半导体基础知识

合集下载

半导体基础知识

半导体基础知识
D
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4

半导体基础知识

半导体基础知识

设VCC = 5V 加到A,B的 VIH=3V
VIL=0V 二极管导通时 VDF=0.7V
A BY 0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
规定2.3V以上为1 0V以下为0
A BY 0 00 0 11 1 01 1 11
二极管构成的门电路的缺点
• 电平有偏移 • 带负载能力差
第三章 门电路
3.1 概述 • 门电路:实现基本运算、复合运算的单元电路,如
与门、与非门、或门 ······
门电路中以高/低电平表 示逻辑状态的1/0
获得高、低电平的基本原理
高/低电平都允许有 一定的变化范围
正逻辑:高电平表示1,低电平表示0 负逻辑:高电平表示0,低电平表示1
3.2半导体二极管门电路
T1 , T2同时导通
若T1 , T2参数完全对称,VI
1 2
VDD时,VO
1 2 VDD
三、输入噪声容限
在VI 偏离VIH 和VIL的一定范围内,VO 基本不变; 在输出变化允许范围内,允许输入的变化范围称为输入噪声容限
VNH VOH(min) VIH (min) VNL VIL(max) VOL(max)
• 硅管,0.5 ~ 0.7V • 锗管,0.2 ~ 0.3V
• 近似认为:
• VBE < VON iB = 0 • VBE ≥ VON iB 的大小由外电路电压,电阻决定
iB
VBB VBE Rb
三极管的输出特性
• 固定一个IB值,即得一条曲线, 在VCE > 0.7V以后,基本为水平直线
iC f (VCE )
iC f (VCE )
三、双极型三极管的基本开关电路

半导体的基本知识

半导体的基本知识

半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。

半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。

以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。

绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。

半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。

2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。

3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。

电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。

能隙:价带和导带之间的能量差称为能隙。

半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。

4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。

杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。

掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。

5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。

这是许多半导体器件的基础,如二极管和晶体管。

6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。

晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。

集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。

7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。

光电子学:光电二极管、激光二极管等。

太阳能电池:利用半导体材料的光伏效应。

这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。

半导体基础知识

半导体基础知识

符号
1
+ W78XX +
2
_
3
_
W79XX
1 2
3
1.6.3 W78XX、W79XX系列 集成稳压器的使用方法
一、 组成输出固定电压的稳压电路
1. W78XX系列
+
1
W78XX
Co
2
+
Uo = 12V
改善负载 的暂态响 应,消除 高频噪声
注意 3 Ui 输入 Ci 电压 极性 抵消输入 长接线的 电感效, 防止自激 Ci : 0.1~1F
IR + +
R UR
IL

IZ RL
2、引起电压不 稳定的原因
UI
电源电压的波动 负载电流的变化
DZ
稳压二极管
+ UL

将微小的电压变化转 换成较大的电流变化
三端稳压器封装及电路符号
封装
塑料封装
金属封装
79LXX
W7805 1 3 2
W7905 1 3 2
78LXX
1
2
3
UI GND UO GND UI UO
空穴
负离子
电子
正离子
一、载流子的浓度差引 N型材料 起多子的扩散扩散使 交界面处形成空间电 荷区(也称耗尽层)
内电场方向
二、空间电荷区特点
基本无无载流子,仅 有不能移动的离子
三、扩散和漂移达到动态平衡
扩散电流= 漂移电流 总电流=0 利于少子的漂移
形成内电场
阻止多子扩散进行
1.2.2 PN结的单向导电性
外界条件决定半导体内部 载流子数量
三、本征半导体: 纯净的半导体

模电第一章半导体基础知识

模电第一章半导体基础知识

杂质能3
对电子的影响
施主杂质能级向导带提供 电子,使半导体呈现n型 导电性。
对空穴的影响
受主杂质能级接受价带的 电子成为空穴,使半导体 呈现p型导电性。
影响程度
杂质浓度越高,对电子和 空穴的影响越显著,半导 体的导电性能也越强。
06
半导体中的光电效应
光电效应的原理和分类
光电器件的特性
光电器件的主要特性包括光谱响应、光电灵敏度、响应速度和噪声等,这些特性决定了光电器件的应用范围和效 果。
光电器件的应用和发展趋势
光电器件的应用
光电器件在多个领域都有应用,如光电探测、光电转换、光通信等。
光电器件的发展趋势
随着科技的不断进步和应用需求的不断提高,光电器件的发展趋势包括高灵敏度、高速响应、高稳定 性、多功能化等。
半导体的热学性质
热导率
半导体的热导率取决于其材料 和结构,热导率越高,导热性
能越好。
热容
半导体的热容取决于其材料和 温度,它决定了半导体的耐热 性能。
热膨胀
半导体的热膨胀系数决定了其 在温度变化时的尺寸变化,对 器件的稳定性有影响。
温差电动势率
半导体的温差电动势率是指在 温度梯度下产生的电动势,它
05
半导体中的掺杂和杂质能级
掺杂的概念和分类
掺杂
在半导体材料中人为地加入某种元素,以改变其导电性能的过程。
分类
施主掺杂、受主掺杂、中性杂质掺杂。
杂质能级的形成和特性
形成
杂质原子在半导体晶体中占据了特定 的位置,这些位置上的电子能级与晶 体中的其他电子能级不同,形成了杂 质能级。
特性
杂质能级位于禁带中,其能量位置取 决于掺杂元素的种类和浓度,对半导 体的导电性能有重要影响。

半导体基础知识

半导体基础知识
半导体基础知识 1.什么是导体、绝缘体、半导体?
容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。 不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。 所谓半导体是指导电能力介于导体和绝缘体之间的物质。如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。半 导体大体上可以分为两类,即本征半导体和杂质半导体。本征半导体是指纯净的半导体,这里的纯净包括两个意思, 一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。本征半导体的特点是导 电能力极弱,且随温度变化导电能力有显著变化。杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质) 所形成的半导体。杂质半导体有两类:N 型半导体和 P 型半导体。
多晶则是有多个单晶晶粒组成的晶体,在其晶界处的颗粒间的晶体学取向彼此不同,其周期性与规则性也在此 处受到破坏。
7.常用半导体材料的晶体生长方向有几种?
我们实际使用单晶材料都是按一定的方向生长的,因此单晶表现出各向异性。单晶生长的这种方向直接来自晶 格结构,常用半导体材料的晶体生长方向是<111>和<100>。
29.半导体芯片制造对厂房洁净度有什么要求?
空气中的一个小尘埃将影响整个芯片的完整性、成品率,并影响其电学性能和可*性,所以半导体芯片制造工艺需 在超净厂房内进行。1977 年 5 月,原四机部颁布的《电子工业洁净度等级试行规定》如下:
电子工业洁净度等级试行规定
洁净室等 洁净度 温度(℃) 相对湿度 正压值 噪声
电阻率 ρ=1/σ,单位为 Ω*cm
9.PN 结是如何形成的?它具有什么特性?
如果用工艺的方法,把一边是 N 型半导体另一边是 P 型半导体结合在一起,这时 N 型半导体中的多数载流子电子 就要向 P 型半导体一边渗透扩散。结果是 N 型区域中邻近 P 型区一边的薄层 A 中有一部分电子扩散到 P 型区域中去了, 如图 2-6 所示(图略)。薄层 A 中因失去了这一部分电子 而带有正电。同样,P 型区域中邻近 N 型区域一边的薄层 B 中有一部分空穴扩散到 N 型区域一边去了,如图 2-7 所示(图略)。结果使薄层 B 带有负电。这样就在 N 型和 P 型两 种不同类型半导体的交界面两侧形成了带电薄层 A 和 B(其中 A 带正电,B 带负电)。A、B 间便产生了一个电场, 这个带电的薄层 A 和 B,叫做 PN 结,又叫做阻挡层。

半导体基础知识

半导体基础知识

现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。

半导体基础知识

半导体基础知识

一.名词解释:1..什么是半导体?半导体具有那些特性?导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。

可制作热敏元件。

光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。

可制作光敏元件。

掺杂性:导电能力受杂质影响极大,称为掺杂性。

2.典型的半导体是SI和Ge , 它们都是四价元素。

Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是?。

3.半导体材料中有两种载流子,电子和空穴。

电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。

P型半导体主要空穴导电,N型半导体主要靠电子导电。

4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。

5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。

惰性气体,橡胶等。

6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。

其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。

Si,Ge等四价元素。

7. 本征半导体:无杂质的具有稳定结构的半导体。

8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。

9.晶体结构:简单立方,体心立方,面心立方,六角密积,NACL结构,CSCL结构,金刚石结构。

10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。

11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。

常见的晶体有硅,锗,铜,铅等。

常见的非晶体有玻璃,塑料,松香等。

晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。

半导体基础知识

半导体基础知识

半导体基础知识 Prepared on 24 November 2020一.名词解释:1..什么是半导体半导体具有那些特性导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。

可制作热敏元件。

光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。

可制作光敏元件。

掺杂性:导电能力受杂质影响极大,称为掺杂性。

2.典型的半导体是SI和Ge , 它们都是四价元素。

Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是。

3.半导体材料中有两种载流子,电子和空穴。

电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。

P型半导体主要空穴导电, N型半导体主要靠电子导电。

4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。

5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。

惰性气体,橡胶等。

6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。

其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。

Si,Ge等四价元素。

7. 本征半导体:无杂质的具有稳定结构的半导体。

8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。

9.晶体结构:简单立方,体心立方,面心立方,六角密积, NACL结构,CSCL结构,金刚石结构。

10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。

11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。

半导体基础知识

半导体基础知识

半导体基础知识1. 半导体的概念与分类1.1 半导体的定义半导体是一种电导率介于导体和绝缘体之间的材料,其电导率会随着外界条件(如温度、光照、掺杂等)的变化而变化。

常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。

1.2 半导体的分类根据半导体材料的类型,可分为元素半导体和化合物半导体。

•元素半导体:如硅(Si)、锗(Ge)等。

•化合物半导体:如砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。

根据导电类型,半导体可分为n型半导体和p型半导体。

•n型半导体:掺杂有五价元素(如磷、砷等)的半导体材料。

•p型半导体:掺杂有三价元素(如硼、铝等)的半导体材料。

2. 半导体物理基础2.1 能带结构半导体的导电性能与其能带结构密切相关。

一个完整的周期性晶体结构可以分为价带、导带和禁带。

•价带:充满电子的能量状态所在的带,电子的能量低于价带顶。

•导带:电子的能量高于导带底时,可以自由移动的状态所在的带。

•禁带:价带和导带之间的区域,电子不能存在于这个区域。

2.2 掺杂效应掺杂是向半导体材料中引入少量其他元素,以改变其导电性能的过程。

掺杂分为n型掺杂和p型掺杂。

•n型掺杂:向半导体中引入五价元素,如磷、砷等,使得半导体中的自由电子浓度增加。

•p型掺杂:向半导体中引入三价元素,如硼、铝等,使得半导体中的空穴浓度增加。

2.3 载流子在半导体中,自由电子和空穴是载流子,负责导电。

n型半导体中的载流子主要是自由电子,而p型半导体中的载流子主要是空穴。

2.4 霍尔效应霍尔效应是研究半导体中载流子运动的一种重要物理现象。

当半导体中的载流子在外加磁场作用下发生偏转时,会在半导体的一侧产生电势差,即霍尔电压。

3. 半导体器件3.1 半导体二极管半导体二极管(DIODE)是一种具有单向导电性的半导体器件。

它由p型半导体和n型半导体组成,形成PN结。

当外界电压正向偏置时,二极管导通;反向偏置时,二极管截止。

(完整word版)半导体基础知识

(完整word版)半导体基础知识

1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。

电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。

绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。

绝缘体导电性:极差。

如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。

电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。

载流子:运载电荷的粒子称为载流子。

导体电的特点:导体导电只有一种载流子,即自由电子导电。

本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。

半导体基础知识详细

半导体基础知识详细

半导体基础知识详细半导体是一种电子特性介于导体和绝缘体之间的材料。

它的电阻率介于导体和绝缘体之间,而且在外界条件下可以通过控制电场、光照、温度等因素来改变其电子特性。

半导体材料广泛应用于电子器件、太阳能电池、光电器件、传感器等领域。

1. 半导体的基本概念半导体是指在温度为绝对零度时,其电阻率介于导体和绝缘体之间的材料。

在室温下,半导体的电阻率通常在10^-3到10^8Ω·cm之间。

半导体的导电性质可以通过控制材料中的杂质浓度来改变,这种过程称为掺杂。

2. 半导体的晶体结构半导体的晶体结构分为两种:共价键晶体和离子键晶体。

共价键晶体是由原子间共享电子形成的晶体,如硅、锗等。

共价键晶体的晶格结构稳定,电子在晶格中移动时需要克服较大的势垒,因此其导电性较差。

离子键晶体是由正负离子间的静电作用形成的晶体,如氯化钠、氧化镁等。

离子键晶体的晶格结构较稳定,电子在晶格中移动时需要克服较小的势垒,因此其导电性较好。

3. 半导体的能带结构半导体的能带结构是指半导体中电子能量的分布情况。

半导体的能带结构分为价带和导带两部分。

价带是指半导体中最高的能量带,其中填满了价电子。

导带是指半导体中次高的能量带,其中没有或只有很少的电子。

当半导体中的电子受到外界激发时,可以从价带跃迁到导带,形成电子空穴对。

4. 半导体的掺杂半导体的掺杂是指向半导体中加入少量的杂质原子,以改变其电子特性。

掺杂分为n型和p 型两种。

n型半导体是指向半导体中掺入少量的五价杂质原子,如磷、砷等。

这些杂质原子会向半导体中释放一个电子,形成自由电子,从而提高半导体的导电性能。

p型半导体是指向半导体中掺入少量的三价杂质原子,如硼、铝等。

这些杂质原子会从半导体中吸收一个电子,形成空穴,从而提高半导体的导电性能。

5. 半导体器件半导体器件是利用半导体材料制造的电子器件,包括二极管、晶体管、场效应管、集成电路等。

二极管是一种由n型半导体和p型半导体组成的器件,具有单向导电性。

半导体基础知识

半导体基础知识

外延基础知识一、基本概念能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。

能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。

(晶体中电子能量状态可用能带描述)导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。

价带:由价电子能级分裂形成的能带,称为价带。

(价带可能是满带,也可能是电子未填满的能带)直接带隙:导带底和价带顶位于K空间同一位置。

间接带隙:导带底和价带顶位于K空间不同位置。

同质结:组成PN结的P型区和N型区是同种材料。

(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN)异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。

(如蓝绿光中:GaN上生长Al GaN)超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。

量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。

二、半导体1.分类:元素半导体:Si 、Ge化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC2.化合物半导体优点:a.调节材料组分易形成直接带隙材料,有高的光电转换效率。

(光电器件一般选用直接带隙材料)b.高电子迁移率。

c.可制成异质结,进行能带裁减,易形成新器件。

3.半导体杂质和缺陷杂质:替位式杂质(有效掺杂)间隙式杂质缺陷:点缺陷:如空位、间隙原子线缺陷:如位错面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错4.外延技术LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。

(普亮LED常用此生长方法)MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。

半导体基本知识

半导体基本知识
PN结的形成过程如图所示。由图(a)可知,交界面两侧明显存在载流子的浓 度差,N区的多子(电子)必然向P区扩散,并与交界面附近P区的空穴复合,在N 区留下一层不能移动的正离子;同样,P区的多子(空穴)也会向N区扩散,并与 交界面附近的N区电子复合而消失,在P区留下一层不能移动的负离子。扩散的结 果是使交界面出现了空间电荷区,如图(b)所示。
4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。 空穴的出现是半导体导电区别于导体导电的一个主要特征。
如果在本征半导体中掺入微量杂质(其他元素),形成杂质半导体,其导电 能力会显著变化。根据掺入杂质的不同,可以分为P型半导体和N型半导体。
在本征半导体硅(或锗)中掺入微量的 五价元素,如磷、砷、锑等,就形成N型半 导体。杂质原子替代了晶格中的某些硅原子, 它的四个价电子和周围四个硅原子组成共价 键,而多出的一个价电子很容易受激发脱离 原子核的束缚成为自由电子,但并不同时产 生空穴,相应的五价元素的原子因失去一个 电子而成为不能自由移动的带正电粒子—— 正离子,由于杂质原子可以提供电子,故也 称施主原子,如右图所示。
在本征半导体硅(或锗)中掺入微量的 三价元素,如硼、铝、铟等,就形成P型半导 体。杂质原子替代了晶格中的某些硅原子, 它的三个价电子和周围四个硅原子组成共价 键,而第四个共价键因缺少一个价电子出现 空位,由于空位的存在,使邻近共价键内的 电子只需很小的激发能便能填补这个空位, 相应的三价元ቤተ መጻሕፍቲ ባይዱ的原子因得到一个电子而成 为不能自由移动的带负电粒子——负离子, 由于杂质原子得到电子,故也称为受主原子, 如右图所示。
这种杂质半导体的多子是空穴,因空穴 带正(positive)电,所以称为P型半导体。P 型半导体中空穴的浓度比电子的浓度高得多。 当在其两端加电压时,主要由空穴定向移动 形成电流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章、半导体器件
1、为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?
制成本征半导体是为了讲自然界中的半导体材料进行提纯,然后人工掺杂,通过控制掺杂的浓度就可以控制半导体的导电性,以达到人们的需求
2、为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?
导致半导体性能温度稳定性差的主要原因有二:β
(1)禁带宽度与温度有关(一般,随着温度的升高而变窄);(2)少数载流子浓度与温度有关(随着温度的升高而指数式增加)。

多子。

3、为什么半导体器件有最高工作频率?
这是因为半导体器件的主要组成单元是PN结,PN结的显著特征是单向导电性,因为PN结的反向截止区是由耗尽层变宽导致截止,而这个过程是需要一定的时间的,如果频率太高导致时间周期小于截止时间就可能造成PN结失去单向导电性,导致半导体器件不能正常工作,所以半导体器件有最高工作频率的限制。

4、整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。

5、为什么基极开路集电极回路会有穿透电流?
虽然集电结是反偏的,虽然基极是开路的,但是,晶体管芯,是块半导体材料。

半导体材料,又不是绝缘体,加上电压,就有微弱的电流,这很正常。

从集电区向基区出现的“反向饱和电流Icbo”,在基极没有出路,就流向发射极了。

这一流动,就形成了一个Ib。

这个Ib,就引出了一个贝塔倍的Ic; 这个Ib和Ic之和,就是穿透电流Iceo,等于(1+贝塔)Icbo。

6、
展开。

相关文档
最新文档