通信原理第四章ppt课件
合集下载
通信原理》第六版课件第4章
调频合成器的原理
介绍了调频合成器的基本原理 和存在的问题,以及几种常用 的合成技术及其应用。
频率分析与频谱分析
连续信号频谱分析
介绍了连续信号分析中的傅里叶 变换和功率谱密度估计算法,以 及常用的频谱分析工具。
离散信号频谱分析
小波变换分析
阐述了离散信号分析中的离散傅 里叶变换和快速傅里叶变换算法, 以及它们的应用领域。
介绍了小波变换分析的基本原理 和优势,以及它在信号处理和图 像处理中的应用。
数据信号处理
1
采样与重构
Байду номын сангаас
抗混叠滤波器
2
讲述了抗混叠滤波器设计和优化的方法,
以及实际应用中的不足和改进措施。
3
介绍了采样定理和采样过程中的抗混叠 滤波器,以及重构过程与误差控制的方 法。
数字信号的量化
阐述了数字信号的量化原理和编码方法,
介绍了几种基本的相位调制方式和频移 键控技术,以及它们在通信中的应用。
宽带调制与调制方式
宽带调制的概念
阐述了宽带调制的基本原理和实现方法,以及它 在数字通信中的重要性。
频段抖动(FBS)调制方式
介绍了频段抖动调制技术的基本原理和应用,以 及它的特点和实现方法。
调换抖动(Cordic)调制方式
介绍了调换抖动调制技术的基本原理和应用,以 及它的优缺点及改进方法。
通信原理》第六版课件第 4章
本章介绍了调制与解调的基本概念,宽带调制和调制方式,频率合成和锁相 等通信原理的重要知识点。
调频与解调
1
调频基本概念
介绍了调频技术的基本概念和特点,包
调频与解调过程
2
括调变量和调制指数等的定义。
从频谱分析角度描述了调频与解调的基
通信原理第四章 (樊昌信第七版)PPT课件
则接收信号为
2 1
fo(t) = K f(t - 1 ) + K f(t - 2 ) 相对时延差
F o () = K F () e j 1 + K F () e j ( 1 )
信道传输函数
H()F F o(( ))K Keejj 11((1 1 eejj ))
常数衰减因子 确定的传输时延因子 与信号频率有关的复因子
课件
精选课件
1
第4章 信道
通信原理(第7版)
樊昌信 曹丽娜 编著
精选课件
2
本章内容:
第4章 信道
信道分类
信道模型
恒参/随参信道特性对信号传输的影响
信道噪声
信道容量
定义·分类
模型·特性
影响·措施
信道噪声 信道容量
精选课件
3
概述
信道的定义与分类
n 狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
1. 传输特性
H ()H ()ej ()
H() ~ 幅频特性
()~ 相频特性
2. 无失真传输
H()Kejtd
H() K
()td
精选课件
27
n 无失真传输(理想恒参信道)特性曲线:
恒参信道
|H()|
K
() td
td
0
H() K
幅频特性
0
0
()td
()d() d
td
相频特性
群迟延特性
精选课件
28
n 理想恒参信道的冲激响应:
恒参信道
H()Kejtd
h(t)K(ttd)
若输入信号为s(t),则理想恒参信道的输出:
《通信原理教程》(第3版)-樊昌信-编著----第四章--PPT课件
*
由 有 为了保持信号量噪比恒定,要求: x x 即要求: dx/dy x 或 dx/dy = kx, 式中 k =常数 由上式解出: 为了求c,将边界条件(当x = 1时,y = 1),代入上式,得到 k + c =0, 即求出: c = -k, 将c值代入上式,得到 由上式看出,为了保持信号量噪比恒定,在理论上要求压缩特性为对数特性 。 对于电话信号,ITU制定了两种建议,即A压缩律和压缩律,以及相应的近似算法 - 13折线法和15折线法。
*
由抽样信号恢复原信号的方法 : 从频域看:当fs 2fH时,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号。 从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如图所示。这些冲激响应之和就构成了原信号。 理想滤波器是不能实现的。实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs 必须比 2fH 大较多。 例如,典型电话信号的最高频率限制在3400 Hz,而抽样频率采用8000 Hz。
*
4.4 脉冲编码调制 4.4.1脉冲编码调制(PCM)的基本原理 抽样 量化 编码 例:见右图 3.15 3 011 3.96 4 100 方框图:
*
A压缩率 式中,x为压缩器归一化输入电压; y为压缩器归一化输出电压; A为常数,决定压缩程度。 A律中的常数A不同,则压缩曲线的形状不同。它将特别影响小电压时的信号量噪比的大小。在实用中,选择A等于87.6。
*Hale Waihona Puke *求量化噪声功率的平均值Nq : 式中,sk为信号的抽样值,即s(kT) sq为量化信号值,即sq(kT) f(sk)为信号抽样值sk的概率密度 E表示求统计平均值 M为量化电平数 求信号sk的平均功率 : 由上两式可以求出平均量化信噪比。
通信原理(樊昌信)PPT课件
sin 0t
c2 (t)
A点的信号为: f1(t) cos0t f2 (t) sin 0t
是两个互相正交的双边带信号,采用相干解调,所以:
c1(t) 2 cos0t
看上支路:
c2 (t) 2sin 0t
2 f1(t) cos2 0t 2 f2 (t) sin 0t cos0t
2 f1(t) cos2 0t 2 f2 (t) sin 0t cos0t f1(t)(1 cos 20t) f2 (t) sin 20t
出端同时得到 f1(t)及f2 (t)。试确定接收端的 c1(t)及c2 (t)。
f1 (t )
cos 0t
c1 (t )
LPF
f1 (t )
A
f2 (t)
LPF
f2 (t)
sin 0t
c2 (t)
f1 (t )
cos 0t
c1 (t )
LPF
f1 (t )
A
f2 (t)
LPF
f2 (t)
BSm Bm
单边带按所选取边带的不同,可分为上边带调制和 下边带调制,单边带数学模型可为:
m(t) 乘法器 单边带滤波器h(t)
Sm (t)
cos ct
下边带时域表达式为:
Sm
(t)
1 2
m(t)
cos ct
1 2
mˆ (t)
sin
ct
上边带的时域表达式为:
Sm
(t)
1 2
m(t)
cos ct
1 2
t
m(t)mˆ (t)dt 0
mˆ (t) 和 m(t) 的希尔伯特变换是正交的。
对于幅度调制,由于它的频谱完全是基带信号频谱 结构在频域内的简单搬移,这种搬移是线性的,并不改 变信号的频谱结构,所以,幅度调制也称为线性调制。
《通信原理》第04章模拟信号的数字化精品PPT课件
ห้องสมุดไป่ตู้
t
…
t
…
t
S(f)
( f ) Sk ( f ) Sˆ( f )
f
…
f
…
f
t
f
7
4.2.1 低通模拟信号的抽样
频谱混叠
S(f)
spectrum aliasing
f ( f )
f
Sk ( f )
…
…
f
8
4.2.1 低通模拟信号的抽样
ideal lowpass filter
抽样信号恢复低通滤波器
s(t)
s(t)
t
t
δT (t)
c (t)
t
t
sk(t)
sk(t)
t
t
3
4.2.1 低通模拟信号的抽样
band-limited signal
低通抽样定理 一个带宽有限信号 s (t) 的最高频率为 fH ,若
抽样频率 fs ≥ 2 fH ,则可以由抽样信号序列 sk (t) 无 失真地恢复原始信号 s (t) 。 说明
抽样频率与信号频率的关系曲线
fs 4B
3B
2B
B
O
B 2B 3B 4B 5B 6B
fL
15
4.2.2 带通模拟信号的抽样
带通抽样的频谱
fH = 4 kHz fL = 3 kHz B = 1 kHz
fs = 2 kHz
S(f)
−4B
0
4B
Sk( f )
bandpass sampling
f
−4fs −3fs −2fs −fs O fs 2fs 3fs 4fs
领域也有广泛应用
pulse amplitude modulation (PAM)
t
…
t
…
t
S(f)
( f ) Sk ( f ) Sˆ( f )
f
…
f
…
f
t
f
7
4.2.1 低通模拟信号的抽样
频谱混叠
S(f)
spectrum aliasing
f ( f )
f
Sk ( f )
…
…
f
8
4.2.1 低通模拟信号的抽样
ideal lowpass filter
抽样信号恢复低通滤波器
s(t)
s(t)
t
t
δT (t)
c (t)
t
t
sk(t)
sk(t)
t
t
3
4.2.1 低通模拟信号的抽样
band-limited signal
低通抽样定理 一个带宽有限信号 s (t) 的最高频率为 fH ,若
抽样频率 fs ≥ 2 fH ,则可以由抽样信号序列 sk (t) 无 失真地恢复原始信号 s (t) 。 说明
抽样频率与信号频率的关系曲线
fs 4B
3B
2B
B
O
B 2B 3B 4B 5B 6B
fL
15
4.2.2 带通模拟信号的抽样
带通抽样的频谱
fH = 4 kHz fL = 3 kHz B = 1 kHz
fs = 2 kHz
S(f)
−4B
0
4B
Sk( f )
bandpass sampling
f
−4fs −3fs −2fs −fs O fs 2fs 3fs 4fs
领域也有广泛应用
pulse amplitude modulation (PAM)
通信原理课件第四章
δT (t)
s
n
(t nT ) 相乘的过程,即抽样信号
s
ms(t) m(t) δTs (t)
(4.2)
《通信原理课件》
一、低通信号的抽样定理
抽样定理指出:一个频带限制在(0, f H )内的时间连续 的模拟信号 m (t),如果抽样频率 f ≥ 2 f ,则可以通过低通滤波
1 Hz 。而理想 τ
抽样频谱的包络线为一条直线,带宽为无穷大。 如上所述,脉冲宽度τ越大,自然抽样信号的第一过零点带宽越 小,这有利于信号的传输。但增大τ会导致时分复用的路数减小,显 然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛盾的要求。
《通信原理课件》
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样的不同之 处在于抽样信号中的脉冲均具有相同的形状——顶部平坦的矩形 脉冲,矩形脉冲的幅度即为瞬时抽样值。在实际应用中,平顶抽 样信号采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。 平顶抽样PAM信号在原理上可以看作由理想抽样和脉冲形成电 路产生。
《通信原理课件》
[例4.2.1]
设输入抽样器的信号为门函数 G t ,宽度 10ms ,若忽略第一零 点以外的频率分量,计算奈奎斯特抽样速率。 解:门函数的频谱为
ωτ Gω τ Sa 2
(4.5)
则第一零点的频率
B 1 Hz τ
(4.6)
忽略第一零点以外的频率分量,则门函数的最高频率(截止频 率) f H 为 100 Hz 。由抽样定理可知,奈奎斯特抽样速率为
f H n 1B kB ,由式(4.7)可得带通信号的最低抽样频率
f s( min ) 2 fH k 2 B1 n 1 n 1
s
n
(t nT ) 相乘的过程,即抽样信号
s
ms(t) m(t) δTs (t)
(4.2)
《通信原理课件》
一、低通信号的抽样定理
抽样定理指出:一个频带限制在(0, f H )内的时间连续 的模拟信号 m (t),如果抽样频率 f ≥ 2 f ,则可以通过低通滤波
1 Hz 。而理想 τ
抽样频谱的包络线为一条直线,带宽为无穷大。 如上所述,脉冲宽度τ越大,自然抽样信号的第一过零点带宽越 小,这有利于信号的传输。但增大τ会导致时分复用的路数减小,显 然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛盾的要求。
《通信原理课件》
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样的不同之 处在于抽样信号中的脉冲均具有相同的形状——顶部平坦的矩形 脉冲,矩形脉冲的幅度即为瞬时抽样值。在实际应用中,平顶抽 样信号采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。 平顶抽样PAM信号在原理上可以看作由理想抽样和脉冲形成电 路产生。
《通信原理课件》
[例4.2.1]
设输入抽样器的信号为门函数 G t ,宽度 10ms ,若忽略第一零 点以外的频率分量,计算奈奎斯特抽样速率。 解:门函数的频谱为
ωτ Gω τ Sa 2
(4.5)
则第一零点的频率
B 1 Hz τ
(4.6)
忽略第一零点以外的频率分量,则门函数的最高频率(截止频 率) f H 为 100 Hz 。由抽样定理可知,奈奎斯特抽样速率为
f H n 1B kB ,由式(4.7)可得带通信号的最低抽样频率
f s( min ) 2 fH k 2 B1 n 1 n 1
通信原理第4章
P(0 / 0) P(1 / 0)
0 接收端
1
1
P(1 / 1)
图4-13 二进制编码信道模型
P(0 / 0)和P(1 / 1) - 正确转移概率 P(1/ 0)和P(0 / 1) - 错误转移概率
散射传播 电离层散射 机理 - 由电离层不均匀性引起 频率 - 30 ~ 60 MHz 距离 - 1000 km以上 对流层散射 机理 - 由对流层不均匀性(湍流)引起 频率 - 100 ~ 4000 MHz 最大距离 < 600 km
有效散射区域
地球
图4-7 对流层散射通信
h
10
第4章 信 道
第4章 信 道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
Hale Waihona Puke 按折射率分类 (b) 阶跃型
梯度型 按模式分类
n2 n1 折射率
125
多模光纤
7~10
(c)
单模光纤
单模阶跃折射率光纤
h 图4-11 光纤结构示意图
16
第4章 信 道
损耗与波长关系
1.31 m 1.55 m
0.7
0.9
1.1
1.3
1.5
1.7
光波波长(m)
图4-12光纤损耗与波长的关系
损耗最小点:1.31与1.55 m
h
17
第4章 信 道
4.3 信道的数学模型
信道模型的分类:
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数 字 调
制
信道
数 字 解 调
信 道 译
通信原理第7版第4章(樊昌信版)课件
正确
错误
Pe P(0)P(1/ 0) P(1)P(0 /1)
学习交流PPT
24
四进制 无记忆 编码信道
0
1
发 送 端2
3
学习交流PPT
0
1
接 收 2端
3
25
§4.4
恒参/随参信道特性 对信号传输的影响
学习交流PPT
26
恒参信道 特性及其对信号传输的影响
线性时不变系统
• 特点:传输特性随时间缓变或不变。
传播路径 天波传播方式
学习交流PPT
6
无线信道
视线传播 line-of-sight
d
频率: > 30 MHz
h
发射
特性:直线传播、穿透电离层 天线 r
用途:卫星和外太空通信
传播途径
d
D
接收 天线
r
超短波及微波通信
视线传播方式
距离:与天线高度有关
D2 D2 h (m)
8r 50
D 为收发天线间距离(km)
So()C()Si()
C n (t )
学习交流PPT
22
不同的物理信道具有不同的特性C() = 常数(可取1)
加性高斯白噪声信道模型
学习交流PPT
23
§4.3.2 编码信道模型 模型: 可用 转移概率来描述。
二进制 无记忆 编码信道 模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
学习交流PPT
7
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信
通信原理 第五版 第4章 信 道PPT课件
n(t)
式中
图4-13 调制信道数学模型
ei (t ) - 信道输入端信号电压; eo (t)- 信道输出端的信号电压; n(t ) - 噪声电压。
通常假设: f[ei(t)]k(t)ei(t)
这时上式变为:
eo(t)k(t)ei(t)n(t)- 信道数学模型
19
Hale Waihona Puke 第4章 信 道eo(t)k(t)ei(t)n(t)
D2 D2 520 h 50 m
8r 5050
增大视线传播距离的其他途径 ➢ 中继通信: ➢ 卫星通信:静止卫星、移动卫星 ➢ 平流层通信:
图 4-3 视线传播
图4-4 无线电中继 10
第4章 信 道
散射传播 电离层散射 机理 - 由电离层不均匀性引起 频率 - 30 ~ 60 MHz 距离 - 1000 km以上 对流层散射 机理 - 由对流层不均匀性(湍流)引起 频率 - 100 ~ 4000 MHz 最大距离 < 600 km
梯度型 按模式分类
n2 n1 折射率
多模光纤 (c)
单模光纤
(模指路径)
单模阶跃折射率光纤
图4-11 光纤结构示意图
125
7~10
16
第4章 信 道
4.3 信道的数学模型
信道模型的分类(广义):
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数 字 调
制
信道
数 字 解 调
14
第4章 信 道
光纤 定义: 传输光信号的有线信道是光导纤维,简称
光纤. 最早出现的光纤是由折射率不同的两种导光
介质纤维组成,内层称为纤芯,在纤芯外包有另一 种折射率的介质,称为包层.
式中
图4-13 调制信道数学模型
ei (t ) - 信道输入端信号电压; eo (t)- 信道输出端的信号电压; n(t ) - 噪声电压。
通常假设: f[ei(t)]k(t)ei(t)
这时上式变为:
eo(t)k(t)ei(t)n(t)- 信道数学模型
19
Hale Waihona Puke 第4章 信 道eo(t)k(t)ei(t)n(t)
D2 D2 520 h 50 m
8r 5050
增大视线传播距离的其他途径 ➢ 中继通信: ➢ 卫星通信:静止卫星、移动卫星 ➢ 平流层通信:
图 4-3 视线传播
图4-4 无线电中继 10
第4章 信 道
散射传播 电离层散射 机理 - 由电离层不均匀性引起 频率 - 30 ~ 60 MHz 距离 - 1000 km以上 对流层散射 机理 - 由对流层不均匀性(湍流)引起 频率 - 100 ~ 4000 MHz 最大距离 < 600 km
梯度型 按模式分类
n2 n1 折射率
多模光纤 (c)
单模光纤
(模指路径)
单模阶跃折射率光纤
图4-11 光纤结构示意图
125
7~10
16
第4章 信 道
4.3 信道的数学模型
信道模型的分类(广义):
调制信道 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数 字 调
制
信道
数 字 解 调
14
第4章 信 道
光纤 定义: 传输光信号的有线信道是光导纤维,简称
光纤. 最早出现的光纤是由折射率不同的两种导光
介质纤维组成,内层称为纤芯,在纤芯外包有另一 种折射率的介质,称为包层.
通信原理课件——第四章
点带宽 B 1 Hz。而理想抽样频谱的包络线为一条直线,带
τ 宽为无穷大。
如上所述,脉冲宽度τ越大,自然抽样信号的带宽越小, 这有利于信号的传输。但增大τ会导致时分复用的路数减小, 显然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛 盾的要求。
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样 的不同之处在于抽样信号中的脉冲均具有相同的形状— —顶部平坦的矩形脉冲,矩形脉冲的幅度即为瞬时抽样 值,如图4-11(a)所示。在实际应用中,平顶抽样信号 采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。
图4-25 PCM系统的原理图
4.5.2 PCM
[例4.5.1]
4.5.3 PCM系统的抗噪声性能分析
4.6 语音压缩编码
4.6.1语音压缩编码技术的概念
通常,人们把话路速率低于64kb/s的语音编码方 法,称为语音压缩编码技术。常见的语音压缩编 码有差值脉冲编码调制(DPCM)、自适应差值脉 冲编码调制(ADPCM)、增量调制(DM或M)、自 适应增量调制(ADM)、参量编码、子带编码 (SBC)等。
第四章 模拟信号的数字传输
4.1 引言 4.2 抽样 4.3 量化 4.4 编码 4.5 脉冲编码调制系统 4.6 语音压缩编码 4.7 图像压缩编码
4.1 引言
图4-1 PCM通信系统原理图
图4-2 PCM信号形成过程示意图
4.2 抽样
所谓抽样是把时间上连续的模拟信号变成 一系列时间上离散的样值序列的过程,如 图4-3所示。
4.3 量化
图4-13 量化的输入和输出
4.3.1均匀量化
图4-14 量化过程及量化误差
[例4.3.1]
τ 宽为无穷大。
如上所述,脉冲宽度τ越大,自然抽样信号的带宽越小, 这有利于信号的传输。但增大τ会导致时分复用的路数减小, 显然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛 盾的要求。
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样 的不同之处在于抽样信号中的脉冲均具有相同的形状— —顶部平坦的矩形脉冲,矩形脉冲的幅度即为瞬时抽样 值,如图4-11(a)所示。在实际应用中,平顶抽样信号 采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。
图4-25 PCM系统的原理图
4.5.2 PCM
[例4.5.1]
4.5.3 PCM系统的抗噪声性能分析
4.6 语音压缩编码
4.6.1语音压缩编码技术的概念
通常,人们把话路速率低于64kb/s的语音编码方 法,称为语音压缩编码技术。常见的语音压缩编 码有差值脉冲编码调制(DPCM)、自适应差值脉 冲编码调制(ADPCM)、增量调制(DM或M)、自 适应增量调制(ADM)、参量编码、子带编码 (SBC)等。
第四章 模拟信号的数字传输
4.1 引言 4.2 抽样 4.3 量化 4.4 编码 4.5 脉冲编码调制系统 4.6 语音压缩编码 4.7 图像压缩编码
4.1 引言
图4-1 PCM通信系统原理图
图4-2 PCM信号形成过程示意图
4.2 抽样
所谓抽样是把时间上连续的模拟信号变成 一系列时间上离散的样值序列的过程,如 图4-3所示。
4.3 量化
图4-13 量化的输入和输出
4.3.1均匀量化
图4-14 量化过程及量化误差
[例4.3.1]
通信原理 第四章信道 ppt课件
§4.4 信道特性对信号传输的影响 一、恒参信道
举例:各种有线信道和部分无线信道,如卫星通 信链路信道,微波中继链路信道,…
恒参信道 实质是 非时变线性网络 信号通过 线性系统的分析方法(假设输入源这确知信号)
ei( t)h(t)
eo(t)=ei(t)*h(t)+n(t)
n(t)
下面首先介绍一种理想的恒参信道。
有效散射区域
地球
通信原理 第四章信道 图4-7 对流层散射通信 12
阜阳师范学院物电学院
流星流星余迹散射
流星余迹
图4-8 流星余迹散射通信
流星余迹特点 - 高度80 ~ 120 km,长度15 ~ 40 km
存留时间:小于1秒至几分钟
频率 - 30 ~ 100 MHz
距离 - 1000 km以上
特点 - 低速存储、高速突发、断续传输阳师范学院物电学院
•架空明线:架空明线,即在电线杆上架设的互相平行而绝
缘的裸线,它是一种在20世纪初就已经大量使用的通信介质。
•双绞线:双绞线又称为双扭线,它是由若干对且每对有两
条相互绝缘的铜导线按一定规则绞合而成。采用这种绞合结
(2) 对信号在时间上产生固定的迟延。
这种情况也称信号是无失真传输。
通信原理 第四章信道
28
阜阳师范学院物电学院
理想信道的幅频特性、 相频特性和群迟延—频率特性
|H(w)|
K0
j (w) w td
t w
td
O
w
a 幅频特性 性
O
w
b 相频特性
O
w
c 群迟延特
理想恒参信道在整个信号频带范围之内:
➢ 幅频特性和群迟延-频率特性为常数;
《通信原理》第4章-50页PPT文档资料
V (t)
X
2 c
(t
)
X
2 s
(t
)
-接收信号的相位
(t) tan 1 X s (t)
X c (t)
23
第4章 信 道 所以,接收信号可以看作是一个包络和相位随机缓慢变化的窄带信号:
结论:发射信号为单频恒幅正弦波时,接收信号因多径效应变成包络 起伏的窄带信号。 这种包络起伏称为快衰落 - 衰落周期和码元周期可以相比。 另外一种衰落:慢衰落 - 由传播条件引起的。
0.7
0.9
1.1
1.3
1.5
1.7
光波波长(m)
图4-12光纤损耗与波长的关系
• 损耗最小点:1.31与1.55 m
12
第4章 信 道 • 4.3 信道的数学模型 • 信道模型的分类: • 调制信道 • 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数
字 调
信道
制
数 字 解 调
信 道 译
码
• 频率失真 波形畸变 码间串扰
• 解决办法:线性网络补偿
• 相位失真:相位~频率特性不良引起的
• 对语音影响不大,对数字信号影响大
• 解决办法:同上
• 非线性失真:
• 可能存在于恒参信道中
• 定义:
输
输入电压~输出电压关系
出
电
是非线性的。
压
• 其他失真:
频率偏移、相位抖动…
直线关系
非线性关系
频率 - 30 ~ 60 MHz 距离 - 1000 km以上 • 对流层散射 机理 - 由对流层不均匀性(湍流)引起
频率 - 100 ~ 4000 MHz 最大距离 < 600 km
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理第四章
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
§4.3.1 调制信道模型
3
3
注意:从上述编码信道模型可以看出,数字序列的传输有时是不可靠 的。因此,如何在不可靠的信道中实现高效的可靠通信是通信理论研 究的一个主要内容。
§4.4
恒参/随参信道特性 对信号传输的影响
恒参信道 特性及其对信号传输的影响
线性时不变系统
特点:传输特性随时间缓变或不变。 举例:各种有线信道、卫星信道…
§4.2
有线信道
利用人造的传导或光信号的媒介来传输信号; e.g. 明线 对称电缆 同轴电缆 光纤
明线
➢ 平行架设在电线杆上的架空线路 ➢ 易受天气和外界干扰的影响
对称电缆
有线信道
由多对
双绞线组成 非屏蔽双绞线(UTP)
(便宜、易弯曲、易安装)
屏蔽双绞线(STP)
(可减少噪声干扰)
同轴电缆
在不考虑噪声的前提下,理想恒参信道是一种特殊类型的信道,可以实现
信号的无失真传输
发送信号——接收信号的关系为:
发送设备 发送端
s(t)
微波中继
无线信道
卫星中继
无线信道
地面站
地面站
地球
散射通信
无线信道
有效散射区域
地球
对流层散射通信
流星余迹散射
无线信道
流星余迹
特性: 高度80 ~ 120 km,长度15 ~ 40 km 存留时间:小于1秒至几分钟
频率: 30 ~ 100 MHz 距离: 1000 km以上 用途: 低速存储、高速突发、断续传输
模型:用 条件转移概率来描述
编码信道
二进制 无记忆 编码信道模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
正确
错误
衡量该信道优劣的重要参数指标:
误码率: Pe P(0)P(1/ 0) P(1)P(0 /1)
模型:
0
发1 送 端
2
0
1接 收 端
2
四进制 无记忆 编码信道
天波 sky- wave
频率:2~30 MHz 特性:被电离层反射 距离:< 4000 km(一次反射距离) 用于:远程、短波通信
无线信道
传播路径 地波传播方式
传播路径
天波传播方式
视线传播 line-of-sight
(1)不能被电离层反射 (2)沿地面绕射能力也 很小
d
d
频率: > 30 MHz 特性:直线传播、穿透电离层
信号输入输出关系:
r(t) so (t) n(t)
加性噪声 始终存在
时域表达式: so (t) h(t, ) si (t)
频域表达式: So () H ()Si ()
傅里叶变换特性, 卷积→乘积
调制信道对信号的影响程度取决于H()与n(t)的特性 导致的结果:会使信号产生失真、延时和衰落
r(t) si (t) n(t)
加性高斯白噪声信道模型 即:描述通信信号只有加 性噪声影响的实际物理信 道,是一种理想信道
§4.3.2 编码信道模型
➢ 编码信道是一种数字信道或离散信道,
编
其输入和输出都是离散信号(数字序 码
列)
器
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
h
D
发射
天线 r
r
用途:卫星和外太空通信
无线信道
传播途径
接收 天线
超短波及微波通信
视线传播方式
距离:与天线高度有关
h D2 D2 (m) 8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信
利用电磁波在空间的传播来实现的
地球大气层的结构:
电离层
平流层
对流层
地面
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0பைடு நூலகம்km
电磁波的传播方式:
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千千米 用于:调幅(AM)广播
不同的物理信道具有不同的特性H() = 常数(可取1)
调制信道分为: (依据冲激响应随时间变化的情况) 恒参信道 ——信道的冲激响应随时间 变化缓慢,或者不变 (等效为线性是不变滤波器) 随参信道 ——信道的冲激响应随时间较快变化 (等效为线性时变率滤波器)
若恒参信道,随参信道 的特性不理想,会影响 信号的无失真传输
模型:
叠加有噪声的线性时变/时不变网络:
基本模型:
编 码 器
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
调制信道
Si (t) :发送信号 r(t) :接收信号 n(t) :加性高斯白噪声
h(t, ) :信道的冲激响应
共性:
➢ 有一对(或多对)输入端和输出端 ➢ 大多数信道都满足线性叠加原理 ➢ 对信号有固定或时变的延迟和损耗 ➢ 无信号输入时,仍可能有输出(噪声)
西安电子科技大学 通信工程学院
课件制作:曹丽娜
信道的定义
通信系统中的信道是指发送设备到接收设备之间信号传 输的通道,是通信系统的重要组成部分
本章内容:
第4章 信道
信道分类 信道模型 恒参/随参信道特性对信号传输的影响 信道噪声 信道容量
按照传输媒介的不同
概述
信道的定义与分类
无线信道 ——自由空间或大气层 有线信道 ——明线、电缆、光纤
有线信道
信道频带在几百MHz至1GHz左右 主要应用: 长途通信干线,有线电视等
基带同轴电缆:
50Ω,多用于数字基带传输 速率可达10Mb/s 传输距离<几千米
宽带(射频)同轴电缆:
75Ω,用于传输模拟信号 多用于有线电视(CATV)系统 传输距离可达几十千米
有线信道
光纤
有线信道
按照系统模型中研究对象的不同:
编
调制信道
码 器
——研究调制/解调问题
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
编码信道
——研究编码/译码问题 恒参信道
按照信道中冲击响 应是否随时间变化
——特性参数变化缓慢,视为恒定值 随参信道
——特性参数随时间变化
§4.1
无线信道
光作为一种特殊的电磁波, 在人造介质(光纤)中传播, 实现大容量,高可靠性的通信 主要应用:
电信网和移动网的骨干网
单模阶跃折射率光纤
光纤结构示意图
优点
缺点 应用
有线信道
§4.3
信道数学模型
按照系统模型中研究对象的不同:
调制信道 ——研究调制/解调问题 编码信道 ——研究编码/译码问题
§4.3.1 调制信道模型
3
3
注意:从上述编码信道模型可以看出,数字序列的传输有时是不可靠 的。因此,如何在不可靠的信道中实现高效的可靠通信是通信理论研 究的一个主要内容。
§4.4
恒参/随参信道特性 对信号传输的影响
恒参信道 特性及其对信号传输的影响
线性时不变系统
特点:传输特性随时间缓变或不变。 举例:各种有线信道、卫星信道…
§4.2
有线信道
利用人造的传导或光信号的媒介来传输信号; e.g. 明线 对称电缆 同轴电缆 光纤
明线
➢ 平行架设在电线杆上的架空线路 ➢ 易受天气和外界干扰的影响
对称电缆
有线信道
由多对
双绞线组成 非屏蔽双绞线(UTP)
(便宜、易弯曲、易安装)
屏蔽双绞线(STP)
(可减少噪声干扰)
同轴电缆
在不考虑噪声的前提下,理想恒参信道是一种特殊类型的信道,可以实现
信号的无失真传输
发送信号——接收信号的关系为:
发送设备 发送端
s(t)
微波中继
无线信道
卫星中继
无线信道
地面站
地面站
地球
散射通信
无线信道
有效散射区域
地球
对流层散射通信
流星余迹散射
无线信道
流星余迹
特性: 高度80 ~ 120 km,长度15 ~ 40 km 存留时间:小于1秒至几分钟
频率: 30 ~ 100 MHz 距离: 1000 km以上 用途: 低速存储、高速突发、断续传输
模型:用 条件转移概率来描述
编码信道
二进制 无记忆 编码信道模型
P(0/0) + P(1/0) = 1
P(1/1) + P(0/1) = 1
正确
错误
衡量该信道优劣的重要参数指标:
误码率: Pe P(0)P(1/ 0) P(1)P(0 /1)
模型:
0
发1 送 端
2
0
1接 收 端
2
四进制 无记忆 编码信道
天波 sky- wave
频率:2~30 MHz 特性:被电离层反射 距离:< 4000 km(一次反射距离) 用于:远程、短波通信
无线信道
传播路径 地波传播方式
传播路径
天波传播方式
视线传播 line-of-sight
(1)不能被电离层反射 (2)沿地面绕射能力也 很小
d
d
频率: > 30 MHz 特性:直线传播、穿透电离层
信号输入输出关系:
r(t) so (t) n(t)
加性噪声 始终存在
时域表达式: so (t) h(t, ) si (t)
频域表达式: So () H ()Si ()
傅里叶变换特性, 卷积→乘积
调制信道对信号的影响程度取决于H()与n(t)的特性 导致的结果:会使信号产生失真、延时和衰落
r(t) si (t) n(t)
加性高斯白噪声信道模型 即:描述通信信号只有加 性噪声影响的实际物理信 道,是一种理想信道
§4.3.2 编码信道模型
➢ 编码信道是一种数字信道或离散信道,
编
其输入和输出都是离散信号(数字序 码
列)
器
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
h
D
发射
天线 r
r
用途:卫星和外太空通信
无线信道
传播途径
接收 天线
超短波及微波通信
视线传播方式
距离:与天线高度有关
h D2 D2 (m) 8r 50
D 为收发天线间距离(km)
例如 设收发天线的架设 高度均为40 m,则最 远通信距离为:
D = 44.7 km
微波中继(微波接力) 卫星中继(静止卫星、移动卫星) 平流层通信
利用电磁波在空间的传播来实现的
地球大气层的结构:
电离层
平流层
对流层
地面
对流层:约 0 ~10 km 平流层:约 10~60 km 电离层:约 60~400 km
60 km
10 km 0பைடு நூலகம்km
电磁波的传播方式:
地波 ground- wave
频率: < 2 MHz 特性:有绕射能力 距离:数百或数千千米 用于:调幅(AM)广播
不同的物理信道具有不同的特性H() = 常数(可取1)
调制信道分为: (依据冲激响应随时间变化的情况) 恒参信道 ——信道的冲激响应随时间 变化缓慢,或者不变 (等效为线性是不变滤波器) 随参信道 ——信道的冲激响应随时间较快变化 (等效为线性时变率滤波器)
若恒参信道,随参信道 的特性不理想,会影响 信号的无失真传输
模型:
叠加有噪声的线性时变/时不变网络:
基本模型:
编 码 器
调 制 器
发 转 换 器
媒 质
收 转 换 器
解 调 器
译 码 器
调制信道
Si (t) :发送信号 r(t) :接收信号 n(t) :加性高斯白噪声
h(t, ) :信道的冲激响应
共性:
➢ 有一对(或多对)输入端和输出端 ➢ 大多数信道都满足线性叠加原理 ➢ 对信号有固定或时变的延迟和损耗 ➢ 无信号输入时,仍可能有输出(噪声)