导数的计算练习题及答案.doc
导数的计算练习题及答案
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
(完整版)导数的计算练习题及答案
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
求导练习题带答案
求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。
以下是一些求导的练习题及其答案,适合初学者练习。
练习题1:求函数 f(x) = x^3 的导数。
解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。
因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。
练习题2:求函数 g(x) = sin(x) 的导数。
解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。
所以,g'(x) = cos(x)。
练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。
解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。
对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。
练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。
解:这里我们使用链式法则和幂函数的求导法则。
首先,设 u = x^2- 1,那么 k(x) = u^3。
u 的导数是 u' = 2x,而 u^3 的导数是3u^2。
应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。
练习题5:求函数 m(x) = e^x 的导数。
解:根据指数函数的求导法则,e^x 的导数是它自身。
所以,m'(x) = e^x。
练习题6:求函数 n(x) = ln(x) 的导数。
解:自然对数函数 ln(x) 的导数是 1/x。
因此,n'(x) = 1/x。
练习题7:求函数 p(x) = (3x - 2)^5 的导数。
解:使用链式法则和幂函数的求导法则。
导数练习题及答案
导数练习题及答案一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( ) A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx =4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的.图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x →0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
导数练习题含答案完整版
导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。
导数练习题及答案
章末检测一、选择题1.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是( ) A.(-1,3) B.(-1,-3)C.(-2,-3) D.(-2,3)答案B解析∵f′(x)=2x+2=0,∴x=-1.f(-1)=(-1)2+2×(-1)-2=-3.∴M(-1,-3).2.函数y=x4-2x2+5的单调减区间为( )A.(-∞,-1)及(0,1)B.(-1,0)及(1,+∞)C.(-1,1)D.(-∞,-1)及(1,+∞)答案A解析y′=4x3-4x=4x(x2-1),令y′<0得x的范围为(-∞,-1)∪(0,1),故选A.3.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于( )A.2 B.3C.4 D.5答案D解析f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值,即f′(-3)=0,即27-6a+3=0,∴a=5.4.函数y=ln1|x+1|的大致图象为( )答案D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.5.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点所在象限是( )A.第一 B.第二C.第三 D.第四答案 C解析∵y=f′(x)的图象过第一、二、三象限,故二次函数y=f(x)的图象必然先下降再上升且对称轴在原点左侧,又因为其图象过原点,故顶点在第三象限.6.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是( )A.(-∞,-3) B.[-3,3]C.(3,+∞) D.(-3,3)答案B解析f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0?-3≤a≤ 3.7.设f(x)=x ln x,若f′(x0)=2,则x0等于( )A.e2 B.ln 22,2) D.e答案D解析f′(x)=x·(ln x)′+(x)′·ln x=1+ln x.∴f′(x0)=1+ln x0=2,∴ln x0=1,∴x 0=e.8.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间(1e ,1)(1,e)内均有零点B .在区间(1e,1),(1,e)内均无零点C .在区间(1e ,1)内无零点,在区间(1,e)内有零点D .在区间(1e ,1)内有零点,在区间(1,e)内无零点答案 C解析 由题意得f ′(x )=x -33x,令f ′(x )>0得x >3;令f ′(x )<0得0<x <3;f ′(x )=0得x =3,故知函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x =3处有极小值1-ln 3<0;又f (1)=13>0,f (e)=e 3-1<0,f (1e )=13e+1>0.9.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2] 答案 D解析 ∵f ′(x )=x 2sin θ+x ·3cos θ,∴f ′(1)=sin θ+3cos θ=2(12sin θ+32cos θ)=2sin(θ+π3).∵0≤θ≤5π12,∴π3≤θ+π3≤3π4,∴22≤sin (θ+π3)≤1.∴2≤2sin (θ+π3)≤2. 10.方程2x 3-6x 2+7=0在(0,2)内根的个数有( ) A .0 B .1 C .2 D .3 答案 B解析 令f (x )=2x 3-6x 2+7,∴f ′(x )=6x 2-12x =6x (x -2),由f ′(x )>0得x >2或x <0;由f ′(x )<0得0<x <2;又f (0)=7>0,f (2)=-1<0,∴方程在(0,2)内只有一实根.二、填空题11.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =______. 答案 -1解析 求导得y ′=k +1x,依题意k +1=0,所以k =-1.12.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是________. 答案 a ≥3解析 由题意应有f ′(x )=-3x 2+a ≥0,在区间(-1,1)上恒成立,则a ≥3x 2,x ∈(-1,1)恒成立,故a ≥3.13.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________. 答案 (2,15)解析 y ′=3x 2-10=2?x =±2,又点P 在第二象限内,∴x =-2,得点P 的坐标为(-2,15)14.函数f (x )=x 3+ax 2+bx +a 2,在x =1时有极值10,那么a ,b 的值分别为________. 答案 4,-11解析 f ′(x )=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f (1)=a 2+a +b +1=10,⎩⎪⎨⎪⎧2a +b =-3a 2+a +b =9,⎩⎪⎨⎪⎧a =-3b =3,或⎩⎪⎨⎪⎧a =4b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11.三、解答题15.设23<a <1,函数f (x )=x 3-32ax 2+b (-1≤x ≤1)的最大值为1,最小值为-62,求常数a ,b .解 令f ′(x )=3x 2-3ax =0, 得x 1=0,x 2=a .f (0)=b ,f (a )=-a 32+b ,f (-1)=-1-32a +b ,f (1)=1-32a +b因为23<a <1,所以1-32a <0,故最大值为f (0)=b =1,所以f (x )的最小值为f (-1)=-1-32a +b =-32a ,所以-32a =-62,所以a =63.故a =63,b =1. 16.若函数f (x )=4x 3-ax +3在[-12,12]上是单调函数,则实数a 的取值范围为多少解 f ′(x )=12x 2-a ,若f (x )在[-12,12]上为单调增函数,则f ′(x )≥0在 [-12,12]上恒成立,即12x 2-a ≥0在[-12,12]上恒成立,∴a ≤12x 2在[-12,12]上恒成立,∴a ≤(12x 2)min =0.当a =0时,f ′(x )=12x 2≥0恒成立(只有x =0时f ′(x )=0). ∴a =0符合题意.若f (x )在[-12,12]上为单调减函数,则f ′(x )≤0,在[-12,12]上恒成立,即12x 2-a ≤0在[-12,12]上恒成立,∴a ≥12x 2在[-12,12]上恒成立,∴a ≥(12x 2)max =3.当a =3时,f ′(x )=12x 2-3=3(4x 2-1)≤0恒成立(且只有x =±12时f ′(x )=0).因此,a 的取值范围为a ≤0或a ≥3.17.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh (元),底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意200πrh +160πr 2=12 000π, 所以h =15r(300-4r 2), 从而V (r )=πr 2h =π5(300r -4r 3). 因为r >0,又由h >0可得r <53, 故函数V (r )的定义域为(0,53). (2)因为V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.17.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升 (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少最少为多少升 解 (1)当x =40时,汽车从甲地到乙地行驶了10040=小时,要耗油(1128 000×403-380×40+8)×=(升).(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8).100x =11280x 2+800x -154(0<x ≤120),h ′(x )=x640-800x 2=x 3-803640x2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是增函数. ∴当x =80时,h (x )取到极小值h (80)=.因为h (x )在(0,120]上只有一个极值,所以它是最小值.答 当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油升.当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为升.18.已知函数f (x )=13x 3-a ln x -13(a ∈R ,a ≠0).(1)当a =3时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间;(3)若对任意的x ∈[1,+∞),都有f (x )≥0成立,求a 的取值范围. 解 (1)当a =3时,f (x )=13x 3-3ln x -13,f (1)=0,∴f ′(x )=x 2-3x,∴f ′(1)=-2,∴曲线y =f (x )在点(1,f (1))处的切线方程2x +y -2=0.(2)f ′(x )=x 2-a x =x 3-ax(x >0).①当a <0时,f ′(x )=x 3-ax>0恒成立,函数f (x )的递增区间为(0,+∞).②当a >0时,令f ′(x )=0,解得x =3a 或x =-3a (舍).∴函数f (x )的递增区间为(3a ,+∞),递减区间为(0,3a )(3)对任意的x ∈[1,+∞),使f (x )≥0成立,只需对任意的x ∈[1,+∞),f (x )min ≥0. ①当a <0时,f (x )在[1,+∞)上是增函数,∴只需f (1)≥0,而f (1)=13-a ln 1-13=0,∴a <0满足题意,②当0<a ≤1时,0<3a ≤1,f (x )在[1,+∞)上是增函数,∴只需f (1)≥0而f (1)=13-a ln 1-13=0,∴0<a≤1满足题意;③当a>1时,3a>1,f(x)在[1,3a]上是减函数,[3a,+∞)上是增函数,∴只需f(3a)≥0即可,而f(3a)<f(1)=0,∴a>1不满足题意;综上,a∈(-∞,0)∪(0,1].。
高中数学导数的计算精选题目(附答案)
高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
完整版)导数大题练习带答案
完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。
Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。
+\infty)$。
Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。
m+3]$ 上的最值。
$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。
m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。
Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。
证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。
2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。
Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。
$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。
导数的概念及运算练习含答案
第1讲导数的概念及运算一、选择题1.设y=x2e x,则y′=() A.x2e x+2x B.2x e xC.(2x+x2)e x D.(x+x2)e x解析y′=2x e x+x2e x=(2x+x2)e x.答案 C2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于() A.-e B.-1C.1 D.e解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案 B3.曲线y=sin x+e x在点(0,1)处的切线方程是() A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0.答案 C4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为()A.e B.-e C.1e D.-1e解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案 C5.(2017·昆明诊断)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a等于()A.-1 B.1 2C.-2 D.2解析∵y′=-1-cos xsin2x,∴=-1.由条件知1a=-1,∴a=-1.答案 A二、填空题6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 27.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 08.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 由y =x +ln x ,得y ′=1+1x ,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1. 又该切线与y =ax 2+(a +2)x +1相切, 消去y ,得ax 2+ax +2=0, ∴a ≠0且Δ=a 2-8a =0,解得a =8. 答案 8 三、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53, 所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,所以切线方程为x +y -113=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0. 11.(2016·山东卷)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析 若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x 1>0,x 2>0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x ,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x2;对于D:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案 A12.(2017·合肥模拟)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y =x-2的最小距离为()A.1 B.32 C.52 D. 2解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 D13.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
导数经典练习题及答案
1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于A .)('0x fB .)('0x f -C .0'()f x -D .0'()f x -- 2.若13)()2(lim000=∆-∆+→∆x x f x x f x ,则)('0x f 等于 A .32 B .23C .3D .23.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为A .90°B .0°C .锐角D .钝角 4.对任意x ,有34)('x x f =,f(1)=-1,则此函数为A .4)(x x f =B .2)(4-=x x fC .1)(4+=x x fD .2)(4+=x x f 5.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000.A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4) 6.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是___. 7.已知曲线xx y 1+=,则==1|'x y _____________.8.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________.9.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P的切线与过这两点的割线平行,则P点的坐标为_____________.10.曲线3)(x x f =在点A 处的切线的斜率为3,求该曲线在A 点处的切线方程.11.在抛物线2x y =上求一点P ,使过点P 的切线和直线3x-y+1=0的夹角为4π.12.判断函数⎩⎨⎧<-≥=)0()0()(x x x x x f 在x=0处是否可导.1相切的直线方程.y13.求经过点(2,0)且与曲线x同步练习X030131.函数y =f (x )在x =x 0处可导是它在x =x 0处连续的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.在曲线y =2x 2-1的图象上取一点(1,1)及邻近一点(1+Δx ,1+Δy ),则xy ∆∆ 等于A .4Δx +2Δx 2B .4+2ΔxC .4Δx +Δx 2D .4+Δx3.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y -1=0,则A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在4.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设函数f (x )在x 0处可导,则0lim→h hh x f h x )()(00--+等于A .f ′(x 0)B .0C .2f ′(x 0)D .-2f ′(x 0)6.设f (x )=x (1+|x |),则f ′(0)等于A .0B .1C .-1D .不存在7.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___________. 8.曲线y =x 3在点P (2,8)处的切线方程是___________.9.曲线f (x )=x 2+3x 在点A (2,10)处的切线斜率k =___________. 10.两曲线y =x 2+1与y =3-x 2在交点处的两切线的夹角为___________. 11.设f (x )在点x 处可导,a 、b 为常数,则0lim→∆x xx b x f x a x f ∆∆--∆+)()(=___________.12.已知函数f (x )=⎩⎨⎧>+≤++012x b ax x x x ,试确定a 、b 的值,使f (x )在x =0处可导.13.设f (x )=)()2)(1()()2)(1(n x x x n x x x +⋅⋅⋅++-⋅⋅⋅--,求f ′(1).14.利用导数的定义求函数y =|x |(x ≠0)的导数.同步练习 X030211.物体运动方程为s =41t 4-3,则t =5时的瞬时速率为A .5 m/sB .25 m/sC .125 m/sD .625 m/s2.曲线y =x n(n ∈N )在点P (2,)22n 处切线斜率为20,那么n 为A .7B .6C .5D .43.函数f (x )=x x x 的导数是A .81x(x >0) B .-887x(x >0) C .8781x(x >0) D .881x(x >0)4.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足 A .f (x )=g (x )B .f (x )-g (x )为常数函数C .f (x )=g (x )=0D .f (x )+g (x )为常数函数5.两车在十字路口相遇后,又沿不同方向继续前进,已知A 车向北行驶,速率为30 km/h ,B 车向东行驶,速率为40 km/h ,那么A 、B 两车间直线距离的增加速率为 A .50 km/hB .60 km/hC .80 km/hD .65 km/h6.细杆AB 长为20 cm ,AM 段的质量与A 到M 的距离平方成正比,当AM =2 cm 时,AM 段质量为8 g ,那么,当AM =x 时,M 处的细杆线密度ρ(x )为 A .2xB .4xC .3xD .5x7.曲线y =x 4的斜率等于4的切线的方程是___________.8.设l 1为曲线y 1=sin x 在点(0,0)处的切线,l 2为曲线y 2=cos x 在点(2π,0)处的切线,则l 1与l 2的夹角为___________. 9.过曲线y =cos x 上的点(21,6π)且与过这点的切线垂直的直线方程为_____________.10.在曲线y =sin x (0<x <π)上取一点M ,使过M 点的切线与直线y =x 23平行,则M 点的坐标为___________.11.质点P 在半径为r 的圆周上逆时针做匀角速率运动,角速率为1 r a d/s ,设A为起点,那么t 时刻点P 在x 轴上射影点M 的速率为___________.12.求证:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形面积等于常数.13.路灯距地平面为8 m,一个身高为1.6 m的人以84 m/min的速率在地面上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率v.14.已知直线x+2y-4=0与抛物线y2=4x相交于A、B两点,O是坐标原点,试在抛物线的弧上求一点P,使△PAB面积最大.同步练习 X030311.若f (x )=sin α-cos x ,则f ′(α)等于A .sin αB .cos αC .sin α+cos αD .2sin α2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313D .3103.函数y =x sin x 的导数为A .y ′=2x sin x +x cos xB .y ′=xx 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x4.函数y =x 2cos x 的导数为A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x5.若y =(2x 2-3)(x 2-4),则y ’= .6. 若y =3cosx -4sinx ,则y ’= .7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 8.质点运动方程是s =t 2(1+sin t ),则当t =2时,瞬时速度为___________.9.求曲线y=x3+x2-1在点P(-1,-1)处的切线方程. 10.用求导的方法求和:1+2x+3x2+…+nx n-1(x≠1).11.水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.同步练习 X030321.函数y =22xax +(a >0)的导数为0,那么x 等于A .aB .±aC .-aD .a 22.函数y =xxsin 的导数为 A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin xxx x -D .y ′=2cos sin xxx x + 3.若21,2xy x +=-则y ’= .4.若423335,x x y x -+-=则y ’= . 5.若1cos ,1cos xy x+=-则y ’= .6.已知f (x )=354337xx x x ++,则f ′(x )=___________.7.已知f (x )=xx++-1111,则f ′(x )=___________.8.已知f (x )=xx2cos 12sin +,则f ′(x )=___________.9.求过点(2,0)且与曲线y =x1相切的直线的方程.10.质点的运动方程是23,s t t=+求质点在时刻t=4时的速度.同步练习 X030411.函数y =2)13(1-x 的导数是 A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x2.已知y =21sin2x +sin x ,那么y ′是A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .非奇非偶函数 3.函数y =sin 3(3x +4π)的导数为 A .3sin 2(3x +4π)cos (3x +4π) B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)4.若y=(sinx-cosx 3),则y ’= .5. 若y=2cos 1x +,则y ’= .6. 若y=sin 3(4x+3),则y ’= .7.函数y =(1+sin3x )3是由___________两个函数复合而成. 8.曲线y =sin3x 在点P (3π,0)处切线的斜率为___________.9.求曲线2211(2,)(3)4y M x x =-在处的切线方程.10. 求曲线sin 2(,0)y x M π=在处的切线方程.11.已知函数y =(x )是可导的周期函数,试求证其导函数y =f ′(x )也为周期函数.同步练习 X030421.函数y =cos (sin x )的导数为A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )2.函数y =cos2x +sin x 的导数为A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos3.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为 A .2y -8x +7=0 B .2y +8x +7=0 C .2y +8x -9=0D .2y -8x +9=04.函数y =x sin (2x -2π)cos (2x +2π)的导数是______________. 5.函数y =)32cos(π-x 的导数为______________.6.函数y =cos 3x 1的导数是___________.7.已知曲线y=2400x + +53(100-x) (0100≤≤x ) 在点M 处有水平切线,8.若可导函数f (x )是奇函数,求证:其导函数f ′(x )是偶函数.9.用求导方法证明:21C 2C n n +…+n nn C =n ·2n -1.同步练习 X030511.函数y =ln (3-2x -x 2)的导数为A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x2.函数y =lncos2x 的导数为A .-tan2xB .-2tan2xC .2tan xD .2tan2x3.函数y =x ln 的导数为A .2x x lnB .xx ln 2C .xx ln 1 D .xx ln 214.在曲线y =59++x x 的切线中,经过原点的切线为________________. 5.函数y =log 3cos x 的导数为___________. 6.函数y =x 2lnx 的导数为 . 7. 函数y =ln (lnx )的导数为 . 8. 函数y =lg (1+cosx )的导数为 .9. 求函数y =ln 22132x x +-的导数.10. 求函数y =12.求函数y =ln (21x +-x )的导数.同步练习 X030521.下列求导数运算正确的是A .(x +x 1)′=1+21xB .(log 2x )′=2ln 1xC .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x 2.函数y =xxa 22-(a >0且a ≠1),那么y ′为A .xxa 22-ln aB .2(ln a )xxa 22-C .2(x -1)xxa 22-·ln aD .(x -1)xxa 22-ln a3.函数y =sin32x 的导数为A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x4.设y =xx ee 2)12(+,则y ′=___________. 5.函数y =x22的导数为y ′=___________.6.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________.7.求函数y=e 2x lnx 的导数.8.求函数y =x x (x >0)的导数.9.设函数f (x )满足:af (x )+bf (x 1)=xc(其中a 、b 、c 均为常数,且|a |≠|b |),试求f ′(x ).同步练习 x030611.若f (x )在[a ,b ]上连续,在(a ,b )内可导,且x ∈(a ,b )时,f ′(x )>0,又f (a )<0,则A .f (x )在[a ,b ]上单调递增,且f (b )>0B .f (x )在[a ,b ]上单调递增,且f (b )<0C .f (x )在[a ,b ]上单调递减,且f (b )<0D .f (x )在[a ,b ]上单调递增,但f (b )的符号无法判断 2.函数y =3x -x 3的单调增区间是A .(0,+∞)B .(-∞,-1)C .(-1,1)D .(1,+∞) 3.三次函数y =f (x )=ax 3+x 在x ∈(-∞,+∞)内是增函数,则A .a >0B .a <0C .a =1D .a =314.f (x )=x +x2(x >0)的单调减区间是 A .(2,+∞) B .(0,2) C .(2,+∞) D .(0,2) 5.函数y =sin x cos 2x 在(0,2π)上的减区间为 A .(0,arctan 22) B .(arctan2,22π) C .(0,2π)D .(arctan 2,21π)6.函数y =x ln x 在区间(0,1)上是A .单调增函数B .单调减函数C .在(0,e 1)上是减函数,在(e1,1)上是增函数D .在(0,e 1)上是增函数,在(e1,1)上是减函数7.函数f (x )=cos 2x 的单调减区间是___________. 8.函数y =2x +sin x 的增区间为___________.9.函数y =232+-x x x的增区间是___________. 10.函数y =xxln 的减区间是___________.11.已知0<x <2π,则tan x 与x +33x 的大小关系是tan x _____x +33x .12.已知函数f (x )=kx 3-3(k +1)x 2-k 2+1(k >0).若f (x )的单调递减区间是(0,4). (1)求k 的值; (2)当k <x 时,求证:2x >3-x1.13.试证方程sin x =x 只有一个实根.14.三次函数f (x )=x 3-3bx +3b 在[1,2]内恒为正值,求b 的取值范围.同步练习 X030711.下列说法正确的是A .当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B .当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C .当f ′(x 0)=0时,则f (x 0)为f (x )的极值D .当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A .①②B .②③C .③④D .①③3.函数y =216xx的极大值为 A .3 B .4 C .2 D .54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为A .0B .1C .2D .4 5.y =ln 2x +2ln x +2的极小值为A .e -1B .0C .-1D .16.y =2x 3-3x 2+a 的极大值为6,那么a 等于A .6B .0C .5D .17.函数f (x )=x 3-3x 2+7的极大值为___________.8.曲线y =3x 5-5x 3共有___________个极值.9.函数y =-x 3+48x -3的极大值为___________;极小值为___________.10.函数f (x )=x -3223x 的极大值是___________,极小值是___________.11.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.12.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.13.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.14.设y =f (x )为三次函数,且图象关于原点对称,当x =21时,f (x )的极小值为-1,求函数的解析式.同步练习 X030811.下列结论正确的是A .在区间[a ,b]上,函数的极大值就是最大值B .在区间[a ,b]上,函数的极小值就是最小值C .在区间[a ,b]上,函数的最大值、最小值在x=a 和x=b 时到达D .在区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值和最小值 2.函数14)(2+-=x x x f 在[1,5]上的最大值和最小值是A .f(1),f(3)B .f(3),f(5)C .f(1),f(5)D .f(5),f(2) 3.函数f(x)=2x-cosx 在(-∞,+∞)上A .是增函数B .是减函数C .有最大值D .有最小值 4.函数a ax x x f --=3)(3在(0,1)内有最小值,则a 的取值范围是 A .0<a<1 B .a<1 C .a>0 D .21<a 5.若函数x x a x f 3sin 31sin )(+=在3π=x 处有最值,那么a 等于A .2B .1C .332 D .0 6.函数5224+-=x x y ,x ∈[-2,2]的最大值和最小值分别为 A .13,-4 B .13,4 C .-13,-4 D .-13,4 7.函数x xe y =的最小值为________________. 8.函数f(x)=sinx+cosx 在]2,2[ππ-∈x 时函数的最大值,最小值分别是___. 9.体积为V 的正三棱柱,底面边长为___________时,正三棱柱的表面积最小.10.函数21)(x x x f -+=的最大值为__________,最小值为____________。
导数的计算试题12345(纯答案)
5、解: y ' = 4 e 6、解: y '
x
1 x 1
2
f ( x ) (1 x ) ( x sin x ) ln x (1 x ) ( x sin x ) ln x
' 2 ' 2 '
7、解
(1 x ) ( x sin x ) (ln x )
2 2
4 x ( 3 x 2 ) ( 2 x 3) 3 18 x 8 x 9
2
2
王新敞
奎屯
新疆
4、解: y cos x ( x ) 2 x cos x
2 2
2
5、解:y’=2(cos3 )·3 ·ln3 6、解: y ' cos x /(2 sin x ) 7、解
y (cos x ln x x ) (cos x ) (ln x ) ( x ) sin x
' 4 ' ' ' 4 '
2x
2x
1 x
4x
3
8、解: y '
2 x sin x x cos x
2
sin x
2
9、解: y
1 2
ln 1 x
2
y
/
1
2 1 x
2x
2
x 1 x
3
2
10、解
y ( x ) sin x ln x x (sin x ) ln x x sin x (ln x )
3 3
3 x sin x ln x x cos x ln x x sin x .
高中数学导数练习题附答案
高中数学导数练习题附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 4.已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 5.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 6.已知函数21()(1)ln 2f x x ax a x =-+-,(2) 2.f '= (1)求a 的值;(2)求函数()f x 的极小值.7.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 8.已知函数()1ln xf x x +=.(1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 9.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>.所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x -+-'=--=,且()10f =,由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min 11e e g x g ⎛⎫==- ⎪⎝⎭,当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦, 令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x x x x --'=-=--, 当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<; 当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤ ⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立. 所以a 的取值范围为[)1,+∞. 4.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 6.(1)1- (2)极小值32【解析】 【分析】(1)求导函数,结合(2)2f '=解方程即可;(2)令()0f x '=进而分析单调性,即可求出极值. (1)由题意可得()1a f x x a x '-=-+,故()12222a f a -'=-+=, 1.a ∴=- (2)由(1)得21()2ln 2f x x x x =+-,所以()()210f x x x x'=+->,令()210f x x x'=+-=,解得1x =,因为 当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,所以函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,函数()f x 取得极小值()312f =.7.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦, 即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x ax a x a a f x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.8.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=, 令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.9.(1)25y x =+(2)0b =【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值.(1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+.(2)当1a =时,令函数()()()2e 11x g x f x b x =-=+--, 则()2f x ≥恒成立等价于()0g x ≥恒成立.又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值.又因为()00g =,所以0x =为g (x )的最小值点.所以ln(1)0b -=,解得0b =.10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x xb x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10bh x x'=+≥恒成立. 所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。
导数的练习题及答案
导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。
掌握导数的概念对于解决各种数学和物理问题至关重要。
在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。
练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。
解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。
在这个例子中,我们可以使用直接求导的方法来计算导数。
首先,我们对每一项使用求导法则。
对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。
然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。
所以,$f'(x) = 6x^2 - 10x + 3$。
接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。
将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。
所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。
练习题二:求函数 $y = e^x \sin(x)$ 的导数。
解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。
首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。
然后,我们求出每个函数的导数。
对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。
根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。
导数典型例题(含答案)
导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
一、选择题
1.设函数 f (x) (1
2x 3 )10 ,则 f '(1)
( )
A .0
B .―1
C .― 60
D . 60
2.( 2014 江西校级一模)若 f (x)
2ln x x 2 ,则 f ' ( x) 0 的解集为(
)
A.(0,1)
B.
, 1 U 0,1 C.
1,0 U 1,
D.
1,
3.( 2014 春 永寿县校级期中)下列式子不正确的是(
)
A. 3x
2
' 6x sin x
B. ln x 2
x '
1 x ln 2
cos x
2
x
'
sin x '
x cos x sin x
C.
2sin 2x 2cos2x
D.
x
x 2
4.函数 y
x 4 5
的导数是(
)
3x 8
A .
5
B
.0 C .
5(4 x 3 3)
D
.
5(4 x 3 3)
4x 3 3 ( x
4
3x 8)
2
(x
4
3x 8)
2
5 .( 2015
安 徽 四 模 ) 已 知 函 数 f ( x) 的 导 函 数 为 f '
( x) , 且 满 足 关 系 式
f ( x) x 2 3xf ' (2) ln x ,则 f '(2) 的值等于(
)
A. 2
C.
9 D.
9
4
4
x
1
( x
6.设曲线 y
1) 在点( 3,2)处的切线与直线 ax+y+1=0 垂直,则 a=(
)
x 1
A .2
B .
1
C .―1
D .―2
2
2
7. y
log 3 cos 2 x (cos x 0) 的导数是(
)
A . 2log 3 e tan x B
. 2log 3 e cot x
C . 2log 3 e cos x
D . log 2 e
cos 2 x
二、填空题
8.曲线 y=sin x 在点
,1 处的切线方程为 ________。
2
9.设 y=(2x+a) 2,且 y ' |x 2 20 ,则 a=________。
. x 3
1
____________, 2x sin 2x 5
____________。
10
sin x
11.在平面直角坐标系 xOy 中,点 P 在曲线 C :y=x 3― 10x+3 上,且在第二象限内,已知曲
线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为 ________。
三、解答题
12.已知 f ( x) cos x , g (x) x ,求适合 f '(x) g '( x) 0的x的值。
13.( 1)y sin 3 x sin x3;;求y '
(2)已知
f ( x) ( x 1 x2 )10 ,求f '(1)。
f (1)
14.求曲线 y
1
在点 (1, 1
) 处的切线方程。
(3x x 2 )2 16
15.已知
f ( x) x ln x
1 e x 2
, g( x) f '(x) , G (x)
g '(x) ,求 G '( x) 。
x
【答案与解析】
1.【答案】 D
【解析】∵ f '( x) 10(1 2x3 )9 ( 6x2 ) ,∴ f '( x) |x 1 60 。
2.【答案】 A
【解析】 Q f ( x) 则f' (x) 2 2 x
x
由 f ' (x) 2 2x
x 2ln x x2 , 函数的定义域为0, ,2 2x2
,
x
2 2 x2
0,
x
得 x2 1 0 ,即 0 x 1
即不等式的解集为(0,1 ),故选 A。
3.【答案】 C
对于选项 A, 3x2 '
6 x sin x 成立,故A正确。
对于选项B,
【解析】cos x
ln x 2x ' 1 2x ln 2 成立,故B正确。
'
2sin 2x2cos2 x ,故C不正确。
对于选项x
D, sin x ' x cos x sin x 成立,故D也正确。
x x2
4.【答案】 D
【解析】y
5
,则 y '
5(4 x3 3)。
x4 3x 8 ( x4 3x 8)2
5.【答案】 B
【解析】 Q f ( x) x23xf ' (2) ln x
f ' (x) 2x 3 f ' (2) 1
x
令 x 2 ,则 f ' (2) 4 3 f ' (2) 1 ,
9 2
即 2 f ' (2) ,
9 2
f ' (2) ,故选 D。
4
6.【答案】 D
【解析】由 y x 1 1 2 ,求导得 y ' 2 ,
x 1 x 1 ( x 1)2
所以切线斜率 k
y ' |x 3
1 ,
2
则直线 ax+y+1=0 的斜率为 2,所以― a=2,即 a=―2。
7.【答案】 A
【解析】 ∵ y log 3 cos 2 x ,
∴ y '
1 log 3 e 2cos x( sin x)
2 tan x log
3 e 。
cos 2 x
8.【答案】 y=1
【解析】
(sin x)' cos x , k y ' |
0,从而切线方程为 y=1。
x
2
9.【答案】 1
【解析】
y ' 2(2 x a) 2 4(2 x a)
20 ,且 x=2,则 a=1。
10.【答案】 3x 2
sin x
( x 3
1)cos x
, 2sin(2 x 5) 4x cos(2 x 5)
sin 2 x
【解析】
x 3 1 3x 2 sin x ( x 3 1)cos x ;
sin x
sin 2 x
2xsin 2x 5
2sin(2 x 5) 4x cos(2x 5) ;
11.【答案】 (― 2, 15)
【解析】
y '
3x 2 10 ,令 y ' 2 x 2 4 ,
P 在第二象限 x=― 2
P (― 2, 15)。
12.【解析】 f '( x)
sin x , g '( x) 1,
则
sin x 1 0 , sin x 1 ,即 sin x 1 。
∴ x
2k
(k Z ) 。
2
13.【解析】( 1) y' (sin 3 x)' (sin x 3 )' 3sin 2 x cos x 3x 2 cos x 3 ;
( 2)∵ f '(x)
10(x
1 x
2 )9 ( x
1 x
2 )'
x 2 ) 9
1
x 2 ) 1
x 2
)' 10(x
1 1 (1 2
(1 2
1
1
10(x
1 x
2 )9 1 (1 x 2
) 2 2x
2
x 2 ) 9[(1
x 2 ) 1
10(x
1 x(1
2 ] ,
∴ f '(1) 10(1 2) 9(1 1 ) 10
(1 2)10,
2 2
f '(1) 10 (1 2) 10
∴
2
2) 10
5 2 。
f (1) (1
14.【解析】y (3x x 2 ) 2,则 y' 2 3 2x
(3x x2 )3 y'|x 1 2 5 5 。
43 32 ∴切线方程为y 1 5
( x 1)
16 32
即 5x+32y-7=0 。
15.【解析】∵f ( x) x ln x
则
f '( x) ln x x 1
( x
∴ g(x) ln x 1 1 e x2
x2
1
2 1
e x
2
g '( x)
x 3
x 1e x2,
x
x 2 )e x
2 1 x2 1 x2
2e x
2
e 2x ln x 1 2 e ,
x x
2e x2 ,
1 x
2 x 2
2x
1 2e x
2 e x2
4xe
x 2
x 2 e 2x 2e x x 3 x ,
即 G (x) 1 2 2 4x e x2,
x x3 x
G '( x)
1 6
4
2 x2 2 2 x2
x 2 x 4 x 2 e x 3 x 4x e 2x 1
8x
2 6 6 x2
x 2 x 2 x 4 e 。