名师推荐定轴齿轮系传动比的计算
定轴齿轮系传动比PPT课件
12.3 齿轮系的应用
12.3.3 实现换向传动
在主动轴转向不 变的情况下,利用惰轮 可以改变从动轴的转向。
如图所示车床上走 刀丝杆的三星轮换向机 构,扳动手柄可实现两 种传动方案。
12.3 齿轮系的应用
12.3.4 实现变速传动
在主动轴转速不变的情况下,利用齿轮系可使从动轴获得多种工作转速。
12.3.5 用于对运动进行合成与分解
渐开线行星齿轮减速器
摆线齿轮减速器 谐波齿轮减速器
12.5 减速器
12.5.1 常见减速器的主要类型、特点及应用
1.齿轮减速器
12.5 减速器
12.5 减速器
12.5 减速器
2.蜗杆减速器
12.5 减速器
2.蜗杆-齿轮减速器
12.5 减速器
12.5 减速器
12.5.2 减速器传动比的分配
差动齿轮系 简 单 行 星 齿 轮 系
12.2 行星齿轮系传动比的计算
12.2.2 行星齿轮系的传动比计算
转化机构法:
现假想给整个行星齿轮系加一个
与行星架的角速度 H
大小相等、方向相反的公共角速度 H
则行星架H变为静止,而各构件间的 相对运动关系不变化。齿轮1、2、3 则成为绕定轴转动的齿轮,因此,原 行星齿轮系便转化为假想的定轴齿轮 系。
i 12
z 1 2
2
z1
z 3' i 3'4
4
4
Z3/
z i 2'3
'
2 3
3
Z
' 2
i 45
z 4 5
5
z4
惰轮:齿轮系中齿轮4同时与齿轮3’啮合, 不影响齿轮系传动比的大小,只起到 改变转向的作用
定轴轮系的传动比
A.圆锥齿轮 B.蜗杆蜗轮传动 C.内啮合齿轮 D.外啮合齿轮
电子教鞭
3.当轮系中齿轮是单数的时候,存在一个惰轮,惰轮存在改变了末轮
的__B_。
A. 转速
B. 方向
C. 传动比
D. 齿数
4.假设轮系的传动比为2.4,首端齿轮的转速n1为120r/min,试求末端
齿轮的转速为__B_。
A.30r/min
B.50r/min
C.80r/min
D.40r/min
5.已知轮系中各齿轮的齿数分别为Z1=20,Z2=35,Z3=10,Z4=30,
Z5=60,试求此齿轮的传动比i15=__A__。
A.10.5
B.20
C.15.5
D.30
六、小结 1、定轴轮系的传动比计算公式 i1k= —nn1k = (-1)m 所 所—有 有—从 主—动 动—轮 轮—齿 齿—数 数—的 的—连 连—乘 乘—积 积—
电子教鞭
所以,定轴轮系的传动比等于组成该轮系的若干对齿轮的传动比的 连乘积
i17= —nn17 =i12•i34•i56•i67= (-1)3 zz—21zz—43zz—65zz—76 由上述分析可知,定轴轮系传动比的计算公式为
i1k=
n—n1k
=
(-1)m
所 ——有—从—动—轮—齿—数—的—连—乘—积 所有主动轮齿数的连乘积
解: i15= —nn15 = (-1)m—zz—21zz—43zz54—
= (-1)2 x —87—x2—0x—8—4 = 14.5 18x28x20
计算结果为正,表示末端齿轮5与首端 齿轮1的转向相同 例2 假设在例1题中的轮系,已知首轮 n1=390 r/min为,轮系的传动比i15为14.5, 试求此轮系末端齿轮5的转速n5为多少转每 分。
齿轮系传动比计算
齿轮系传动比计算齿轮是一种常用的机械传动装置,通过齿轮之间的啮合来实现转速和力矩的传递。
齿轮传动比(也称齿数比)是指驱动齿轮(一般称为主动轮)的齿数与被驱动齿轮(一般称为从动轮)的齿数之比。
传动比的计算是基于齿轮的齿数和齿轮的直径来进行的。
在传动系统中,驱动轮(A轮)与被驱动轮(B轮)之间的传动比可以通过以下公式来计算:传动比=驱动轮(A轮)的齿数/被驱动轮(B轮)的齿数首先,我们需要知道驱动轮(A轮)和被驱动轮(B轮)的齿数。
对于两个齿轮之间的传动,齿数通常是个整数,并且它们的比值可以是任何正整数。
但是,为了实现更好的齿轮传动效果,通常希望齿轮的齿数比尽可能接近1,这样可以减小传动误差和冲击。
接着,我们需要知道齿轮的直径。
齿轮的直径是齿轮的外直径,即从一个齿顶到另一个齿顶的距离。
齿轮的直径与齿轮的齿数之间存在一定的关系,可以通过以下公式来计算:齿轮的直径=齿轮的模数×齿数其中,模数是指齿轮的每齿宽度的单位长度。
模数的选择与齿数和精度有关,通常选择合适的模数能够实现更好的齿轮传动效果。
通过上述公式计算得出驱动轮(A轮)和被驱动轮(B轮)的直径后,可以进一步计算出驱动轮(A轮)和被驱动轮(B轮)之间的传动比。
传动比=驱动轮(A轮)的直径/被驱动轮(B轮)的直径需要注意的是,在实际应用中,为了增加传动稳定性并减小齿轮传动误差,通常会使用多个齿轮组成的齿轮箱进行传动,这就需要逐级计算各级齿轮的传动比。
此外,还需要考虑齿轮的齿形,根据齿轮的齿形不同,可能会出现齿轮传动误差、噪声和振动等问题。
因此,在进行齿轮传动比计算之前,还需要对齿轮的齿形、精度和材料等进行充分的分析和选择。
总之,齿轮系传动比的计算是基于齿轮的齿数和直径的。
按照一定的规则和公式,可以准确地计算出齿轮传动系统中各级齿轮之间的传动比,并根据实际需要进行合理的调整和优化,以实现稳定、高效的机械传动。
齿轮系传动比计算 1
齿 轮 系 传 动 比 计 算1 齿轮系的分类在复杂的现代机械中,为了满足各种不同的需要,常常采用一系列齿轮组成的传动系统。
这种由一系列相互啮合的齿轮(蜗杆、蜗轮)组成的传动系统即齿轮系。
下面主要讨论齿轮系的常见类型、不同类型齿轮系传动比的计算方法。
齿轮系可以分为两种基本类型:定轴齿轮系和行星齿轮系。
一、定轴齿轮系在传动时所有齿轮的回转轴线固定不变齿轮系,称为定轴齿轮系。
定轴齿轮系是最基本的齿轮系,应用很广。
如下图所示。
二、行星齿轮系若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个轴线转动的轮系称为行星齿轮系,如下图所示。
1. 行星轮——轴线活动的齿轮.2. 系杆 (行星架、转臂) H .3. 中心轮 —与系杆同轴线、 与行星轮相啮合、轴线固定的齿轮4. 主轴线 —系杆和中心轮所在轴线.5. 基本构件—主轴线上直接承受载荷的构件.行星齿轮系中,既绕自身轴线自转又绕另一固定轴线(轴线O1)公转的齿轮2形象的称为行星轮。
支承行星轮作自转并带动行星轮作公转的构件H 称为行星架。
轴线固定的齿轮1、3则称为中心轮或太阳轮。
因此行星齿轮系是由中心轮、行星架和行星轮三种基本构件组成。
显然,行星齿轮系中行星架与两中心轮的几何轴线(O1-O3-OH )必须重合。
否则无法运动。
根据结构复杂程度不同,行星齿轮系可分为以下三类:(1)单级行星齿轮系: 它是由一级行星齿轮传动机构构成的轮系。
一个行星架及和其上的行星轮及与之啮合的中心轮组成。
(2)多级行星齿轮系:它是由两级或两级以上同类单级行星齿轮传动机构构成的轮系。
(3)组合行星齿轮系:它是由一级或多级以上行星齿轮系与定轴齿轮系组成的轮系。
行星齿轮系 根据自由度的不同。
可分为两类:1450rpm 53.7rpm(1) 自由度为2 的称差动齿轮系。
(2) 自由度为1 的称单级行星齿轮系。
按中心轮的个数不同又分为:2K —H 型行星齿轮系;3K 型行星齿轮系;K —H —V 型行星齿轮系。
定轴轮轮系的传动比计算
老师出示小黑板给出每种齿轮副的端面图、侧面图要求学生在黑板上的端面图和侧面图上分别标出两轮转向,并写出其传动比公式。
二、新引入新课:教师接着展示定轴轮系模型,引导学生参与到演示教学中来,通过一对齿轮的传动比概念,教师提出问题:多个齿轮的传动比是否就是输入轴的转速与输出轴的转速之比?引发学生思考。
演示模型启发提问2分钟授新:一定轴轮系传动比公式推导和传动比定义的理解35分钟课讲授由以上两个齿轮传动的思路和以下例题的推导过程来推出定轴轮系传动比公式和定义分析步骤:1)分析该轮系的传动路线。
2)该轮系有几对齿轮组成?3)每一对啮合的齿轮中哪一个是主动轮?哪一个是从动轮?分别写出它们传动比公式。
4)在该轮系中分别有哪些齿轮是同轴的?注意:所有齿轮副传动比的连乘积就是该轮系的传动比。
514'3'21543354433221453423122)1(ωωωωωωωωωω=-==⋅⋅⋅⋅⋅⋅zzzzzzzziiii由以上定轴轮系的传动比公式得出其定义:定轴轮系传动比是指轮系中首末两轮的角速度(或转速)之比。
推广:设首轮A的转速为nA,末轮K的转速为nK,m为圆柱齿轮外啮合的对数,则平面定轴轮系的传动比可写为:◆其中:m为外啮合圆柱齿轮副的数目◆结果为正:两轮回转方向相同◆结果为负:两轮回转方向相反◆思考:齿轮4在图中位置有什么特殊地方?在公式中有什么特点?对轮系的传动比有何影响?齿轮4既是齿轮3´的从动轮又是齿轮5的主动轮;它的齿数或转数在公式中既作分子又作分母;只改变齿轮副中从动轮教师引导学生通过从模型到简图按着这几个步骤一步步分析来掌握对轮系的读图,通过推导得出定期轴轮系传动比公式。
要求学生理解、领会定轴轮系传动比公式。
122’3 3’45122112zzi-==ωω'233223zzi==ωω'344334zzi-==ωω455445zzi-==ωω回转方向而不影响齿轮副传动比的大小——惰轮(过桥轮)惰轮作用:1、实现换向1)2)◆总结:外啮合时加偶数惰轮时,齿轮副的主、从动轮的回转方向是相反的◆外啮合时加奇数惰轮时,齿轮副的主、从动轮的回转方向是相同的2、延长传动距离,所以又称过桥轮。
机械设计-定轴轮系传动比的计算
定轴轮系传动比的计算
惰轮的应用
在轮系中既是从动轮又是主动
轮,对总传动比毫无影响,但
却起到了改变齿轮副中从动轮
回转方向的作用,像这样的齿
轮称为惰轮。
惰轮常用于传动距离稍远和需要改变转向的场合。
感
谢
观
看
定轴轮系传动比的计算
目
录
1
定轴轮系中各轮转向的判断
2
传动比的计算
3
惰轮的应用
定轴轮系传动比的计算
定轴轮系中各轮转向的判断
当首轮(或末轮)的转向为已知时,
其末轮(或首轮)的转向也就确定
了,齿轮转向可以用标注箭头的方
法或正负号的方法表示。
定轴轮系传动比的计算
定轴轮系中各轮转向的判断
圆柱齿轮啮合—外啮合
向相同,其传动比:
=
1
=+
2
2
1
”+“号表示两轮旋转方向相同。转向用画箭头的方法表示,主、从动
轮转向相同时,两箭头指向相同。
将上述两种啮合传动的传动比合写,得
=
1
=±
2
2
1
式中,外啮合传动比取 ”-“号,内啮合传动比取”+“,各轮的转向也可用箭头表示。
定轴轮系传动比的计算
定轴轮系中各轮转向的判断
主动轮1逆时针方向转动时,从动轮
2做顺时针方向旋转,两轮的旋转方向相
反,其传动比:
=
1
=-
2
2
1
”-“号表示两轮旋转方向相反。转向用
画箭头的方法表示,主、从动轮转向相反
时,两箭头指向相反。
定轴轮系传动比的计算
定轴轮系中各轮转向的判断
圆柱齿轮啮合—内啮合
定轴轮系传动比的计算
轮系-----由一系列相互啮合齿轮组成的传动系统。
一、轮系的分类 定轴轮系:轮系传动时,所有齿轮的几
轮系
何轴线位置都是固定不动的。
周转轮系:轮系传动时,至少有 一个齿轮的几何轴线 是绕另一 固定轴线转动的,这种轮系成 为周转轮系
二、轮系的应用: 1、用于相距较远两轴之间的传动。 2、可获得大的传动比。 3、实现变速和变向传动。
齿轮1到齿轮5之间 的传动,是通过一 对对齿轮依次啮合 来实现的,求i15?
分析传动路线: Ⅰ→Ⅱ→Ⅲ→Ⅳ→Ⅴ
(a) (b) (c) (d)
结论:
定轴轮系传动比:
大小:
式中:m-表示定轴轮系中外啮合的次数。
转向:
(-1)m法(只适合所有齿轮轴线 都平行的情况)
画箭头法(适合任何定轴轮系)
例题:
4、可合成或分解运动。
1 2 (a)
1 2
(b)
1
1
2
2
(c)
(d)
定轴轮系传动比的计算
轮系传动比定义:
所谓轮系的传动比,指的是轮系中首末两轮的角
速度(或转速)之比。
iAB=A/B=nA/nB
A、B表示轮中的首轮和末轮
传动比的计算
大 方
小 向(正
负பைடு நூலகம்
号或
箭
头)
一. 传动比大小的计算 举例讨论定轴轮系传动比的计算方法。
如图所示的定轴轮系 中,
设 z1 =16 z2=20
z 3=14 z4=24 z5=16 z6=22 z7=44
例题图形
n1=1000r/min 求 n7 ?
例题解答
分析:
此轮系中的各齿 轮几何轴线固定 不动,所以为定 轴轮系,可利用 定轴轮系传动比 公式。
齿轮系传动比计算
定轴齿轮系传动比的计算
12.3 齿轮系的应用
12.3.3 实现换向传动
在主动轴转向不 变的情况下,利用惰轮 可以改变从动轴的转向。
如图所示车床上走 刀丝杆的三星轮换向机 构,扳动手柄可实现两 种传动方案。
12.3 齿轮系的应用
12.3.4 实现变速传动
在主动轴转速不变的情况下,利用齿轮系可使从动轴获得多种工作转速。
12.3.5 用于对运动进行合成与分解
空间行星轮系的两齿轮A、K和行星架H三个构件的轴线应互相平行时, 其转化机构的传动比仍可用式(12-2)来计算,但其正负号应根据转化 结构中A、K两轮的转向来确定,如上图所示。
12.2 行星齿轮系传动比的计算
12.2.3 复合齿轮系的传动比计算
复合齿轮系: 既包含定轴轮系又包含行星轮系的齿轮系。
12.2 行星齿轮系传动比的计算
由于 2 2' 3 3' 以上各式连乘可得:
i i i i 122 '33 '44 5 1 22 '33 '445 ( 1 )3z z1 2 z z2 '3 z z3 4 'z z4 5
i i i i 所以
''
1 2 3 4
该假想的定轴齿轮系称为原行星 周转轮系的转化机构。转化机构中, 各构件的转速如右表所示:
构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
1
1H1H
2
2H2H
3
H 3
3H
H
H HHH0
12.2 行星齿轮系传动比的计算
12.2.2 行星齿轮系的传动比计算
机械设计基础课件11-02定轴齿轮系传动比计算
惰轮
惰轮
观察结构
11.2 定轴齿轮系传动比计算
齿轮系
惰轮:在齿轮系中,与两个齿轮相啮合的齿轮,它被一个齿轮驱动,同时它又驱动另外一个齿轮,该齿轮称为 惰轮。它不改变传动比大小,只改变从动轮的转向。
i 13
n1 n3
z2 z3 z1 z2
z3 z1
齿轮系112112定轴齿轮系传动比计算观察结构观察结构所有从动轮齿数的连乘积所有主动轮齿数的连乘积惰轮
11.2 定轴齿轮系传动比计算
始端主动轮与末端从动轮的角速度比值,称为齿轮系的传动比,用i表示。 一对对齿轮传动的传动比计算及主、从动轮转向关系:
i12 1 n1 z2 2 n2 z1
齿轮系
11.2 定轴齿轮系传动比计算
始端主动轮与末端从动轮的角速度比值,称为齿轮系传动比,用i表示。齿轮系
所有从动轮齿数的连乘积
n 1
i1K
所有主动轮齿数的连乘积
nK
观察结构
11.2 定轴齿轮系传动比计算
齿轮系
惰轮:在齿轮系中,与两个齿轮相啮合的齿轮,它被一个齿轮驱动,同时它又驱动另外一个齿轮,该齿轮称为 惰轮。它不改变传动比大小,只改变从动轮的转向。
定轴轮系传动比的计算
iGKH —为转化轮系中G、K两轮的转速之比,其大小及正负号按定轴轮系传动比
的计算方法确定; iGK —为行星轮系中由G、 K两轮的转速之比,其大小及正负号须按上式计算后 方能确定。
1
3 3ˊ 2ˊ 4
2 5
例14-1
如图所示车床溜板箱进给刻度盘轮系中,运动由齿轮1传入,由
齿轮5传出。各齿轮的齿数Z1=18,Z2=87,Z3=28,Z4=20, Z5=84,试计算轮系传
动比i15,
1
2
3 5
4
1
2
3 5
4
定轴轮系的啮合线图为:
1——2 ====3——4 ——5
例14-2 如图所示的轮系中,已知Z1=15,Z2=25,Z2ˊ=Z4=14, Z3=24 Z4ˊ=20, Z5=24,Z6=40, Z7=2,Z8=60,若n1=800r/min,求传动比i18,蜗轮8 的转速和转向
外啮合圆柱齿轮传动时,主从动轮转向相反。 i12=-Z2/Z1
内啮合圆柱齿轮传动时,主从动轮转向相反。i12 =+Z2/Z1
蜗杆传动时,蜗杆转向用左右手定则判断。 i12 =Z2/Z1
箭头应同时指向啮合点或同时背离啮合点。 i12 =Z2/Z1
♥
3.轮系传动比计算式
齿轮1与齿条2传动
1 3 3ˊ
1)啮合线图的画法 “——”表示两轮啮合 “====”表示两轮同轴并连成一体。
2
2ˊ
4
5
2)定轴轮系传动比计算式 啮合线图 1——2==2ˊ——3==3ˊ——4——5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2 行星齿轮系传动比的计算
12.2.1 行星齿轮系的分类
分类 通常将具有一个自由度的行星齿轮系称为简单行星齿轮系。
将具有二个自由度的行星齿轮系称为差动齿轮系。
差动齿轮系 简 单 行 星 齿 轮 系
12.2 行星齿轮系传动比的计算
12.2.2 行星齿轮系的传动比计算
转化机构法:
现假想给整个行星齿轮系加一个
i 12
z 1 2
2
z1
z 3' i 3'4
4
4
Z
/ 3
z i 2'3
'
2 3
3
Z
' 2
i 45
z 4 5
5
z4
惰轮:齿轮系中齿轮4同时与齿轮3’啮合, 不影响齿轮系传动比的大小,只起到 改变转向的作用
12.1 定轴齿轮系传动比的计算
与行星架的角速度 H
大小相等、方向相反的公共角速度 H
则行星架H变为静止,而各构件间的 相对运动关系不变化。齿轮1、2、3 则成为绕定轴转动的齿轮,因此,原 行星齿轮系便转化为假想的定轴齿轮 系。
该假想的定轴齿轮系称为原行星 周转轮系的转化机构。转化机构中, 各构件的转速如右表所示:
构件
太阳轮1 行星轮2 太阳轮3 行星架H
同理: 所以:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
n5
n1(1)2
z 20 20 r / min 60 60
160r / min
n5 为正值,说明齿轮5与齿轮1转向相同。
12.1 定轴齿轮系传动比的计算
12.1.2 空间定轴齿轮系传动比的计算
[例题] 在如图所示的齿轮系中,已知 z1 z2 z3' z4 20 ,齿轮1、3、3’
和5同轴线,各齿轮均为标准齿轮。若已知轮1的转速n1=1440r/min, 求轮5的转速
[解]
该齿轮系为一平面定轴齿轮系,齿轮
H 3
1 H 3 H
z3 z1
推广后一般情况,可得:
i
H AK
(1)m
所有从动轮齿数的连乘 所有主动轮齿数的连乘
积 积
12.2 行星齿轮系传动比的计算
12.2.2 行星齿轮系的传动比计算
注意事项:
1)A、K、H三个构件的轴线应互相平行,而且 A K H n
行星齿轮系中的 转化齿轮系中的
转速
转速
1
2
3
H
1H 1 H
H 2
2
H
H 3
3
H
H H
H
H
0
12.2 行星齿轮系传动比的计算
12.2.2 行星齿轮系的传动比计算
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
1H
由于
2
' 2
3
' 3
以上各式连乘可得:
i i i i 12
2'3
3'4
45
12' 3'4 234
5
(1)3
z2 z3z4 z5 z1z2' z3' z4
i i i i 所以
12
2'3
3'4
45
12' 3' 4 234
5
(1)3
z2 z3z4 z5 z1z2' z3' z4
2和4为惰轮,齿轮系中有两对外啮合齿
轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
12.1 定轴齿轮系传动比的计算
12.1.2 空间定轴齿轮系传动比的计算
的比值用
i
表示,即
AK
iAK A / ,K 则
iAK 称为齿轮系的传动比。
12.1 定轴齿轮系传动比的计算
12.1.1 平面定轴齿轮系传动比的计算
一对齿轮的传动比大小为其齿数的反 比。若考虑转向关系,外啮合时,两轮转 向相反,传动比取“-”号;内啮合时,两 轮转向相同,传动比取“+”号;则该齿轮 系中各对齿轮的传动比为:
12.2 行星齿轮系传动比的计算
12.2.1 行星齿轮系的分类
组成
齿轮1、3和构件H均绕固定的互相重合的几何轴线转动,齿轮2空套 在构件H上,与齿轮1、3相啮合
齿轮2既绕自身轴线自转又随构件H绕另一固定轴线(轴线O-O)公。 齿轮2称为行星轮构件H称为行星架。轴线固定的齿轮1、3则称为中心轮 或太阳轮。
推广后的平面定轴齿轮系传动比公式为:
所有从动轮齿数的连乘积
n i 1K
1 所有主动轮齿数的连乘积
nK
12.1 定轴齿轮系传动比的计算
12.1.2 空间定轴齿轮系传动比的计算
一对空间齿轮传动比的大 小也等于两齿轮齿数的反比, 所以也可用(12-1)来计算空 间齿轮系的传动比,但其首末 轮的转向用在图上画箭头的方 法,如图所示
空间行星轮系的两齿轮A、K和行星架H三个构件的轴线应互相平行时, 其转化机构的传动比仍可用式(12-2)来计算,但其正负号应根据转化 结构中A、K两轮的转向来确定,如上图所示。
12.1 定轴齿轮系传动比的计算
在现代机械中,为了满足不同的工作要求,仅用一对齿轮传动或蜗杆 传动往往是不够的,通常需要采用一系列相互啮合的齿轮(包括蜗杆传动) 组成的传动系统将主动轴的运动传给从动轴。这种由一系列齿轮组成的传 动系统成为齿轮系。
如果齿轮系中各齿轮的轴线互相平行,则称为平面齿轮系,否则称 为空间齿轮系。
根据齿轮系运转时齿轮的轴线位置相对于机架是否固定,又可将齿 轮系分为两大类:定轴齿轮系和行星齿轮系。
12.1 定轴齿轮系传动比的计算
各种齿轮系
12.1 定轴齿轮系传动比的计算
如果齿轮系运转时所有齿轮的轴线保持固定,称为定轴齿轮系,定轴齿 轮系又分为平面定轴齿轮系和空间定轴齿轮系两种。
设齿轮系中首齿轮的角速度为 A,末齿轮的角速度 K, A 与 K
必须将表示其转向的正负上。首先应假定各轮转动的同一正方 向,则与其同向的取正号带入,与其反向的取负号带入。
2)公式右边的正负号的确定:假想行星架H不转,变成机架。则 整个轮系成为定轴轮系,按定轴轮系的方法确定转向关系。
3)待求构件的实际转向由计算结果的正负号确定。
12.2 行星齿轮系传动比的计算
12.2.2 行星齿轮系的传动比计算