数字图像处理第六章

合集下载

数字图像处理期末复习题2

数字图像处理期末复习题2

第六章图像的锐化处理一.填空题1. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

垂直方向的微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)2. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

Roberts交叉微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)3. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

Sobel 微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)4. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

Priwitt微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)5. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

Laplacian微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)6. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

Wallis 微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)7. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。

水平方向的微分算子属于________________。

(填“一阶微分算子”或“二阶微分算子”)8. 图像微分______________了边缘和其他突变的信息。

(填“增强”或“削弱”)9. 图像微分______________了灰度变化缓慢的信息。

(填“增强”或“削弱”)10. 图像微分算子______________用在边缘检测中。

(填“能”或“不能”)四.简答题1. 图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方?2. 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同?3. 简述水平方向的微分算子的作用模板和处理过程。

数字图像处理第六章色彩模型与彩色处理课件

数字图像处理第六章色彩模型与彩色处理课件

Chapter 6 Color Image Processing
6.1 彩色基础
在颜料或着色剂中 ,原色的定义是这样 的:
白:减去一种原色 , 反射或传输另两种 原色。故其原色是: 深红、青、黄。而二 次色是R、G、B。如 图6.4所示。
Chapter 6 Color Image Processing
Chapter 6 Color Image Processing
6.2 彩色模型
6.2.1 RGB彩色模型
下面介绍所谓 全RGB彩色子集。
Chapter 6
Color Image Processing
6.2 彩色模型
Chapter 6 Color Image Processing
6.2 彩色模型
6.3 伪彩色处理
6.3 伪彩色处理 给特定的灰度值赋以彩色。伪彩色的 目的是为了人眼观察和解释图像中的目标。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.1 强度分层
参见图6.18,图像被看成三维函数。
Chapter 6 Color Image Processing
6.3.2 灰度级到 彩色转换
例6.5是一突出 装在行李内的爆炸物 的伪彩色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
6.3.2 灰度级到彩 色转换
例6.5是一突出装 在行李内的爆炸物的伪彩 色应用。
Chapter 6 Color Image Processing
6.3 伪彩色处理
Chapter 6 Color Image Processing
6.3 伪彩色处理

数字图像处理06章04与07章

数字图像处理06章04与07章
u
边、噪音、变化陡峭部分
变化平缓部分
v
第6章 图像增强
第6章 图像增强
第6章 图像增强
➢ 低通滤波器 ➢ 高通滤波器 ➢ 带通、带阻滤波器
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
第6章 图像增强
常见的图像中的信息冗余
视觉冗余: 一些信息在一般视觉处理中比其它信
息的相对重要程度要小,这种信息就被称为 视觉冗余。
第6章 图像增强
空间冗余(像素冗余):
由于任何给定的像素值,原理上都可以 通过它的邻居预测到,单个像素携带的信息 相对是小的。
对于一个图像,很多单个像素对视觉的 贡献是冗余的。这是建立在对邻居值预测的 基础上。
原始图像越有规则,各像素之间的相关 性越强,它可能压缩的数据就越多。
时间冗余:
以视频图像为代表,视频图像序列中存在 的关联性产生的信息冗余。
第6章 图像增强
信息熵冗余(编码冗余): 如果一个图像的灰度级编码,使
用了多于实际需要的编码符号,就称该图 像包含了编码冗余。
例:如果用8位表示该图像的像素,我们就说 该图像存在着编码冗余,因为该图像的像素 只有两个灰度,用一位即可表示。
第6章 图像增强
图像编码的分类
图像压缩技术
无损压缩
哈夫曼编码 行程编码 算术编码
有损压缩
有损预测编码 变换编码 其他编码
第6章 图像增强
※ 无损压缩算法中删除的仅仅是图像数据中冗 余的信息,因此在解压缩时能精确恢复原图像。常 用于要求高的场合。

遥感数字图像处理-第6章 几何校正

遥感数字图像处理-第6章 几何校正
3
二、几何校正原理
几何校正涉及两个过程: ➢ 一是空间位置(像元坐标)的变换 ➢ 二是像元灰度值的重新计算(重采样)
4
二、几何校正原理
坐标转换 (a)直接法;(b)间接法
5
三、几何校正步骤
几何精校正不需要空间位置变化数据,回避了成像的空间 几何过程,主要借助地面控制点实现校正。其主要校正步 骤为:
第6章
几何校正
几何校正
一、几何校正原理 二、几何校正步骤 三、几何校正类型 四、图像匹配 五、投影转换
难点:图像匹配 重点:几何校正方法
2
一、几何校正原理
几何校正和几何配准
➢ 几何配准是指将不同时间、不同波段、不同传感器系统所获得的同一 地区的图像(数据),经几何变换使同名像点在位置上和方位上完全 叠合的操作。
➢ 对畸变图像和基准图像建立统一的坐标系和地图投影。 ➢ 选择地面控制点(GCP),按照GCP选择原则,在畸变图像
和基准图像上寻找相同位置的地面控制点对。 ➢ 选择校正模型,利用选择的GCP数据求取校正模型的参数,
然后利用校正模型实现畸变图像和基准图像之间的像元坐 标变换。 ➢ 选择合适的重采样方法对畸变图像的输出图像像元进行灰 度赋值。 ➢ 几何校正的精度分析。
9
四、图像匹配
3.图像匹配方法 根据图像特征的选择,图像匹配方法一般可以分为基于灰
度的图像匹配和基于特征的图像匹配。
10
➢ 几何配准与几何校正的原理是完全相同的,即都涉及到空间位置(像 元坐标)变换和像元灰度值重采样处理两个过程。
➢ 二者的区别主要在于其侧重点不相同:几何校正注重的是数据 本身的处理,目的是为了对数据的一种真实性还原。而几何配 准注重的是图和图(数据)之间的一种几何关系,其目的是为 了和参考数据达成一致,而不考虑参考数据的坐标是否标准、 是否正确。也就是说几何校正和几何配准最本质的差异在于参 考的标准。另外,几何校正更像前期数据处理,几何配准更像 后期处理。

数字图像处理课件第6章图像的几何变换

数字图像处理课件第6章图像的几何变换
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标(x, y, 1),可按下式进行:
x Hx H
y Hy H
第6章 图像的几何变换
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1
的平面上,如图6-2所示。如果将xOy平面内的三角形abc的 各顶点表示成齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H =1平面内的三角形a1b1c1的各顶点。
图6-2 齐次坐标的几何意义
第6章 图像的几何变换
齐次坐标在2D图像几何变换中的另一个应用是:如某 点S(60 000,40 000)在16位计算机上表示,由于大于32767 的最大坐标值,需要进行复杂的处理操作。但如果把S的坐 标形式变成(Hx, Hy, H)形式的齐次坐标,则情况就不同了。 在齐次坐标系中,设H=1/2,则S(60 000,40 000)的齐次坐 标为(x/2,y/2,1/2),那么所要表示的点变为(30 000, 20 000,1/2),此点显然在16位计算机上二进制数所能表示 的范围之内。
(图像上各点的新齐次坐标)
(图像上各点的原齐次坐标)
第6章 图像的几何变换 设变换矩阵T为
a b p
T c
d
q
l m s
则上述变换可以用公式表示为
=
T
Hx1' Hy1'
Hx2' Hy2'
Hxn' Hyn'
x1 x2 xn
T
y1
y2
yn
H H H 3n
1 1 1 3n
第6章 图像的几何变换
6.4 图像镜像
6.4.1 图像镜像变换 图像的镜像(Mirror)变换不改变图像的形状。 镜像变换分为两种:一种是水平镜像,另外一种是垂直镜

数字图像处理第六章课件

数字图像处理第六章课件

HSI2RGB, page299-300
Chapter 6 Color Image Processing
H
S
I
Chapter 6 Color Image Processing
H
S
I
Chapter 6 Color Image Processing
改变HIS成分及其合成图
Chapter 6 Color Image Processing
Chapter 6 Color Image Processing
电磁波谱中可见光波长范围
不同色光之间过渡平滑
Chapter 6 Color Image Processing
在人眼视网膜上
• 两种人眼感光细胞: 锥状,彩色、昼视觉。
700万个细胞
杆状,灰色、夜视觉。
7500万~1.5亿个细胞
• 锥状细胞进一步分为3 种。 感蓝,感绿,感红
Chapter 6 Color Image Processing
CIE_xy色度图
x=X/(X+Y+Z)
y=Y/(X+Y+Z) z=Z/(X+Y+Z) =1-x-y x+y+z=1 x,y即可决定z
参考白为 X=Y=Z=1 x=y=1/3
Chapter 6 Color Image Processing
(c)
Chapter 6 Color Image Processing
利用各正弦型的相位和频率变化,可以用 彩色(分量)来增强不同灰度范围
• 图6.25表示所用的(多对一)转换。这些正弦形函数 包含峰值附近的相对不变值的区域,以及谷底附 近的变化强烈的区域。每个正弦形的相位和频率 变化可以用彩色(分量)来增强灰度的范围。 • 例如,如果所有3个变换有相同的相位和频率,输 出图像将是单色的。3个变换之间相位的小变化会 使那些灰度级对应峰值的像素产生很小的变化, 特别是正弦形低频时。对应正弦形陡峭区域的像 素灰度值被赋予更强的彩色,作为由于相位间位 移引起的3个正弦形幅值间的显著差异的效果。

数字图像处理第6章二值图像处理-专业文档资料

数字图像处理第6章二值图像处理-专业文档资料

二阶矩则描述了图像的对于直线和对轴与轴的转动惯量,因 此常常也把物体的二阶矩称为惯性矩。
中心矩 :
p q (x x)p(y y )qf(x ,y )d xp d ,q y 0 ,1 ,2
第6章 二值图像处理
低阶矩主要描述区域的面积、转动惯量、质心等等,具有 明显得几何意义,,四阶矩描述峰值的状态等等,一般 来说高阶矩受到图像离散化等的影响,高阶矩一般在应用中 不一定十分准确。
D e(ac)2(bd)2
② 街区距离,用Ds来表示:
(6-1)
D s |ac||bd|
③ 棋盘距离,用Dg表示如下:
(6-2)
D gma a x c|, ( |b|d|)
(6-3)
三者之间的关系为:Dg Ds,如De图6-1(a)、(b)和(c)所示。
第6章 二值图像处理
(a) 欧氏距离 (b) 街区距离 (c) 棋盘距离 (d)≤2构成菱形 (e)≤2构成正方形 图6-1 三种距离示意图
第6章 二值图像处理
6.2 二值图像的几何特征描述
6.2.1 二值图像中曲线的描述 6.2.1.1 轮廓跟踪-甲虫算法
目标区域的边界轮廓是描述目标的重要特征,对于二 值图像中的目标区域轮廓可以通过一种简单的轮廓跟踪算 法来得到,这种方法也被称作甲虫算法。如图6-6所示的二 值图像4连通分量,假定目标区域用1(黑色)表示,背景区域
1 (x,y)(x,y)
f(x,y)
0
else
M1N1
那么区域的面积为: S f (x, y) x0 y0
如果经过目标标记,区域占有的连通分量有k个,那么目
标区域的面积则是k个连通分量的面积总和,即有:
k
S Si i 1

digital image processing projects 数字图像处理 冈萨雷斯 第六章所有程序和报告要点

digital image processing projects 数字图像处理 冈萨雷斯 第六章所有程序和报告要点

Digital Image ProcessingProject chapter:Chapter 6Project number:Proj06-01 ~ Proj06-04 Student's name:Student's number:Class:ContentsWEB-SAFE COLORS (2)PSEUDO-COLOR IMAGE PROCESSING (2)COLOR IMAGE ENHANCEMENT BY HISTOGRAM PROCESSING (5)COLOR IMAGE SEGMENTATION (7)Web-Safe ColorsExp. 20,PROJECT 06-01ObjectiveTo know what are Web-safe colors, how to generate the RGB components for a given jpeg color image, or convert an image to RGB manually?Requirements(a) Write a computer program that converts an arbitrary RGB color image to a web-safe RGB image (see Fig. 6.10 for a definition of web-safe colors).(b) Download the image in Fig. 6.8 and convert it to a web-safe RGB color image. Figure 6.8 is given in jpg format, so convert your result back to jpg (see comments at the beginning of this project).Figure 1 Fig6.08.jpgTechnical discussion【1】B = fix(A)rounds the elements of A toward zero, resulting in an array of integers.For complex A, the imaginary and real parts are rounded independently.【2】imwrite(A,filename,fmt)writes the image A to the file specified by filename in the format specified by fmt. Program listingsI=imread('Fig6.08.jpg');subplot(131);imshow(I);title('original');I1=fix((I/51)*51);subplot(132);imshow(I1);title('web-safe colors(jpg)');imwrite(I1,'web-safe colors.jpeg','jpeg');subplot(133);I=imread('web-safe colors.jpeg');imshow(I);title('web-safe colors(jpeg)');Discussion of resultsoriginal web-safe colors(jpg)web-safe colors(jpeg)Figure 2 results of project 06-01Pseudo-Col or Image ProcessingExp. 21,PROJECT 06-02ObjectiveTo know when the highpass filtering H hp(u,v) can be obtained by using the relation 1-H lp(u,v).Requirements(a)Implement Fig. 6.23, with the characteristic that you can specify two ranges of gray-level values for the input image and your program will output an RGB image whose pixels have a specified color corresponding to one range of gray levels in the input image, and the remaining pixels in the RGB image have the same shade of gray as they had in the input image.(b) Download the image in Fig. 6.22(a) and process it with your program so that the river appears yellow and the rest of the pixels are the same shades of gray as in the input image.Figure 3 Fig6.22(a).jpgTechnical discussion【1】RGB componentsrgb_R=I(:, :, 1);rgb_G=I(:, :, 2);rgb_B=I(:, :, 3);Program listingsI=imread('Fig6.22(a).jpg');subplot(121);imshow(I);title('original');I=double(I);[m,n]=size(I);L=256;for i=1:mfor j=1:nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2R(i,j)=0;G(i,j)=L;B(i,j)=-4*I(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:mfor j=1:nG2C(i,j,1)=R(i,j);G2C(i,j,2)=G(i,j);G2C(i,j,3)=B(i,j);endendG2C=G2C/256;subplot(122);imshow(G2C);title('Pseudo-Color');Discussion of resultsoriginal Pseudo-ColorFigure 4 results of project 06-02Color Image Enhancement by Histogram ProcessingExp. 22,PROJECT 06-03ObjectiveTo know how to implement image enhancement for color images by histogram processing. Note that the definition of histogram for color images differs from that of histogram for gray images.RequirementsDownload the dark-stream color picture in Fig. 6.35. Histogram-equalize the R,G,and B images separately using the histogram-equalization program and convert the imageback to jpg format.Figure 5 Fig6.35(5).jpgTechnical discussion【1】C = cat(dim, A1, A2, A3, A4, ...)concatenates all the input arrays (A1, A2, A3, A4, and so on) along array dimension dim.Program listingsI=imread('Fig6.35(5).jpg');subplot(121);imshow(I);title('original');a=I(:,:,1);b=I(:,:,2);c=I(:,:,3);A=histeq(a);B=histeq(b);C=histeq(c);I3=cat(3,A,B,C);subplot(122);imshow(I3);title('histogram processing');Discussion of resultsoriginal histogram processingFigure 6 results of project 06-03Color Image SegmentationExp. 23,PROJECT 06-04ObjectiveColor image segmentation is a big issue in image processing. This students need to know the basics of this topic.RequirementsDownload Fig. 6.28(b) and duplicate Example 6.15, but segment instead the darkest regions in the image.Figure 7 Fig6.30(01).jpgTechnical discussion【1】RGB2 = im2double(RGB)converts the truecolor image RGB to double precision, rescaling the data if necessaryProgram listingsrgb=imread('Fig6.30(01).jpg');subplot(221);imshow(rgb);title('original');rgb1=im2double(rgb);r=rgb1(:,:,1);g=rgb1(:,:,2);b=rgb1(:,:,3);r1=r(129:256,86:170);r1_u=mean(mean(r1(:)));[m,n]=size(r1);sd1=0.0;for i=1:mfor j=1:nsd1=sd1+(r1(i,j)-r1_u)*(r1(i,j)-r1_u);endendr1_d=sqrt(sd1/(m*n));r2=zeros(size(rgb1,1),size(rgb1,2));ind=find((r>r1_u-1.25*r1_d)&(r<r1_u+1.25*r1_d));r2(ind)=1;subplot(222);imshow(r2);title('segmentation');subplot(234);imshow(r);title('R component');subplot(235);imshow(g);title('G component');subplot(236);imshow(b);title('B component');Discussion of resultsoriginal segmentationR component G component B componentFigure 8 results of project 06-04。

数字图像处理第六章

数字图像处理第六章

L 1
平均码长
B

i 0
L 1
i
pi
i
是灰度值为i的编码长度
B 冗余度为 r H 1
编码效率为
H 1 B 1 r
6.3 统计编码方法
6.3.2 霍夫曼编码 Huffman编码是1952年由Huffman提出的一种编码方法。 这种编码方法是根据信源数据符号发生的概率进行编码的。 思想:在信源数据中出现概率越大的符号,编码以后相应 的码长越短;出现概率越小的符号,其码长越长,从而达 到用尽可能少的码符表示信源数据。它在无损变长编码方 法中是最佳的。下面通过实例来说明这种编码方法。 设输入编码为 X x1 , x2 , x3 , x4 , x5 , x6 ,其频率 分布分别为P(x1)=0.4 ,P(x2)=0.3,P(x3)=0.1,P(x4) =0.1,P(x5)=0.06,P(x6)=0.04。求其最佳霍夫曼编码
图像数据的特点之一是信息量大。海量数据 需要巨大的存储空间。如多媒体中的海量图像数 据,不进行编码压缩处理,一张600M字节的光盘, 能存放20秒左右的640× 480像素的图像,没有 编码压缩多媒体信息保存有多么困难是可想而知 的。 在现代通信中,图像传输已成为重要内容之 一。采用编码压缩技术,减少传输数据量,是提 高通信速度的重要手段。 可见,没有图像编码与压缩技术的发展,大 容量图像信息的存储与传输是难以实现的,多媒 体、信息高速公路等新技术在实际中的应用会遇 到很大困难。
行程编码:4a3b2c1d5e7f (共(8+3)*6=66Bits )
Huffman编码: f=0 e=10 a=110 b=1111 c=11100 d=11101
110110110110111111111111111001110011101101010101000000 00 (共 4*3+3*4+ 2*5+1*5+5*2+7*1=56 bits) 176 66 56

数字图像处理第6章_图像编码与压缩技术.

数字图像处理第6章_图像编码与压缩技术.

霍夫曼编码
例 假设一个文件中出现了8种符号S0、S1、S2、S3、S4、S5、S6、 S7,那么每种符号编码至少需要3bit S0=000, S1=001, S2=010, S3=011, S4=100, S5=101, S6=110, S7=111 那么,符号序列S0 S1 S7 S0 S1 S6 S2 S2 S3 S4 S5 S0 S0 S1编码后 000 001 111 000 001 110 010 010 011 100 101 000 000 001 (共42bit) 和等长编码不同的一种方法是可变长编码。在这种编码方法中, 表示符号的码字的长度不是固定不变的,而是随着符号出现的概率 而变化,对于那些出现概率大的信息符号编以较短的字长的码,而 对于那些出现概率小的信息符号编以较长的字长的码。
6.3.3 霍夫曼编码
霍夫曼(Huffman)编码是根据可变长最佳编码定理,应用霍夫曼算
1.
对于每个符号,例如经过量化后的图像数据,如果对它们每 个值都是以相同长度的二进制码表示的,则称为等长编码或均匀 编码。采用等长编码的优点是编码过程和解码过程简单,但由于 这种编码方法没有考虑各个符号出现的概率,实际上就是将它们 当作等概率事件处理的,因而它的编码效率比较低。例6.3给出了 一个等长编码的例子。
6.1.1 图像的信息冗余
图像数据的压缩是基于图像存在冗余这种特性。压缩就是去掉 信息中的冗余,即保留不确定的信息,去掉确定的信息(可推知 的);也就是用一种更接近信息本身的描述代替原有冗余的描述。 8 (1) 空间冗余。在同一幅图像中,规则物体或规则背景的物理表 面特性具有的相关性,这种相关性会使它们的图像结构趋于有序和 平滑,表现出空间数据的冗余。邻近像素灰度分布的相关性很强。 (2) 频间冗余。多谱段图像中各谱段图像对应像素之间灰度相关 (3) 时间冗余。对于动画或电视图像所形成的图像序列(帧序 列),相邻两帧图像之间有较大的相关性,其中有很多局部甚至完

数字图像处理第六章

数字图像处理第六章

1 H(u,v) 0
D(u,v) D0 D(u,v) D0
D0 :截止(断)频率
D(u, v) : 从频率域原点到(u点, v)的距离(以原点为中 )心
D(u,v) (u2 v ) 数2字图12像处理第六章
a 理想低通滤波器转移函数透视图 b 对应的图象 c 滤波器转移函数剖面图
以截至频D率0为半径的圆内的频损率的无通过, 圆外频率完全被衰减。 (大于D0的频率完全衰减,D小 0的于频率全部通过) D0小:保留的低频少D0大:保留的低频多
H(u,v) eD2(u,v)/22 :表高斯曲线扩展的程度
指数高通滤波器:
H
(u , v )
1-
e
D
( u ,v ) D0
n

D
定义为衰减到最大值
0
结果:
(因比其衰减快,低频
无振铃效应(有平滑过
D 0 : 截止频率
1
2 处的频率
包含少) 渡带)
D (u , v ) (u 2 v 2 )1 2
指数高通滤波器:
H
(u , v )
1-
e
D
(u ,v D0
)
n

D
定义为衰减到最大值
0
结果:
D 0 : 截止频率 1 2 处的频率
(因比其衰减快,低频
包含少)
无振铃效应(有平滑过
渡带)
D (u ,v) (u 2 v 2 )1 2
梯形高通滤波器 形状理想及有平滑过渡
带的滤波器之间
0
H
(u , v )
D 0 D1
a 高斯低通滤波器转移函数透视图数字b 图像对处应理的第图六象章 c 不同D0的转移函数剖面图

第6章 遥感数字图像处理_图像变换(2)

第6章 遥感数字图像处理_图像变换(2)
NDห้องสมุดไป่ตู้I


IR R IR R

式中:IR为遥感多波段图像中的近红外 (infrared)波段;R为红波段。 利用植被指数可监测某一区域农作物长势,并 在此基础上建立农作物估产模型,从而进行大 面积的农作物估产。
南京紫金山和玄武湖的NDVI分布
LANDSAT7的ETM影像,2000.6
常用的红外(IR)与红(R)波段

其中, R、G、B ∈[0, 1],r,g,b ∈[0, 1],M=max[R、 G、B],m=min[r、g、b] 注意,R、G、B中至少有一个值是0,与最大值的 颜色对应,并且至少有一个的值是1,与最小值 的颜色对应。
RGB到HSI
I M m 2
如果 M m , S 0 如果 I 0 . 5, S 如果 I 0 . 5, S M m M m M -m 2M m , S 的取值范围是 [ 0 ,1]

例如,在地质探测中,地质学家用TM的某种组 合解译矿石类型:B3/B1突出铁氧化物,B5/B7 突出粘土矿物,B5/B4突出铁矿石,B5/B6突出 大片白陶土蚀变区域,B4/B3突出植被信息, B5/B2分离陆地和水体,等等。

波段比值方法还可以用来探测地物随季节变化 的信息。例如,如果需要监测地区植被的变化, 可以使用不同季节的第3波段的比值,新建立的 波段可能是20060810B3/20040810B3。图像的 时段可以是不同年的同一个月,或同一年的不 同月,新产生的波段将突出变化信息,变化的 像素具有较高的亮度值。没有变化的像素值较 低,在图像中比较暗。
传感器Landsat TM所对应的指数函数
函数名称
归一化植被指数(NDVI) 比值植被指数(IR/R) 差值植被指数(Veg.index) 转换植被指数(TNDVI) 氧化铁指数(IRON OXIDE)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

彩色图像锐化(拉普拉斯微分)
RGB图像的 拉普拉斯变换 HSI图像的亮度I分量 图像的拉普拉斯变换 a图像和b图像的
差别图像
图a
图bLeabharlann 图c图c的原因:图a像素的锐化是不同彩色的锐化,而图b仅仅是亮度的 锐化,原彩色分量(色调H和饱和度S)保持不变
(把一幅图像分成多个区域)

基于彩色的图像分割
例: 多 R 光 谱 图 像 B 彩 色 编 码 R
G B 合 成
华盛顿特区的光谱卫星图像 G
近 红 外 近 红 外 代 替 R
木星卫星的伪彩色图像
在复杂图像中对感 兴趣的事物进行可 视化处理
活火山最 近喷出的 物质
第六章 彩色图像处理

彩色图像基础知识 彩色空间 伪彩色图像处理

全彩色图像处理
彩色变换
彩色图像平滑和尖锐化
全彩色图像处理

全彩色图像处理研究分为两大类:
分别处理每一分量图像,然后,合成彩色图像
直接对彩色像素处理:3个颜色分量表示像素
向量。令c代表RGB彩色空间中的任意向量
全彩色图像处理
彩色分量是坐标(x,y)的函数,有MN个这样的向量
对大小为 M N 的图像
彩色变换

彩色变换的简单形式
si Ti r1 , r2 ,..., rn
ri 和 si 是 f x , y 和
变量
g x, y
i 1,2,..., n
在任何点处彩色分量的
T1 , T2 ,...Tn 是一个对
射函数集
ri 操作产生 s i 的变换或彩色映
选择的彩色空间决定n的值,如RGB彩色空间,n=3,
第六章 彩色图像处理

彩色图像基础知识 彩色空间 伪彩色图像处理

全彩色图像处理
彩色变换
彩色图像平滑和尖锐化
彩色变换

彩色变换函数
g x, y T f x, y
f x, y 是彩色输入图像
g x, y 是变换或处理过的彩色输出图像
T 是在空间邻域 x, y 上对f 的操作
3)设以G分量为基准,匹配R和B分量,则:
F1 ( R1, G1 , B1 )
F (G1, G1, G1 )
* 1
F2 ( R2 , G2 , B2 )
F2 (G2 , G2 , G2 )
*
4)由
R1 k1* R1 k 2
*
求出:k1和k2 求出:l1和l2
R2 k1* R2 k 2
随着滤波 器尺寸的 增加,差 平滑亮度分量,并转换到 a图像和b图像的差别图像 别将增大
RGB图像显示
图a
图b
图c
图c的原因:图a像素的平均是不同彩色的平均,而图b仅仅是亮度的 平均,原彩色中色调H和饱和度S保持不变
彩色图像锐化(拉普拉斯微分)
RGB彩色空间,分别计算每一分量图像的拉普拉斯变换
g x, y f x, y 2 f x, y f x, y f x1, y f x1, y f x, y1 f x, y14f x, y 5 f x, y f x 1, y f x 1, y f x, y 1 f x, y 1
f x, y Ck
f x, y Vk
等高线
ck 是与强度间隔 Vk 第K级强度有关的颜色 Vk 是由在l=k-1和l=k分割平面定义的
1、强度分层技术
例1:甲状腺模型
单色图像 强度分层结果,8个彩色区域
左图的恒定强度难以区分病变,右图强度分层结果, 清楚的显示恒定强度的不同区域

彩色空间

YCbCr

Y指亮度,与YIQ和YUV的Y相同
Cb和Cr由U和V调整得到
JPEG采用的彩色空间
彩色空间转换
1.
2.
RGB RGB RGB RGB RGB
CMY HSI YIQ YUV YCbCr
3.
4.
5.
1、RGB
CMY
加法模型
减法模 型
RGB和CMY值都归一化到[0,1]
2、RGB
HSI
RGB图像和与之对应的HSI图像分量
RGB图像
色调
饱和度
强度
HSI
RGB
3、RGB
YIQ(NTSC)
4、RGB
YUV(PAL)
5、RGB
YCbCr
第六章 彩色图像处理

彩色图像基础知识 彩色空间 伪彩色图像处理

全彩色图像处理
彩色变换
彩色图像平滑和尖锐化
描述彩色光的3个基本量:
辐射率:从光源流出能量的总量,用瓦特(W) 度量


光强:观察者从光源接收的能量总和
亮度:主观描绘子
彩色图像基础知识

三原色
红色(Red)、绿色(Green)、蓝色(Blue)

原色相加可产生二次色

色:红+蓝


色:绿+蓝
色:红+绿
第六章 彩色图像处理

CMY和CMYK彩色空间 CMY(青、品红、黄)、CMYK (青、品红、 黄、黑)
•运用在大多数在纸上沉积彩色颜料的设备, 如彩色打印机和复印机、印刷设备中 • 打印中的主要颜色是黑色
• 等量的CMY原色可产生黑色,但不纯 • 在CMY基础上,加入黑色,形成CMYK彩色空间
彩色空间

HSI(色调、饱和度、亮度)
• 例如:某黑色区域的平均取值是:
R = 0 , G = 12, B = 7 说明有青色色偏
• 检查高饱和度的颜色是否正常,即检查在现实 中应该是纯色的物体,在图象中是否有偏色
彩色平衡算法
1)在图象中选取两个浅灰或深灰区域(这些区域 也许已经不是灰色) 2)计算这两个域的RGB平均值,
F1 ( R1 , G1 , B1 ) F2 ( R2 , G2 , B2 )
第六章 彩色图像处理

彩色图像基础知识 彩色空间 伪彩色图像处理

全彩色图像处理
彩色变换
彩色图像平滑和尖锐化
彩色图像基础知识

为什么要研究彩色图像处理?

符合人类视觉特点

人类可以辨别几千种颜色色调和亮度
只能辨别几十种灰度层次 简化目标物的区分 目标识别:根据目标的颜色特征

有用的描绘子
G: 31(25); 79(75) B: 37(25); 77(75)
255
255
75 25
75 25 31 79 255
0
0
37 77
255
G的逆变换
B的逆变换
彩色平衡
HSI颜色空间下的直方图均衡化
s k T rk

k
pr rj
j0

k
n n
j
j0
原图
处理前,大量暗彩色
的邻域的坐标集,在该邻域中RGB分量的平均值为
空间域滤波: 邻域平均法
彩色图像平滑(5*5 平均模板)
原 始 红 分

色 图

图 像

绿 分 量 图 像 蓝 分 量 图 像
彩色图像平滑
H分量图像 S分量图像 I分量图像
彩色图像平滑(HSI图像仅仅处理亮度分量)
5×5的平均模板平滑结果
处理每一个RGB分量 后图像平滑结果
I和Q指色调,描述色彩及饱和度
用于彩色电视广播,被北美的电视系统 所采用(属于NTSC系统)


Y分量可提供黑白电视机的所有影像信

彩色空间

YUV


Y指亮度,与YIQ的Y相同
U和V也指色调,但不同于YIQ的I和Q
用于彩色电视广播,被欧洲的电视系 统所采用(属于PAL系统)

Y分量可提供黑白电视机的所有影像 信息
*
B1 l1* B1 l 2 B2 l1* B2 l 2
*
*
得到平衡后的新图象
彩色平衡算法
设:在图象中选取两个浅灰或深灰区域,并 计算这两个域的RGB平均值,得: – R1 = 25 ;G1 = 31;B1 = 37 – R2 = 75 ;G2 = 79; B2 = 77 – 调整G、B去匹配R。从而有线性变换
1. 2.
强度分层技术
灰度级到彩色转换技术
1、强度分层技术


把一幅图像描述为三维函数(x,y,f(x,y)) 分层技术:放置平行于(x,y)坐标面的平面 每一个平面在相交区域切割图像函数
1、强度分层技术——定义
令[0,L-1]表示灰度级,使l0代表黑色(f(x,y)=0),
lL-1代表白色(f(x,y)=L-1)。假设垂直于强度轴的P 个平面定义为量级l1,l2,…,lP。0<P<L-1,P个平面 将灰度级分为P+1个间隔,V1,V2,…,VP+1,则灰度级 到彩色的赋值关系:

两个特点:

I分量与图像的彩色信息无关


H和S分量与人感受颜色的方式是紧密相连的
将亮度(I)与色调(H)和饱和度(S)分开
避免颜色受到光照明暗(I)等条件的干扰
仅仅分析反映色彩本质的色调和饱和度
广泛用于计算机视觉、图像检索和视频检索
彩色空间

YIQ


Y指亮度(Brightness),即灰度值
HSI彩色空间分割 H色调图像方便描述彩色 S饱和度图像做模板分离感兴趣的特征区 I亮度图像不携带彩色信息(可不用)
相关文档
最新文档