函数的基本性质知识点和典型例题
函数的基本性质(考点加经典例题分析)
函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。
2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。
) 3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,当0>a 时函数)(x f 在对称轴a bx 2-=的左侧单调减小,右侧单调增加; 当0<a 时函数)(x f 在对称轴abx 2-=的左侧单调增加,右侧单调减小;例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
4.证明方法和步骤:1、设元:设21,x x 是给定区间上任意两个值,且21x x <;2、作差:)()(21x f x f -;3、变形:(如因式分解、配方等);4、定号:即0)()(0)()(2121<->-x f x f x f x f 或;5、根据定义下结论。
例2、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。
例3:函数322-+=x x y 的单调减区间是 ( )A.]3,(--∞B.),1[+∞-C.]1,(--∞D.),1[+∞ 6.函数的单调性的应用:判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。
例4:求函数12-=x y 在区间]6,2[上的最大值和最小值.二、奇偶性1.定义:如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数;(等价于:0)()()()(=--⇔=-x f x f x f x f )如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。
高考数学复习典型题型与知识点专题讲解4 函数的基本性质(解析版)
高考数学复习典型题型与知识点专题讲解4 函数的基本性质一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x =+>的单调性知识点2 二次函数区间求最值知识点3 已知一半求另一半(奇偶性) 知识点4单调奇偶联袂 二、题型归类练专练一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x=+>的单调性例1.(2021·宁夏·平罗中学高一期中)已知4()f x x x=+. (1)判断()f x 的奇偶性;(2)判断函数()f x 在(2,)+∞的单调性并用定义证明. 【答案】(1)函数()f x 为奇函数;(2)()f x 在区间()2,+∞上是增函数;证明见详解. (1)解:由题可知,4()f x x x=+,则函数()f x 的定义域为{}|0x x ≠ ,关于原点对称,又44()()()f x x x f x x x-=--=-+=-, 所以函数()f x 为奇函数.(2)解:()f x 在区间()2,+∞上是增函数, 证明:12,(2,)x x ∀∈+∞且12x x <, 有12121244()()()()f x f x x x x x -=+-+ 121244()()x x x x =-+-121212(4)x x x x x x -=-, 122x x <<,1212124,40,0x x x x x x >->-<∴,121212(4)0x x x x x x -∴-<,即12()()f x f x <, ∴函数()f x 在区间()2,+∞上是增函数.名师点评:对于函数()(0)af x x a x =+>主要性质如下:①定义域(,0)(0,)-∞+∞; ②奇偶性:奇函数;③单调性:当0x >时;()(0)af x x a x =+>在上单调递减;在)+∞的单调增;④值域与最值:当0x >时;()(0)af x x a x =+>值域为)+∞,当x =小值特别提醒同学们函数()(0)af x x a x =+>我们称为对钩函数(耐克函数),注意需要0a >这个大前提,当0a ≤时都不再是对钩函数,此时不具有对钩函数的性质。
高一函数知识点总结及例题
高一函数知识点总结及例题高一函数知识点总结及例题:1. 函数的定义与性质:- 函数的定义:函数是一种对应关系,每个自变量对应唯一的因变量。
- 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能的因变量值的集合。
- 奇偶性:奇函数的图像以原点对称,即满足$f(-x)=-f(x)$;偶函数的图像以y轴对称,即满足$f(-x)=f(x)$。
- 单调性:递增函数的图像从左到右逐渐升高;递减函数的图像从左到右逐渐降低。
例题:给定函数$f(x)=2x^2+3x-1$,求其定义域和值域。
解答:由于函数是多项式函数,所以定义域为全体实数。
接下来求值域,可以求出函数的导函数$f'(x)=4x+3$,根据导函数的单调性可以判断函数的增减性。
导函数的系数为正数4,所以原函数是递增函数。
考虑到函数是二次函数,开口向上,所以函数的最小值就是导数的零点,即$x=-\frac{3}{4}$。
将$x=-\frac{3}{4}$代入函数中,得到最小值为$f(-\frac{3}{4}) = -\frac{7}{8}$。
所以值域为$[-\frac{7}{8},+\infty)$。
2. 基本初等函数:- 线性函数:$f(x)=kx+b$,k为斜率,b为截距。
- 幂函数:$f(x)=x^a$,a为常数,当a>0时,函数递增;当a<0时,函数递减。
- 指数函数:$f(x)=a^x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。
- 对数函数:$f(x)=\log_a x$,a为常数,a>1时,函数递增;0<a<1时,函数递减。
- 三角函数:正弦函数、余弦函数、正切函数等。
例题:已知函数$f(x)=2^x-3$,求解方程$f(x)=0$的解。
解答:将$f(x)$置0得到方程$2^x-3=0$,移项得$2^x=3$。
由指数函数的性质可知,$x=\log_2 3$。
函数的基本性质知识点及习题(附答案)
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
函数的基本性质知识点总结
函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
高中数学 必修一函数性质详解及知识点总结及题型详解
(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。
构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x xf x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(xg 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
函数概念例题和知识点总结
函数概念例题和知识点总结在数学的广袤世界中,函数是一个极其重要的概念。
它就像是一座桥梁,连接着不同的数学领域,帮助我们理解和解决各种问题。
接下来,让我们通过一些例题来深入理解函数的概念,并对相关知识点进行总结。
一、函数的定义函数是一种特殊的对应关系。
在给定的集合中,对于每一个自变量的值,都有唯一确定的因变量的值与之对应。
例如,我们有一个函数 f(x) = 2x + 1。
当 x = 1 时,f(1) = 2×1 +1 = 3;当 x = 2 时,f(2) = 2×2 + 1 = 5。
可以看到,对于每一个给定的 x 值,都能通过这个表达式得到唯一确定的 f(x) 值。
二、函数的表示方法函数可以用多种方式表示,常见的有解析法、列表法和图像法。
1、解析法就是用数学表达式来表示函数关系,如上面提到的 f(x) = 2x + 1 就是解析法。
2、列表法通过列出自变量和对应的因变量的值来表示函数,比如:| x | 1 | 2 | 3 ||||||| f(x) | 3 | 5 | 7 |3、图像法用图像来直观地展示函数关系。
例如,对于函数 f(x) = x²,它的图像是一个开口向上的抛物线。
三、函数的定义域和值域定义域是指自变量的取值范围,而值域则是因变量的取值范围。
例如,对于函数 f(x) = 1 /(x 1),由于分母不能为 0,所以 x 1 ≠ 0,即x ≠ 1,定义域为x ≠ 1。
通过分析函数的表达式,可以得出值域。
四、例题分析例 1:已知函数 f(x) =√(x 2),求其定义域。
要使根式有意义,被开方数必须大于等于 0,即x 2 ≥ 0,解得x ≥ 2,所以定义域为 2, +∞)。
例 2:若函数 f(x) = 2x + 3,当 x =-1 时,求 f(x)的值。
将 x =-1 代入函数中,f(-1) = 2×(-1) + 3 = 1 。
例 3:已知函数 f(x)的图像经过点(1, 2)和(2, 4),求函数的表达式。
高一函数知识点总结及例题
高一函数知识点总结及例题高一函数知识点总结及例题一、函数及其性质1. 函数的定义与定义域、值域:函数是一个或多个自变量和一个因变量之间的依赖关系。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 常用函数类型:常见的函数类型有一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。
3. 奇偶性:(1) 奇函数:f(-x)=-f(x),对称于原点;(2) 偶函数:f(-x)=f(x),对称于y轴;(3) 不存在奇偶性:例如二次函数f(x)=x^2或sin(x)。
4. 函数的单调性与极值:(1) 单调递增:x1 < x2,f(x1) < f(x2);(2) 单调递减:x1 < x2,f(x1) > f(x2);(3) 极大值:在一定范围内,函数值在此点左右两侧都小于此值;(4) 极小值:在一定范围内,函数值在此点左右两侧都大于此值。
5. 函数的周期性:周期函数是指函数在某一区间内具有某种规律的重复性。
二、一次函数1. 一次函数的定义:一次函数可表示为y=kx+b,其中k为斜率,b为截距。
2. 斜率与截距的意义:(1) 斜率k:代表了函数的变化速率,k越大表示变化越快,k为正表示递增,k为负表示递减;(2) 截距b:表示函数与y轴的交点在y轴上的位置。
3. 函数图像与性质:(1) 图像特征:直线;(2) 平行线性质:同斜率的直线平行,即k相同;(3) 直线交点:两条直线的交点为(x, y),满足k1x+b1=k2x+b2。
4. 求解问题:(1) 两点式:已知两点A(x1, y1)和B(x2, y2),斜率k=(y2-y1)/(x2-x1),再根据一点斜率式y-y1=k(x-x1)求解;(2) 截距式:已知截距b和斜率k,直线方程为y=kx+b;(3) 点斜式:已知直线上一点A(x1, y1)和斜率k,直线方程为y-y1=k(x-x1)。
三、二次函数1. 二次函数的定义:二次函数可表示为y=ax^2+bx+c,其中a不等于0,a为抛物线的开口方向。
函数的基本性质知识点总结
函数的基本性质知识点总结函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设()g x的定义域分别是12,D D,那么在它们f x,()的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
高一数学《函数的基本性质》知识点及对应练习(详细答案)
函数的基本性质一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。
即在直角坐标系中的图像,对于任意一条x=a(a是函数的定义域)的直线与函数y=f(x)只有一个交点;例1、下列对应关系中,x为定义域,y为值域,不是函数的是()A.y=x²+x³B.y=C.|y|=xD.y=8x解:对于|y|=x,对于任意非零x,都有两个y与x对应,所以|y|=x不是函数。
图像如下图,x=2的直线与|y|=x的图像有两个交点。
故答案选C例2、下列图象中表示函数图象的是()解析:对于任意x=a的直线,只有C选项的图形与x=a的直线只有一个交点,即对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。
故选C。
注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。
最全函数概念及基本性质知识点总结及经典例题
函数及基本性质一、函数的概念(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.(2)函数的三要素:定义域、值域和对应法则.注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()635-=x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,131><x x 或 ④对数函数的真数大于零0,log )(>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大于零且不等于1。
如:()212()log 25f x x x =-+⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.如:)2(log 22x y --=⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义域为 822≤≤x⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.例:求函数()())1lg(lg x k x x f -+-=的定义域。
专题3.2 函数基本性质(解析版)
专题3.2函数的基本性质知识点一:函数的单调性1.增函数、减函数的概念一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说()f x 在区间D 上是减函数.知识点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <;(3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间(1)单调区间的定义如果函数f (x )在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数f (x )的单调区间.函数的单调性是函数在某个区间上的性质.知识点诠释:①单调区间与定义域的关系:单调区间可以是整个定义域,也可以是定义域的真子集;②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;③不能随意合并两个单调区间;④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性?3.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x <;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.4.函数单调性的判断方法(1)定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断。
(2)图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性。
(完整版)基本初等函数知识点及函数的基本性质
指数函数及其性质一、指数与指数幂的运算 (一)根式的概念1、如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n次方根用符号n 是偶数时,正数a 的正的n的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.2n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.3、根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (二)分数指数幂的概念1、正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0. 2、正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈5、0的正分数指数幂等于0,0的负分数指数幂无意义。
二、指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义; ○2 注意指数函数的底数的取值范围不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈ (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =(4)当1a >时,若21x x <,则)x (f )x (f 21< 四、底数的平移对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
2函数的基本性质(单调性、奇偶性、周期性)(含答案)
函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。
②复合函数的单调性规则是“同增异减”。
2.函数的奇偶性的定义:(1)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,则称)(x f 为 . 奇函数的图象关于 对称。
(2)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,则称)(x f 为 . 偶函数的图象关于 对称。
(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
3.奇偶函数图象的对称性(1)若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x =对称;(2)若)(x b f y +=是偶函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;4.若函数满足()()x f a x f =+,则函数的周期为T=a 。
二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( ) A .||2x y = B .3y x = C .12+-=x y D .y =cosx 【答案】C 【解析】试题分析:偶函数需满足()()f x f x -=,由此验证可知A,C,D 都是偶函数,但要满足在区间(0,+∞)上单调递减,验证可知只有C 符合. 考点:偶函数的判断,函数的单调性.2.2()24f x x x =-+的单调减区间是 .【答案】(,1)-∞ 【解析】试题分析:将函数进行配方得22()24(1)3f x x x x =-+=-+,又称轴为1x =,函数图象开口向上,所以函数的单调减区间为(,1)-∞. 考点:二次函数的单调性.3.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 【答案】A 【解析】试题分析:由2230x x +->,得3x <-或1x >,∴()f x 的定义域为(,3)(1,)-∞-+∞.22log (23)y x x =+-可看作由2log y u =和223u x x =+-复合而成的,223u x x =+-=2(1)4x +-在(,3)-∞-上递减,在(1,)+∞上递增,又2log y u =在定义域内单调递增,∴22log (23)y x x =+-在(,3)-∞-上递减,在(1,)+∞上递增,所以22log (23)y x x =+-的单调递减区间是(,3)-∞-,故选A .考点:复合函数的单调性.4.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a 【答案】B 【解析】试题分析:函数5)2(22+-+=x a x y 的图像是开口向上以2x a =-为对称轴的抛物线,因为函数在区间(4,)+∞上是增函数,所以24a -≤,解得2a ≥-,故A 正确。
函数的基本性质知识点归纳与题型总结
函数的基本性质知识点归纳与题型总结0=x2=f(x),所以f(x)为偶函数.4)因为f(x)有意义,则x>0,所以f(x)的定义域不关于原点对称。
所以f(x)为非奇非偶函数.二、知识归纳1.函数的单调性1)单调递增对于函数f(x),如果对于定义域内的任意两个数x1和x2,当x1<x2时,有f(x1)<f(x2),那么函数f(x)就叫做单调递增函数.2)单调递减对于函数f(x),如果对于定义域内的任意两个数x1和x2,当x1<x2时,有f(x1)>f(x2),那么函数f(x)就叫做单调递减函数.3)严格单调性如果对于定义域内的任意两个不相等的数x1和x2,有f(x1)<f(x2)或f(x1)>f(x2),那么函数f(x)就叫做严格单调函数.4)单调性判定设函数f(x)在区间[a,b]上连续,在(a,b)内可导,则①当f'(x)>0时,函数f(x)在(a,b)上单调递增;②当f'(x)<0时,函数f(x)在(a,b)上单调递减;③当f'(x)=0时,函数f(x)在x处取极值.2.函数的极值1)极值定义设函数f(x)在点x0的某个去心邻域内有定义,如果对于x0的任何一个邻域内的x值,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么就称f(x0)是函数f(x)的一个极大值(或极小值),而x0就称为函数f(x)的一个极值点.2)判别极值的方法①一阶导数法设函数f(x)在点x0处可导,且f'(x0)=0,则1)当f''(x0)>0时,f(x0)是函数f(x)的一个极小值;2)当f''(x0)<0时,f(x0)是函数f(x)的一个极大值;3)当f''(x0)=0时,判别困难,需用其他方法.②二阶导数法设函数f(x)在点x0处二阶可导,则1)当f''(x0)>0时,f(x0)是函数f(x)的一个极小值;2)当f''(x0)<0时,f(x0)是函数f(x)的一个极大值;3)当f''(x0)=0时,判别困难,需用其他方法.3.函数的凹凸性1)凹函数对于函数f(x),如果对于定义域内的任意两个数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做凹函数.2)凸函数对于函数f(x),如果对于定义域内的任意两个数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)≥λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做凸函数.3)严格凹凸性如果对于定义域内的任意两个不相等的数x1和x2,以及任意实数λ(0<λ<1),都有f(λx1+(1-λ)x2)λf(x1)+(1-λ)f(x2),那么函数f(x)就叫做严格凹函数或严格凸函数.4)凹凸性判定设函数f(x)在区间[a,b]上具有二阶导数,则①当f''(x)>0时,函数f(x)在(a,b)上是凹函数;②当f''(x)<0时,函数f(x)在(a,b)上是凸函数;③当f''(x)=0时,函数f(x)在x处可能是拐点.解题提醒:①判定函数的单调性时,要注意定义域的连续性和可导性.②判定函数的极值和拐点时,要注意函数的可导性和二阶导数的符号.题型二函数单调性、极值和凹凸性的判定典型例题:求函数f(x)=x3-3x2+3的单调性、极值和凹凸性.解:(1)单调性f'(x)=3x2-6x,令f'(x)=0,得x=0或x=2。
(完整版)基本初等函数知识点及函数的基本性质
指数函数及其性质一、指数与指数幂的运算 (一)根式的观点1、假如 x na, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时, a的 n 次方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 na 表示,负的 n 次方根用符号 na 表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.2、式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a0 .3 、 根 式 的 性 质 : ( n a )na ; 当 n 为 奇 数 时 , n a na ; 当 n 为 偶 数 时 ,na n|a |a (a 0) . a (a 0)(二)分数指数幂的观点mna m (a 0,m, n1、正数的正分数指数幂的意义是:a n N , 且 n1) .0 的正分数指数幂等于 0.mm1)m (a2、正数的负分数指数幂的意义是:a n( 1) nn ( 0, m, n N , 且 n 1). 0 的负aa分数指数幂没存心义.注意口诀: 底数取倒数,指数取相反数. 3、a 0=1 ( a 0) a p1/a p ( a 0; p N )4、指数幂的运算性质a r a sa r s (a 0, r , s R)( a r )s a rs (a 0, r , s R)( ab) r a r b r (a 0, b0, r R)5 、 0 的正分数指数幂等于 0,0 的负分数指数幂无心义。
二、指数函数的观点一般地,函数 xy a ( a 0, 且a 1) 叫做指数函数,此中 x是自变量,函数的定义域为R.注意:○1 指数函数的定义是一个形式定义;○2 注意指数函数的底数的取值范围不可以是负数、零和 1.三、指数函数的图象和性质 函数名称指数函数定义函数 ya x ( a 0 且 a 1) 叫做指数函数a 10 a 1y图象y 1Oya xya xy(0,1) y 1(0,1)xOx定义域 R值域 ( 0,+ ∞)过定点 图象过定点( 0,1 ),即当 x=0 时, y=1.奇偶性 非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y > 1(x < 0),y=1(x=0),y=1(x=0),变化状况0< y < 1(x < 0)0 < y < 1(x > 0)a 变化对在第一象限内, a 越大图象越高, 越凑近 在第一象限内, a 越小图象越高, 越凑近y 轴; a 越大图象越低, 越凑近 y 轴;a 越小图象越低, 越凑近图象影响 在第二象限内, 在第二象限内, x 轴. x 轴.注意:利用函数的单一性,联合图象还能够看出:( 1)在 [a , b] 上, f (x )a x (a 0且 a 1) 值域是 [ f (a), f ( b)] 或 [ f (b), f (a)] ( 2)若 x 0,则 f (x ) 1; f ( x) 取遍全部正数当且仅当 x R ( 3)对于指数函数 f (x ) a x (a 0 a 1),总有 f (1) a 且( 4)当 a 1 时,若 x 1 x 2 ,则 f (x 1 ) f ( x 2 )四、底数的平移对于任何一个存心义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
最全函数概念及基本性质知识点总结及经典例题
函数及基本性质一、函数的概念(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.(2)函数的三要素:定义域、值域和对应法则.注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x ()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶ C .⑷D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()635-=x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,131><x x 或 ④对数函数的真数大于零0,log )(>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大于零且不等于1。
如:()212()log 25f x x x =-+⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.如:)2(log 22x y --=⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义域为822≤≤x⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 例:求函数()())1lg(lg x k x x f -+-=的定义域。
函数的基本性质(含答案)
x+ ≥2 = (当且仅当x= 即x= 时取“=”).
∴当底边长为 m时造价最低,最低造价为(160 a+ a)元.
答案:y=12a(x+ )+ a(0,+∞) 160 a+ a
【课堂小练】
1.已知 是定义 上的奇函数,且 在 上是减函数.下列关系式中正确的是 ( )
A. B.
∴- ≤x≤ .
∴不等式的解集为{x|- ≤x≤ }.
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
∵P∩Q= ,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
教师辅导讲义
年 级: 高一辅导科目: 数学 课时数:3
课 题
函数的基本性质
教学目的
通过综合的练习与巩固,是学生掌握对一些基本函数的性质进行研究的方法
教学容
【知识梳理】
函数的基本性质:奇偶性、单调性、周期性、函数的最值、函数的零点(周期性后面讲)
【典型例题分析】
例1、函数f(x)的定义域为R,且对任意x、y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),∴f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0.从而有f(x)+f(-x)=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生: 年级: 班型:1对1 上课时间: (第 次课) 剩余课时: 上课容:函数的基本性质一、函数的单调性:1、定义域为I 的函数f (x )在区间D 上的增减性(1)共同条件:12,,D I x x D ⊆⎧↓⎨∈⎩任意(2)假设前提:12x x <。
(3)判断依据:①若__________________,则f (x )在区间D 上是增函数; ②若__________________,则f (x )在区间D 上是增函数。
2、单调区间如果函数y=f (x )在区间D 上是增函数或减函数,就说f (x )在区间D 上具有(严格的)___________,区间D 叫做f (x )的__________。
思考探究1、把增(减)函数定义中的“任意两个自变量12,x x ”换成“存在两个自变量12,x x ”还能判断函数是增(减)函数吗?2、把增(减)函数定义中的“某个区间D ”去掉,其余条件不变,能否判断函数的增减性?3、所有的函数都具有单调性吗? 自主测评1、下列说确的是( )A 、定义在(,)a b 上的函数f (x ),若存在12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数B 、定义在(,)a b 上的函数f (x ),若有无穷多对12,(,)x x a b ∈使得12x x <时,有12()()f x f x <,那么f (x )在(,)a b 上为增函数C 、若f (x )在区间I 1上为增函数,在区间I 2上也为增函数,那以f (x )在I 1I 2上也一定为增函数D 、若f (x )在区间I 上为增函数,且1212()()(,)f x f x x x I <∈,那么12x x <在区间I 2上也为增函数,那以f (x )在I 1I 2上也一定为增函数2、函数y=f (x )的图象如较所示,其增区间是( )A 、[-4,4]B 、[-4,-3] [1,4]C 、[-3,1]D 、[-3,4]3、函数2y x =-的单调区间是( ) A 、[0,+∞)B 、(-∞,0]C 、(-∞,0)D 、(-∞,+∞)4、函数y=|x|的增区间是_________,减区间是_________。
典例探究突破类型一:依据函数图象给出单调区间例1:求下列函数的单调区间并指出其在单调区间上是增函数还是减函数。
21(1)32;(2);(3)23y x y y x x x=-=-=-++变式:把(3)变成“22||3y x x =-++”先画出图象,再指明其单调区间,并写出它的值域。
类型二:单调性的证明 例2:判断函数11y x =-的单调性,并用定义加以证明。
变式训练:证明:函数1()f x x x=+在(0,1)上是减函数。
类型三:利用函数的单调性求参数的围例3:函数23y ax bx =++在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、00b a ><且B 、20b a =<C 、20b a =>D 、,a b 的符合不确定变式训练:已知2()26f x x mx =-+在(-∞,-1]上为减函数,则m 的围为_________。
二、函数的最大值、最小值:思考探究1、在最大(小)值定义中若把条件“存在0x I ∈,使得f (x 0)=M ”去掉,M 还是函数y=f (x )的最大(小)值吗?2、函数的最值与值域、单调性之间有什么关系?3、函数最大值或最小值的几何意义是什么?自主测评1、在函数y=f (x )的定义域中存在无数个实数满足f (x )>M ,则( ) A 、函数y=f (x )的最小值为M B 、函数y=f (x )的最大值为M C 、函数y=f (x ) 最小值D 、不能确定M 是函数y=f (x )的最小值2、函数1(0)y ax a =+<在区间[0,2]上的最大值与最小值分别为( ) A 、1,2a +1B 、2a +1,1C 、1+a ,1D 、1,1+a3、函数(),[1,2]y f x x =∈的图象如图所示,则该函数在[-1,2]上的最大值为______,最小值为________。
4、函数221()y x x x R =++∈有最________值,为________,无最________值。
典例探究突破类型一:图象法求函数最值例1:求函数|1||2|y x x =+--的最大值和最小值。
变式训练:求函数|1||1|y x x =+--的最值。
类型二:利用单调性求函数最值例2:已在函数1().f x x x=+(1)证明:()f x 在(1,)+∞是增函数; (2)求()f x 在[2,4]上的最值。
类型三:与最值有关的应用问题例3:某厂准备投资100万生产A ,B 两种新产品,据测算,投资后的年收益,A 产品是总投入的1/5,B 产品则是总投入开平方后的2倍,问应该怎样分配投主数,使这两种产品的年总收益最大?变式训练:某旅行团去风景区旅游,若每团人数不超过30人,飞机票每收费900元;若每团人数多于30人,则给予优惠,每多1人,机票每减少10元,直至每降为450为止,每团乘飞机,旅行社需付给航空公司包机费15000元,假设一个旅行团不能超过70人。
(1) 写出飞机票的价格关于人数的函数式;(2)每团人数为多少时,旅行社可获得最大利润?三、函数的奇偶性:1、偶函数(1)定义:对于函数f(x)的定义域_________x,都有_________,那么f(x)叫做偶函数。
(2)图象特征:图象关于_________对称。
2、奇函数(1)定义:对于函数f(x)的定义域_________x,都有_________,那么函数f(x)叫做奇函数。
(2)图象特征:图象关于_________对称。
思考探究1、奇(偶)函数的定义域有何特征?2、奇函数、偶函数的图象有何特点?3、若奇函数f(x)在x=0处有定义,则f(0)是定值吗?自主测评1、函数y+x是()A、奇函数B、偶函数C、奇函数又是偶函数D、非奇非偶函数2、函数f(x)=x2的图象()A、关于x对称B、关于y对称C、关于原点对称D、关于y=x对称3、如果定义在区间[2-a,4]上的函数f(x)为偶函数,那么a=_________。
4、已知函数f(x)是定义在R上的奇函数,且f(2)=3,则f(-2)等于_______。
典例探究突破类型一:判断函数的奇偶性例1:判断列列函数的奇偶性3=+===(1)()2;(2)()()||;(4)()0.f x x x f x f x x f x变式训练:判断下列函数的奇偶性2422323(1)()3;(2)();(3)().13x x xf x x x f x f x x x +=-==++类型二:利用奇偶性作图例2:如图是给出的奇函数y=f (x )在区间(-∞,0] 上的图象,试作出函数在 [0,+∞)上的图象,并求出f (3)的值。
变式训练:已知函数21()1f x x =+在[0,+∞)上的图象如图所示,请据此在该坐标系中补全函数()f x 在其定义域的图象。
类型三:利用函数的奇偶性求解析式例3:已知函数()f x 是定义在R 上的奇函数,当x>0时,2()231,f x x x =-++求: (1)(0)f ;(2)当x<0时,()f x 的解析式; (3)()f x 在R 上的解析式。
f x的解析式。
变式:本例中若把“奇函数”换成“偶函数”,求x<0时()课后练习:1.下列函数中,是奇函数的为().A. B. C. D.2.已知奇函数在区间上的图像如图,则不等式的解集是().A. B.C. D.3.设是定义在上的奇函数,当时,,则 .4.已知,则函数的单调增区间是 .5.某水果批发市场规定:批发水果不少于100千克时,批发价为每千克2.5元,小王携带现金3000元到市场采购水果,并以批发价买进水果x千克,小王付款后剩余现金为y元,则x与y之间的函数关系为( ).A.y=3 000-2.5x,(100≤x≤1 200)B.y=3 000-2.5x,(100<x<1 200)C.y=3 000-100x,(100<x<1 200)D.y=3 000-100x,(100≤x≤1 200)6. 设函数)(x f 是定义在R 上的以3为周期的奇函数,若1)1(>f ,143)2(+-=a a f ,则a 的取值围是( ) (A )43<a (B )43<a 且1-≠a(C )43>a 或1-<a(D )431<<-a7. 设()c bx x x f ++=3是[]1,1-上的增函数, 且02121<⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛-f f , 则方()0=x f 在[]1,1- ( ) (A )可能有3个实根 (B )可能有2个实根 (C )有唯一实根 (D )没有实根8. 已知0<a <1,则方程a|x |=|log a x |的实根个数是A.1个B.2个C.3个D.1个或2个或3个9.设函数f (x )对x ∈R 都满足f (3+x )=f (3-x ),且方程f (x )=0恰有6个不同的实数根,则这6个实根的和为 A.0 B.9 C.12 D.1810.已知函数f (x )=2mx +4在区间[-2,1]上存在零点,则实数m 的取值围是______.11. 已知函数f (x )=ax 2+bx +c 的两个零点是-1和2,且f (5)<0,则此函数的单调递增区间为 .12.某宾馆有标准床位100,宾馆每天的各种费用支出800元,根据经验,当该宾馆的床价(即每床每天的租金)不超过60元时,床位可全部租出;当床价超过60元时,床价每提高10元,将有2床位空闲,若用x(元)表示床价,y 表示该宾馆一天出租床位的净收入(即扣除各种费用后的收入)。
(1)将y 表示成x 的函数;(2)当床价定为多少时,净收入最多,最多为多少?13. 某市的一家报刊摊点从报社买进一种晚报的价格为每份0.12元,卖出的价格是每份0.20元,卖不掉的报纸还可以每份0.04元的价格退回报社。
在一个月(以30天计算),有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的报纸份数必须相同。
他每天应该从报社买进多少份报纸,才能使每月可获得的利润最大?并计算他一个月最多可赚得多少元?14.(本小题共13分)已知定义在R +上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R +上为减函数; (3)解关于x 的不等式2)1()6(--<x f x f .。