第三讲分子的对称性与群论基础群与分子点群
分子的对称性与群论基础群与分子点群
群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
第三章:分子对称性和点群
σv2 σv2 σd1 σv1 σd2 C42 E
C41 C43
σd1 σd1 σv1 σd2 σv2 C41 C43 E
C42
σd2 σd2 σv2 σd1 σv1 C43 C41 C42 E
第三章:分子对称性和点群
1
群元素 群
乘法
对称操作 点群
操作动作的连续
2
本章目录
3.1对称元素和对称操作 3.2 对称操作的乘积 3.3分子点群
3.3.1 构成群 3.3.2 点群乘法表 3.3.3 类和子群 3.3.4 分子点群的类型 ****
3
3.1对称元素和对称操作
• 对称元素的定义(Symmetry Elements) 几何实体,如一个点,一条直线,一个平面;
(x,y,z) -C-2-(-x-)-> (x,-y,-z)-C--2(-y-)> (-x,-y,z) (x,y,z) -C--2(-z-)-> (-x,-y,z)
so, C2(y)C2(x)= C2(z)
34
例3:C4(z)和σ (xz)的存在,自动地要求σ d的存在 普通点[x1,y1,z1]通过xz平面的反映效果可以表为
分子点群满足数学群四准则。
点群中点的含义:(1)这些对称操作都是点操作,操作时 分子中至少有一点不动;(2) 分子的全部对称元素至少通 过一个公共点。
37
满足群的四点要求:
• (1)群中任意两个元素的乘积必为群中的 一个元素。
以NH3为例,逐一求出所有的对称操作的二元乘 积,发现两个操作的乘积仍为集合中的一个操作。
Snm = hmCnm (1)若独立地存在一个Cn轴和一个垂直于它 的平面h,那么就存在Sn。 (2)当分别地既不存在Cn也不存在垂直的h 时,Sn也可以存在。
第三章_分子的对称性与点群
C1的操作是个恒等操作,又称为主操作E,因为 任何物体在任何一方向上绕轴转3600均可复原,它和 乘法中的1相似。 C2轴的基转角是1800,连续绕C2轴进行两次1800 旋转相当于恒等操作,即:
C2 C2 C2 E
1 1 2
C3轴的基转角是1200,C4轴的基转角是900,C6轴 的基转角是600。
对称操作 C 1 使空间某点p(x,y,z)变换到另一个 3 点p’(x’,y’,z’)
2 cos 3 x' x y' C 1 y sin 2 3 3 z' z 0 2 sin 3 2 cos 3 0 1 0 x 2 3 0 y 2 1 z 0 3 2 1 2 0 0 x 0 y 1 z
平面正方形的PtCl42- 四面体SiF4不 具有对称中心 具对称中心
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋 转n次轴再平面反映,两个动作组合成一个操作。
S1n=σC1n
如甲烷分子,一个 经过C原子的四次映转 轴S4,作用在分子上,H 1旋转到1’的位置后,经 平面反映到H4的位置, 同时H2旋转到2’的位置再 反映到H3的位置……整 个分子图形不变,
对称面σx
y 0 0 1
x 1 0 0 x x xy y 0 1 0 y y z 0 0 1 z z
四、对称中心和反演
从分子中任一原子至对称中心连一直线,将此 线延长,必可在和对称中心等距离的另一侧找到另 一相同原子。 依据对称中心进行的对称操作为反演, 连续进行反演操作可得
群论第3章
NH3
CO,NO,HCN
C3v
C∞v
③ Cnh 群 属于Cnh点群的分子中具有一个Cn轴和一个垂直于Cn轴的σh 对称元素:Cn和σh 因σhCn=Sn,故(n-1)个旋转必产生(n-1)个象转 实际上 Cnh群是Cn群和Cs群的直积,阶次为2n 。
Cnh Cn Cs E, Cn1 , Cn 2 ,..., Cn n1 E, h = E, Cn1 , Cn 2 ,..., Cn n1 , h , hCn1 Sn , hCn 2 ,..., hCn n1
第三章. 分子对称性与分子点群
3.1 分子对称性
利用对称性原理和概念探讨分子的结构和性质,是人们认 识分子的重要途径,是了解分子结构和性质的重要方法。 ① 能简明地表达分子的构型 Ni(CN)42-离子具有D4h点群的对称性,用D4h这个符号就可以 准确地表达 9 个原子在同一平面上, Ni 原子在中心位置, 周围4个-CN完全等同,Ni-C-N都是直线型,互为90°角。 ② 简化分子构型的测定工作
3.分子的对称操作和对称元素:
分子是有限物体,在进行对称操作时,分子中至少有一 点不动------点操作 只有四种类型的对称操作和对称元素 a. 旋转操作------旋转轴(Cn)
b. 反映操作------镜面( σ )
c. 反演操作------ 对称心(i) d. 象轴(旋转反映)操作------象转轴(反轴)Sn 右手坐标系:讨论对称操作时,常将分子定位在右手坐 标轴系上,分子的重心处在坐标原点,主轴与Z轴重合。 主轴:分子中轴次最高的轴。
Cnh 待 定 分 子 是 否 直 线 型 N Y i Td
例:有两个分子群 D2 { E,C2(x),C2(y),C2(z) }
03第三章分子对称性与群论初步
对称元素:3C4+4C3+6C2+3h+6 d+3S4+4S6+i
O hE ˆ,3 C ˆ2,(3 C ˆ4,3 C ˆ4 3)4 ,C ˆ3,4 C ˆ3 2,6 C ˆ2 ,(3 S ˆ4,3 S ˆ4 3)3 ,ˆh ,(4 S ˆ6,4 S ˆ6 5)6 ,ˆd,iˆ
Oh 群
D3d : 乙烷交错型
D4d :单质硫S8
C2 C2
C2 C2
俯视图
D5d : 交错型二茂铁
7. Sn群: 分子中只有一个n重象转轴。
当n为偶数时,
S n E ˆ ,S ˆ n ,S ˆ n 2 , ,S ˆ n n 1
当n为奇数时,
Sn Cnh
反式CHClBr-CHClBr: Ci
群的阶为4n;当n为偶数时,有对称中心i.
D2h 群 :N2O4
D2h群:乙烯
主轴垂直于荧光屏. σh在荧光屏上.
D3h 群 : 乙烷重叠型
D4h群:XeF4
D6h群:苯
Dh群: I3-
6. Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴夹角的镜
面σd.
Cn+nC2+nd+S2n(若n为奇数,有对称中心i)
2.群的举例:
(1)水分子的所有对称操作的集合构成一个群:
C 2v
Eˆ Cˆ 2
ˆ v ˆ v
Eˆ Eˆ Cˆ 2
ˆ v ˆ v
Cˆ 2 Cˆ 2
Eˆ ˆ v ˆ v
ˆ v ˆ v
ˆ v Eˆ
Cˆ 2
ˆ v ˆ v
ˆ v
Cˆ 2
Eˆ
(2)氨分子的所有对称操作的集合构成一个群:C3V
分子的对称性与点群
分子的对称性与点群摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。
分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。
例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。
关键词:对称性点群对称操作一.对称操作与点群如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。
一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。
描述分子的对称性时,常用到“点群”的概念。
所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
而全部对称元素的集合构成对称元素系。
每个点群具有一个持定的符号。
一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。
二.分子中的对称元素和对称操作2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
作分别用E、 E^表示。
这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。
2.2旋转轴和旋转操作分别用C n、C^n表示。
如果一个分子沿着某一轴旋转角度α能使分子复原,则该分子具有轴C n,α是使分子复原所旋转的最小角度,若一个分子中存在着几个旋转轴,则轴次高的为主轴(放在竖直位置),其余的为副轴。
分子沿顺时针方向绕某轴旋转角度α,α=360°/n (n=360°/α(n=1,2,3……)能使其构型成为等价构型或复原,即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分子具有 n 次对称轴。
n是使分子完全复原所旋转的次数,即为旋转轴的轴次,对应于次轴的对称操作有n个。
C n n=E﹙上标n表示操作的次数,下同﹚。
如NH3 (见图 1)旋转 2π/3 等价于旋转 2π (复原),基转角α=360°/n C3 - 三重轴;再如平面 BF3 分子,具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以上的旋转轴,则轴次最高的为主轴。
第三章 分子的对成性与点群
一个对称面只能产生两个反映操作:
ˆ n
ˆ (n为奇数) Eˆ(n为偶数 — 垂直主轴的对称面
d — 包含主轴且平分垂直主轴的两个二重轴之间的夹角
PtCl4:其对称面如上图所示。
5.象转轴(映轴)Sn和旋转反映操作 Sˆn
如果分子图形绕轴旋转一定角度后,再作垂直此轴的镜 面反映,可以产生分子的等价图形。则将该轴和垂直该轴 的镜面组合所得的元素称为象转轴或映轴。
分子的偶极矩是一个矢量,是分子的静态性质,分子的任何对称操 作对其大小和方向都不起作用。
只有分子的电荷中心不重合,才有偶极矩,重合,则无。 极性分子——永久偶极短0 一般分子——诱导偶极矩I
分子的对称性反映出分子中原子核和电子云空间分布 的对称性,因此可以判断偶极矩是否存在。
判据:若分子中有对称中心或有两个对称元素相交于 一点, 则分子不存在偶极矩。
象转轴和旋转—反映连续操作相对应,但和连续操作的
次序无关。即 :
Sˆn cˆnˆ h ˆ hcˆn
转900
Cˆ 4
ˆ h
(A)
例如CH4,其分子构型可用图(A)表示: CH4没有C4,但存在S4
注意:①当分子中存在一个Cn轴和一个垂直Cn的对称 面,则分子必存在Sn轴。
PtCl4有C4 且有 ,有h S4
D4h群:XeF4
D6h群:苯
Dh群: I3-
3) Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴夹
角的镜面σd.
对称元素 1个Cn轴,n个垂直Cn的二重轴,n个σd面 4n阶。
D2d : 丙二烯
C C C
D3d : 乙烷交错型
D4d :单质硫
俯视图
D5d : 交错型二茂铁
第三章分子的对称性与点群
III. 1,3,5-三甲基苯
1,3,5-三甲基苯 (图III)是C3点 群的例子,若不考 虑甲基上H原子, 分子的对称性可以 很高,但整体考虑, C6H3(CH3)3只有C3 对称元素。C3轴位 于苯环中心,垂直 于苯环平面,分子 绕C3轴转动120°, 240°都能复原。
IV. CH3CCl3
垂直于轴的平面反映
六、对称点群
1. 群的定义 一组元素若满足以下四个条件,构成一个群 1)封闭性
若A G, B G,则必有AB C ,C G
2)恒等元素E 若AG, E G,则EA AE A
3)逆元素
若AG,则必存在B G, 且AB BA E B为A的逆元素,记作A1 B
0
y
1 z
三、对称面与反映
存在对称面的分子,除位于对称面上的原子外, 其他原子成对地排在对称面两侧,它们通过反映操作 可以复原。
反映操作是使分子中的每一点都反映到该点到镜 面垂线的延长线上,在镜面另一侧等距离处。
连续进行反映操作可得 : σn ={ E ,n为偶数,σ , n 为奇数} 和主轴垂直的镜面以σh表示;通过主轴的镜面 以σv表示;通过主轴,平分副轴夹角的镜面以σd 表 示。
①. S1=Cs群: S1=σ C11=σ 即S1为对称面反映操作,故S1群相当
于Cs群。即对称元素仅有一个对称面。:{E,σ }。 如TiCl2(C5H5)2,Ti形成四配位化合物,2个Cl原
子和环戊烯基成对角。
Br
.TiCl2(C5H5)2
Cl
O H Cl
没有其它对称元素的平面分子
②.Ci群:
从分子中任一原子至对称中心连一直线,将此 线延长,必可在和对称中心等距离的另一侧找到另 一相同原子。
chap3b第三章 分子的对称性和点群
有多条高阶轴分子(正四面体、正八面体 有多条高阶轴分子(正四面体、正八面体…) 只有镜面或对称中心, 或无对称性的分子: 只有镜面或对称中心 或无对称性的分子 只有S 为正整数) 只有 2n(n为正整数)分子 为正整数 分子:
S 4 , S 6 , S8 ,...
C n , C nh , C nv
Z
对称操作,共有 个对称操作 但每条S 必然也是C 个对称操作. 对称操作,共有9个对称操作 但每条 4必然也是 2, S42与C2对称操作等价,所以将 个S42划归 2, 对称操作等价,所以将3个 划归C ,
穿过正四面体每条棱 并将四面体分为两半 的是一个σd , 共有 个 共有6个 的是一个 σd 。
旋转反映
(具有 n的)分子 具有S 分子 具有 镜象 反映 旋转
分子
橙色虚线框表明,分子与其镜象能够通过实操作旋转完 橙色虚线框表明, 全迭合,而前提是“分子具有 全迭合,而前提是“分子具有Sn”. 根据n的不同可以写出 根据 的不同可以写出: S1=σ,S2=i,S4=S4。 的不同可以写出 结论: 的分子, 结论 : 具有 σ、 或 i、 或 S4 的分子 , 可通过实际操作与其 镜象完全迭合,称为非手性分子。 镜象完全迭合,称为非手性分子。
夹角的镜面σ 夹角的镜面 d.
D2d : 丙二烯
D2d : B2Cl4
立方群:包括T 立方群:包括 d 、Th 、Oh 、Ih 等.
这类点群的共同特点是有多条高次(大于二次 旋转轴相交 这类点群的共同特点是有多条高次 大于二次)旋转轴相交 大于二次 旋转轴相交.
Td 群:属于该群的分子,对称性与正四面体完全相同。 属于该群的分子,对称性与正四面体完全相同。 正四面体完全相同
第三章分子的对称性与点群资料
一、对称性、对称操作与对称元素
对称操作是指不改变物体内部任何两点间的 距离而使物体复原的操作。对称操作所依据的几 何元素称为对称元素。对于分子等有限物体,在 进行操作时,物体中至少有一点是不动的,这种 对称操作叫点操作。
二、 旋转轴和转动
旋转操作是将分子绕通过其中心的轴旋转一定的 角度使分子复原的操作,旋转所依据的对称元素为旋 转轴。n次旋转轴的记号为Cn .使物体复原的最小旋转 角( 0 度除外)称为基转角α,对 C n 轴的基转角α= 3600/n。旋转角度按逆时针方向计算。 和 C n 轴相应的基本旋转操作为 Cn1 ,它为绕轴转 3600/n 的操作。分子中若有多个旋转轴,轴次最高的 轴一般叫主轴。
1’
S1 h ; S 2 i ; S 3 C 3 h ; S 4 独立,包含C 2 ; S5 C 5 h ; S6 C 3 i
平面正方形的PtCl42- 四面体SiF4不 具有对称中心 具对称中心
五、映转轴和旋转反映
映转轴也称为非真轴,与它联系的对称操作是旋 转n次轴再平面反映,两个动作组合成一个操作。
S1n=σC1n
如甲烷分子,一个 经过C原子的四次映转 轴S4,作用在分子上,H 1旋转到1’的位置后,经 平面反映到H4的位置, 同时H2旋转到2’的位置再 反映到H3的位置……整 个分子图形不变,
C1的操作是个恒等操作,又称为主操作E,因为 任何物体在任何一方向上绕轴转3600均可复原,它和 乘法中的1相似。 C2轴的基转角是1800,连续绕C2轴进行两次1800 旋转相当于恒等操作,即:
C2 C2 C2 E
1 1 2
C3轴的基转角是1200,C4轴的基转角是900,C6轴 的基转角是600。
分子对称性和点群
例二:置换群(群元素为变换位置的操作,乘法规则 为从右到左相继操作). S3 群 ( 三阶置换群 )
1 2 3 E 1 2 3
1 2 3
D
2
3
1
1 2 3
F
3
1
2
A
1 1
2 3
3
2
B
1 3
2 2
3
1
C
1 2
2 1
3 3
如
1 2 3
2
3
1
:
123
123
将 1、2、3 处之物分别放于 2、3、1 处
10
例一:数群(群元素为数字) (1)全部整数的集合, 乘法规则为代数加法, 则构成一个群. 恒等元素为 0. 数 n 的逆元素为 (-n). 封闭性和结合律是显然的. (2)数的集合 {1, -1, i, -i}, 乘法规则为代数乘法, 则构成一个群. 恒等元素为1. 数 (-1) 的逆元素为(-1). 数 (i) 的逆元素为 (-i). (3)全体非零整数的集合, 乘法规则为代数乘法,不构成群. 数 n 的逆元素为 1/n ,不为整数,不在群元素中.
E
0
1
0
0 0 1
0 0 1
C
0
1
0
1 0 0
0 1 0
1 0 0
A
1
0
0
B
0
0
1
0 0 1
0 1 0
0 0 1
0 1 0
D
1
0
0
F
0
0
1
0 1 0
1 0 0
0 0 10 1 0 1 0 0
DF
1 0
第三讲分子的对称性与群论基础群与分子点群
(AB)C=A(BC)
(3) 恒等元素 该集合必须含有一个元素 E,对于该集合中的任何元素 A, 都有:AE=EA=A (4) 逆元素 对于该集合的任何元素 A,一定有一个逆元素A-1,它也是 该集合的一个元素,使得: AA-1= A-1A = E 。
2
群与分子点群
1. 群的定义
* 群元素: 数、矩阵、对称操作、算符
群G与群H同构,则两者的阶相同,且乘法表相同。 群G: …., Ai , …, Aj , …., AiAj = Ak , ….
群H: …., Bi , …, Bj , …., BiBj = Bk , ….
26
群与分子点群
5、同构与同态
CS 群
Ci 群
CS与Ci 同构:元素一一对应,“乘积对应乘积”:
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
群H: …., Bi , …, Bj , …., BiBj , ….
* 同态的群,其群元素的乘法关系相同。
* 若两个同态的群的阶相同,则两者同构。
28
群与分子点群
5、同构与同态
群 G = { 1, -1, i, -i }
(证毕)
由定理3,相互共轭的群元素组成一个封闭的子集合,称为 一个类(共轭类)。从而可以把一个群的元素按共轭类划 分,不同的类没有共同元素。
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
(4) 逆元素:相反数 (1 与 -1,2 与 -
2,…..)
分子对称性和分子点群课件
分子对称性的意义
预测和解释分子的物理和化学性质
分子对称性与分子的电子结构和化学键有关,因此可以用来预测和解释分子的性质,如稳 定性、反应活性等。
确定分子的点群
分子的点群是根据分子的对称性进行分类的,通过确定分子的点群可以更好地理解分子的 结构和性质。
指导药物设计和材料科学
分子对称性在药物设计和材料科学中具有重要意义,例如在药物设计中,可以利用分子对 称性来设计具有特定性质的化合物。
分子对称性在化学反应中的实例分析
以烷烃为例,烷烃的对称性越高,其化学反应选择性越低,因为它们具有更稳定的 分子结构。
以烯烃为例,烯烃的对称性较低,因此它们在加成反应中表现出较高的反应活性。
以芳香族化合物为例,由于芳香族化合物具有较低的对称性,它们在取代反应中表 现出较高的反应活性。
05
CATALOGUE
02
CATALOGUE
分子点群的基本概念
分子点群的分 类
01
02
03
04
第一类点群
包括1个线性群和3个二面体群。
第二类点群
包括4个四面体群、6个三方 柱群和1个六方柱群。
第三类点群
包括4个四方锥群、4个三角 锥群、2个八面体群、1个五 方双锥群和1个三方偏方面体
群。
第四类点群
包括1个二十面体群。
02
分子对称性是分子结构的一个重 要属性,它决定了分子的物理和 化学性质。
分子对称性的分类
01
02
03
点对称性
分子在三维空间中具有一 个或多个对称中心,这些 对称中心可以将分子分成 若干个相同的部分。
轴对称性
分子具有一个或多个对称 轴,这些对称轴可以将分 子分成若干个相同的部分。
第三章 分子对称性和点群
3.1.3. 对称中心, i (反演)
i2 = I
3.1.4 n 重旋转反映轴, Sn
Sn = h Cn = Cn h
Sn = h C n 由于S1 = h C1 = , S2 = h C2 = i 所以S1 和S2无意义.
3.1.5 恒等元素, E 或 I
当n为偶数时, 当n为奇数时,
nCn I Sn n h n 2n n n 2n 2n Sn n h C n h , Sn h C n I
3.2 群的定义和基本性质
3.2.1 群的定义与分类
• 定义: 群 G 是一个不同元素的集合{A,B,…,R,…}, 对于一定的乘法规则, 满足以下四个条件: • 1) 封闭性 群中任意两个元素R和S的乘积等于集合中另一个元素, T=RS • 2) 结合律 A(BC)=(AB)C • 3) 有唯一的恒等元素 E,使得对任意群元素 R, 有 RE=ER=R • 4) 每个元素 R 必有逆元素 R-1, 使得 RR-1 =R-1 R=E •性质: 1) 若 AB=AC 则 B=C
3.1.1
n 重对称轴, Cn (转动)
转角
2 / n
2 3 n Cn , Cn , Cn ,....,Cn I
I 为恒等操作
主轴: n 最大的轴。 产生 n-1 个转动。
3.1.2
对称面, (反映) 2 = I h : 垂直于主轴的对称面 v :包含主轴的对称面 d :包含主轴且平分两
共轭元素的性质
x 取遍所有的群元素}
(1)每个元素与其自身共轭 A1 AA A (2)若A与B共轭,则B与A共轭 (3)传递性:若A与B及C共轭,则B与C共轭
1 X AX B 1 Y AY C
第三章 分子的对称性和点群ppt课件
(2) 甲烷具有S4,只有C2 与S4共轴,但C4和与之垂直 的σ并不独立存在.
CH4中的映轴S4与旋转反映操作
注意: C4和与之垂直的σ都不独立存在
环辛四烯衍生物中的 S4
分子中心是S4的图形符号
丙二烯
对称操作与对称元素
旋转是真操作, 其它对称操作为虚操作.
两个或多个对称 操作的结果,等效于 某个对称操作.
D2h群:乙烯
D3h 群
D3h 群 : C2H6
D3h群分子多呈平面正三角形、正三棱柱或三角双锥结构
D4h群:XeF4
D6h群:苯
同核双原子分子,具有对称中心的线型分子,属于Dh群
Dh群: I3-
Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副轴
夹角的镜面σd.
D2d : 丙二烯
D2d : B2Cl4
3.偶次旋转轴和与它垂直的对称面的组合 一个偶次轴与一个垂直于它的对称面组合,必定在交
点上出现对称中心。 C2σh = S2 = i
3.2 点群
3.2.1定义一种称之为“乘
法”的运算,如果满足下列条件,则集合G构成群。
1)封闭性:集合G 中任何两个元素相“乘”(或称之为 组合),其结果仍然是G 中元素,也就是说,A、B分别 属于G,AB=C 也属于G。即 A∈G, B∈G, 则 AB= C∈G
(2)二面体群:包括Dn、Dnh、Dnd . 这类点群的共同特点是
旋转轴除了主轴Cn外,还有与之垂直的n条C2副轴.
(a)Dn 群: 除主轴Cn外,还有与之垂直的n条C2副轴( 但没有 镜面).( Cn + nC2⊥ Cn )
D2 群
主轴C2垂直于荧光屏
D : 3 这种分子比较少见,其对称元素也不易看出.
分子的对称性和群伦
群的性质:
1. 封闭性:群中任何两个元素的乘积仍属于该群的 一个元素。 ab=c,c也是该群的元素 2.结合律:满足乘法的结合律。 (ab)c=a(bc) 3.恒等元素:群中必含一恒等元素E,它和群中任一 元素的乘积即为该元素本身。 例如,aE=Ea=a。 4.逆元素:群中任一元素a必有一逆元素a-1,元素a 与其逆元素a-相乘等于恒等元素 E:aa-1=a-1a=E。
对称元素:反映面
v(vertical):通过主轴Cn轴的反映面
h(horizontal):与分子的n重主轴垂直的反映面 d(dihedral):包含主轴并平分垂直于主轴的两
个二重轴的夹角的平面
h:1个 XeF4 : v:2个 d :2个
2.1.3 反演操作与对称中心
反演操作(inversion operation)的对称元素是 点,称为对称中心i。 将分子中每一点转移到该点和对称中心连线的 延长线上,在对称中心另一侧与对称中心距离相等 的位置上,这种操作称之为反演操作。 例如:XeF4的对称中心是质点Xe;C6H6对称中心没 有原子存在,不是质点。
由表可见,所有对称操作两两相乘,即相继进行 的对称操作,净结果相当于单个对称操作,均包含 在相应的乘法表中。
2.结合律
C C C C
2 v v v 2 v v 2
v
E E
C2 v v
2
所以,
C
2 v
v
3.恒等元素
6. Cv 点群
NO、HCN无对称中心。
σv
C∞
具有无穷二次旋转轴C∞及无穷多个通过键轴的 σv反映面。
7. D n点群
1个Cn轴和n个垂直于Cn轴的C2轴—Dn点群。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交换群的一个特例是循Cˆ环3,群C(ˆ32 ,群C的ˆ33 所 有Eˆ 元素可由某个元素
3 的自身乘积产生)。
例如: C3群:
群与分子点群
2. 例子
1)、全部正、负整数及零的集合,结合规则是数的加法。
说明 (1) 结合性 :数的加法具有结合性
(2) 封闭性:整数的加和仍为整数
(3) 恒等元素: 0
,
ˆ
h
Cˆ
2 n
,...,
ˆ
h
Cˆ
n n
1
,
nˆ d (ˆV ) }
F
H
H
B
F
F
C H
C H
D3h
D2h
D3h
11
群与分子点群
3、分子点群
D类群
3)、Dnd 点群
有一个 Cn 轴、n个垂直于该轴的 C2 轴和 n 个包含该轴的 对称面 对称操作(4n个):
Eˆ , Cˆn , Cˆn2 ,..., Cˆnn1, nCˆ2 ', Sˆ21n , Sˆ23n , Sˆ25n ,..., Sˆ22nn1, nˆd (ˆV )
定理2:子群的阶必是母群阶的整数因子。
例: C3V 群(6阶)
Eˆ , Cˆ3 , Cˆ32 , ˆV , ˆV ', ˆV "
子群: C3 群(3阶) Eˆ , Cˆ3 , Cˆ32
Cs 群(2阶) Eˆ, ˆV
Eˆ , ˆV '
Eˆ , ˆV "
2)、Oh 点群
对称元素: 3个 C4 轴(相对顶点)、 4个 C3 轴(相对面心)、 6个 C2 轴 (相对棱心)、 对称中心.
48个对称操作,分为10个共轭类:
Eˆ , 3 Cˆ4 , Cˆ43 , 3 Cˆ2 , iˆ , 3 Sˆ4 , Sˆ43 , 3ˆh ,
第三讲:分子的对称性与群论基础 群与分子点群
群与分子点群
1. 群的定义
考虑一组元素的集合G{A,B,C,D,E,…},元素之间可以定义结合规 则(“乘法”),若满足以下条件,则称该组元素的集合构成一个群:
(1)封闭性 若A和B是该集合的任意两个元素,则它们的积AB也一定是 该集合的元素。
(2) 结合性 结合规则满足结合律:
C2
C2
Fe
D5d
D3d
12
H
H
C
C
C
H
H
D2d
C2
群与分子点群
3、分子点群
1、CV 点 群
对称操作:
线性分子
有一个 C 轴和无穷个包含该轴的对称面 Eˆ , Cˆ , ..., ˆV HF , HCN
2群、Dh 点 ----- 有一个 C 轴、无穷个包含该轴的对称面、 和对称中心
(4) 逆元素:相反数 (1 与 -1,2 与 -
2,…..)
2)、数组:G =
{+1,
-1,
i,
-i}
,
结合规则是数
的乘法说明。 : (1) 结合性 :满足
(2) 封闭性:满足
(3) 恒等元素: +1
(4) 逆元素: ( i ) -1 = -i , ( -1 )-
1 = -1
同理:
数组 G = {+1, -1} 构成二阶群
群 H = { 1, -1}
群 H 是群G的一个同态映像: G元素 {1, -1} 对应 H 的 {1} 、{ i, -i } 对 应 H的 {-1}, 且 “乘积对应乘积”。
由数 { 1 } 构成的一阶群(按数的乘法),是任何群的同态 映像
29
习题
1Байду номын сангаас2
30
22
群与分子点群
4、子群与类
2)、共轭与类 定义:如果群中的元素 P 和 Q 满足关系: P X 1QX
其中X也是此群的元素,则称 P 是 Q 的共轭变换,或称 P 与 Q 共轭。
若上式左乘 X ,并右乘 X-1,则: Q XPX 1
令:X-1=Y, 显然 Y 也是该群的一个元素,
则:
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
I
15个 C2 轴
Ih (i)
正二十面体 正十二面体
14
群与分子点群
3、分子点群
立方群
1)、Td 点群 对称元素: 4个 C3 轴(顶点和相对面心), 3个 C2 (S4)轴(相对棱心),
4 Cˆ3 , Cˆ32 , 4 Sˆ6 , Sˆ65 ,
6 Cˆ2 ,
6ˆd
C4 C3
C2
SF6, WF6, UF6, Fe(CN)64-, Mo(CO)6
16
群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
群H: …., Bi , …, Bj , …., BiBj , ….
* 同态的群,其群元素的乘法关系相同。
* 若两个同态的群的阶相同,则两者同构。
28
群与分子点群
5、同构与同态
群 G = { 1, -1, i, -i }
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
交换群(互换群)的每个元素都自成一类。
25
群与分子点群
5、同构与同态
1)、同构 定义:若群G与群H的元素一一对应,且群G的元素的乘积 对应于群H的相应元素的乘积,则称群G与群H同构。
15 Cˆ2 ,
15ˆd
[B12H12]2-
C60
C60 是截角二十面体, 有12个正
五边形面, 20个正六边形面
17
群与分子点群
3、分子点群
点 群
1、线形分子
i
Y D~h
的
N C~V
判
C5 Ih (I)
定 步
2、两个以上高次轴
C4 Oh (O)
骤
C3 Td (T)
3、Cn轴
nC2' Y
有6个 对称面.
24个对称操作,分为5个共轭类:
Eˆ , 3 Cˆ2 , 4 Cˆ3 , Cˆ32 ,
C2 (S4) C3
6ˆd ,
3 Sˆ4 , Sˆ43
CCl4, NH4+, MnO4-, Si(CH3)4, C(CH3)4
15
群与分子点群
3、分子点群
立方群
G = {+1 }
构成一阶群
4
群与分子点群
2、例子
3)、分子全部对称操作的集合构成一个群 ---- 分子点群 (1) 封闭性: 若 A和B是分子的对称操作, 则 AB 必是分子的对称操作。 (2) 单位元:恒等操作 (3) 逆元素:逆操作 (ˆ )1 ˆ , (Cˆn )1 Cˆnn1, ....... (4) 结合律: (Rˆ3Rˆ2 )Rˆ1 Rˆ3 (Rˆ2Rˆ1)
对称操作(2n个): C2
Eˆ , Cˆn , Cˆn2 ,, Cˆnn1, nCˆ2 '
2)、Dnh 点群
D3
NN
有一个 Cn 轴、n个垂直于该轴的 C2 轴 和一个垂直主轴的对称面
对称操作(4n个):
{ Eˆ ,
Cˆ n ,
Cˆ
2 n
,...,
Cˆ
n n
1
,
nCˆ 2 ',
ˆ h ,ˆ hCˆ n
19
群与分子点群
3、群乘法表
定理1(重排定理):群的元素在乘法表的每一行或每一列 必出现且只出现一次。
证明(反证法):
假定群的元素 D 在乘法表的某一行出现两次,例如:
AB = D , AC=D
则有:A-1AB=A-1D , A-1AC=A-1D
(A-1A) B=A-1 D , (A-1A) C=A-1D
h Y N
Dnh nd Y Dnd
4、无对称轴
N
N Dn
h Y Cnh
N
nV Y CnV
Y Cs
N
Y S2n
S2n
i Y Ci N
N Cn
N C1
18
群与分子点群
4、群乘法表
将群元素间的乘法关系按一定顺序列成表格,称群的乘法表 (群表)。群的全部重要性质都包含在它的乘法表中 。
定理1(重排定理):群的元素在乘法表的每一行或每一列 必出现且只出现一次。
即:
B = A-1D , C = A-1D
不合,故原命题成立。
20
群与分子点群
3、群乘法表
C3V 群 的乘法表
21
群与分子点群
4、子群与类
1)、子群 定义:若一个群的子集合按照与原群相同的结合规则(乘 法)构成一个群,则称该子集合形成原群的子群。
平凡子群:(1)群 G 本身(2)由单位元构成的一阶群。 真子群: 平凡子群以外的其他子群。