B 与水平桌面间的摩擦力为f 2,若水平外力F 逐渐增大,但A 、B 仍保持相对静止,则摩擦力f 1和f 2的大小( )A 。
弹簧连接体专题讲解
1 2
(m3
m1 )v 2
1 2
m1v 2
(m3
m1 ) g ( x1
x2 )
m1 g ( x1
x2 )
E
由③④式得:
1 2 (2m1
m3 )v 2
m1 g ( x1
x2 )
由①②⑤式得: v 2m1 (m1 m2 )g 2 (2m1 m3 )k
综上举例,从中看出弹簧试题的确是培养、训练
1、静力学中的弹簧问题。
2、动力学中的弹簧问题。
3、与动量和能量有关的弹簧问题。
1、静力学中的弹簧问题
(1)单体问题。在水平地面上放一个竖直
轻弹簧,弹簧上端与一个质量为2.0kg的木
板相连。若在木板上再作用一个竖直向下的
力F使木板缓慢向下移动0.1米,力F作功
2.5J,此时木板再次处于平衡,力F的大小为
50N,如图所示,则木板下移0.1米的过程中,
弹性势能增加了多少?
F
解:由于木板压缩弹簧,木板克服弹力做 了多少功,弹簧的弹性势能就增加了多少
即: E弹 W弹(木板克服弹力做功,
就是弹力对木块做负功),
依据动能定理:Ek mgx WF W弹 0
W弹=-mgx-WF=-4.5J 弹性势能增加4.5焦耳
学生物理思维和反映、开发学生的学习潜能的 优秀试题。弹簧与相连物体构成的系统所表现 出来的运动状态的变化,是学生充分运用物理 概念和规律(牛顿第二定律、动能定理、机械 能守恒定律、动量定理、动量守恒定律)巧妙 解决物理问题、施展自身才华的广阔空间,当 然也是区分学生能力强弱、拉大差距、选拔人 才的一种常规题型。因此,弹簧试题也就成为 高考物理的一种重要题型。而且,弹簧试题也 就成为高考物理题中一类独具特色的考题
连接体问题--例题解析
1 a1 m / s 2 3 若水平力F2的方向向右,由牛顿第二定律,
m1 m2 F2
m A mB F2 T 2.5 N ma
1 a2 m / s 2 2
F向右,作用在m2上,F=2.5N
3、一人在井下站在吊台上,用如图所示的定滑 轮装置拉绳把吊台和自己提升上来。图中跨过滑 轮的两段绳都认为是竖直的且不计摩擦。吊台的 质量m=15kg,人的质量为M=55kg,起动时吊台向 上的加速度是a=0.2m/s2,求这时人对吊台的压力。 (g=9.8m/s2) 解:选人和吊台组成的系统为研究对象,受力 如右图所示,F为绳的拉力,由牛顿第二定律有: 2F-(m+M)g=(M+m)a 则拉力大小为:
解:根据牛顿第二定律
F
整体的加速度
F a ① nm
1 2 3
………
n
作用在每个小立方体上的合力
F ② F0 ma n
以从第4个立方体到第n个立方体的n-3个立方体组成的系统为 研究对象,则第3个立方体对第4个立方体的作用力
(n 3) F F34 (n 3)ma n
整体法求加速度,隔离法求相互作用力.
5 C.向左,作用在m1上,F N 3
D.向左,作用在m1上,F=2.5N
m1
m2
解见下页
解:若水平力F1的方向向左,由牛顿第二定律, 对整体 F1=(m1+m2)a1 对m2 , T=m2a1 F1 m A mB 5 F1 T N mB 3 m1
m2
对整体 F2=(m1+m2)a2 对m1 , T=m1a2
联立①②③④式解出地 面对斜面体的支持力
v
N2
(完整版)高三物理《弹簧连接体问题专题训练题》精选习题
高三物理《弹簧连接体问题专题训练题》教材中并未专题讲述弹簧。
主要原因是弹簧的弹力是一个变力。
不能应用动力学和运动学的知识来详细研究。
但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。
即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。
而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。
所以我们只需了解一些关于弹簧的基本知识即可。
具体地说,要了解下列关于弹簧的基本知识:1、 认识弹簧弹力的特点。
2、 了解弹簧的三个特殊位置:原长位置、平衡位置、极端位置。
特别要理解“平衡位置”的含义3、 物体的平衡中的弹簧4、 牛顿第二定律中的弹簧5、 用功和能量的观点分析弹簧连接体6、 弹簧与动量守恒定律经典习题:1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( )A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 42、(双选)用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是( )A .F 1的施力者是弹簧B .F 2的反作用力是F 3C .F 3的施力者是小球D .F 4的反作用力是F 13、如图,两个小球A 、B ,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的是( )A 、绳对A 的拉力和弹簧对A 的拉力B 、弹簧对A 的拉力和弹簧对B 的拉力C 、弹簧对B 的拉力和B 对弹簧的拉力D 、B 的重力和弹簧对B 的拉力4、如图所示,质量为1m 的木块一端被一轻质弹簧系着,木块放在质量为2m 的木板上,地面光滑,木块与木板之间的动摩擦因素为μ,弹簧的劲度系数为k ,现在用力F 将木板拉出来,木块始终保持静止,则弹簧的伸长量为( )A .k g m 1μB .k gm 2μ C . k F D .k gm F 1μ-5、如图所示,劲度系数为k 的轻质弹簧两端连接着质量分别为1m 和2m 的两木块,开始时整个系统处于静止状态。
高中物理教学参考弹簧“串联”和“并联”问题解答方法略谈
弹簧“串联”和“并联”问题解答方法略谈1.弹簧“串联”例1 已知弹簧A 的劲度系数为1k ,弹簧B 的劲度系数为2k ,如果把两弹簧相串使用,在弹簧末端挂一个重为G 的物体,求弹簧相串后的等效劲度系数。
解析 如图,两弹簧相串使用,当挂上重物,弹簧A 、 B 所受的拉力均为G 。
设弹簧A 的伸长量为1x ∆,弹簧B 的伸长量2x ∆,则有 mg x k =∆1111k mg x =∆(1) mg x k =∆2222k mg x =∆(2) 由上面两式得相串弹簧的伸长量为)11(2121k k mg x x x +=∆+∆=∆(3) 由(3)式得mg x k k k k =∆+2121,设k k k k k '=+2121,则mg x k =∆' 由胡克定律得,弹簧A 、B相串构成新弹簧的劲度系数为2121k k k k k +=',我们把弹簧相串使用叫弹簧“串联”。
习题:一根轻质弹簧下面挂一重物,弹簧伸长为1l ∆,若将该弹簧剪去43,在剩下的41部分下端仍然挂原重物,弹簧伸长了2l ∆,则1l ∆∶2l ∆为:A、3∶4 B、4∶3 C、4∶1 D、1∶4解析 设轻质弹簧原长为0l ,则该弹簧等效于4个原长为40l 的轻质弹簧的“串联”,设原轻质弹簧的劲度系数为0k ,则由前面的推导知,小弹簧的劲度系数04k k ='。
所以,在弹簧剪断前后挂同一重物,应有210l k l k ∆'=∆,把04k k ='代入上式得答案为C 。
易混淆题:如图2 所示,已知物块A 、B 的质量均为m ,两轻质弹簧劲度系数分别为1k 和2k ,已知两弹簧原长之和为0l ,不计两物体的厚度,求现在图中两弹 簧的总长度为_____。
错解 两弹簧是“串联”,由推导知,弹簧串后的劲度系数为2121k k k k k +=',设两弹簧压缩量为x ∆,由胡克定律得mg x k 2=∆',把k '代入得21)21(2k k k k mg x +=∆,所以两弹簧的长度为21210)(2k k k k mg l x l +-=∆-。
高中物理 弹簧问题
高中物理弹簧问题弹簧问题是物理学中常见的问题之一。
轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。
无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
轻弹簧的性质有三点:1、在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零;3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。
在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。
在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。
在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。
除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。
在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。
在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。
对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。
在物体做变加速运动时,加速度等于零时速度达到最大值,速度等于零时加速度达到最大值。
高一物理弹簧和连接体问题64页PPT
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
Hale Waihona Puke 41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
专题-物理-L16-弹簧和细绳连接体问题
1
M
解题思路:根据弹簧的可能伸缩情况进行受力分析 →结合胡克定律列式求解合力 →由合力利用牛二求加速度
2
N
解析:(1)若上面的弹簧压缩有压力,则下面的弹簧也压缩,受力如图示: 静止时有 k2x2= k1x1+mg 拔去M 拔去N k2x2 - mg=12m k1x1+ mg=ma
1
M
k2x2
∴ a = 22m/s2 方向向下
解题思路:
直接对小球进行受力分析→正交分解求FT1和FT2的大小
解析:m的受力情况及直角坐标系的建立如图所 示(这样建立只需分解一个力),注意到ay=0,则有 FT1sinθ -FT2=ma, FT1cosθ -mg=0
mg 解得FT1= , FT2=mgtanθ -ma. cos mg 答案 FT1= FT2=mgtanθ -ma cos
例题3 竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各 与小球相连,另一端分别 用销钉M N固定于杆上,小球处于静止状态.若拔去销钉M的瞬间,小球的加速度大小为 12m/s2,若不拔去销钉M而拔去销钉N的瞬间, 小球的加速度可能为(取g=10m/s2) ( ) A. 22m/s2,方向竖直向上 C.2m/s2, 方向竖直向上 B. 22m/s2,方向竖直向下 D.2m/s2, 方向竖直向下
2
N
k1x1
mg
(2)若下面的弹簧伸长有拉力, 则上面的弹簧也伸长,受力如图示: 静止时有 k1x1=k2x2+mg 拔去M 拔去N k2x2+mg=12m k1x1-mg=ma
1
M
k1x1
∴ a = 2m/s2 方向向上 故答案为BC
2 N
mg
k2x2
弹簧类连接体问题
弹簧类问题1、如图所示,质量满足m A=2m B=3m C的三个物块A、B、C,A与天花板之间,B与C之间均用轻弹簧相连,A与B之间用细绳相连,当系统静止后,突然剪断AB间的细绳,则在此瞬间A、B、C的加速度分别是多少?(重力加速度取g)2、如图所示,质量满足m A=2m B的物块A、B,A与天花板之间用轻弹簧连接,B与C之间用轻绳相连,当系统静止后,突然剪断AB间的细绳,则在此瞬间A、B的加速度分别是多少?(重力加速度取g)3、如图所示,质量满足m A=2m B的物块A、B,A与天花板之间用轻绳相连,B与C之间用轻弹簧相连,当系统静止后,突然剪断A与天花板间的细绳,则在此瞬间A、B的加速度分别是多少?(重力加速度取g)4、如图所示,质量满足m A=2m B=3m C的三个物块A、B、C,A与天花板之间,B与C之间均用轻绳相连,A与B之间用轻弹簧相连,当系统静止后,突然剪断BC间的细绳,则在此瞬间A、B、C的加速度分别是多少?(重力加速度取g)5、如图所示,质量满足m A=2m B=3m C的三个物块A、B、C,A与B之间,B与C之间均用轻弹簧相连,A与天花板之间用轻绳相连,当系统静止后,突然剪断A与天花板间的细绳,则在此瞬间A、B、C的加速度分别是多少?(重力加速度取g)6、如图所示,A、B两质量均为m的小球分别连在弹簧两端,A端用细线固定在倾角为37°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别是多少?(重力加速度取g)7、如图所示,A、B两质量均为m的小球分别连在细线两端,A端用弹簧固定在倾角为37°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别是多少?(重力加速度取g)8、如图所示,A、B、C、D四个小球质量之比为1:2:3:4,分别用细线和轻弹簧连接,其中A、B在倾角为 37°的光滑斜面上,B、C之间的细线绕过固定于斜面底端的定滑轮,若不计弹簧质量,在BC间细线被剪断瞬间,A、B、C、D四个小球的加速度分别是多少?(重力加速度取g)9.一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。
连接体问题专题用
牛顿运动定律的应用----连接体问题专题一、连接体概述两个或两个以上物体相互连接参与运动的系统称为连接体。
如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起。
如下图所示:连接体一般具有相同的运动情况(速度、加速度)。
二、连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
1. 接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2. 轻绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;3. 轻弹簧连接:两个物体通过弹簧的作用连接在一起;三、连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
四、处理连接体问题的基本方法1. 内力和外力:(1)系统:相互作用的物体称为系统。
系统由两个或两个以上的物体组成。
(2)系统内部物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。
2. 整体法:是将两个或两个以上物体组成的整个系统或整个过程作为研究对象进行分析的方法。
3. 隔离法:是将所研究的对象包括物体、状态和某些过程,从系统或全过程中隔离出来进行研究的方法。
五、整体法与隔离法的综合应用实际上,不少问题既可用“整体法”也可用“隔离法”解,也有不少问题则需要交替应用“整体法”与“隔离法”。
因此,方法的选用也应视具体问题而定。
1. 求内力:先整体求加速度,后隔离求内力。
2. 求外力:先隔离求加速度,后整体求外力。
3. 当系统内各物体由细绳通过滑轮连接,物体加速度大小相同时,也可以将绳等效在一条直线上,建立沿绳的自然坐标系,用整体法处理。
【典例1】如图所示,在光滑桌面上并排放着质量分别为m、M的两个物体,对m施加一个水平推力F,则它们一起向右做匀加速直线运动,则(1)其加速度大小为多大(2)两物体间的弹力的大小为多大(3)若两个物体与地面的动摩擦因数均为μ,则两物体间的弹力的大小为多大练习1、若将上题中两个物体放到一倾角为a的光滑斜面上,沿斜面向上做匀加速直线运动,则两物体间的弹力的大小为多大【典例2】如图所示,物体A的质量是1 kg,放在光滑的水平桌面上,在下列两种情况下,物体A的加速度各是多大(滑轮摩擦不计,绳子质量不计,g=10 m/s2)(1)用F=1 N的力拉绳子;(2)在绳端挂一个质量为0.1 kg的物体B.(3)试讨论:在什么情况下绳端悬挂的物体B的重力可近似等于物体A所受到的拉力练习2、如图所示,质量为m1和m2的两个物块(m1>m2)用一根不可伸长的轻绳跨过一个光滑的小定滑轮相连,开始时用手托住m1,系统处于静止状态,求放手后二者的加速度大小和绳子上的拉力大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪断轻绳后小球在竖直方向仍平衡,水平面支持力与小球所
受重力平衡,即FN=mg;由牛顿第二定律得小球的加速度为
a=(F-μ FN)/m=(20-0.2x20) m/s2=8 m/s2,方向向左,选项B正确。
当剪断弹簧的瞬间,小球立即受地面支持力和重力作用,且二力平衡,加速度为0,选项C
错误、D正确。
例题5 细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘 连,平衡时细绳与竖直方向的夹角为53°,如图所示,以下说法正确的是( (已知cos 53°=0.6,sin 53°=0.8) A.小球静止时弹簧的弹力大小为mg )
L A...1 m g L
L B..1 m m0 g L
t C.. mg L
A
L D.. ( m m0 ) g L
1. (2011年广东深圳模拟)如图3-3-1所示,轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬 挂一个小铁球,在电梯运行时,乘客发现弹簧的伸长量比电梯静止时的伸长量小,这一现象表明 ( ) A.电梯一定是在下降 B.电梯可能是在上升 C.电梯的加速度方向一定是向上 D.乘客一定处在失重状态 解析:选BD.电梯静止时,弹簧的拉力和重力相等.现在,弹簧的伸长量变小,则弹簧的拉力减小, 小铁球的合力方向向下,加速度向下,小铁球处于失重状态.但是电梯的运动方向可能向上也可能向 下,故选B、D.
1
M
解题思路:根据弹簧的可能伸缩情况进行受力分析 →结合胡克定律列式求解合力 →由合力利用牛二求加速度
2
N
解析:(1)若上面的弹簧压缩有压力,则下面的弹簧也压缩,受力如图示: 静止时有 k2x2= k1x1+mg 拔去M 拔去N k2x2 - mg=12m k1x1+ mg=ma
1
M
k2x2
∴ a = 22m/s2 方向向下
B.小球静止时细绳的拉力大小为 mg
C.细绳烧断瞬间小球的加速度立即变为g
D.细绳烧断瞬间小球的加速度立即变为 g
解析:细绳烧断前对小球进行受力分析如图所示, 其中F1为弹簧的弹力,F2为细绳的拉力。 由平衡条件得:F2cos 53°=mg,F2sin 53°=F1 解得:F2=5/3 mg,F1=4/3 mg,故A、B均错误。 细绳烧断瞬间,细绳的拉力突然变为零, 而弹簧的弹力不变,此时小球所受的合力与F2等大反向, 所以小球的加速度立即变为a=5/3 g,故D正确,C错。 答案:D
本课小结
问题特点
解题思路
典型例题
下节课 再见
如图8所示,质量为10 kg的物体拴在一 • 个被水平拉伸的轻质弹簧一端,弹簧 • 的拉力为5 N时,物体处于静止状态。 • 若小车以1 m/s2的加速度水平向右运动,则(取g=10 m/s2) ( ) • A.物体相对小车仍然静止
• B.物体受到的摩擦力增大
例题3 竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各 与小球相连,另一端分别 用销钉M N固定于杆上,小球处于静止状态.若拔去销钉M的瞬间,小球的加速度大小为 12m/s2,若不拔去销钉M而拔去销钉N的瞬间, 小球的加速度可能为(取g=10m/s2) ( ) A. 22m/s2,方向竖直向上 C.2m/s2, 方向竖直向上 B. 22m/s2,方向竖直向下 D.2m/s2, 方向竖直向下
答案:AC
例题2 如图所示,小球静止,当剪断水平绳瞬间,小球加速度如何?
例题2 如图所示,小球静止,当剪断水平绳瞬间,小球加速度如何?
如图所示,mA:mB;mc=1;2;3,所有接触面光滑,当迅速抽出C的瞬间,球A与B的加速度
A
B C
在光滑水平面上,有一质量为m=1.0kg的小球与水平轻弹簧和与水平成θ=300的轻绳的一端相连,小 球静止且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间小求加速度大小及方向?弹簧弹力与水平 面对小球弹力的比值?
A
B
F弹A
剪断细绳瞬间,B球受力如图所示:其中F弹A=mg
GB=mg 故F合B=0 所以 aB=0
A
GA F弹B
B
GB
例题1 如图所示,两个小球A和B质量均为m,中间用细绳相连并用弹簧悬挂于天花板下, 当剪断细绳的瞬间,A与B的瞬时加速度为多少? 解题思路:剪断细绳时间,根据绳和弹簧特点对小球进行受力分析 →根据合力由牛二分别求加速度 解析:剪断细绳瞬间,A球受力如图所示:其中F弹=2mg GA=mg 故F合A=mg 所以aA=F合A/m=g
瞬时加速度问题 1.一般思路
分析物体此时的受力情况 由牛顿第二定律列方程 瞬时加速度
2.两种模型 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性, 弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此 时弹簧的弹力不突变。
在求解瞬时性问题时应注意: (1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新 进行受力分析和运动分析。 (2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发 生突变。
2
k1x1
mg
(2)若下面的弹簧伸长有拉力, 则上面的弹簧也伸长,受力如图示: 静止时有 k1x1=k2x2+mg 拔去M 拔去N k2x2+mg=12m k1x1-mg=ma
1
M
k1x1
∴ a = 2m/s2 方向向上 故答案为BC
2 N
mg
k2x2
例题4 在动摩擦因数μ =0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧 及与竖直方向成θ =45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡 状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g=10 m/s2,以下说法正 确的是 ( )
A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0 思路点拔: 剪断轻绳时,弹簧的弹力不能瞬间发生变化。
剪断弹簧时,绳上的拉力在瞬间发生变化。
解析: 因为未剪断轻绳时水平面对小球的弹力为零,小球在绳没有断时受到轻绳的拉力FT 和弹簧的弹力F作用而处于平衡状态。依据平衡条件得: 竖直方向有FTcos θ =mg,水平方向有FTsin θ =F。 解得轻弹簧的弹力为F=mgtan θ =20 N,故选项A正确。
300
如图所示,A、B、C质量均为m,且静止,现剪断轻绳OO`,那麽A、B、C的加速度为多少?
O
O` B C A
aA=0,aB=1.5g, aC=1.5g
如图10所示,一根轻弹簧上端固定,下端悬挂一质量为m0的平盘,盘中有一物体A质量为m。当盘静 止时,弹簧的长度比其自然长度伸长了L,今向下拉盘使弹簧再伸长后停止,然后松手放开,设弹簧 一直处在弹性限度的,则刚松手时盘对物体A的支持力等于:
• C.物体受到的摩擦力大小不变
• D.物体受到的弹簧拉力增大
解析:由于弹簧处于拉伸状态,物体处于静止状态,可见小车对物体提供水平向左的静摩擦力,大小 为5 N,且物体和小车间的最大静摩擦力Ffm≥5 N;若小车以1 m/s2的加速度向右匀加速运动,则弹簧 还处于拉伸状态,其弹力不变,仍为5 N,由牛顿第二定律可知:F+Ff=ma,Ff=5 N≤Ffm,则物体 相对小车仍静止,弹力不变,摩擦力的大小也不变,选项A、C正确。
弹簧 既可承受拉力,又可承受压力,施力和受力方向沿弹簧的轴向,形变量较大,
弹力不可突变,但当弹簧被剪短后弹力立即消失。
皮筋 只产生拉力,不承受压力,形变量较大,弹力不可突变但当弹簧被剪短后弹
力立即消失。
瞬时加速度问题 1.一般思路
分析物体此时的受力情况 由牛顿第二定律列方程 瞬时加速度
2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后, 弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触 面在不加特殊说明时,均可按此模型处理。
A
B
F弹
剪断细绳瞬间,B球受力如图所示:其中F弹A=mg
GB=mg 故F合B=mg 所以 aB=g
A
GA
B
GB
例题2 如图所示,小车在水平面上以加速度a向左做匀加速直线运动,车厢内用OA、OB两根 细绳系住一个质量为m的物体,OA与竖直方向的夹角为θ ,OB是水平的.求OA、OB两绳的拉力 FT1和FT2的大小.
解题思路:
直接对小球进行受力分析→正交分解求FT1和FT2的大小
解析:m的受力情况及直角坐标系的建立如图所 示(这样建立只需分解一个力),注意到ay=0,则有 FT1sinθ -FT2=ma, FT1cosθ -mg=0
mg 解得FT1= , FT2=mgtanθ -ma. cos mg 答案 FT1= FT2=mgtanθ -ma cos
例题1 如图所示,两个小球A和B质量均为m,中间用弹簧相连并用细绳悬挂于天花板下, 当剪断细绳的瞬间,A与B的瞬时加速度为多少? 解题思路:剪断细绳时间,根据绳和弹簧特点对小球进行受力分析 →根据合力由牛二分别求加速度 解析:剪断细绳瞬间,A球受力如图所示:其中F弹B=mg GA=mg 故F合A=2mg 所以aA=F合A/m=2g
物理专题
弹簧和细绳连接体问题
绳、杆、弹簧、皮筋问题 共同点: 1、都是质量可忽略的理想化模型 2、都会发生形变产生弹力 3、同一时刻内部弹力处处相同,与运动状态无关。
绳、杆、弹簧、皮筋问题 不同点: 绳 杆 只产生拉力,不承受压力,绳的弹力可以突变,瞬间产生瞬间消失。 既可承受拉力,又可承受压力,施力和受力方向不一定沿杆的轴向