狭义相对论习题解答 2014版

合集下载

狭义相对论题目及其解答3

狭义相对论题目及其解答3

狭义相对论题目及其解答31.质量为M 的静止粒子衰变为两个粒子1m 和2m ,求粒子1m 的动量和能量。

解:由动量能量守恒定律0P P 21=+,p p p 21==⇒, W=W 1+W 2=M 0c 2 4212211c m c p W += 4222222c m c p W += 可得[][]221222121)m m (M )m m (M2Mc p --+-=)m m (M 2Mc E 2221221--= 2.已知某粒子m 衰变成两个质量为1m 和2m ,动量为1p 和2p (两者方向 夹角θ)的两个粒子,求该粒子的质量m 。

解:由能量动量守恒:设衰变前静质量M 0,运动速度为v ,222211200c m c m c m γγγ+=0021v m p p γ=+ 可得到v )r m r m (cos p p p p 2211212221+=-+θ注意到421221c m c R W +=',422222c m c R W +=',可以得到θcos p p c2c W 2W m m m 212421222120-''++=()()⎥⎦⎤⎢⎣⎡-++++=θcos p p p c m p c m c 2m m 212242221421222213.(1)设E 和p 是粒子体系在实验室参考系∑系中的总能量和总动量(其动量与x 方向夹角为θ)。

证明在另一参考系∑'系(相对∑系以速度v 沿x 轴运动)中的粒子体系总能量和总动量满足:()c /E p p x x βγ-=, ()x cp E E βγ-=',()cp /E cos sin tg βθγθθ-='(2)某光源发出的光束在两个惯性系中与x 夹角分别为θ和θ'证明 θββθθcos 1cos cos --='γθβθθ)cos (1sin sin -='(3)考虑在∑系立体角φθd dcos d =Ω的光束,证明在变换到另一惯性系∑'系时,立体角变为()22cos -1d d θβγΩ=Ω'解:(1)⎪⎭⎫⎝⎛=ωμc i ,p p对洛仑兹变换:r r p a p μμ='()c /E p p x x βγ-='()x cp E E βγ-='()cp /E cos sin p p tg yx βθγθθ-=''='(2)由⎪⎭⎫⎝⎛ωc i ,k 变换式:()⎪⎩⎪⎨⎧'-='⎪⎭⎫ ⎝⎛-='x 2x x k v c v k k ωγωωγ ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=''='='⇒ωθγωθγθωθ22c v cos c wc v kcos cos ccos k 又⎪⎭⎫ ⎝⎛-=''c v cos cos θγωθω⎪⎭⎫⎝⎛-='θωωγωcos c v可得:θθθcos cv1c v cos cos --=' γθβθθ)cos (1sin sin -='(3)由上面推导:()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--='θθθθθθβθβθθd sin c v c v cos d sin -cos -1cos -11d sin -2()()22cos -1-1d sin θββθθ-=θϕe e e r⨯= 垂直于x 轴运动,ϕ∴不受影响,()()()2222222cos -1d d cos -1-1d d sin cos -1c v -1d d sin d γθβθββϕθθθβϕθθΩ=Ω=='''=Ω'4.考虑一个质量为1m 和能量为1E 的粒子射向另一质量为2m 的静止粒子体系,通常在高能物理中,选择质心参考系有许多方便之处,在该参考系中,总动量为零。

狭义相对论(答案)

狭义相对论(答案)

第六章狭义相对论基础六、基础训练一.选择题2、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s,若相对于甲作匀速直线运动的乙测得时间间隔为5 s,则乙相对于甲的运动速度是(c表示真空中光速)(A) (4/5) c.(B) (3/5) c.(C) (2/5) c.(D) (1/5) c.解答:[B].22315tvt v cc t∆⎛⎫⎛⎫∆=⇒=-⇒==⎪ ⎪∆⎝⎭⎝⎭3、K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿Ox轴正方向匀速运动.一根刚性尺静止在K'系中,与O'x'轴成30°角.今在K系中观测得该尺与Ox轴成45°角,则K'系相对于K系的速度是:(A) (2/3)c.(B) (1/3)c.(C) (2/3)1/2c.(D) (1/3)1/2c.解答:[C].K'系中:00'cos30;'sin30x yl l l l︒︒==K系中:21''13x x y yvl l l l vc⎛⎫===⇒-=⇒=⎪⎝⎭二.填空题8、(1) 在速度=v____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v____________情况下粒子的动能等于它的静止能量.解答:[2c;2].(1)00222p mv m v m m v==⇒==⇒=(2)22200022kE mc m c m c m m v=-=⇒==⇒=三.计算题10、两只飞船相向运动,它们相对地面的速率是v.在飞船A中有一边长为a的正方形,飞船A 沿正方形的一条边飞行,问飞船B中的观察者测得该图形的周长是多少?解答:222222222()22'()1/1'/224/()v v v vcuv v c c vvcu c C a ac c vβ--===-++-==+=+;11、我国首个火星探测器“荧光一号”原计划于2009年10月6日至16日期间在位于哈萨克斯坦的拜科努尔航天发射中心升空。

狭义相对论基础练习题及答案

狭义相对论基础练习题及答案

狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。

2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。

3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。

4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。

5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。

6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。

7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。

8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。

练习册-第3章《狭义相对论》答案

练习册-第3章《狭义相对论》答案

练习册-第3章《狭义相对论》答案第3章 狭义相对论 一、选择题1(B),2(C),3(C),4(B),5(B),6(D),7(C),10(D),11(D),12(C) 二、填空题 (1). c(2). 4.33×10-8s (3). ∆x /v , 2)/(1)/(c x v v -∆(4). c(5). 0.99c (6). 0.99c (7). 8.89×10-8s(8). c 321 (9). 5.8×10-13, 8.04×10-2(10). lS m , lS m925 三、计算题1.在惯性系K 中,有两个事件同时发生在 x 轴上相距1000 m 的两点,而在另一惯性系K ′(沿x 轴方向相对于K系运动)中测得这两个事件发生的地点相距2000 m .求在K '系中测得这两个事件的时间间隔.解:根据洛仑兹变换公式: 2)(1/c t x x v v --=' ,22)(1//c c x t t v v --='可得2222)(1/c t x x v v --=' ,2111)(1/c t x x v v --='在K 系,两事件同时发生,t 1 = t 2,则 21212)(1/c x x x x v --='-' ,∴21)/()()/(112122='-'-=-x x x x c v解得 2/3c =v . 在K ′系上述两事件不同时发生,设分别发生于1t '和 2t '时刻,则 22111)(1//c c x t t v v --=',22222)(1//c c x t t v v --='由此得 221221)(1/)(/c c x x t t v v --='-'=5.77×10-6s2.在K 惯性系中,相距∆x = 5×106 m 的两个地方发生两事件,时间间隔∆t = 10-2s ;而在相对于K 系沿正x 方向匀速运动的K '系中观测到这两事件却是同时发生的.试计算在K '系中发生这两事件的地点间的距离∆x '是多少?解:设两系的相对速度为v .根据洛仑兹变换, 对于两事件,有2)/(1c t x x v v -'+'=∆∆∆22)/(1(c x )/c t tv v -'+'=∆∆∆由题意:='∆t且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c t t v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 )那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m5. 一飞船和慧星相对于地面分别以0.6c 和0.8c速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?解:两者相撞的时间间隔Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c 运动的系统的本征时,根据时间膨胀公式21(/)t v c ∆=-,可得时间间隔为2`1(/)t v c ∆=∆-4(s).6.设有一个静止质量为m 0的质点,以接近光速的速率v 与一质量为M 0的静止质点发生碰撞结合成一个复合质点.求复合质点的速率v f . 解:设结合后复合质点的质量为M ′,根据动量守恒和能量守恒定律可得f M c m v v v '=-220/1/ 222202/1c c m c M c M v /-+='由上面二个方程解得 )/1/(22000c M m m f v v v -+=四 研讨题1. 相对论的时间和空间概念与牛顿力学的有何不同?有何联系?参考解答:牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。

第一课狭义相对论4个例题

第一课狭义相对论4个例题


E ct

2.7 1015 4.2103 100

6.4109 (kg)
即爆炸释放的能量能将640 万吨水从摄氏度加热到沸 腾。
为ι0的车厢,以速度v相对于地
面系S作匀速直线运动。在车厢 中,从后壁以速度u0向前推出一 个小球,求地面观察者测得小 球从后壁运动到前壁所经历的 时间。
解:解法一:设和车厢固连的
惯性坐标系为S′系,选地面为S
系,设在S系测得小球相对地面
的速度为u .根据速度合成公式
u

u0 v 1 u0v c2
t

l w

l0 1 v2 u0 (1 v2
c2 c2)

l0 u0
1 u0v 1 v2
c2 c2
1 u0v c2
由题意知
x l0
所以
t
l0 u0

v c2
l0
l0
1 u0v
c2
1 v2 c2 u0 1 v2 c2
两种解法结果相同,当v << c、u0 <<c时, 与经典 情况一致。
洛伦兹变换

例题1 有两个惯性系S和S′。在S′ 系钟的中记两录个x0′处到事有在件一。t1′和只在t静S2′′时系止刻中的x的钟0′处钟,发记用生录该 这两个事件的时间间隔为⊿t′= t2′― t1′。那么,在S系中的钟记录 这两个事件的时间间隔是多少? 若用生在该的钟两S系记个中录事x0到件处在,有则t一1和S只系t2时静中刻止的x的钟0处钟记发, 录这两个事件的时间间隔为⊿t =录t这2―两t1个。事那件么的,时在间S′系间中隔的是钟多记少?
惯性系S及与μ 子相对静止

大学物理 狭义相对论 习题及答案

大学物理 狭义相对论 习题及答案

第5章 狭义相对论 习题及答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。

在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。

2. 狭义相对论的两个基本原理是什么? 答:狭义相对论的两个基本原理是:(1)相对性原理 在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理 在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。

3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。

解 在相对论中,不是一切都是相对的,也有绝对性存在的方面。

如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。

4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点; (2)两事件发生于S 系的不同地点。

解 由洛伦兹变化2()vt t x cγ'∆=∆-∆知,第一种情况,0x ∆=,0t ∆=,故'S 系中0t '∆=,即两事件同时发生;第二种情况,0x ∆≠,0t ∆=,故'S 系中0t '∆≠,两事件不同时发生。

5-5 飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率; (2)飞船B 测得飞船A 的速率。

第四章 狭义相对论习题以及答案

第四章 狭义相对论习题以及答案

第4章狭义相对论习题及答案一 选择题1.下列几中说法:(1) 所有惯性系对物理基本规律都是等价的。

(2) 在真空中,光的速度与光的频率、光源的运动状态无关。

(3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

其中哪些说法是正确的?(A) 只有(1)、(2)是正确的。

(B) 只有(1)、(3)是正确的。

(C) 只有(2)、(3)是正确的。

(D) 三种说法都是正确的。

2.边长为a 的正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X ,Y 轴平行。

今有惯系K ′以0.8c(c 为真空中的光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K ′系测得薄板的面积为(A)a ². (B)0.6a ² (C)0.8a ² (D)a ²/0.63.在某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,测乙相对于甲的运动速度是(C 表示真空中光速)(A )(4/5)C (B )(3/5)C (C )(1/5)C (D )(2/5)C4.α粒子在加速器中被加速,其质量为静止质量的3倍时,动能为静止能量的(A)2倍 (B)3倍 (C)4倍 (D)5倍5.把一个静止质量为m 0的粒子,由静止加速到v=0.6c(c 为真空中光速)需作的功等于(A)0.18m 0c2 (B)0.25m 0c 2 (C)0.36m 0c 2 (D)1.25m 0c 2二 填空题1.狭义相对论的两条基本原理中,相对性原理说的是 __;光速不变原理说的是__________________________________.2.已知惯性系S ′相对于惯性系S 系以0.5c 的匀速度沿X轴的负方向运动,若从S ′系的坐标原点O′沿X轴正方向发出一光波,则S 系中测得此光波的波速为_____ ____.3.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×10-8s ,如果它相对实验以0.8c (c 为真空中光速)的速度运动,那么实验坐标系中测得π+介子的寿命是____s.4.一门宽为 a.今有一固有长度为l 0(l 0>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

第六章 狭义相对论作业答案2014

第六章 狭义相对论作业答案2014

第六章 狭义相对论基础(2014)一.选择题1、(基础训练1)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为( ).(c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) 2/1(v /)c t c ∆⋅-(D) 2)/(1c t c v -⋅⋅∆解答:[A].飞船的固有长度为飞船上的宇航员测得的长度,即为c ·∆t 。

2、(基础训练2)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 解答:[B].()2220024311551/t v t v c cc t v c ∆⎛⎫⎛⎫⎛⎫∆=⇒=-⇒=-= ⎪ ⎪ ⎪∆⎝⎭⎝⎭⎝⎭-3、(基础训练3) K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O 'x '轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .解答:[C].K '系中:00'cos30;'sin30x y l l l l ︒︒==K 系中:()()22'1/tan 45'1/1/32/3x x y y l l v c l l v c v =-==⇒-=⇒=4、(自测提高3)设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为 (以c 表示真空中的光速)(A) 1-K c . (B) 21K Kc-.(C) 12-K K c. (D) )2(1++K K K c解答:[C].111122020-=⇒=-=⇒-=K K cv K c v E E c v E E )/()/(总能量:二.填空题5、(基础训练7)一门宽为a .今有一固有长度为l 0 (l 0 > a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为_______.解答:[()01/c a l -].门外的观察者测得杆的长度()220'1(/)1/l l u c au c a l =-≤⇒≥-6、(基础训练8)(1) 在速度=v ____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v ____________情况下粒子的动能等于它的静止能量.解答:]. (1)0022p mv m v m m v ==⇒==⇒=(2)c v c v m m m c m c m mc E k 23122020202=⇒-==⇒=-=)/( 7、(自测提高5)地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=______.解答:[0.994c ].2222()220.9'0.994()1/10.91v v v cv c v v c v c --⨯====-++-8、(自测提高8)已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是______.解答:[20(1)n m c -].01t t t n∆∆=⇒==∆22222000(1)k E mc m c m c n m c =-==-9、(附录B :11)两惯性系中的观察者O 和'O 以c 60.的相对速度互相接近。

《大学物理》课后解答题 第四章狭义相对论基础

《大学物理》课后解答题  第四章狭义相对论基础

第四章 狭义相对论基础一、思考讨论题1、根据相对论问答下列问题: (1)在一个惯性系中同时、同地点发生的两事件,在另一惯性系中是否也是同时同地点发生? (2)在一个惯性系中同地点、不同时发生的两事件,可否在另一惯性系中为同时、同地点发生?(3)在一惯性系中的不同地点发生的两事件,应满足什么条件才可找另一惯性系,使它们成为同地点发生的事件?(4)在一惯性系中的不同时刻发生的两事件,应满足什么条件才可找到另一惯性系,使它们成为同时的事件?答:依据洛仑兹时空坐标变换)(ut x x -='γ )(2c ux t t -='γ (其中2211c u -=γ)得 )(t u x x ∆-∆='∆γ )(2c x u t t ∆-∆='∆γ(其中12x x x -=∆,'-'='∆12x x x ,12t t t -=∆,'-'='∆12t t t ) 所以有 (1)是。

(2)不能。

(3)若0≠∆x ,而欲0='∆x 应有0=∆-∆t u xxu c t∆∴=<∆ (4)若0≠∆t 而欲0='∆t ,应有02=∆-∆x u t2x c c t u∆∴=>∆ 2、一个光源沿相反方向放出两个光子(以光速c 运动),问两光子的相对速度的大小是多少?答:由相对论速度变换式易算得,相对速度大小仍为c 。

3、一发射台向东西两侧距离均为L 0的两个接收站发射光讯号,今有一飞机自西向东匀速飞行,在飞机上观察,两个接收站是否同时接到讯号?哪个先接到?如飞机在水平内向其它方向运动,又如何?解:以地面为S 系,飞机为S '系,设飞机相对于地面的速度为u 。

西、东两接收站接到光信号的时刻分别为:系中)(和系)(和S t t S t t '''2121S显然 021=∆⇒=t t t 0111222022222212<---=-∆-=-∆-∆='-'cu c L u cu c x u cu c x u t t t'<'∴12t t 即东边的接收台先接到。

狭义相对论课后题目解答

狭义相对论课后题目解答

狭义相对论课后题目解答思考题1 在狭义相对论中,下列说法中哪些是正确的?(A) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(B) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的. (C) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(D) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.[A ,B ,D]解答:真空中的光速为自然界的极限速率,任何物体的速度都不大于光速;质量、长度、时间与运动是紧密联系的,这些物理量的测量结果与参考系的选择有关,也就是与观察者的相对运动状态有关;同时同地具有绝对性,同时异地则具有相对性;相对论时间膨胀效应即运动的时钟变慢。

答案:(A 、B 、D )2 两个惯性系K 与K '坐标轴相互平行,K '系相对于K 系沿x 轴作匀速运动,在K '系的x '轴上,相距为L '的A '、B '两点处各放一只已经彼此对准了的钟,试问在K 系中的观测者看这两只钟是否也是对准了?[ 没对准 ]解答:在K ’系中,A ’、B ’点的时空坐标分别为:()(),,,A A B B A x t B x t ''''''由题意:0A B t t t '''∆=-=,A B x x x L ''''∆=-=在K 系中,这两点的时空坐标分别为:()(),,,A A B B A x t B x t根据洛仑兹变换,220A B u ut x L t t t '''∆+∆∆=-==≠ 故,在K 系中的观测者看到这两只钟没有对准。

3 静止的μ子的平均寿命约为τ0 =2×10-6 s .今在8 km 的高空,由于π介子的衰变产生一个速度为v = 0.998 c (c 为真空中光速)的μ子,此μ子有无可能到达地面?[有可能]解答:μ子的固有寿命为:60210s τ-=⨯,根据相对论时间膨胀效应,对于地面参考系运动μ子的寿命为:653.1610s τ--==≈⨯μ子在τ时间内运动的距离为:50.998 3.16109461s u c m τ-==⨯⨯≈而μ在8km 的高空,小于它运动的距离,所以μ子可以到达地面。

大学物理-狭义相对论习题和解答

大学物理-狭义相对论习题和解答

⎪ ⎪⎪ v第十七章 狭义相对论17—1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?[解] 飞船静止长度l 0 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:l = l 0= l 0 2解得: = c 2即: v =c = 0.866c 217—2 宇宙射线与大气相互作用时能产生 介子衰变,此衰变在大气上层放出 粒子,已知 粒子的速率为 v = 0.998c ,在实验室测得静止 粒子的平均寿命为2.2 ⨯10-6 s ,试问在 8000m 高空产生的 粒子能否飞到地面?[解] 地面上观测到的 子平均寿命与固有寿命之间的关系t = t 0子运行距离l = vt = v t 0子能飞到地面。

= 0.998c ⨯ 2.2⨯10- = 1042m17—3 在 S 系中观测到两个事件同时发生在 x 轴上,其间距离为 1m ,在 S ,系中观测这两个事件之间的距离是 2m 。

求在 S ,中测得的这两个事件发生的时间间隔。

[解] 在 S 系中两事件时间间隔∆t = 0, 由 Lorentz 变换x ' = x - ut t ' = t - u x c 2 ⎧ ∆x ' ⎪ 得: =⎨ ⎪∆t ' = ⎩∆t - ∆x ∆x c 2 = - c 2 将∆x ' = 2m , ∆x = 1m 代入上两式,得u = 3 c , 2∆t ' = -5.77 ⨯10-9 s 17—4 远方一颗星体以 0.80c 的速率离开我们,我们接收到它辐射来的闪光按 5 昼夜的周期变化,求固定在这星 1 - ( v )2 c 3 3 1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭ 1 - (u / c )2 1 - (u / c )21 - (u / c )2 1 - (u / c )21 - 0.8021 - 0.99652 1 - (u / c )2 1 - (u / c )2 0 体上的参考系中测得的闪光周期。

狭义相对论 习题解

狭义相对论 习题解

七、狭义相对论一、选择题1、下列几种说法(1)所有惯性系对物理基本规律都是等价的。

(2)在真空中光的速度与光的频率、光源的运动无关。

(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

其中哪些说法是正确的? (A ) (1)、(2) (B ) (1)、(3) (C ) (2)、(3) (D ) (1)、(2)、(3)2、一光子火箭相对于地球以0.96c 的速度飞行,火箭长100m,一光脉冲从火箭尾部传到头部,地球上的观察者看到光脉冲经过的空间距离是 (A)54.88; (B)700; (C)714.3; (D)14.33、K 系和K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿OX 轴正方向向右匀速直线运动,一根刚性尺静止在K '系中,与X O ''轴成ο30角,今在K 系中观测得该尺与OX 轴成ο45,则K '系相对于K 系的速度是 (A )c32 (B )c 31 (C )c 32 (D )c 314、一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹,在火箭上测得子弹从射出到击中靶的时间是 (A )21v v L + (B )2v L (C )12v v L - (D )211)/(1c v v L-5、两个惯性系S 和S ',沿x(x ')轴方向作相对运动,相对速度为u ,设在S '系中某点现后发生的两个事件,用固定在该系的钟测出两件事的时间间隔为0τ,而用固定在S 系中的钟测出这两件事的时间间隔为τ。

又在S '系x '轴上放置一固有长度为0l 的细杆,从S 系测得此杆的长度为l ,则(A)τ<0τ, l <0l (B)τ<0τ, l >0l (C)τ>0τ, l >0l(D)τ>0τ, l <0l6、边长为a 正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X 、Y 轴平形,今有惯性系K '以0.8c (c 为真空光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K '系测得薄板的面积为 (A )2a (B )0.62a (C )0.82a(D )2a /0.6 7、(1)对于观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说它们是否同时发生?(2)在某一惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两个问题正确答案是 (A )(1)同时,(2)不同时 (B )(1)同时,(2)同时 (C )(1)不同时,(2)不同时 (D )(1)不同时,(2)同时 8、把一个静止质量为0m 的粒子,由静止加速到v=0.6c (c 为真空中的光速)需作的功为 (A )0.1820c m (B )0.2520c m (C )0.3620c m (D )1.2520c m9、质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的( )倍 (A )5 (B )6 (C )3 (D )810、在参照系S 中,有两个静止质量都是0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量M的值为(A )20m(B )20)/(12c v m - (C )20)/(12c v m -(D )20)/(12c v m - (c 为真空中光速)11、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过Δt (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (A)c ·Δt (B) v ·Δt(C)c ·Δt 2)/(1c v - (D) c ·Δt/2)/(1c v -12、根据相对论力学,动能为1/4Mev 的电子,其运动速度约等于 (A)0.1c (B)0.5c (C)0.75c(D)0.85c (c 表示真空中的光速,电子的能量Mev c m 5.020=)二、填空题1、有一速度为u 的宇宙飞船沿X 轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观测者测得光源发出的光脉冲的传播速度大小为 ,处于船头的观测者测得光源发出的光脉冲的传播速度大小为2、一列高速火车以速度u 驶过车站时,固定在站台的两只机械手在车厢上同时划出两个痕迹,静止在站台上的观察者同时测出两痕迹之间的距离为1m ,则车厢上的观察者应测出两痕迹之间的距离为 。

章狭义相对论基础习题解答

章狭义相对论基础习题解答

20章狭义相对论基础习题解答(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确 ( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4)解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )1A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u = c , 8790/(310)310s t -'∆=⨯=⨯ 2()/1(/)270m x x u t u c ''∆=∆+∆-=。

狭义相对论练习册答案

狭义相对论练习册答案

狭义相对论练习册答案狭义相对论是爱因斯坦于1905年提出的理论,它主要研究在不同惯性参考系中物理定律的不变性。

以下是一些狭义相对论的练习题及其答案。

练习一:时间膨胀假设一个宇航员以接近光速的速度(例如0.9c)旅行了10光年。

根据狭义相对论,宇航员经历的时间与地面观察者测量的时间有何不同?答案:根据狭义相对论的时间膨胀公式:\[ \Delta t' = \frac{\Delta t}{\gamma} \]其中,\( \Delta t \) 是地面观察者测量的时间,\( \Delta t' \) 是宇航员经历的时间,\( \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \) 是洛伦兹因子。

对于0.9c的速度,\( \gamma \) 大约为2.294。

因此,宇航员经历的时间是:\[ \Delta t' = \frac{10}{2.294} \approx 4.36 \text{ 光年} \]练习二:长度收缩一个物体在静止参考系中的长度是10米。

当它以0.9c的速度相对于观察者运动时,观察者会测量到的长度是多少?答案:长度收缩公式为:\[ L = L_0 \sqrt{1-v^2/c^2} \]其中,\( L \) 是运动参考系中的长度,\( L_0 \) 是静止参考系中的长度。

代入数值:\[ L = 10 \times \sqrt{1-(0.9)^2} \approx 4.5 \text{ 米} \]练习三:质能等价一个质量为1千克的物体,当它以接近光速的速度运动时,它的相对论质量是多少?答案:相对论质量公式为:\[ m = m_0 / \sqrt{1-v^2/c^2} \]其中,\( m \) 是相对论质量,\( m_0 \) 是静止质量。

对于0.9c的速度,\( \gamma \) 大约为2.294。

因此,相对论质量是:\[ m = 1 / \sqrt{1-(0.9)^2} \approx 2.294 \text{ 千克} \]练习四:速度相加两个物体A和B,A相对于地面以0.6c的速度运动,B相对于A以0.8c的速度运动。

第7章 狭义相对论(参考答案)

第7章 狭义相对论(参考答案)

y ' y; z ' z; x '
x u2 1 2 c
又设立方体的动质量为 m,密度为ρ,静质量为 m0,密度为ρ0,则
m 1 u2 c2 u2 c2
0
m0 x ' y ' z '
(1
xyz / 1
u2 ) c2
22.解:由相对论中的动能表达式有:Ek 由题意: 可得: 因为
利用洛伦兹变换:
x1
1 u2 1 2 c
x1 ut1
x2
1 u2 1 2 c
x2 ut2
可得:
u 1.8 108 m / s
将其代入洛伦兹变换:
t1 t2 t1 t t2 x2 x1 =4s c
t t / 1 u 2 c2 (60 7.5) / 1 42 52 112.5s
因此,在地球上测量,宇航员接收到反射信号时,飞船离地球的距离为:
4 112.5 c 90c 2.7 1010 m 5
t 1
2
20.解: (1) t

2.6 108 1 0.8
0
23、某一宇宙射线中的介子的动能 EK=7M0c ,其中 M0 是介子的静止质量。试求在 实验室中观察到它的寿命是它固有受命的多少倍?
2
参考答案 1. 相对性原理, 光速不变原理 2. -0.577×10-8 s 3.
c t
4. 0.8c 5. 0.6c 6. 270m 7. 8.89×10-8 s 8. 4.33*10-8 s 9. 0.75 c 10. 4
4 c 的速度飞离地球。 当宇航员 5

20章狭义相对论基础习题解答讲述

20章狭义相对论基础习题解答讲述

狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A.(1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C.(1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4) 解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为( )A. 90mB. 54mC. 270mD. 150m解: x ′=90m, u =0.8 c , 8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。

20狭义相对论习题解答

20狭义相对论习题解答

狭义相对论习题解答一选择题2.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3) 在一惯性系中发生于同一时刻, 不同地点的两个事件在其他一切惯性系中也 是同时发生的•(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时, 会看到这时钟比与他相对静止的相同的时钟走得慢些。

A.⑴,⑶,⑷B.⑴,⑵,⑷C.⑴,⑵,⑶D.⑵,⑶,⑷解:同时是相对的。

答案选B 。

5•宇宙飞船相对地面以速度 u 作匀速直线飞行,某一时刻飞船头部的宇航员向飞 船尾部发出一个光讯号,经过 :t (飞船上的钟)时间后,被尾部的接收器收到,则由此 可知飞船的固有长度为 ()c=t1 -(V )2答案选填空题解:光在飞船参考系中也为7.某核电站年发电量为 100亿度,它等于3.6X 1016J 的能量,如果这是由核材料的 全部静止能转化产生的,则需要消耗的核材料的质量为(C. 12x 107kgc ,故答案选A 。

A. 0.4kgB. 0.8kg解:冷二导二3^ “4 kgc 2 9 DO 16答案选A 。

D. (1/12) x 107kg8. 设某微观粒子的总能量是它的静止能量的 表示真空中的光速)k 倍,则其运动速度的大小为(以 cA. I'B.解:E = km 0c =mc 2c、1 - k 2 k2m °cC.D. /「kk 2k 2 -1 。

1.已知惯性系S 相对于惯性系S 系以0.5c 的匀速度沿x 轴的方向运动,若从 S 系的坐标原点o 沿x 轴正方向发出一光波,则S 系中测得此光波的波速为 _________ 。

解:c4.观察者A 测得与他相对静止的 Oxy 平面上一个圆的面积是 12cm 2,另一观察者B相对于A 以0.8 c 平行于xoy 平面作匀速直线运动, B 测得这一图形为一椭圆,其面积是 ___________ 。

力学习题-第11章狭义相对论(含答案)

力学习题-第11章狭义相对论(含答案)

3. 设 S 和 S′是两个相对作匀速直线运动的惯性系,则在 S 系中同一时刻、不同地点发生的
两个事件,在 S′系一定不同时发生 答案:对
4. 两只相对运动的标准时钟 A 和 B,从 A 所在的所在惯性系观察,走得快得是 A,从 B 所 在的所在惯性系观察,走得快得是 B。 答案:对
5. 可以同时发生的两个事件的空间间隔,在它们同时发生的惯性系中最短 答案:错
D. 惯性系与非惯性系之间 答案:C
7. 设 S′系的 X′轴与 S 系的 X 轴始终重合,S′系相对 S 系以匀速 u 沿 X(X′)轴运动,一刚 性直尺固定在 S′系中,它与 X′轴正向的夹角为 45 度,则在 S 系中测量该尺与 X 轴正向的夹 角为
A. 大于 45 度 B. 等于 45 度 C. 小于 45 度 D. 若 u 沿 X′轴正向则大于 45 度、若 u 沿 X′轴负向则小于 45 度 答案:A
第十一单元 狭义相对论 单元测验题 一、单选题 1. 设地球可看做惯性系,则按照牛顿力学的经典时空观,下列说法错误的是 A. 在地球上同时发生的两个事件,在人造卫星上观察也是同时发生的 B. 在地球上两个事件相隔 1 小时发生,在人造卫星上观察也相隔 1 小时 C. 在地球上某处测量向各个方向传播的光速大小,结果都相同 D. 在地面上测量一列火车的长度,火车静止时和高速运动时测量的结果相同 答案:C
10. 自然界中任何真实物体在真空中的运动速度都不能大于 c
答案:对
6. 可以同地发生的两个事件的时间间隔,在它们同地发生的惯性系中最短 答案:对
7. 在惯性系中观测,运动物体在其运动方向上的长度要缩短 答案:对
8. 当两个参考系的相对运动速度远小于光速时,可用伽利略变换代替洛伦兹变换 答案:对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题4 一 选择题1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的。

(2)在真空中,光的速度与光的频率、光源的运动状态无关。

(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同。

若问其中哪些说法是正确的,答案是 (A )只有(1)、(2)是正确的 (B )只有(1)、(3)是正确的 (C )只有(2)、(3)是正确的 (D )三种说法都是正确的 [ ] 【分析与解答】根据狭义相对论的相对性原理可知(1)是正确的,根据光速不变原理可知(2)和(3)正确 正确答案是D 。

2.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其他惯性系中是否同时发生?关于上述两个问题的正确答案是: (A )(1)同时,(2)不同时 (B )(1)不同时,(2)同 (C )(1)同时,(2)同时 (D )(1)不同时,(2)不同时 [ ] 【分析与解答】根据洛仑兹变换有2'u t x t ∆-∆∆=,对于(1)0,0t x ∆=∆=,所以'0t ∆=; 对于(2)0,0t x ∆=∆≠,所以'0t ∆≠。

正确答案是A 。

3.某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A )(4/5)c. (B )(3/5)c. (C )(2/5)c. (D )(1/5)c. [ ] 【分析与解答】根据时间膨胀关系式't ∆=,4,'5t t ∆=∆=,解得35u c =正确答案是B 。

4.一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是(c 表示真空中光速) (A )()1/2.v c = (B )()3/5.v c =(C )()4/5.v c = (D )()1/5.v c = [ ]【分析与解答】根据长度收缩关系式l =,03,5l l ==,解得45u c = 正确答案是C 。

5.一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为0m 。

由此可算出其面积密度为0/m ab 。

假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A )(B(C )()021/m ab v c ⎡⎤-⎣⎦ (D )()03/221/m ab v c ⎡⎤-⎣⎦ [ ]【分析与解答】根据长度收缩关系式有'a =,而'b b =,根据相对论质量公式有m =,解得面积密度2''1m m a b v ab c ρ==⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦正确答案是C 。

6.设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小v 为(A )1c K -(B(C (D [ ]【分析与解答】22000E mc m K E m c m ===,根据相对论质量公式m =m Km ==;解得v =正确答案是C 。

7.根据相对论力学,动能为0.25MeV 的电子,其运动速度约等于(c 表示真空中的光速,电子的静能200.51m c MeV =) (A )0.1c (B )0.5c(C )0.75c (D )0.85c [ ] 【分析与解答】已知2000.51==E m c MeV ,0.25=k E MeV ,因此00.76=+=k E E E MeV 。

根据相对论质量公式m =000.510.76===m E m E ,解得0.75v c ≈。

正确答案是C 。

8.一个电子运动速度0.99v c =,它的动能是:(电子的静止能量为0.51MeV ) (A )4.0MeV (B )3.5MeV(C )3.1MeV (D )2.5MeV [ ] 【分析与解答】已知2000.51==E m c MeV ,0.99=v c ,根据相对论质量公式m =,有22===E mc,因此00 3.1=-=≈k E E E E MeV。

正确答案是C 。

9.质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的 (A )4倍 (B )5倍(C )6倍 (D )8倍 [ ] 【分析与解答】已知04k E E =,以及0k E E E =-,可得005k E E E E =+=,所以005m E m E ==。

正确答案是B 。

10.α粒子在加速器中被加速,当其质量为静止质量的3倍时,其动能为静止能量的 (A )2倍 (B )3倍(C )4倍 (D )5倍 [ ] 【分析与解答】已知003m E m E ==,所以002kE E E E =-=。

正确答案是A 。

二 填空题1.有一速度为u 的宇宙飞船沿x 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为 。

【分析与解答】根据狭义相对论的光速不变原理可知两个答案均为c 。

2.宇宙飞船静止于地球上,将两根相同的米尺(1m )分别地置于飞船和地球上,当飞船以0.6c (c 为光速)的速率平行于米尺长边飞行时,地上人测飞船上米尺的长度为 m 。

而飞船上人测地球上米尺的长度为 m 。

【分析与解答】根据长度收缩关系式l =,00.6,1u c l m ==,解得0.8l m =; 飞船上人测地球上米尺的长度仍为 0.8 m 。

3.静止时边长为50cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以速度812.410m s -⨯⋅运动时,在地面上测得它的体积是 。

【分析与解答】 已知正方形边长为12350a a a cm ===,812.410v m s -=⨯⋅,根据长度收缩关系式有'11a =,而''2233,a a a a ==,解得体积为'''31230.075V a a a m ==。

4.一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为0.5m 。

则此米尺以速度v = 1m s -⋅接近观察者。

【分析与解答】根据长度收缩关系式l =,00.5,1l l ==,解得812.6010u m s -=≈⨯⋅。

5.(1)在速度v = 情况下粒子的动量等于非相对论动量的两倍。

(2)在速度v = 情况下粒子的动能等于它的静止能量。

【分析与解答】(1)根据题意有00'22P mv P m v====,解得v =(2)根据题意有002k E E E E =+=002m Em E ===,解得v =。

6.观察者甲以45c的速度(c表示真空中的光速)相对于静止的观察者乙运动,若甲携带一长度为l、截面积为S,质量为m的棒,这根棒安放在运动方向上,则(1)甲测得此棒的密度为;(2)乙测得此棒的密度为。

【分析与解答】(1)根据密度公式可得mlS ρ=甲(2)45u c=,根据长度收缩关系式3'5l l==,根据相对论质量公式5'3m m==,而'S S=,所以'25'9m ml S lSρ==乙。

7.观察者甲以0.8c的速度(c表示真空中的光速)相对于静止的观察者乙运动,若甲携带一质量为1kg的物体,则(1)甲测得此物体的总能量为;(2)乙测得此物体的总能量为。

【分析与解答】(1)216910E mc J==⨯甲。

(2)0.8u c=,根据相对论质量公式5'3m m==,所以22175' 1.5103E m c mc J===⨯乙。

8.匀质细棒静止时的质量为0m,长度为0l,当它沿棒长方向作高速的匀速直线运动时,测得它的长为l,那么,该棒的运动速度v=,该棒所具有的动能kE=. 【分析与解答】(1)根据长度收缩关系式l=,解得v=(2)根据长度收缩关系式l=,可得0ll=,所以22222000000011k l l l E E E mc m c m c m c m c l l ⎡⎤-⎛⎫⎛⎫⎥=-=-=-=-= ⎪ ⎪⎥⎝⎭⎝⎭⎦。

9.粒子的静止能量为0E ,当它高速运动时,其总能量为E ,已知045E E=,那么此粒子运动的速率v 与真空中光速c 之比vc = ,其动能与总能量之比k E E = 。

【分析与解答】(1)根据相对论质量公式0045E m E m ===,解得35v c =。

(2)00411155k E E E E EE E -==-=-=。

10.已知一静止质量为0m 的粒子,其固有寿命为实观室测量到寿命的1n ,则此粒子的动能是 。

【分析与解答】根据时间膨胀公式有01n ττ==,所以相对论质量m nm ==;因此动能()22200001k E E E nm c m c m c n =-=-=-。

相关文档
最新文档