统计学贾俊平第10章 方差分析

合集下载

统计学第10章方差分析教材

统计学第10章方差分析教材

第10章方差分析适用:多个均值是否相等的检验(分类数据与数值型数据)10.1 方差分析引论例消费者与产品生产者、销售者或服务的提供者之间经常发生纠纷。

当纠纷发生后,消费者通常会向消费者协会投诉。

为了对几个行业的服务质量进行评价,消费者协会在零售业、旅游业、航空公司、家电制造业分别抽取了一些企业作为样本。

其中零售业7家、旅游业6家、航空公司5家、家电制造业5家。

每个行业所抽取的这些企业,假定他们在服务对象、服务内容、企业规模等方面基本相同。

然后统计最近一年中消费者对这23家企业的投诉次数,结果如下表:消费者协会想了解这几个行业之间的服务质量是否有显著性差异。

10.1.1 分析服务质量 显著性差异 ↓ ↓ 投诉次数 均值不相等转化为数学表达:01234:H μμμμ=== 没有显著性差异 1:H 上面的等式不全相等 有显著性差异一般假设检验的解决方法:121314232434,,,,,μμμμμμμμμμμμ====== 更好的方法:方差分析没有显著性差异↔不同的行业服务质量一样,行业对服务质量没有显著影响有显著性差异 不同的行业服务质量不一样,行业对服务质量有显著影响从行业对服务质量影响的角度来分析平均服务质量的差异问题术语:因素:一个独立的随机变量,是方差分析研究的对象————企业所属行业类型水平:因素的内容————各个行业: 零售业、旅游业、航空公司、家电制造10.1.3 方差分析的原理:1 观察值之间差异的原因A 由于选取样本的随机性引起的差异B 由于因素中的不同水平形成的差异——系统性差异(行业不同,服务质量不同)2 水平内部与水平之间差异的类型A 水平内部的差异只包含随机性差异(同行业企业服务质量的差异)B 水平之间的差异既包含随机性差异又包含系统性差异(不同行业企业服务质量的差异)3 原理如不同的水平对结果没有影响则水平之间的差异应只包含随机性差异与水平内部的差异应该非常接近反之如不同的水平对结果产生影响则水平之间的差异应既包含随机性差异又包含系统性差异应该大于水平内部的差异所以,可以通过比较这两个差异的大小当比较的结果大于某个临界值时,就可以判定水平之间包含系统性差异,即水平对结果有显著影响——均值不全相等10.1.4 技术问题选择什么样的指标来衡量这两个差异与比较的结果差异:离散——离差平方和差异的比较:差、商——考虑统计量的分布与临界值方差分析的基本假定① 每个总体都服从正态分布,即对于因素的每一个水平,其观测值都是来自正态总体的简单随机样本; ② 各个总体的方差相等 ③ 观测值是独立的——独立等方差的正态总体实际应用中近似满足即可10.2 单因素方差分析单因素方差分析:分析只针对一个因素进行 企业类型 双因素方差分析:分析针对两个因素进行企业类型 企业文化10.2.1分析步骤1 提出假设012:k H μμμ=== 因素(自变量)对结果(因变量)没有显著性差异1:(1,2)iH i k μ=不全相等 自变量对因变量有显著性差异上例:01234:H μμμμ=== 不同行业对服务质量没有显著性差异 1:H 上面的等式不全相等 不同行业对服务质量有显著性差异2 计算均值① 计算各样本的均值设从第i 个总体中抽取一个样本容量为i n 的简单随机样本, 令i x 为其均值,则11(1,2,)in i ijj ix xi k n ===∑其中,ij x 为第i 个总体的第j 个观察值k 为因素水平的个数(总体的个数)上例:11111576644497n ij j x x n =+++===∑,248x =,335x =,459x =②计算全部观测值的总均值11112,in k kiji ii j i k xn xx n n n n nn======+++∑∑∑上例:576649775847.86956523x ++++==3计算各误差平方和 A 组内平方和SSE是每个水平或组的各样本数据与其组均值误差的平方和 反映了各个样本观测值的离散状况11()in kij i i j SSE x x ===-∑∑2上例:11()()()()()()()()()()()()()in kij i i j SSE x x ===-=-+-+-=-+-+-=-+-+-=-+-+-=∑∑22222222222225749664944496848394851483135493540354459515958592708B 组间平方和SSA是各组均值与总平均的误差平方和 反映各组的差异()21ki i i SSA n x x ==-∑上例:()21(.)(.)(.)(.).ki i i SSA n x x ==-=⨯-+⨯-+⨯-+⨯-=∑2222749478695656484786956553547869565559478695651456608696C 总平方和SST是全部观测值与总平均的误差平方和211()in k ij i j SST x x ===-∑∑上例:211()(.)(.)(.).in kij i j SST x x ===-=-+-++-=∑∑2225747869565664786956558478695654164608696SST SSE SSA =+4计算统计量 定理:当各总体满足方差分析的三个基本假设时,有1,k X X ,SSE 相互独立且22()SSEn k χσ~-当012:k H μμμ===成立时,22(1)SSAk χσ~-所以,为了检验012:k H μμμ===取检验统计量为()()/-1(-1,-)/-SSA k MSA F F k n k MSE SSE n k ==上例:()/-1./().MSA SSA k ==-=145660869641485536232 ()/-/().MSE SSE n k ==-=2708234142526316 ...MSA F MSE ===48553623234066431425263165统计决策:大于 拒绝原假设 —————— 右单侧检验 所以当 (1,)F F k n k α>--,拒绝原假设当 (1,)F F k n k α<--,不能拒绝原假设 上例:临界值0.050.05(41,234)(3,19) 3.13F F --== 因为3.41>3.13,所以拒绝原假设,即认为服务质量均值有显著性差异,行业类型对服务质量有显著性影响。

贾俊平《统计学》课后习题及详解(方差分析)【圣才出品】

贾俊平《统计学》课后习题及详解(方差分析)【圣才出品】

第10章方差分析一、思考题1.什么是方差分析?它研究的是什么?答:方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。

方差分析是检验多个总体均值是否相等的统计方法,但本质上它所研究的是分类型自变量对数值型因变量的影响,例如,变量之间有没有关系、关系的强度如何等。

2.要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?答:方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。

检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的t检验。

随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加(并非均值真的存在差别)。

而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

3.方差分析包括哪些类型?它们有何区别?答:(1)根据所分析的分类自变量的多少,方差分析可分为单因素方差分析和双因素方差分析。

(2)区别:①单因素方差分析研究的是一个分类型自变量对一个数值型因变量的影响;②双因素方差分析研究的是两个分类变量对数值型因变量的影响。

4.方差分析中有哪些基本假定?答:方差分析中有三个基本假定:(1)每个总体都应服从正态分布。

也就是说,对于因素的每一个水平,其观测值是来自正态分布总体的简单随机样本。

(2)各个总体的方差σ2必须相同。

也就是说,对于各组观察数据,是从具有相同方差的正态总体中抽取的。

(3)观测值是独立的。

5.简述方差分析的基本思想。

答:方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

6.解释因子和处理的含义。

答:在方差分析中,所要检验的对象称为因素或因子;因素的不同表现称为水平或处理。

例如:要分析行业(零售业、旅游业、航空公司、家电制造业)对投诉次数是否有显著影响,则这里的“行业”是要检验的对象,称其为“因素”或“因子”;零售业、旅游业、航空公司、家电制造业是“行业”这一因素的不同表现,称其为“水平”或“处理”。

统计学课后题答案(袁卫庞皓曾五一贾俊平)

统计学课后题答案(袁卫庞皓曾五一贾俊平)

第1章绪论5.简要说明抽样误差和非抽样误差。

答:统计调查误差可分为非抽样误差和抽样误差。

非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。

抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。

6.一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。

因此,他们开始检查供货商的集装箱,有问题的将其退回。

最近的一个集装箱装的是2 440加仑的油漆罐。

这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。

装满的油漆罐应为4.536 kg。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。

答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。

7.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。

这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。

假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。

要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。

答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。

第2章统计数据的描述思考题4. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。

常用的指标有均值、中位数、众数、极差、方差、标准差、离散系数、偏态系数和峰度系数。

5. 怎样理解均值在统计中的地位?答:均值是对所有数据平均后计算的一般水平的代表值,数据信息提取得最充分,具有良好的数学性质,是数据误差相互抵消后的客观事物必然性数量特征的一种反映,在统计推断中显示出优良特性,由此均值在统计中起到非常重要的基础地位。

统计学(贾俊平版)第十章答案

统计学(贾俊平版)第十章答案

统计学(贾俊平版)第十章答案第十章习题H0:三个总体均值之间没有显著差异。

H1: 三个总体均值之间有显著差异。

方差分析:单因素方差分析SUMMARY组123观测数543求和平均方差方差分析差异源SS组间组内总计答:方差分析可以看到,于P=>,所以接受原假设H0。

说明了三个总体均值之间没有显著差异。

H0:五个个总体均值之间相等。

H1: 五个总体均值之间不相等。

方差分析:单因素方差分析SUMMARY组12345观测数35456求和3750488078平均方差方差分析差异源SS组间组内总计答:方差分析可以看到,于P=H0:四台机器的装填量相等。

H1: 四台机器的装填量不相等方差分析:单因素方差分析SUMMARY 组1234观测数4654求和平均方差方差分析差异源SS组间组内总计答:方差分析可以看到,于P=H0:不同层次管理者的满意度没有差异。

H1: 不同层次管理者的满意度有差异. 方差分析:单因素方差分析SUMMARY 组列1列2列3观测数576求和平均方差方差分析差异源SS组间组内总计答:方差分析可以看到,于P= H0:3个企业生产的电池平均寿命之间没有显著差异。

H1: 3个企业生产的电池平均寿命之间有显著差异单因素方差分析V AR00002 组间组内总数多重比较因变量: V AR00002 LSD (I) V AR00001 (J) V AR00001均值差(I-J)- - -****平方和df 均方 F 显著性.000 212 14标准误显著性.000 95% 置信区间下限上限.515 - .000 - - .001 - - .515 - .001*. 均值差的显著性水平为。

答:方差分析可以看到,于P=通过SPSS分析,通过显著性对比可知道A和B以及B和C公司有差异。

H0:不同培训方式对产品组装的时间没有显著影响。

H1: 不同培训方式对产品组装的时间没有显著影响。

方差分析:单因素方差分析SUMMARY组abc观测数998求和平均方差方差分析差异源SS 组间组内总计答:方差分析可以看到,于P=行因素H0:u1=u2=u3=u4=u5H1:ui(i=1,2,3,4,5)不全相等列因素H0:u1=u2=u3 H1:ui(i=1,2,3)不全相等方差分析:无重复双因素分析SUMMARY观测数1323334353dzg555求和平均方差方差分析差异源SS行列误差总计答:根据方差分析,对于行因素,P=对于列因素,p=行因素H0:不同品种对收获量没有显著影响。

第10章单因素方差分析

第10章单因素方差分析

第10章单因素方差分析单因素方差分析(0ne-Way ANOV A),又称一维方差分析,它能够对单因素多个独立样本的均数进行比较,可以用10种检验方法对变量间的均数进行两两比较(即多重比较检验)并给出方差分析表,还可以作出5种类型图形(Type of plots)和2种均数图形(Means plot options)10.1 单因素方差分析的计量资料[例10—1] 某社区随机抽取了30名糖尿病患者、IGT异常人和正常人进行载脂蛋白(mg/dL)测定,结果示于表10—1。

试问3组人群的载脂蛋白测定结果含量是否相同?(倪宗瓒.卫生统计学.第4版,北京:人民卫生出版社,2001.50)本例是一个完全随机设计的单因素方差分析。

已建立SAS数据集文件并保存Sasuser.onewav4。

(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,得到分析家窗口。

(2)单击File-open By SAS Name—Sasuser-0neway4—0K,调入数据文件。

(3)在“分析家”窗口单击Statistics-ANOV A-One way ANOV A,得到图10—1所示对话框。

本例因变量(Dependent)为A(载脂蛋白),单击A—Dependent。

自变量(1ndependent):B(3种人的组别),单击B—Independent 。

图10.1 0ne—way ANOV A:0neway4(单因素方差分析)对话框(4)单击Tests按钮,得到图10—2所示对话框。

在此对话框的ANOV A(F—检验)选项中可进行如下设置。

Analysis of variance,方差分析。

Welch’s variance-weighted ANOV A,威尔奇方差—权重方差分析。

Tests for equal variance,相等方差检验,即方差齐性检验。

Barlett’s test,巴特尼特检验。

统计学第十章(方差分析)

统计学第十章(方差分析)

第十章方差分析一、单项选择题:1.在方差分析中,( )反映的是样本数据与其组平均值的差异。

A.总离差平方和B.组间离差平方和C.抽样误差D.组内离差平方和2.∑∑=⎪⎪⎭⎫⎝⎛k1i 21-j ij n i i x x ——是( )。

A.组内平方和 B.组间平方和C.总离差平方和D.因素B 的离差平方和3.∑∑=⎪⎪⎭⎫⎝⎛k1i 21-j ij n i i x x ——是( )。

A.组内平方和 B.组间平方和 C.总离差平方和D.总方差4.单因素方差分析中,计算F 统计量,其分子与分母的自由度各位( )。

A.k ,nB.k ,n-kC.k-1,n-kD.n-k ,k-15.方差分析基本原理是( )首先提出的。

A.费雪B.皮尔逊C.泰勒D.凯特勒6.组间离差平方和反映的是( )。

A.抽样误差B.系统误差C.随机误差D.总误差7.组内离差平方和反映的是( )。

A.抽样误差B.系统误差C.随机误差D.总误差8.单因素方差分析的对立和假设是( )。

A.μμμk 21===B.差距不显著,,,μμμk 21C.不是全部相等,,,μμμk 21D.全部不相等,,,μμμk 219.单因素方差分析的零假设是( )。

A.μμμk 21===B.差距不显著,,,μμμk 21C.不是全部相等,,,μμμk 21D.全部不相等,,,μμμk 2110.在方差分析中,若F k -n 1,-k 05.0F )(>,则统计推论是( )。

A.各组间的总体均数不全相等B.各组间的总体均数都不相等C.各组间的样本均数都不相等D.各组间的总体方差不全相等11.为研究温度对菌种生产率的影响,将温度控制在三个水平上,则应该使用( )。

A.单因素方差分析B.双因素方差分析C.独立样本t 检验D.三因素方差分析12.为分析学历对收入的影响,调查了50个职工,按学历高低分成四组,使用单因素方差分析,则F 检验临界值为( )。

贾俊平《统计学》第五版第10章 方差分析

贾俊平《统计学》第五版第10章 方差分析

i1 j1
i1
SSA = 76.8455
3)组内平方和 SSE
每个水平或组的各样本数据与其组平均值的离差
平方和
反映每个样本各观察值的离散状况,又称组内离差
平方和
该平方和反映的是随机误差的大小
k ni
2
计算公式为 SSE
xij xi
i1 j1
SSE = 39.084
检验的因素或因子
2. 水平
因素的具体表现称为水平 A1、A2、A3、 A4四种颜色就是因素的水平
3. 观察值
在每个因素水平下得到的样本值 每种颜色饮料的销售量就是观察值
1. 试验
这里只涉及一个因素,因此称为单因素四水平
的试验
2. 总体
因素的每一个水平可以看作是一个总体 比总体如A1、A2、A3、 A4四种颜色可以看作是四个
观察值 (j) 1 2 3 4 5 6 7
消费者对四个行业的投诉次数
零售业
行业( A ) 旅游业 航空公司 家电制造业
57
62
51
70
55
49
49
68
46
60
48
63
45
54
55
69
54
56
47
60
53
55
47
单因素方差分析
(计算结果)
解:设四个行业被投诉次数的均值分别为,1、2 、3、4 ,
• 当这个比值大到某种程度时,就可以说不同水 平之间存在着显著差异
10.1.3 方差分析中的基本假定 1.每个总体都应服从正态分布
• 对于因素的每一个水平,其观察值是来自服从正 态分布总体的简单随机样本。

管理统计学10 第十章 方差分析

管理统计学10 第十章 方差分析

问:不同的方案是否对汽车销售量产生影响。
星蓝海学习网
10.1 方差分析的内容和思想
10.1.1 方差分析的内容
这是一个方差分析问题。即对四种方案下的电话交易频数的均值是否相等进 行检验。 由于汽车是同一厂家生产的,它们的质量、外形设计、价格、内装修等所有
可能影响销售量的因素全部相同,如果检验结果 1,2,3,4
2
(xij - x)
2
(xij x j )
2
(x j x)

SST = SSE+SSA
关键是如何确定各离差平方的自由度:
对总离差平方和(SST)来说,它是n个离差平方之和,共同拥有一个
平均数,也就失去了一个自由度,其自由度应为n—1。因为它只有一
个约束条件,即 SST
(xij - x) 0
星蓝海学习网
10.2 单因素方差分析
10.2.2 F分布与F值的计算
对水平离差平方和(SSA)来说,它是4组水平(即四种不同方案)离差平方
(x j - x)2之和,共同拥有一个平均数,也失去1个自由度,其自由度为4-1。
用r表示组数,则有 r = 4,4-1 = r-1。它也有一个约束条件,即要求:
为了将方差分析的主要过程表现的更清楚,通常把有关计算结果列成方差分 析表,如表10-3所示。
表10-3 方差分析表
星蓝海学习网
10.2 单因素方差分析
10.2.3 样本容量不等下方差分析
进行方差分析时,各个水平下的样本容量可以相同,也可以不同。 进行方差分析时,可以把方差分析的因素放在列的位置,也可以放在行的位 置,但通常放在列的位置。这样与计算机中数据库的结构相一致,便于计算 机处理。

贾俊平的《统计学》(第7版)学习辅导书-章节题库(方差分析)【圣才出品】

贾俊平的《统计学》(第7版)学习辅导书-章节题库(方差分析)【圣才出品】
9.关亍单因素方差分析中的 F 检验( )。[中央财经大学 2011 研] A.拒绝域在 F 分布曲线的右侧 B.F 统计量的样本观测值可能为负值 C.拒绝域在 F 分布曲线的左侧和右侧 D.以上表述都丌对 【答案】A 【解析】在单因素方差分析中,若 F>Fα,则拒绝原假设;若 F<Fα,则丌拒绝原假设。

【解析】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因 变量是否有显著影响。如果分析数据来自相同总体,那么在组间误差中只包含随机误差,而 没有系统误差。反之,如果分析数据来自丌同总体,在组间误差中除了包含随机误差外,还 会包含系统误差。另外,方差分析要求每个总体都应服从正态分布。
10.关亍方差分析,以下说法哪一项更合理?( )[中山大学 2012 研] A.方差分析的目的是分析各组总体方差是否有显著差异 B.方差分析的目的是分析各组总体标准差是否有显著差异 C.方差分析的目的是分析各组总体均值是否有显著差异 D.方差分析的目的是分析各组总体中位数是否有显著差异 【答案】C 【解析】表面上看,方差分析是检验多个总体均值是否相等的统计方法,但本质上它所 研究的是分类型自变量对数值型因变量的影响。即方差分析是通过检验各总体的均值是否相 等来判断分类型自变量对数值型因变量是否有显著影响。
4.在方差分析中总变差可以分解为组内变差和组间变差,其中组间变差表示( )。 [厦门大学 2014 研]
A.一样本观测值不均值差方和 B.全部样本观测值不总均值的差方和 C.各样本观测值不各自均值的差方和 D.各样本均值不总均值的差方和 【答案】D
_
【解析】方差分析中组间平方和记为 SSA,它是各组均值xi(i=1,2,…,k)不总均 值 x 的误差平方和,反映组间误差的大小。
2.下面关亍方差学 2015 研]

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析

《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析第6章方差分析6.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。

6.2 579.48234.1501.0=>=F F (或01.000001.0=<=-αvalue P ),拒绝原假设。

6.3 4170.50984.1001.0=>=F F (或01.0000685.0=<=-αvalue P ),拒绝原假设。

6.4 6823.37557.1105.0=>=F F (或05.0000849.0=<=-αvalue P ),拒绝原假设。

6.5 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。

85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设;85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设;85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。

6.6554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。

第7章相关与回归分析7.1 (1)散点图(略),产量与生产费用之间正的线性相关关系。

(2)920232.0=r 。

(3)检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。

7.2 (1)散点图(略)。

(2)8621.0=r 。

7.3 (1)0?β表示当0=x 时y 的期望值。

(2)1?β表示x 每变动一个单位y 平均下降0.5个单位。

(3)7)(=y E 。

7.4 (1)%902=R 。

(2)1=e s 。

7.5 (1)散点图(略)。

统计学贾俊平考研知识点总结

统计学贾俊平考研知识点总结

统计学贾俊平考研知识点总结Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。

(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。

内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。

(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。

研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。

其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。

(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。

(1)分类数据是只能归于某一类别的非数字型数据。

它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。

(2)顺序数量是只能归于某一有序类别的非数字型数据。

也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。

(3)数值型数据是按数字尺度测量的观察值。

其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。

总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。

统计学(第三版课后习题答案) 贾俊平版

统计学(第三版课后习题答案) 贾俊平版

区分指标与标志,总量指标分类、分配数列、上限不在内原则、各种平均数之间的关系、平均发展指标!计算可能考的公式有:计划完成情况相对指标、结构(比例/比较/强度/动态)相对指标、各种平均数算法、众数、中位数、四分位数、平均差、标准差、标准差系数、偏态和峰度、发展速度和增长速度、总指数(很重要)、平均指标指数、重要经济指数的编制(上证指数、工业产品产量总指数、农副产品收购价格指数)统计学(第三版课后习题答案) 贾俊平版2.1 (1)属于顺序数据。

(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。

2.4 (1)排序略。

(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。

2.5 (1)属于数值型数据。

(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。

管 理 统 计 学[第四版]第十章 方差分析

管 理 统 计 学[第四版]第十章 方差分析

随机性差异,也包括了系统性差异。这时,该方差就会大于水平内方差,两
个方差的比值就会显著地大于1,当这个比值大到某个程度,或者说达到某 临界点,就可以作出判断,不同的水平之间存在着显著性差异。
因此,方差分析就是通过对不同方差的比较,作出接受原假设或拒绝原假设
的判断。 小概率原理仍然是方差分析的指导思想。方差分析的步骤包括建立假设、计 算F统计量、给定置信水平、查表确定临界值、比较判断等。
我们可以称为系统性差异;水平之间的方差;既包括系统性因素,也包括随
机性因素。 是由于抽选样本的随机性而产生的差异,例如,相同的方案在不同的分销
市场的销售量也不同,可称为随机性误差。水平内部的方差。仅包括随机性
因素。
10.1
方差分析的内容和思想
10.1.2 方差分析的原理
如果不同的水平(方案A、B、C、D)对结果(销售量)没有影响,那么在水 平之间的方差中,就仅仅有随机因素的差异,而没有系统性差异,它与水平 内部方差就应该近似,两个方差的比值就会接近于1: 反之,如果不同的水平对结果产生影响,在水平之间的方差中就不仅包括了
问:不同的方案是否对汽车销售量产生影响。
10.1
10.1.1
方差分析的内容和思想
方差分析的内容
这是一个方差分析问题。即对四种方案下的电话交易频数的均值是否相等进 行检验。 由于汽车是同一厂家生产的,它们的质量、外形设计、价格、内装修等所有
可能影响销售量的因素全部相同,如果检验结果 1,2,3,4
2013年 2014年 2015年
547.0
621.6 597.5 615.2
1144.5
1301.6 1259.6 1304.5
1796.7
1971.1 1941.7 2013.5

第10章单因素方差分析

第10章单因素方差分析

第10章单因素方差分析单因素方差分析(0ne-Way ANOV A),又称一维方差分析,它能够对单因素多个独立样本的均数进行比较,可以用10种检验方法对变量间的均数进行两两比较(即多重比较检验)并给出方差分析表,还可以作出5种类型图形(Type of plots)和2种均数图形(Means plot options)10.1 单因素方差分析的计量资料[例10—1] 某社区随机抽取了30名糖尿病患者、IGT异常人和正常人进行载脂蛋白(mg/dL)测定,结果示于表10—1。

试问3组人群的载脂蛋白测定结果含量是否相同?(倪宗瓒.卫生统计学.第4版,北京:人民卫生出版社,2001.50)本例是一个完全随机设计的单因素方差分析。

已建立SAS数据集文件并保存Sasuser.onewav4。

(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,得到分析家窗口。

(2)单击File-open By SAS Name—Sasuser-0neway4—0K,调入数据文件。

(3)在“分析家”窗口单击Statistics-ANOV A-One way ANOV A,得到图10—1所示对话框。

本例因变量(Dependent)为A(载脂蛋白),单击A—Dependent。

自变量(1ndependent):B(3种人的组别),单击B—Independent 。

图10.1 0ne—way ANOV A:0neway4(单因素方差分析)对话框(4)单击Tests按钮,得到图10—2所示对话框。

在此对话框的ANOV A(F—检验)选项中可进行如下设置。

Analysis of variance,方差分析。

Welch’s variance-weighted ANOV A,威尔奇方差—权重方差分析。

Tests for equal variance,相等方差检验,即方差齐性检验。

Barlett’s test,巴特尼特检验。

统计学贾俊平第10章 方差分析

统计学贾俊平第10章 方差分析

14
All rights reserved
随机化区组设计
随机化区组设计(randomized block design)

先按一定规则将实验单元划分为若干同质组,称 为“区组(Block)” 再将各种处理随机地指派给各个区组 分组后再将每个品种(处理)随机地指派给每一 个区组的设计就是随机化区组设计
实验设计

局部控制 ─ 实验条件的局部一致性

在实验环境或实验单位差异大的情况下 , 可将整个实验环境或实验单位分成若干个小 环境或小组,在小环境或小组内使非处理因 素尽量一致,这就是局部控制
12
All rights reserved
完全随机化设计
完全随机化设计(completely randomized design)
All rights reserved
实验设计
实验设计三原则

重复

重复是指试验中同一处理实施在两个或两个 以上的试验单位上

随机化
随机化是指在对实验对象进行分组时必须使 用随机的方法,使对象进入各实验组的机会 相等,以避免试验对象分组时实验人员主观 倾向的影响 双盲

11
All rights reserved


考虑两个因素(可推广到多个因素)的搭配实验设计 称为因子设计 该设计主要用于分析两个因素及其交互作用对实 验结果的影响
17
All rights reserved
10.1 方差分析引论
18
All rights reserved
方差分析的概念
缘由

t 检验适用于样本均值与总体均值及两样本平均数 间的差异显著性检验, 但在生产和科学研究中经 常会遇到比较多个处理优劣的问题, 即需进行多 个均值间的差异显著性检验 大学中各专业间的学生智商是否有别? 三种不同的教学方法对于学生的成绩是否有 影响?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章
方差分析
10.1 方差分析引论 10.2 单因素方差分析 14.3 双因素方差分析
1
All rights reserved
1
导引——实验设计简介
2
All rights reserved
引例
Factor (Training Method)
Factor Levels (Groups)
样本均值 样本标准差 样本方差
因此检验各样本的均 值是否相同的问题涉 及比较样本内的方差 (组内方差)及样本 间的方差(组间方 差)。所以通常称之 为方差分析。
28
All rights reserved
基本原理
分析逻辑


假设从K个总体中抽取大小分别为n1, n2, n3…nk的K 个独立随机样本。我们对总体有下列的假设: 各总体皆为正态分布,且有共同相同的方差σ2。 以μ1, μ 2, … μ k 来表示总体的均值,单因子分析检 证下零假设 H0: μ 1= μ 2…= μ k vs. H1: 至少有两组均值不同
All rights reserved
实验设计
实验设计三原则

重复

重复是指试验中同一处理实施在两个或两个 以上的试验单位上

随机化
随机化是指在对实验对象进行分组时必须使 用随机的方法,使对象进入各实验组的机会 相等,以避免试验对象分组时实验人员主观 倾向的影响 双盲

11
All rights reserved
29
All rights reserved
基本原理
共有K个总体
μ1, σ1
μ2, σ2

i代表在样本中 的序号,i = 1,2, „nj
j代表样本组別,j = 1,2, …k
μk, σk
x21 x11 xn1,1 x31 Xi j
x22
xn2,2 x 12 x32
x1k x2k
xnk,k x3k
30
19
All rights reserved
方差分析的概念

检验过程烦琐

这种做法太浪费时间,因为比较几个母体可能产生很 多的比较组,例如比较五个母体的平均值差异,如果 以两两比较的方式,我们必须进行C52=10次的t-test。

无统一的试验误差,误差估计的精确性和检验的 灵敏性低

试验有5个处理 ,每个处理重复6次,共有30个观测值 。进行t检验时,每次只能利用两个处理共12个观测值 估计试验误差 ,误差自由度为 2(6-1)=10 ;若利用 整个试验的30个观测值估计试验误差 ,显然估计的精 确性高,且误差自由度为5(6-1)=25。
7
All rights reserved
实验中的术语
实验单位(experimental unit)

在实验中能接受不同实验处理的独立的实验载体 叫实验单位 在实验中,将一个处理实施在两个或两个以 上的实验单位上,称为处理有重复;一处理 实施的实验单位数称为处理的重复数
8
All rights reserved
14
All rights reserved
随机化区组设计
随机化区组设计(randomized block design)

先按一定规则将实验单元划分为若干同质组,称 为“区组(Block)” 再将各种处理随机地指派给各个区组 分组后再将每个品种(处理)随机地指派给每一 个区组的设计就是随机化区组设计


“处理”被随机地指派给试验单元的一种设计. Subjects are assumed to be homogeneous 只有一个因素 With 2 or more groups (or levels)
13
All rights reserved
完全随机化设计
高尔夫球的品牌对每次击球的球距有无影响?
5
All rights reserved
实验中的术语
因素水平(level of factor)

试验因素所处的某种特定状态或数量等级 称为因素水平,简称水平
6
All rights reserved
实验中的术语
因素水平与处理



因素水平为某因子(自变量)之特殊形式或不同 状态,例如我们可以将「施肥」细分成三个水平 :完全不施肥、施轻肥、施重肥 如果解释的因素为单一(施肥与否),称为单因子 分析,如果解释因子在两个以上(施肥与否+栽 种温度),称为多因子分析。 在单因素分析中,每一个因素水平皆称为一种处 理(treatment),多因子分析中,因子水平之组合称 为一种处理(施重肥+高温、无施肥+高温、施重 肥+低温、无施肥+低温…等
方差分析的概念
方差分析


方差分析法是一种在若干能相互比较的资料组中, 把产生变异的原因加以区分开来的方法与技术 研究分类型自变量对数值型因变量的影响 一个或多个分类尺度的自变量 一个间隔或比率尺度的因变量 有单因素方差分析和双因素方差分析 单因素方差分析:涉及一个分类的自变量 双因素方差分析:涉及两个分类的自变量


考虑两个因素(可推广到多个因素)的搭配实验设计 称为因子设计 该设计主要用于分析两个因素及其交互作用对实 验结果的影响
17
All rights reserved
10.1 方差分析引论
18
All rights reserved
方差分析的概念
缘由

t 检验适用于样本均值与总体均值及两样本平均数 间的差异显著性检验, 但在生产和科学研究中经 常会遇到比较多个处理优劣的问题, 即需进行多 个均值间的差异显著性检验 大学中各专业间的学生智商是否有别? 三种不同的教学方法对于学生的成绩是否有 影响?
20
All rights reserved
方差分析的概念

推断的可靠性低,检验的 I 型错误率大,如果每组 的显著水平皆为α,则全体比较的显著水平会高于 α



假设我们在.05的显著水平下要检定下列零假设: H0: u1=u2=u3 如果拆成下列三组零假设: H0: u1=u2 , H0: u1=u3 , H0: u2=u3 每个假设被「接受」的概率为.95,三个假设全部被接 受的概率为.953=.857,也就是说当假设为真但被推翻 的概率为(1 - 0.857) = 0.143 > 0.05 远高于显著水 平
Randomly Assigned Units


21 hrs Dependent Variable (Response)
17 hrs
31 hrs
27 hrs
29 hrs
25 hrs
20 hrs
28 hrs
22 hrs
3
All rights reserved
实验中的术语
实验中的术语
自变量与因变量

我们经常设计研究来了解造成某种现象变化的原 因 例如:我们想要了解为什么有时候种植西瓜会甜 有时候不会甜(甜度变动)


这种我们欲了解的变量称为因变量(dependent variable)、被解释变量、或反应变量(response variable)。 我们怀疑西瓜的甜度与栽种过程中是否施肥有关,将 某些西瓜种籽加以施肥处理,其它西瓜保持自然生长 ,这种造成因变量产生变化的变量称之为因子 (factor)或独立变项、 自变量(independent variable)
All rights reserved
基本原理
分別來自k总的k个样本
1 x 11 x 21 x 31 ﹕ x n1 , 1
2 x 12 x 22 x 32 ﹕ ﹕ x n2 , 2

k x 1k x 2k x 3k ﹕ ﹕ ﹕ x nk,k
第k組样本 共有nk个观 察值
各组样本数可以不同,分别为n1, n2,„nk, 总样本数n= n1+eserved
基本原理
1 x 11 x 21 x 31 ﹕ x n1 , 1 2 x 12 x 22 x 32 ﹕ ﹕ x n2 , 2 … k x 1k x 2k x 3k ﹕ ﹕ ﹕ x nk,k
总样本的均值 x
j1 i 1 K nj
C B A 15 17 19
27
21
23
25
27
All rights reserved
基本思想
A 18.2 19.4 19.6 19 18.8 19 0.548 0.300 B 19.8 21 20 20.8 20.4 20.4 0.510 0.260 C 21.2 21.8 22.4 22 21.6 21.8 0.447 0.200
实验指标(experimental indicator)

为衡量实验结果的好坏或处理效应的高低 ,在实 验验中具体测定的性状或观测的项目称为试验指 标 学习时间、血糖含量、体高、体重等
4
All rights reserved
实验中的术语
实验因素(experimental factor)

实验中所研究的影响实验指标的因素叫试验因素 当实验中考察的因素只有一个时,称为单因 素实验 若同时研究两个或两个以上的因素对实验指 标的影响时,则称为两因素或多因素实验 实验因素常用大写字母A、B、C、„等表示
C 21.2 21.8 22.4 22 21.6 21.8 0.447 0.200
All rights reserved
基本思想
A 18.2 19.4 19.6 19 18.8 19 0.548 0.300 B 19.8 21 20 20.8 20.4 20.4 0.510 0.260 C 21.2 21.8 22.4 22 21.6 21.8 0.447 0.200
相关文档
最新文档