铅酸蓄电池的原理与性能
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的电池类型,广泛应用于各种交通工具、电力系统和备用电源等领域。
本文将详细介绍铅酸蓄电池的工作原理,从化学反应、电化学过程、充放电特性以及常见问题等方面进行分析。
一、化学反应过程铅酸蓄电池的核心化学反应是氧化还原反应,其基本反应方程式如下:负极反应:Pb + HSO4- → PbSO4 + H+ + 2e-正极反应:PbO2 + HSO4- + 3H+ + 2e- → PbSO4 + 2H2O综合反应:Pb + PbO2 + 2HSO4- + 2 H+ → 2PbSO4 + 2H2O其中,负极是由纯铅(Pb)构成,正极则是由氧化铅(PbO2)构成,而电解液则是由硫酸(HSO4-)溶解在水中形成。
二、电化学过程铅酸蓄电池中的电化学过程主要是指充电和放电过程。
1. 充电过程:当外部电源连接到电池时,电流从外部电源进入电池,推动反应物发生化学反应。
在充电过程中,正极的PbO2会释放出电子,电子在外部电路中流动,从而进一步推动负极上的Pb发生氧化还原反应。
同时,此时负极上的PbSO4会回溶到电解液中,正极的PbSO4则会形成。
2. 放电过程:放电过程是充电过程的逆反应,也是电池提供电能的过程。
当外部电路连接到电池并消耗电流时,正极上的PbSO4会溶解回到电解液中,负极上的PbSO4则会形成。
这个过程伴随着电子从负极流向正极,推动外部电路中的电流流动,从而提供能量。
三、充放电特性铅酸蓄电池具有几个典型的充放电特性:1. 自放电:铅酸蓄电池自放电是指在无负载情况下,电池内部的化学反应仍然会导致电容的减小。
这是由于内部的化学反应会导致极板的腐蚀和电解液的损失。
为了防止自放电,可以采用定期充电来保持电池的容量。
2. 循环寿命:铅酸蓄电池的充放电循环次数有限,一般在300-500次左右。
在每次循环中,电池容量会逐渐减小,电动力也会下降。
这是由于铅酸蓄电池的化学反应过程中不可逆反应的存在。
简述铅酸蓄电池的工作原理
简述铅酸蓄电池的工作原理
铅酸蓄电池是一种广泛应用于供电领域的充电蓄电池,其工作原理是经过充电给电解液中的正负极材料进行充电,使之产生电势差引起铅酸电解质进行电解,使正极材料充满氧气,形成金属铅,而负极材料则充满氢气,经过去电过程即可以达到充电的效果。
铅酸蓄电池的放电原理与充电原理相反,也即在放电过程中,铅酸电解质发生反电解,正极材料释出氧气,负极材料释出氢气(也即发生氧化还原反应),当负极材料对正极材料释出的氧气进行氧化,产生正极电势,正极向外侧释放能量,从而达到放电的效果。
铅酸蓄电池具有良好的低温性能和环境友好性,可靠性高等特点,是将电能效率转换为热能效率最理想的能源转换器。
无论是车用蓄电池、照明蓄电池,还是发电机发电设备和各种运动器件,都必不可少地使用铅酸蓄电池。
铅酸电池能源释放多样化,电压比较稳定,不受外界环境变化影响,运行成本低等优点,广受电子设备、自动控制和运动领域的青睐。
总之,铅酸蓄电池是一种经济、安全、高效率、节能环保的蓄电池,在现代社会的生活和工作中发挥着重要的作用。
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的化学电源,广泛应用于汽车、UPS电源、太阳能发电系统等领域。
它的工作原理基于电化学反应,在充电和放电过程中,通过化学反应将化学能转化为电能。
一、铅酸蓄电池的结构铅酸蓄电池由正极、负极、电解液和隔板等组成。
1. 正极:正极是由铅二氧化物(PbO2)制成,通常涂覆在铅板上。
它是电池中的氧化剂,参与电化学反应。
2. 负极:负极是由纯铅(Pb)制成,也涂覆在铅板上。
它是电池中的还原剂,参与电化学反应。
3. 电解液:电解液是一种硫酸溶液,通常浓度为1.28g/cm³。
它起到导电和媒介的作用,使正极和负极之间能够发生化学反应。
4. 隔板:隔板位于正极和负极之间,防止两极直接接触,同时允许电解液通过。
二、充电过程在充电过程中,外部电源施加正向电压,使得电流从外部电源流入铅酸蓄电池,发生化学反应。
1. 正极反应:在正极表面,铅二氧化物(PbO2)与电解液中的硫酸根离子(SO4^2-)发生反应,生成二氧化硫(SO2),同时释放出氧气(O2):PbO2 + SO4^2- + 4H+ + 2e- → PbSO4 + 2H2O + O22. 负极反应:在负极表面,纯铅(Pb)与电解液中的硫酸根离子(SO4^2-)发生反应,生成硫酸铅(PbSO4):Pb + SO4^2- → PbSO4 + 2e-3. 充电过程中,正极释放氧气,负极生成硫酸铅,同时电解液中的硫酸根离子浓度减少。
三、放电过程在放电过程中,铅酸蓄电池作为电源供应电流,化学能转化为电能。
1. 正极反应:在正极表面,氧气(O2)与水(H2O)和电解液中的硫酸根离子(SO4^2-)发生反应,生成铅二氧化物(PbO2)和硫酸(H2SO4):PbO2 + SO4^2- + 4H+ + 2e- → PbSO4 + 2H2O + O22. 负极反应:在负极表面,硫酸铅(PbSO4)与电解液中的硫酸根离子(SO4^2-)发生反应,生成纯铅(Pb)和硫酸(H2SO4):PbSO4 + 2e- → Pb + SO4^2-3. 放电过程中,正极消耗氧气,负极生成纯铅,同时电解液中的硫酸根离子浓度增加。
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的化学电池,广泛应用于汽车、UPS电源以及太阳能储能系统等领域。
它的工作原理是基于化学反应和电化学原理。
1. 构造和组成铅酸蓄电池由正极、负极、电解液和隔膜组成。
正极由铅二氧化物(PbO2)制成,负极由纯铅(Pb)制成。
电解液是硫酸溶液,隔膜用于隔离正负极。
2. 充电过程当铅酸蓄电池进行充电时,外部电源会提供直流电,使正负极之间形成电势差。
正极上的PbO2会被还原为Pb,负极上的Pb会被氧化为PbO2。
同时,电解液中的硫酸会分解成氢离子(H+)和硫酸根离子(SO4-2)。
氢离子会与负极上的Pb反应生成水,硫酸根离子则会与正极上的PbO2反应生成硫酸。
3. 放电过程当铅酸蓄电池进行放电时,正负极之间的电势差会驱动电子流动,从而产生电流。
正极上的PbO2会与负极上的Pb反应生成PbSO4,同时电解液中的硫酸会被还原成水。
这个过程释放出的电能可以用于驱动电动机、照明等各种电力设备。
4. 反应方程式充电反应方程式:正极:PbO2 + SO4-2 + 4H+ + 2e- → PbSO4 + 2H2O负极:Pb + SO4-2 → PbSO4 + 2e-放电反应方程式:正极:PbO2 + 4H+ + SO4-2 + 2e- → PbSO4 + 2H2O负极:Pb + SO4-2 → PbSO4 + 2e-5. 充放电过程中的化学反应在充电过程中,正极上的PbO2会被还原为PbSO4,负极上的Pb会被氧化为PbSO4。
同时,电解液中的硫酸会被分解成氢离子和硫酸根离子。
在放电过程中,正极上的PbO2会与负极上的PbSO4反应生成PbSO4,同时电解液中的硫酸根离子会被还原成水。
6. 电化学原理铅酸蓄电池的工作原理基于电化学反应。
在充电过程中,外部电源提供的电能使正负极之间的化学反应逆转,将电能转化为化学能。
而在放电过程中,化学能被释放出来,转化为电能供应给外部电路。
7. 电池容量和循环寿命铅酸蓄电池的容量是指电池能够存储和释放的电荷量,通常以安时(Ah)为单位。
铅酸蓄电池工作原理
铅酸蓄电池工作原理
铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS电源、太阳能储能等领域。
它的工作原理主要是通过化学反应将化学能转化为电能,实现能量的储存和释放。
下面我们来详细了解一下铅酸蓄电池的工作原理。
首先,铅酸蓄电池由正极板、负极板、电解液和隔板组成。
正极板是由氧化铅制成,负极板是由纯铅制成,电解液是稀硫酸溶液,隔板则用于隔离正负极板,防止短路。
当铅酸蓄电池充电时,外部电源施加电压,使得正极板上的氧化铅与负极板上的纯铅发生化学反应,生成硫酸铅和水。
同时,电解液中的硫酸溶解成离子,形成硫酸根离子和氢离子。
这些化学反应导致正极板上富集了负电荷,负极板上富集了正电荷,从而在蓄电池的两极之间产生电势差。
当外部电源断开,铅酸蓄电池开始放电。
在放电过程中,硫酸铅和水再次发生化学反应,还原成氧化铅和纯铅。
同时,硫酸根离子和氢离子重新结合成硫酸,电荷重新平衡,电势差逐渐减小。
这时,铅酸蓄电池可以输出电能,驱动外部设备工作。
需要注意的是,铅酸蓄电池在充放电过程中会产生氢气和氧气。
因此,在使用过程中要注意通风,避免氢气积聚引发安全隐患。
总的来说,铅酸蓄电池的工作原理是通过化学反应实现能量的储存和释放。
充电时,化学反应将电能转化为化学能存储起来;放电时,化学能再次转化为电能输出。
这种工作原理使得铅酸蓄电池成为一种重要的能量储存设备,为各种电力应用提供可靠的电源支持。
请简述铅酸蓄电池的工作原理
请简述铅酸蓄电池的工作原理
铅酸蓄电池是一种常见的电池类型,广泛应用于汽车、太阳能储能系统和备用
电源等领域。
它的工作原理基于电化学反应,通过将化学能转换为电能。
铅酸蓄电池由正极、负极和电解液组成。
其中,正极由氧化铅(PbO2)构成,负极由纯铅(Pb)构成,电解液则是稀硫酸溶液。
在放电过程中,铅酸蓄电池中的化学反应如下:
正极反应:PbO2 + 4H+ + 2e- → PbSO4 + 2H2O
负极反应:Pb + SO4-2 → PbSO4 + 2e-
这些反应会产生电子和正负离子,使电解液中形成硫酸铅(PbSO4)沉淀物。
在充电过程中,这些反应将发生逆向的电化学反应。
在放电时,正电极产生氧气,负电极则产生铅离子。
通过外部电路连接蓄电池
的正负极,电子从负极流向正极,形成电流。
这个过程释放出电能,可被外部设备使用。
在充电时,外部电源通过正负极对蓄电池进行电流输入,正负极的反应逆转,
将硫酸铅还原为氧化铅和纯铅。
这样,电能就被化学反应的能量恢复回来,蓄电池得以再次充电。
蓄电池的容量取决于正负极材料的质量和电解液的浓度。
较大的电极表面积和
浓度将增加蓄电池的容量,使其能够存储更多的电能。
总的来说,铅酸蓄电池的工作原理是通过放电和充电过程中的化学反应将化学
能转换为电能。
这种电池稳定可靠,成本相对较低,因此广泛应用于各个领域。
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的化学电源,广泛应用于汽车、UPS系统、太阳能电池组等领域。
它的工作原理基于电化学反应和电解质的离子传导。
1. 电化学反应铅酸蓄电池通过电化学反应将化学能转化为电能。
它由两种主要的电极反应组成:在正极(正极板)上,二氧化铅(PbO2)与硫酸(H2SO4)反应生成铅酸(PbSO4)、水(H2O)和氧气(O2);在负极(负极板)上,铅(Pb)与硫酸反应生成铅酸和水。
这些反应的化学方程式如下:正极反应:PbO2 + H2SO4 + 2H+ + 2e- -> PbSO4 + 2H2O + 2e- + O2负极反应:Pb + H2SO4 -> PbSO4 + 2H+ + 2e-2. 电解质和离子传导铅酸蓄电池中的电解质是硫酸(H2SO4),它在电解液中以离子形式存在。
硫酸分解为氢离子(H+)和硫酸根离子(SO4^2-),并在电池中传导。
正极反应中生成的氢离子会向负极迁移,而硫酸根离子则会向正极迁移。
这种离子传导的过程是通过电池中的电解液实现的。
3. 电池结构铅酸蓄电池通常由多个电池单元组成,每一个单元由一个正极板和一个负极板之间的隔板隔开。
正极板是由铅酸和二氧化铅组成的,负极板则是由纯铅制成的。
正极板和负极板之间的隔板通常是由微孔橡胶或者玻璃纤维制成的,它们起到隔离正负极的作用,同时也允许离子传导。
4. 充放电过程在充电过程中,外部电源提供电流,将电池中的铅酸还原为二氧化铅和铅。
这个过程是反向的,即正极板上的二氧化铅被还原为铅酸,负极板上的铅酸被还原为铅。
充电过程中,电池内部的化学反应是可逆的。
在放电过程中,电池通过外部电路释放储存的电能。
这个过程是正向的,即正极板上的铅酸被氧化为二氧化铅,负极板上的铅被氧化为铅酸。
放电过程中,电池内部的化学反应是不可逆的。
5. 蓄电池的容量和循环寿命铅酸蓄电池的容量取决于正负极板的表面积、电解液的浓度和电池的设计。
容量越大,电池可以储存的电能就越多。
铅酸蓄电池的原理及性能
铅酸蓄电池的原理与性能一、铅酸蓄电池的工作原理蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反响,对电池产生电流起着主要作用,如图4-1所示。
在电池部,正极和负极通过电解质构成电池的电路,在电池外部接通两极的导线和负荷构成电池的外电路。
在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。
在放电过程中,两极活性物质逐渐消耗,负极活性物质1.电解质2.负极3.容量4.正极5.隔离物6.导线7.负荷图4-1 电池构造示意图放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被复原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反响形成新的化合物增加了电池的阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。
电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物复原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质复原的过程叫做充电。
蓄电池可以反复屡次充电、放电,循环使用,使用寿命长,本钱较低,能输出较大的能量,放电时电压下降很慢。
1.电动势的产生铅蓄电池的正极是二氧化铅(PbO2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H2SO4)起化学作用的结果也不同。
在未接通负载时,由于化学作用使正极板上缺少电子,负极板上却多余电子,如图4-2所图4-2 铅蓄电池电势产生过程示,两极间就产生了一定的电位差。
2.放电过程的化学反响当外电路接上负载(比方灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。
铅酸电池工作原理
铅酸蓄电池的工作原理:1、 铅酸蓄电池电动势的产生:● 铅酸蓄电池充电后,正极板是二氧化铅(PbO2),在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质—氢氧化铅(Pb(OH)4),氢氧根离子在溶液中,铅离子(Pb)留在正极板上,故正极板上缺少电子。
.● 铅酸蓄电池充电后,负极板是铅(Pb),与电解液中的硫酸(H2SO4)发生反应,变成铅离子(Pb+2),铅离子转移到电解液中,负极板上留下多余 的两个电子(2e)。
● 可见,在未接通外电路时(电池 开路),由于化学作用,正极板 上缺少电子,负极板上多余电子, 两极板见就产生了 一定的电位差,这就是电池的电动势。
2、 铅酸蓄电池放电过程的电化反应● 铅酸蓄电池放电时,在蓄电池的电位差作用下,负极板上的电子经负载进入正极板形成电流I 。
同时在电池内部进行化学反应。
● 负极板上每个铅原子放出两个电子后,生成的铅离子(Pb+2)与电解液中的硫酸根离子(SO4ֿ²)反应,在极板上生成难溶的硫酸铅(PbSO4)。
● 正极板的铅离子(Pb+4)得到来自负极的两个电子(2e)后,变成二价铅离子(Pb+2)与电解液中的硫酸根离子(SO4ֿ²)反应,在极板上生成难溶的硫酸铅(PbSO4)。
正极板水解出的氧离子(O ֿ²)与电解液中的氢离子(H+)反应,生成稳定物质水.● 电解液中存在的硫酸根离子和氢离子在电力场的作用下分别移向电池的正负极,在电池内部形成电流,整个回路形成,蓄电池向外持续放电。
● 放电时H2SO4浓度不断下降,正负极上的硫酸铅(PbSO4)增加,电池内阻增大(硫酸铅不导电),电解液浓度下降,电池电动势降低。
● 化学反应式为:正极活性物质 电解液 负极活性物质 正极生成物 电解液生成物 负极生成物 ↓ ↓ ↓ ↓ ↓ ↓PbO2 + 2H2SO4 + Pb → PbSO4 + 2H2O + PbSO4氧化铅 稀硫酸 铅 硫酸铅 水 硫酸铅3、 铅酸蓄电池充电过程的电化反应● 充电时,应在外接一直流电源(充电极或整流器),使正、负极板在放电后生成的物质恢复成原来的活性物质,并把外界的电能转变为化学能储存起来。
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的电化学储能设备,广泛应用于汽车、UPS电源、太阳能储能系统等领域。
它的工作原理基于电化学反应,通过将化学能转化为电能来实现能量的存储和释放。
一、铅酸蓄电池的结构铅酸蓄电池由正极板、负极板、电解液和隔膜组成。
正极板通常由铅二氧化物(PbO2)制成,负极板由纯铅(Pb)制成。
电解液是硫酸溶液,起到导电和电化学反应的媒介作用。
隔膜用于隔离正负极板,防止短路。
二、充电过程1. 正极反应:在充电过程中,正极板上的PbO2与电解液中的H2SO4发生反应,生成PbSO4、H2O和O2。
PbO2 + H2SO4 → PbSO4 + H2O + O2↑2. 负极反应:负极板上的纯铅与电解液中的H2SO4发生反应,生成PbSO4和H2。
Pb + H2SO4 → PbSO4 + H2↑3. 总反应:整个充电过程可以表示为:PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O + O2↑三、放电过程1. 正极反应:在放电过程中,正极板上的PbO2与电解液中的H2SO4反应,生成PbSO4、H2O和O2。
PbO2 + H2SO4 → PbSO4 + H2O + O2↑2. 负极反应:负极板上的纯铅与电解液中的H2SO4反应,生成PbSO4和H2。
Pb + H2SO4 → PbSO4 + H2↑3. 总反应:整个放电过程可以表示为:PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O + O2↑四、工作原理解析在充电过程中,化学能转化为电能,同时将正极板上的PbO2还原为PbSO4,负极板上的纯铅还原为PbSO4。
这个过程是可逆的,可以进行多次充放电循环。
在放电过程中,正极板上的PbSO4被氧化为PbO2,负极板上的PbSO4被还原为纯铅。
这个过程是不可逆的,一次放电后,正极板和负极板上的活性物质都会逐渐减少,蓄电池的容量会下降。
铅酸蓄电池的工作原理可以通过以下几个方面来解释:1. 化学反应:充电过程中,正极板和负极板上的活性物质发生化学反应,释放出电子和离子,形成电流。
铅酸蓄电池的工作原理和结构分析
铅酸蓄电池的工作原理和结构分析铅酸蓄电池是一种广泛应用于汽车、电动车和UPS等领域的重要电池类型。
本文将对其工作原理和结构进行详细分析。
一、工作原理铅酸蓄电池通过化学反应将化学能转化为电能。
它采用了正极活性物质为二氧化铅(PbO2),负极活性物质为海绵铅(Pb),电解液是硫酸溶液。
在充电过程中,外部直流电源通过正极,使其发生氧化反应,并转化为二氧化铅。
同时,负极发生还原反应,将铅转化为铅酸盐和连续的硫酸铅溶液。
电解液中的硫酸铅溶液饱和度增加,产生大量的正极材料和负极材料。
在放电过程中,正负两极上发生化学反应,将储存的化学能转化为电能。
正极的二氧化铅与负极的海绵铅反应生成过渡产物氧气和硫酸铅。
同时,硫酸铅溶液被它们稀释,此过程中产生了电流。
由于铅酸蓄电池的工作涉及到正极和负极的氧化还原反应,因此常被称为“铅酸电池”。
二、结构分析铅酸蓄电池的结构由正负极板、电解液、隔膜和壳体等组成。
1. 正负极板:正极板由具有催化作用的铅-锡合金制成。
这种合金可以增强正极的电导率和整体反应速度。
负极板由纯铅制成。
这是因为铅在还原反应中的活性更高,能够迅速还原成铅。
2. 电解液:电解液由硫酸溶液组成,通常浓度为1.28g/cm3。
硫酸固降低冷却剂的冰点,可以防止电池过冷冻。
3. 隔膜:隔膜是正极和负极之间的隔离层,防止电极短路。
隔膜通常使用的是纤维素材料,具有良好的孔隙性和电导率。
4. 壳体:壳体由塑料或金属材料制成,起到固定电解液和电池内部结构的作用。
以上是铅酸蓄电池的主要结构组成。
它们相互配合,形成了一个完整的闭合系统,以实现电能的存储和释放。
铅酸蓄电池的优点包括成本低廉、容量大、寿命长等。
然而,也存在一些缺点,如自放电速度快、充电时间长等。
近年来,随着科学技术的发展,新型蓄电池技术的兴起,铅酸蓄电池在某些领域正逐渐被其他类型的蓄电池所取代。
总的来说,铅酸蓄电池的工作原理是通过正负极的氧化还原反应将化学能转化为电能,结构上由正负极板、电解液、隔膜和壳体组成。
铅酸蓄电池充放电原理
铅酸蓄电池充放电原理铅酸蓄电池是一种常见的电池类型,它的充放电原理是电化学反应。
在充电过程中,电池的负极会释放出电子,而正极会吸收电子,这导致了电池内部的电场强度增加。
当电场达到一定强度时,铅酸蓄电池就会被充满电。
在放电过程中,电池内部的化学反应反转,电子会从正极流向负极,电池的电场强度会逐渐降低。
当电场强度降至一定程度时,铅酸蓄电池就会失去电能,需要进行充电。
铅酸蓄电池的充放电过程中,主要涉及两种化学反应:正极的铅酸化和负极的铅的还原。
在充电过程中,电流会从充电器流向电池的正极,这导致了正极的铅酸化反应。
同时,负极的铅会被氢气还原,这是一种吸氧反应。
在放电过程中,电池内部的化学反应反转,正极的铅酸化反应被逆转,负极的铅则会被氢气氧化,这是一种放氧反应。
在放电过程中,电池会不断地释放出电能,直到电场强度降到一定程度时,电池就需要进行充电。
铅酸蓄电池的充放电过程受到很多因素的影响,其中最重要的是电池的温度。
在高温下,电池的化学反应速度会加快,这导致了电池内部的电场强度增加,从而加速了充电过程。
但是,在过高的温度下,电池的寿命会受到影响,因为过高的温度会导致电池内部的化学物质的分解。
电池的充放电速率也会影响电池的性能。
在高速充放电时,电池内部的化学反应会变得更加剧烈,这可能会导致电池的寿命缩短。
因此,在选择充电器时,需要根据电池的类型和额定电压来选择适当的充电器,以确保电池的寿命和性能。
铅酸蓄电池的充放电原理是电化学反应,正极的铅酸化和负极的铅的还原是充电的主要化学反应,反之则是放电的主要化学反应。
在电池的使用过程中,需要注意电池的温度和充放电速率,以确保电池的性能和寿命。
铅酸电池的原理
铅酸电池的原理铅酸电池是一种常见的蓄电池,它的原理主要是通过化学反应将化学能转化为电能。
铅酸电池由正极板、负极板和电解液组成,其中正极板由铅二氧化物构成,负极板由纯铅构成,电解液则是稀硫酸溶液。
在充电状态下,铅酸电池中的化学反应是将正极板上的铅二氧化物还原成铅,同时将负极板上的纯铅氧化成二价铅。
这个过程是一个可逆的化学反应,通过外部电源施加电压,使得这个反应朝着充电的方向进行。
在放电状态下,铅酸电池中的化学反应是将正极板上的还原的铅氧化成铅二氧化物,同时将负极板上的氧化的二价铅还原成纯铅。
这个过程也是一个可逆的化学反应,通过外部负载的消耗,使得这个反应朝着放电的方向进行。
铅酸电池的原理可以用化学方程式来表示,充电时的化学反应可以表示为:PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O。
放电时的化学反应可以表示为:2PbSO4 + 2H2O → PbO2 + Pb + 2H2SO4。
通过这些化学方程式,我们可以清楚地看到在充放电过程中铅酸电池中发生的化学变化。
铅酸电池的原理也与其内部的结构密切相关。
在充电状态下,正极板上的铅二氧化物颗粒会变得更小,而负极板上的纯铅颗粒会变得更大。
这是因为在充电时,正极板上的铅二氧化物被还原成铅,而负极板上的纯铅被氧化成二价铅,这种反应会导致颗粒的变化。
在放电状态下,正极板上的铅二氧化物颗粒会变得更大,而负极板上的纯铅颗粒会变得更小。
这是因为在放电时,正极板上的还原的铅被氧化成铅二氧化物,而负极板上的氧化的二价铅被还原成纯铅,这种反应同样会导致颗粒的变化。
总的来说,铅酸电池的原理是通过化学反应将化学能转化为电能,而充放电过程中的化学反应和内部结构的变化密切相关。
铅酸电池在实际应用中具有较高的能量密度和较低的成本,因此被广泛应用于汽车、UPS系统等领域。
铅酸蓄电池简介介绍
05
铅酸蓄电池的环保与安全问题
铅酸蓄电池的环保问题
铅酸蓄电池的生产过程会产生大量废气、废水和固体废弃 物,对环境造成污染。
铅酸蓄电池在使用过程中也会产生一些污染物,如硫酸、 铅尘等,对环境和人体健康造成威胁。
铅酸蓄电池的安全使用注意事项
铅酸蓄电池在使用过程中应避免过充、过放和短路等情况,以免发生爆炸、火灾 等安全事故。
铅酸蓄电池应存放在通风良好、干燥、阴凉的地方,远离火源和热源,避免阳光 直射和高温。
废旧铅酸蓄电池的回收与处理
废旧铅酸蓄电池的回收和处理对于环 境保护和资源利用具有重要意义。
目前,许多国家和地区已经建立了废 旧铅酸蓄电池的回收和处理体系,通 过回收和处理废旧铅酸蓄电池,减少 对环境的污染,同时实现资源的循环 利用。
铅酸蓄电池的应用领域
01
02
03
汽车行业
作为汽车启动电池和车载 动力电池,广泛应用于各 类汽车。
工业领域
用于电力、通讯、铁路、 港口等行业的备用电源和 储能系统。
家庭应用
用于电动自行车、电动工 具等家庭电器和电动玩具 的电源。
铅酸蓄电池的发展历程
1859年
20世纪初
铅酸蓄电池由法国物理学家普兰特发明, 当时主要用于手电筒和简单的照明。
THANKS
谢谢您的观看
03
铅酸蓄电池的种类与规格
普通铅酸蓄电池
规格
1-1000Ah
优点
技术成熟、价格便 宜、容量大
种类
开口式、阀控式
应用领域
汽车启动、电动车 、备用电源等
缺点
充电时间长、自放 电率高、寿命短
阀控式铅酸蓄电池
种类
密封式、免维护
缺点
铅酸蓄电池的种类
铅酸蓄电池的种类1. 引言铅酸蓄电池是一种常见的电池类型,广泛应用于汽车、UPS电源以及太阳能和风能储能系统等领域。
本文将对铅酸蓄电池的种类进行全面、详细、完整和深入的探讨。
2. 铅酸蓄电池的基本原理铅酸蓄电池是基于电化学反应原理工作的。
其基本原理是通过将化学能转换为电能,通过反应可逆性实现充放电循环。
2.1 化学反应原理铅酸蓄电池的正极是由铅二氧化物(PbO2)构成,负极是由纯净的铅(Pb)构成,电解液是稀硫酸溶液。
在充电过程中,电解液中的硫酸会分解成氢离子和硫酸根离子。
同时,铅负极会脱去电子,并与硫酸根离子结合生成硫酸铅。
而铅二氧化物正极则会接受电子,并与氢离子结合生成水。
在放电过程中,反应则相反。
2.2 充放电循环过程铅酸蓄电池的充放电循环过程可以分为三个阶段:充电、静置和放电。
充电过程是通过外部电源将电流导入电池,使铅负极重新转化为铅二氧化物和硫酸铅。
静置阶段用于让铅酸蓄电池充分稳定并均匀分布电荷。
放电过程则是通过外部电路使铅二氧化物还原为铅负极和硫酸铅。
3. 铅酸蓄电池的种类铅酸蓄电池根据用途和结构的不同,可以分为以下几种类型:3.1 汽车蓄电池汽车蓄电池是铅酸蓄电池最常见的应用之一。
它们通常具有高峰值放电能力和短时间大电流放电能力,以满足汽车启动和运行时的高电流需求。
3.2 蓄电池组蓄电池组是将多个铅酸蓄电池连接在一起形成的一个整体。
它们通常被用于储能系统或UPS电源中,以提供连续稳定的电流输出。
3.3 太阳能储能电池太阳能储能电池是一种特殊的铅酸蓄电池,用于储存太阳能电池板产生的电能。
它们通常具有较大的容量和较低的自放电率。
3.4 AGM蓄电池AGM蓄电池(Absorbent Glass Mat)是一种改进型的铅酸蓄电池。
它们使用玻璃纤维毡作为电解质吸收剂,以提高蓄电池的效率和性能。
4. 铅酸蓄电池的特点和应用领域铅酸蓄电池具有以下特点和广泛的应用领域。
4.1 特点•成本低廉:铅酸蓄电池相对于其他类型的电池而言,成本较低,具有较高的性价比。
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理如下:
1. 化学反应:铅酸蓄电池内部有两个电极:正极(铅二氧化物PbO2)和负极(纯铅Pb)。
当电池接通电路时,正极和负极之间会发生化学反应。
电解液中的硫酸(H2SO4)分解成氢离子(H+)和硫酸阴离子(SO4-2)。
2. 充电:在充电过程中,外部电源通过电路将电流引入电池。
正极上的PbO2会接受电子并氧化成PbSO4,而负极上的Pb则会释放电子,还原成PbSO4。
反应可以表示为:PbO2 + HSO4- + 3H+ + 2e- →PbSO4 + 2H2O。
这个过程会形成铅酸(PbSO4)。
3. 放电:在放电过程中,电池内部的化学反应反转。
正极和负极之间的化学反应会产生电压差,使得电流从电池中流出。
PbSO4会被还原为Pb,PbO2会被氧化成PbSO4。
反应可以表示为:PbSO4 + 2H2O →PbO2 + HSO4- + 3H+ + 2e-。
4. 休止状态:当电池不进行充放电时,铅酸蓄电池的正极和负极之间不会发生化学反应。
此时,PbSO4会逐渐结晶,形成硫酸铅(PbSO4)晶体。
铅酸蓄电池的工作原理是通过化学反应来实现电能的充放电和储存。
由于铅酸蓄电池的化学反应过程相对稳定,在一系列工业应用和交通工具中被广泛使用。
铅酸蓄电池的工作原理
铅酸蓄电池的工作原理引言概述:铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS电源等领域。
了解铅酸蓄电池的工作原理对于使用和维护蓄电池具有重要意义。
本文将详细介绍铅酸蓄电池的工作原理及其相关知识。
一、电化学反应过程1.1 阳极反应铅酸蓄电池的阳极是由铅(Pb)构成的,当蓄电池放电时,铅极上的铅与电解液中的硫酸(H2SO4)发生反应,产生硫酸铅(PbSO4)和氢离子(H+)。
反应方程式为:Pb + H2SO4 -> PbSO4 + 2H+ + 2e-1.2 阴极反应铅酸蓄电池的阴极是由铅氧化物(PbO2)构成的,当蓄电池放电时,阴极上的铅氧化物与电解液中的硫酸和水发生反应,生成硫酸铅(PbSO4)、水(H2O)和氧气(O2)。
反应方程式为:PbO2 + H2SO4 + 2H+ + 2e- -> PbSO4 + 2H2O + O21.3 电池反应铅酸蓄电池的整体反应是由阳极反应和阴极反应组成的。
当蓄电池放电时,阳极上的铅被氧化成硫酸铅,阴极上的铅氧化物被还原,同时产生电流。
这个反应过程是可逆的,当蓄电池充电时,反应方向发生改变。
二、电解液的作用2.1 导电性铅酸蓄电池中的电解液通常是由硫酸溶液构成的,硫酸能够离解成氢离子(H+)和硫酸根离子(SO4-2),这些离子在电池中起到导电的作用,使电流能够在阳极和阴极之间流动。
2.2 中和反应铅酸蓄电池在放电过程中,阳极上的铅被氧化成硫酸铅,阴极上的铅氧化物被还原,导致电解液中的硫酸浓度降低。
充电时,反应方向相反,电解液中的硫酸浓度增加。
电解液通过中和反应来维持电池中的硫酸浓度,保持电池的正常工作。
2.3 电解液的浓度和温度电解液的浓度和温度会影响铅酸蓄电池的性能。
适当的电解液浓度和温度可以提高电池的容量和循环寿命。
过高或过低的浓度和温度会导致电池损坏或性能下降。
三、电池的结构3.1 正极板铅酸蓄电池的正极板通常由铅氧化物(PbO2)制成,它具有较高的电导率和化学稳定性,能够在充放电过程中承受较大的电流和化学反应。
铅酸蓄电池工作原理
铅酸蓄电池工作原理
铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS等领域。
它的工作原理是通过化学反应将化学能转化为电能,从而实现能量的储存和释放。
本文将从五个方面详细介绍铅酸蓄电池的工作原理。
一、电池构造
1.1 正极:正极是由铅二氧化物(PbO2)构成,是电池中的氧化剂。
1.2 负极:负极是由纯铅(Pb)构成,是电池中的还原剂。
1.3 电解液:电解液是硫酸溶液,起着导电和传递离子的作用。
二、充电过程
2.1 充电时,外部电源施加电压使电池正负极发生反应。
2.2 正极发生还原反应,负极发生氧化反应。
2.3 电解液中的硫酸分解为硫酸根离子和氢离子。
三、放电过程
3.1 放电时,电池正负极发生反向反应,释放电能。
3.2 正极发生氧化反应,负极发生还原反应。
3.3 电解液中的硫酸根离子和氢离子重新结合成硫酸。
四、电池容量
4.1 电池容量是指电池能够释放的电能。
4.2 电池容量与电极面积、电解液浓度等因素有关。
4.3 电池容量的大小直接影响电池的使用寿命和性能。
五、循环寿命
5.1 铅酸蓄电池的循环寿命受到充放电循环次数的影响。
5.2 过度充电和过度放电会缩短电池的循环寿命。
5.3 适当的充电和放电方式可以延长电池的使用寿命。
总结:铅酸蓄电池的工作原理是通过化学反应将化学能转化为电能,实现能量的储存和释放。
了解电池的构造、充放电过程、容量和循环寿命等方面,有助于合理使用和维护铅酸蓄电池,延长其使用寿命。
铅酸蓄电池的工作原理和特点
铅酸蓄电池的工作原理和特点电动车电池、汽车起动用铅酸蓄电池是一种电能与化学能互相转换的可逆装置,也就是说:充电是将电能储存起来,而放电是将化学能变为电能释放出去。
铅酸蓄电池由正极板、负极板、玻璃纤维隔板、电解液和电解槽所组成,充电后正极的活性物质为二氧化铅,负极板活性物质为海绵状铅,放电后连极板的活性物质都转变为硫酸铅,充电后又恢复为原来物质。
化学反应方程式如下:放电PbO2 + 2H2SO4 + Pb <=====> PbSO4+2H2O+PbS04正极电解液负极充电正极水负极从化学反应的方程式中可以看出,在放电过程中消耗了硫酸,生成了水,因此电解液的浓度越来越小,而充电过程则相反。
电动自行车采用了负极性物质过量的设计。
当蓄电池充电的时候,正极充足100%后,负极尚未充到底90%,这样蓄电池内只有正极产的氧,不存在负极产生的难以复合的氢气。
为了解决水的消耗问题,和必须为氧的复合创造条件。
采用贫电解液设计加上超细玻璃纤维隔膜板膜,解决了氧的传输问题,使氧复合反应得以进行,完成了氧的再化合,蓄电池实现了密封和免维护。
氧的再化合过程如下:(正极)PbSO4--------PbO---------02(负极)PbSO4---------Pb---------- 02电池主要性能参数电池的主要性能包括额定容量、额定电压、开路电压、内阻和自放电率。
额定容量在设计规定的条件(如温度、放电率、终止电压等)下,电池应能放出的最低容量,单位为安培小时,以符号C表示。
容量受放电率的影响较大,所以常在字母C的右下角以阿拉伯数字标明放电率,如C20=50,表明在20时率下的容量为50安·小时。
额定电压电池在常温下的典型工作电压,又称标称电压。
它是选用不同种类电池时的参考。
电池的实际工作电压随不同使用条件而异。
开路电压电池在开路状态下的端电压称为开路电压。
电池的开路电压等于电池在断路时(即没有电流通过两极时)电池的正极电极电势与负极的电极电势之差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.铅酸蓄电池的原理与性能一、铅酸蓄电池的工作原理蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。
在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。
在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。
在放电过程中,两极活性物质逐渐消耗,负极活性物质1.电解质2.负极3.容量4.正极5.隔离物6.导线7.负荷 图4-1 电池构造示意图放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。
电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。
蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。
1.电动势的产生铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。
在未接通负载时,由于化学作用使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。
2.放电过程的化学反应当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。
同时在蓄电池内部产生化学反应:.在负极板上,每个铅原子(Pb)放出二个电子,而成铅正离子(Pb ++),因此负极板上出现若干多余的电子,这些电子在电位差的作用下,不断地经外电路进入正极板。
而在电解液内部,因硫酸分子的电离便有氢正离子(H +)和硫酸根负离子(SO 4)-存在。
图4-3 铅蓄电池放电时的化学反应这时因电荷(离子)的静电作用,氢正离子(H +)移向正极板,硫酸根负离子(SO 4--) 移向负极板,于是形成电池内部的离子电流。
当硫酸根负离子(SO 4--)与负极板上的铅正离子(Pb ++)相遇时,便生成硫酸铅(PbSO 4)分子附在负极板上。
在正极板上, 由于电子自外电路进入, (PbO 2)与水作用离解出来的四价的铅正离子(P ++++)在取得二个电子后化合变成二价铅的正离子(Pb ++),再和正极板附近的硫酸根负离子(SO 4--)结合在一起,生成硫酸铅分子(PbSO 4)附在正极板上。
与此同时,移向正极板的氢正离子(H +)便和氧负离子(O --)结合,生成水分子(H 2O)。
于是,放电时总的化学反应为:PbO 2+2H 2SO 4+Pb −−→−放电PbSO 4+2H 2O +PbSO 4 (4-1) (正极)(硫酸)(负极) (正极) (水) (负极)从放电反应式看出,随着蓄电池放电,硫酸逐渐消耗,电解液的比重逐渐下降。
因此,在实际工作中我们可以根据电解液比重变化,判断铅蓄电池的放电程度。
3.充电过程的化学反应充电是放电过程的逆过程,如图4-4所示。
图4-4 铅蓄电池在充电时的化学反应.充电时,应在蓄电池上外接充电电源(整流器),使正、负极板在放电时消耗了的活性物质还原,并把外加的电能转变为化学能储存起来。
在充电电源作用下,外电路的电流I 自蓄电池的正极板流入,经电解液和负极板流出。
于是,电源从正极板中不断取得电子输送给负极板,促使正、负极板上的硫酸铅(PbSO 4)不断进入电解液而被游离,因此在电池内部产生如下的化学反应:在负极板上,因获得了电子,所以二价的铅离子(Pb ++)被中和为铅(Pb),并以固体状态附在负极板上。
在正极板上失去的电子,则由电解液中位于极板附近处于游离状态的二价铅离子(Pb ++)不断放出二个电子来补充。
当它变成四价铅离子(Pb ++++)以后,再和水中的氢氧根离子(10H)结合,生成过渡状态的而且可离解的物质(Pb(OH)4)和游离状态的氢离子(H +)。
(Pb(OH)4)又继续被分解为二氧化铅(PbO 2)和水。
在电流作用下向负极板移动,同时向正极板移动,两种离子因静电引力而结合成硫酸。
于是,充电时总的化学反应式为:PbSO 4+2H 2O +PbSO 4−−→−充电PbO 2+2H 2SO 4+Pb (4-2) (正极) (水) (负极) (正极) (硫酸) (负极)从充电反应式看出,当蓄电池充电后,两极上原来被消耗的活性物质复原了,同时电解液中的硫酸成分增加,水分减少,电解液的比重升高,因此,在实际工作中可根据电解液比重变化,来判断铅蓄电池的充电的程度。
二、铅酸蓄电池容量蓄电池的容量不是恒定的常数,它与极板活性物质的多少、充电程度、放电电流的大小、放电时间长短、电液比重和温度高低等有关。
使用中放电率和电液温度影响较大。
1、电池容量与极板尺寸及有效物质的关系:极板愈薄,活性物质利用率愈高,电池容量就大;极板面积愈大,有效物质充分利用,容量则大;有效物质颗粒间存在微孔,使电解液接触有效物质的真实面积增大数百甚至几千倍。
由于正极板上的有效物质利用率约为45%,低于负极板上有效物质利用率50%的数值,故电池容量以正极板容量为标称单位。
正极板厚,浓差极化影响大,电解液向深处扩散困难,有效物质利用率变低。
有效物质的利用率即是被利用的有效物质数量与有效物质总量之比。
2.使用因素对容量的影响:(1) 放电率影响:一般以10小时放电率的容量作为蓄电池的正常额定容量。
放电率低于正常放电率时,可得较大的容量;反之,容量则变小。
铅酸蓄电池因放电率引起的放电一变化见下面表4-1。
.下面以深圳华达的一组阀控型铅酸某电池组的性能数据作为例子,来了解放电率对蓄电池放电容量的影响。
(2) 电解液温度的影响:蓄电池若在低温下工作,电解液扩散能力变差,粘度增大,电池内阻增加,容量降低。
实践证明,温度低于一定值时,负极容量比正极容量降低得更快,尤其是大电流放电时更为明显。
以25°C 时的电解液为标准,当电解液的温度在10°C ~35°C 范围内。
每升高1°C 时,电池容量将增大0.8%;温度每降低1°C 时,容量平均降低约0.7%。
目前设计资料上,一般都取容量温度系数为0.008。
当把电解液温度为t °C 时的电池容量Ct ,换算成25°C 时的标称容量C 25时,可按下式进行: )25t (008.01C C t25-+=(4-5) (3) 终止电压的影响:电池的容量与端电压降低的快慢有密切关系。
放电过程中,若能做到浓度极化小,端电压降低很慢,电池容量会相应提高。
终止电压是按实际需要确定的:小电流放电时,终止电压高些;大电流放电,终止电压低些。
因为小电流放电极化作用小,容易形成硫酸铅结晶,充电时不易恢复成原来有效物质,故而终止电压规定高些。
大电流放电时,扩散速度跟不上,端电压降低很快,容量发挥不出来,因此终止电压定得低些。
程控交换机供电系统,为保证设备在一定电压范围工作,采用较高终止电压,有的国家定为1.86V 。
(4) 电液浓度的影响:容量随硫酸电液浓度的变化而变化。
极板细孔中的电液浓度,决定电极电位的变化,影响电液扩散速度和电池内阻。
所以电池容量随电液浓度的增大而提高,且近似成直线关系。
但也不可浓度过大,因浓度高粘度增加,反而影响电液扩散,降低输出容量。
三、铅酸蓄电池的自放电1.自放电的产生电池的自放电是指电池在存储期间容量降低的现象。
电池开路时由于自放电使电池容量损失。
自放电通常主要在负极,因为负极活性物质为较活泼的海绵状铅电极,在电解液中其电势比氢负,可发生置换反应。
若在电极中存在着析氢过电位低的金属杂质,这些杂质和负极活性物质能给成腐蚀微电池,结果负极金属自溶解,并伴有氢气析出,从而容量减少。
在电解液中杂质起着同样的有害作用。
一般正极的自放电不大。
正极为强氧化剂,若在电解液中或隔膜上存在易于被氧化的杂质,也会引起正极活性物质的还原,从而减少容量。
蓄电池在未接通负载的情况下,内部存在着微电池的作用,它要消耗活性物质,导致使用的困难。
铅蓄电池两极版上的活性物质,在电解液中都会有一定程度的自溶性,反应式如下:Pb+SO42- = PbSO4+2ePbO2+4H++SO42-+2e = PbSO4+2H2O在外界因素的影响下自溶速度会加快,结果使Pb和PbO2无益消耗。
自放电的深度和电解液中的杂质的性质和数量密切有关,如铁的影响、锑的影响、隔板的影响。
阀控式密封铅蓄电池由于是荷电出厂,在储存期,正极板和负极板上活性物质小孔内都已吸满了电介液,可产生多重附加电极反应,如在负极上存在下列自放电反应,正极板在储存期间也产生放电,存在多重反应。
2.影响自放电速率大小的因素自放电性能不好的电池,有的只能储存2~3个月,而电池容量就没有了,这对于电池容量恢复性能是不利的,另一方面也增加了电池浮充工作的困难。
阀控铅酸电池之所以能做到密封不漏液,储存性能好,其主要因素为板栅材料。
各种材料的板栅性能,以自放电性能来比较:以铅钙板栅最小,纯铅板栅次之,低锑板栅最大。
3.杂质对自放电的影响电池活性物质添加剂、隔板、硫酸电解液中的有害杂质含量偏高,是使电池自放电高的重要原因。
杂质MnO4和Mn2+的物质都溶解于电解液,杂质CI-也很容易进入电解液,它们也对铅酸电池正极或负极的自放电有影响。
有些溶于电解液的杂质只对正极或者只对负极自放电有影响。
例如,危及负极的杂质有铂、铜、铋、锑、砷等。
它们除消耗部分活性物质外,还对析氢有加速作用。
又例如,酒精及易氧化的有机物质它们在正极板上发生自放电,除耗损活性物质外,还析出CO2等气体。
4.温度对自放电速度的影响阀控式密封铅酸电池在25~45°C环境温度下自放电速度是很小的,每天自放电量平均为0.1%左右,温度愈低,自放电速度越小,所以低温条件有利于电池储存。
5.电解液浓度对自放电影响由试验资料报道,储存在10°下的试验用阀控铅酸蓄电池(板栅材料为Pb-Ca-Sn),自放电速度随电解液密度增加而增加,且正极板受电解液密度影响最大。