2019年枣庄市中考数学试题及答案(Word版)

合集下载

枣庄中考数学试题及答案2019

枣庄中考数学试题及答案2019

枣庄中考数学试题及答案2019枣庄市2019年中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 计算下列式子的值:\( \sqrt{4} + \sqrt{9} \) 的结果是()A. 5B. 6C. 7D. 8答案:B2. 已知 \( a \) 和 \( b \) 是实数,且 \( a^2 + b^2 = 0 \),则 \( a \) 和 \( b \) 的值分别是()A. \( a = 0, b = 0 \)B. \( a = 1, b = 1 \)C. \( a = -1, b = -1 \)D. \( a = 2, b = 2 \)答案:A3. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:A4. 下列哪个选项是不等式 \( 2x - 3 < 5 \) 的解集?()A. \( x < 4 \)B. \( x > 4 \)C. \( x < 2 \)D. \( x > 2 \)答案:A5. 函数 \( y = 2x + 3 \) 的图象不经过哪个象限?()A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 已知 \( \frac{1}{x} = 2 \),则 \( x \) 的值是()A. 0.5B. 1C. 2D. 0.25答案:A7. 一个扇形的圆心角是 \( 60^\circ \),半径是 4cm,那么这个扇形的面积是()A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²答案:B8. 已知三角形 \( ABC \) 中,\( \angle A = 60^\circ \),\( \angle B = 45^\circ \),则 \( \angle C \) 的度数是()A. 75°B. 60°C. 45°D. 30°答案:D9. 一个正数的算术平方根是它本身,这个正数是()A. 0B. 1C. 4D. 9答案:B10. 下列哪个选项是方程 \( x^2 - 5x + 6 = 0 \) 的解?()A. 2B. 3C. 6D. 9答案:A二、填空题(本大题共6小题,每小题3分,共18分)11. 计算 \( \sqrt{16} \) 的结果是 _______。

最新山东省枣庄市年中考数学试卷(解析版)

最新山东省枣庄市年中考数学试卷(解析版)

山东省枣庄市2019年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确地是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=22.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到地数字是()A.96 B.69 C.66 D.993.如图,将一副三角板和一张对边平行地纸条按下列方式摆放,两个三角板地一直角边重合,含30°角地直角三角板地斜边与纸条一边重合,含45°角地三角板地一个顶点在纸条地另一边上,则∠1地度数是()A.15°B.22.5°C.30°D.45°4.实数a,b在数轴上对应点地位置如图所示,化简|a|+地结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定地运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中地虚线剪开,剪下地阴影三角形与原三角形不相似地是()A.B. C.D.7.如图,把正方形纸片ABCD沿对边中点所在地直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上地点F处,折痕为BE.若AB地长为2,则FM地长为()A.2 B.C.D.18.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN地长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD地面积是()A.15 B.30 C.45 D.609.如图,O是坐标原点,菱形OABC地顶点A地坐标为(﹣3,4),顶点C在x轴地负半轴上,函数y=(x<0)地图象经过顶点B,则k地值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,在网格(每个小正方形地边长均为1)中选取9个格点(格线地交点称为格点),如果以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内,则r地取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB地中点,点P为OA上一动点,PC+PD值最小时点P地坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确地是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象地顶点始终在x轴地下方D.若a>0,则当x≥1时,y随x地增大而增大二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .14.已知关于x地一元二次方程ax2﹣2x﹣1=0有两个不相等地实数根,则a地取值范围是.15.已知是方程组地解,则a2﹣b2= .16.如图,在▱ABCD中,AB为⊙O地直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则地长为.17.如图,反比例函数y=地图象经过矩形OABC地边AB地中点D,则矩形OABC地面积为.18.在矩形ABCD中,∠B地角平分线BE与AD交于点E,∠BED地角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?20.为发展学生地核心素养,培养学生地综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样地方法进行问卷调查(每个被调查地学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整地统计图,请结合图中所给信息解答下列问题:(1)本次调查地学生共有人,在扇形统计图中,m地值是;(2)将条形统计图补充完整;(3)在被调查地学生中,选修书法地有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织地书法活动,请写出所抽取地2名同学恰好是1名男同学和1名女同学地概率.21.如图,在平面直角坐标系中,已知△ABC三个顶点地坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到地△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来地,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2地正弦值.22.如图,在△ABC中,∠C=90°,∠BAC地平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径地圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O地位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分地面积(结果保留π).23.我们知道,任意一个正整数n都可以进行这样地分解:n=p×q(p,q是正整数,且p ≤q),在n地所有这种分解中,如果p,q两因数之差地绝对值最小,我们就称p×q是n 地最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12地最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n地平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上地数与十位上地数得到地新数减去原来地两位正整数所得地差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)地最大值.24.已知正方形ABCD,P为射线AB上地一点,以BP为边作正方形BPEF,使点F在线段CB 地延长线上,连接EA,EC.(1)如图1,若点P在线段AB地延长线上,求证:EA=EC;(2)如图2,若点P在线段AB地中点,连接AC,判断△ACE地形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC地度数.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线地顶点,过点D作x轴地垂线,垂足为E,连接BD.(1)求抛物线地解析式及点D地坐标;(2)点F是抛物线上地动点,当∠FBA=∠BDE时,求点F地坐标;(3)若点M是抛物线上地动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q地坐标.2019年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确地是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=2【考点】24:立方根;1A:有理数地减法;22:算术平方根;6F:负整数指数幂.【分析】根据立方根地概念、二次根式地加减运算法则、绝对值地性质、负整数指数幂地运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到地数字是()A.96 B.69 C.66 D.99【考点】R1:生活中地旋转现象.【分析】直接利用中心对称图形地性质结合69地特点得出答案.【解答】解:现将数字“69”旋转180°,得到地数字是:69.故选:B.3.如图,将一副三角板和一张对边平行地纸条按下列方式摆放,两个三角板地一直角边重合,含30°角地直角三角板地斜边与纸条一边重合,含45°角地三角板地一个顶点在纸条地另一边上,则∠1地度数是()A.15°B.22.5°C.30°D.45°【考点】JA:平行线地性质.【分析】过A点作AB∥a,利用平行线地性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点地位置如图所示,化简|a|+地结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】73:二次根式地性质与化简;29:实数与数轴.【分析】直接利用数轴上a,b地位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式地性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定地运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小地运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中地虚线剪开,剪下地阴影三角形与原三角形不相似地是()A.B. C.D.【考点】S8:相似三角形地判定.【分析】根据相似三角形地判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分地三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分地三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形地对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在地直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上地点F处,折痕为BE.若AB地长为2,则FM地长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM地值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上地点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN地长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD地面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线地性质.【分析】判断出AP是∠BAC地平分线,过点D作DE⊥AB于E,根据角平分线上地点到角地两边距离相等可得DE=CD,然后根据三角形地面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC地平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD地面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC地顶点A地坐标为(﹣3,4),顶点C在x轴地负半轴上,函数y=(x<0)地图象经过顶点B,则k地值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】L8:菱形地性质;G6:反比例函数图象上点地坐标特征.【分析】根据点C地坐标以及菱形地性质求出点B地坐标,然后利用待定系数法求出k地值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B地横坐标为﹣3﹣5=﹣8,故B地坐标为:(﹣8,4),将点B地坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,在网格(每个小正方形地边长均为1)中选取9个格点(格线地交点称为格点),如果以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内,则r地取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<【考点】M8:点与圆地位置关系;KQ:勾股定理.【分析】利用勾股定理求出各格点到点A地距离,结合点与圆地位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r<3时,以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内.故选B.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB地中点,点P为OA上一动点,PC+PD值最小时点P地坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【考点】F8:一次函数图象上点地坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B地坐标,再由中点坐标公式求出点C、D地坐标,根据对称地性质找出点D′地坐标,结合点C、D′地坐标求出直线CD′地解析式,令y=0即可求出x地值,从而得出点P地坐标.(方法二)根据一次函数解析式求出点A、B地坐标,再由中点坐标公式求出点C、D地坐标,根据对称地性质找出点D′地坐标,根据三角形中位线定理即可得出点P为线段CD′地中点,由此即可得出点P地坐标.【解答】解:(方法一)作点D关于x轴地对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B地坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A地坐标为(﹣6,0).∵点C、D分别为线段AB、OB地中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′地坐标为(0,﹣2).设直线CD′地解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′地解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P地坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴地对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B地坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A地坐标为(﹣6,0).∵点C、D分别为线段AB、OB地中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′地坐标为(0,﹣2),点O为线段DD′地中点.又∵OP∥CD,∴点P为线段CD′地中点,∴点P地坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确地是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象地顶点始终在x轴地下方D.若a>0,则当x≥1时,y随x地增大而增大【考点】HA:抛物线与x轴地交点;H4:二次函数图象与系数地关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根地判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同地交点,即B选项不符合题意;C、利用配方法找出二次函数图象地顶点坐标,令其纵坐标小于零,可得出a地取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象地对称轴,结合二次函数地性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同地交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象地顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象地对称轴为x=1.若a>0,则当x≥1时,y随x地增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .【考点】6A:分式地乘除法.【分析】根据分式地乘除法地法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x地一元二次方程ax2﹣2x﹣1=0有两个不相等地实数根,则a地取值范围是a>﹣1且a≠0 .【考点】AA:根地判别式.【分析】根据一元二次方程地定义和判别式地意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式地公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组地解,则a2﹣b2= 1 .【考点】97:二元一次方程组地解.【分析】根据是方程组地解,可以求得a+b和a﹣b地值,从而可以解答本题.【解答】解:∵是方程组地解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O地直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则地长为π.【考点】MC:切线地性质;L5:平行四边形地性质;MN:弧长地计算.【分析】先连接OE、OF,再求出圆心角∠EOF地度数,然后根据弧长公式即可求出地长.【解答】解:如图连接OE、OF,∵CD是⊙O地切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,地长==π.故答案为:π.17.如图,反比例函数y=地图象经过矩形OABC地边AB地中点D,则矩形OABC地面积为4 .【考点】G5:反比例函数系数k地几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC地面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=地图象经过点D,∴xy=2,∵D为AB地中点,∴B(x,2y),∴OA=x,OC=2y,∴S=OA•OC=x•2y=2xy=2×2=4,矩形OABC故答案为:4.18.在矩形ABCD中,∠B地角平分线BE与AD交于点E,∠BED地角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】LB:矩形地性质;KI:等腰三角形地判定;S9:相似三角形地判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE地长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE地倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B地角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED地角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】C7:一元一次不等式地整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集地公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件地整数有﹣2、﹣1、0、1.20.为发展学生地核心素养,培养学生地综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样地方法进行问卷调查(每个被调查地学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整地统计图,请结合图中所给信息解答下列问题:(1)本次调查地学生共有50 人,在扇形统计图中,m地值是30% ;(2)将条形统计图补充完整;(3)在被调查地学生中,选修书法地有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织地书法活动,请写出所抽取地2名同学恰好是1名男同学和1名女同学地概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由舞蹈地人数除以占地百分比求出调查学生总数,确定出扇形统计图中m地值;(2)求出绘画与书法地学生数,补全条形统计图即可;(3)列表得出所有等可能地情况数,找出恰好为一男一女地情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法地5名同学中,有3名男同学,2名女同学,男1 男2 男3 女1 女2 男1 ﹣﹣﹣男2男1 男3男1 女1男1 女2男1男2 (男1男2)﹣﹣﹣男3男2 女1男2 女2男2男3 (男1男3)男2男3 ﹣﹣﹣女1男3 女2男3女1 (男1,女1)男2女1 男3女1 ﹣﹣﹣女2女1女2 (男1女2)男2女2 男3女2 女1女2 ﹣﹣﹣所有等可能地情况有20种,其中抽取地2名同学恰好是1名男同学和1名女同学地情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点地坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到地△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来地,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2地正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移地性质得出对应点位置进而得出答案;(2)利用位似图形地性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC地延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.22.如图,在△ABC中,∠C=90°,∠BAC地平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径地圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O地位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分地面积(结果保留π).【考点】MB:直线与圆地位置关系;MO:扇形面积地计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆地切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x地方程,求出方程地解得到x地值,即为圆地半径,求出圆心角地度数,直角三角形ODB地面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC地平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD地外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB==,则阴影部分地面积为S△ODB ﹣S扇形DOF=×2×2﹣=2﹣.故阴影部分地面积为2﹣.23.我们知道,任意一个正整数n都可以进行这样地分解:n=p×q(p,q是正整数,且p ≤q),在n地所有这种分解中,如果p,q两因数之差地绝对值最小,我们就称p×q是n 地最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12地最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n地平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上地数与十位上地数得到地新数减去原来地两位正整数所得地差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)地最大值.【考点】59:因式分解地应用.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m地最佳分解,确定出F(m)地值即可;(2)设交换t地个位上数与十位上地数得到地新数为t′,则t′=10y+x,根据“吉祥数”地定义确定出x与y地关系式,进而求出所求即可;(3)利用“吉祥数”地定义分别求出各自地值,进而确定出F(t)地最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m地最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t地个位上数与十位上地数得到地新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”地有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)地最大值为.24.已知正方形ABCD,P为射线AB上地一点,以BP为边作正方形BPEF,使点F在线段CB 地延长线上,连接EA,EC.(1)如图1,若点P在线段AB地延长线上,求证:EA=EC;(2)如图2,若点P在线段AB地中点,连接AC,判断△ACE地形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC地度数.【考点】LO:四边形综合题.【分析】(1)根据正方形地性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG地长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b地比,再计算GH和BG地长,根据角平分线地逆定理得:∠HCG=∠BCG,由平行线地内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB地中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线地顶点,过点D作x轴地垂线,垂足为E,连接BD.(1)求抛物线地解析式及点D地坐标;(2)点F是抛物线上地动点,当∠FBA=∠BDE时,求点F地坐标;(3)若点M是抛物线上地动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q地坐标.【考点】HF:二次函数综合题.【分析】(1)由B、C地坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形地性质可得到关于F点坐标地方程,可求得F点地坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴地交点,点Q在对称轴上,可设出Q点地坐标,则可表示出M地坐标,代入抛物线解析式可求得Q点地坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点地坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点地坐标为(﹣3,﹣);综上可知F点地坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对称轴MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴地交点,点Q在抛物线地对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6地图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件地点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).2019年6月15日。

2019年山东省枣庄市中考数学试卷-答案

2019年山东省枣庄市中考数学试卷-答案

山东省枣庄市2019年初中学业水平考试数学答案解析1.【答案】C【解析】解:A 、23+x y ,无法计算,故此选项错误;B 、22369-=-+()x x x ,故此选项错误;C 、2224=()xy x y ,正确; D 、633÷=x x x ,故此选项错误; 故选:C.【考点】合并同类项,完全平方公式,积的乘方运算,同底数幂的乘除运算 2.【答案】B【解析】解:A 、不是中心对称图形,故本选项不符合题意; B 、是中心对称图形,故本选项符合题意; C 、不是中心对称图形,故本选项不符合题意; D 、不是中心对称图形,故本选项不符合题意. 故选:B.【考点】中心对称图形 3.【答案】C 【解析】解:如图,90∠=︒ACD ,45∠=︒F ,∴45∠=∠=︒CGF DGB ,则304575∠=∠+∠=︒+︒=︒D DGB α, 故选:C.【考点】三角形的外角的性质 4.【答案】A【解析】解:如图,过P 点分别作⊥PD x 轴,⊥PC y 轴,垂足分别为D 、C ,设P 点坐标为,()x y ,P 点在第一象限,∴=PD y ,=PC x ,矩形PDOC 的周长为8,∴28+=()x y ,∴4+=x y ,即该直线的函数表达式是4=-+y x , 故选:A .【考点】矩形的性质,一次函数图象 5.【答案】B【解析】解:点,()m n 在函数6=y x的图象上, ∴6=mn .mn 的值为6的概率是123==. 故选:B .【考点】反比例函数图象 6.【答案】A【解析】解:将点(1,2)-A 向上平移3个单位长度,再向左平移2个单位长度,得到点'A ,∴点'A 的横坐标为121-=-,纵坐标为231-+=, ∴'A 的坐标为(1,1)-.故选:A .【考点】坐标与图形变化—平移 7.【答案】D 【解析】解:△ADE 绕点A 顺时针旋转90︒到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴==AD DC2=DE ,∴△Rt ADE 中,==AE故选:D .【考点】旋转的性质,正方形的性质 8.【答案】C【解析】解:2145π44482π2360⋅⋅=-=⨯⨯-=-△阴扇形ABD BAE S S S , 故选:C .【考点】扇形的面积的计算,正方形的性质 9.【答案】A 【解析】解:等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90∠=︒ABC ,⊥CA x 轴,1=AB ,∴45∠=∠=︒BAC BAO ,∴=OA OB ,AC∴点C 的坐标为⎝,点C 在函数(0)=>ky x x的图象上,∴12=k ,故选:A .【考点】反比例函数图象上点的坐标特征、等腰直角三角形 10.【答案】D【解析】解:由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有故选:D .【考点】图形的变化规律 11.【答案】B 【解析】解:O 为原点,1=AC ,=OA OB ,点C 所表示的数为a ,∴点A 表示的数为1-a , ∴点B 表示的数为:1--()a , 故选:B . 【考点】数轴 12.【答案】B 【解析】解:16=△ABC S 、9'=△A EF S ,且AD 为BC 边的中线,∴1922''==△△A DEA EF S S ,182==△△ABD ABC S S , 将△ABC 沿BC 边上的中线AD 平移得到'''△A B C ,∴'∥A E AB , ∴'△∽△DA E DAB ,则'2'⎛⎫= ⎪⎝⎭△△A DEABD S A D AD S ,即29921816''⎛⎫== ⎪+⎝⎭A D A D , 解得3'=A D 或37'=-A D (舍),故选:B.【考点】平移的性质 13.【答案】11 【解析】解:2221129⎛⎫-=-+= ⎪⎝⎭m m m m , ∴22111+=m m, 故答案为11.【考点】完全平方公式14.【答案】13->a 且0≠a 【解析】解:由关于x 的方程2230+-=ax x 有两个不相等的实数根得24=-b ac4430=+⨯>a ,解得13->a则13->a 且0≠a故答案为:13->a 且0≠a【考点】一元二次方程根的判别式 15.【答案】9.5【解析】解:过D 作⊥DE AB ,在D 处测得旗杆顶端A 的仰角为53︒,∴53∠=︒ADE ,6 m ==BC DE ,∴tan536 1.337.98 m =⋅︒≈⨯≈AE DE ,∴7.98 1.59.48 m 9.5 m =+=+=+=≈AB AE BE AE CD ,故答案为:9.5 【考点】仰角的定义16.【解析】解:(52)1801085︒︒-⨯∠==ABC ,△ABC 是等腰三角形,∴36∠=∠=BAC BCA 度.【考点】多边形的内角和定理和等腰三角形的性质17.【解析】解:如图,过点A 作⊥AF BC 于F , 在△Rt ABC 中,45∠=︒B ,∴=BC =BF AF AB 两个同样大小的含45︒角的三角尺,∴==AD BC在△Rt ADF 中,根据勾股定理得,==DF∴CD BF DF BC ∴=+-==【考点】勾股定理,等腰直角三角形的性质18.【答案】2018201812018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++201820182019=, 故答案为:201820182019.【考点】二次根式的化简、数字的变化规律 19.【答案】34【解析】解:原式211(1)(1)11-⎛⎫=÷+ ⎪+---⎝⎭x x x x x x21(1)(1)-=⋅+-x x x x x1=+xx ,解不等式组11522-⎧⎨-≥-⎩>x x 得722<x …,则不等式组的整数解为3,当3=x 时,原式33314==+. 【考点】分式的化简求值20.【答案】解:(1)如图所示,直线EF 即为所求;(2)四边形ABCD 是菱形,∴1752∠=∠=∠=︒ABD DBC ABC ,∥DC AB ,∠=∠A C ..∴150∠=︒ABC ,180∠+∠=︒ABC C ,∴30∠=∠=︒C A ,EF 垂直平分线段AB ,∴=AF FB , ∴30∠=∠=︒A FBA ,∴45∠=∠-∠=︒DBF ABD FBE ..【考点】作图-基本作图,线段的垂直平分线的性质,菱形的性质 21.【答案】解:(1)根据题中的新定义得:原式835=-=;(2)根据题中的新定义化简得:2241-=-⎧⎨+=-⎩①②x y x y ,+①②得:333+=-x y ,则1+=-x y .【考点】二元一次方程组,实数的运算22.【答案】解:①由已知数据知5=a ,4=b , 第10、11个数据分别为80、81,∴中位数808180.52+==c , 故答案为:5、4、80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B , 故答案为:B ;③估计等级为“B ”的学生有840016020⨯=(人), 故答案为:160;④估计该校学生每人一年(按52周计算)平均阅读课外书805213320⨯=(本),故答案为:13.【考点】数据的统计和分析23.【答案】(1)证明:连接OC.=CB CD,=CO CO,=OB OD,∴△≌△()OCB OCD SSS,∴90∠=∠=︒ODC OBC,∴⊥OD DC,∴DC 是O的切线;(2)解:设O的半径为r.在△Rt OBE 中,222=+OE EB OB,∴22242-=+()r r,∴ 1.5=r,tan∠==OB CDEEB DE,∴1.524=CD,∴3==CD BC,在△Rt ABC中,=AC∴圆的半径为1.5,AC的长为.【考点】直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数24.【答案】(1)解:90∠=︒BAC,=AB AC,⊥AD BC,∴==AD BD DC,45∠=∠=︒ABC ACB,45∠=∠=︒BAD CAD,2=AB,∴===AD BD DC30∠=︒AMN,∴180903060∠=︒-︒-︒=︒BMD,∴30∠=︒MBD,∴2=BM DM,由勾股定理得,222-=BM DM BD,即()2222-=DM DM,解得,=DM∴=-=AM AD DM;(2)证明:⊥AD BC,90∠=︒EDF,∴∠=∠BDE ADF,在△BDE和△ADF中,∠=∠⎧⎪=⎨⎪∠=∠⎩B DAFDB DABDE ADF,∴△≌△()BDE ADF ASA∴=BE AF;(3)证明:过点M作∥ME BC交AB的延长线于E,∴90∠=︒AME,则=AE ,45∠=︒E ,∴=ME MA ,90∠=︒AME ,90∠=︒BMN ,∴∠=∠BME AMN ,在△BME 和△AMN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩E MAN ME MABME AMN , ∴△≌△()BME AMN ASA , ∴=BE AN ,∴+=+==AB AN AB BE AE .【考点】等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质 25.【答案】解:(1)抛物线的对称轴是直线3=x ,∴3232=a ,解得14=-a , ∴抛物线的解析式为:213442=-++y x x .当0=y 时,2134042-++=x x ,解得12=-x ,28=x ,∴点A 的坐标为()2,0-,点B 的坐标为()8,0.答:抛物线的解析式为:213442=-++y x x ;点A 的坐标为()2,0-,点B 的坐标为()8,0.(2)当0=x 时,2134442=-++=y x x ,∴点C 的坐标为()0,4.设直线BC 的解析式为0=+≠()y kx b k ,将()8,0B ,()0,4C 代入=+y kx b 得 804+=⎧⎨=⎩k b b ,解得124⎧=⎪⎨⎪=⎩k b , ∴直线BC 的解析式为142=-+y x .假设存在点P ,使四边形PBOC 的面积最大,设点P 的坐标为213,442⎛⎫-++ ⎪⎝⎭x x x ,如图所示,过点P 作∥PD y 轴,交直线BC 于点D,则点D 的坐标为1,42⎛⎫-+ ⎪⎝⎭x x ,则2213114424224⎛⎫=-++--+=-+ ⎪⎝⎭PD x x x x x ,∴=+△△四边形BOC PBC PBOC S S S118422=⨯⨯+⋅PD OB 211168224=+⨯-+()x x 2816=-++x x2432=--+()x∴当4=x 时,四边形PBOC 的面积最大,最大值是3208<<x ,∴存在点()4,6P ,使得四边形PBOC 的面积最大.答:存在点P ,使四边形PBOC 的面积最大;点P 的坐标为()4,6,四边形PBOC 面积的最大值为32.(3)设点M 的坐标为213,442⎛⎫-++ ⎪⎝⎭m m m 则点N 的坐标为1,42⎛⎫-+ ⎪⎝⎭m m ,∴2421311π424224+⎛⎫=+--+=-+ ⎪⎝⎭MN m m m m , 又3=MN ,∴21234-+=m m ,当08<<m 时,-+2m-3=0,解得12=m ,26=m ,∴点M 的坐标为()2,6或()6,4;当0<m 或8>m 时,21230-+-=m m ,解得34=-m 44=+m∴点M 的坐标为(41)-或(41)+.答:点M 的坐标为()2,6、()6,4、(41)-或(41)+. 【考点】二次函数。

枣庄市中考数学试卷及答案Word解析版

枣庄市中考数学试卷及答案Word解析版

山东省枣庄市 2019年中考数学试卷一、选择题:本大题共 12小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把遮光器的选项选择出来,每题选对得 3分,选错、不选或选出的答案超出一个均计零分。

1.以下各式,计算正确的选项是( )22 223 8 24 3 2A .(a+b )=a+bB .a?a=aC .a ÷a=aD .a+a=a考点:同底数幂的除法;归并同类项;同底数幂的乘法;完好平方公式.剖析:分别依据完好平方公式、同底数幂的乘法及除法法例对各选项进行逐个判断即可.2 2解答:解:A 、左侧=a+b+2ab ≠右边,故本选项错误;3B 、左侧=a=右边,故本选项正确;C 、左侧=a 8﹣26+a≠右边,故本选项错误;3 2 不是同类项,不可以归并,故本选项错误.D 、a 与a 应选B .评论:本题考察的是同底数幂的除法,熟知同底数幂的除法法例是解答本题的重点.2.(3分)(2019?枣庄)如图,把一块含有45°的直角三角形的两个极点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A .15°B .20°C .25°D .30°考点:平行线的性质. 专题:压轴题.剖析:依据两直线平行,内错角相等求出∠ 3,再求解即可. 解答:解:∵直尺的两边平行,∠ 1=20°, ∴∠3=∠1=20°,∴∠2=45°﹣20°=25°. 应选:C .评论:本题考察了两直线平行,内错角相等的性质,熟记性质是解题的重点.3.(3分)(2019?枣庄)如图是由 6个同样的小正方体构成的几何体,那么这个几何体的俯 视图是( )A.B.C.D.考点:简单组合体的三视图.剖析:由已知条件可知,俯视图有3行,每行小正方数形数量分别为1,3,1;第一行的1个在中间,第三行的1个在最左侧,据此得出答案即可.解答:解:由6个同样的小正方体构成的几何体,那么这个几何体的俯视图是.应选:D.评论:本题考察简单组合体的三视图,依据看到的小正方形的个数和地点是正确解决问题的重点.4.(3分)(2019?枣庄)实数a,b,c在数轴上对应的点如下图,则以下式子中正确的选项是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c考点:实数与数轴.专题:数形联合.剖析:先依据各点在数轴上的地点比较出其大小,再对各选项进行剖析即可.解答:解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,a﹣b<0,|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.应选:D.评论:本题考察的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答本题的重点.5.(3分)(2019?枣庄)已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.剖析:第一依据k+b=﹣5、kb=5获得k、b的符号,再依据图象与系数的关系确立直线经过的象限,从而求解即可.解答:解:∵k+b=﹣5,kb=5,k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.应选:A.评论:本题考察了一次函数图象与系数的关系,解题的重点是依据k、b之间的关系确立其符号.6.(3分)(2019?枣庄)对于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1考点:分式方程的解.专题:计算题.剖析:将分式方程化为整式方程,求得x的值而后依据解为正数,求得a的范围,但还应试虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,依据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.应选:B.评论:本题考察了分式方程的解,本题需注意在任何时候都要考虑分母不为0.7.(3分)(2019?枣庄)如图,边长为22的a,b的矩形的周长为14,面积为10,则ab+ab值为()A.140B.70C.35D.24考点:因式分解的应用.剖析:由矩形的周长和面积得出a+b=7,ab=10,再把多项式分解因式,而后辈入计算即可.解答:2解:依据题意得:a+b==7,ab=10,3 2ab+ab=ab(a+b)=10×7=70;应选:B.评论:本题考察了矩形的性质、分解因式、矩形的周长和面积的计算;娴熟掌握矩形的性质,并能进行推理计算是解决问题的重点.8.(3分)(2019?枣庄)已知对于x的一元二次方程2x+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10B.10C.﹣6D.2考点:根与系数的关系.剖析:依据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.2解答:解:∵对于x的一元二次方程x+mx+n=0的两个实数根分别为x1=﹣2,x2=4,解得:m=﹣2,n=﹣8,m+n=﹣10,应选A.评论:本题考察了根与系数的关系的应用,能依据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n是解本题的重点.9.(3分)(2019?枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后获得正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1考点:旋转的性质.剖析:连结AC1,AO,依据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,从而求出DC1=OD,依据三角形的面积计算即可.解答:解:连结AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形A BCD绕点A逆时针旋转45°后获得正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD?AD=,∴四边形AB1OD的面积是=2×=﹣1,应选:D.评论:本题考察了正方形性质,勾股定理等知识点,主要考察学生运用性质进行计算的能力,正确的作出协助线是解题的重点.10.(3分)(2019?枣庄)如图,在4×4的正方形网格中,每个小正方形的极点称为格点,左上角暗影部分是一个以格点为极点的正方形(简称格点正方形).若再作一个格点正方形,并涂上暗影,使这两个格点正方形无重叠面积,且构成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种考点:利用旋转设计图案;利用轴对称设计图案.剖析:利用轴对称图形的性质以及中心对称图形的性质剖析得出切合题意的图形即可.]解答:解:如下图:构成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.应选:C.评论:本题主要考察了利用轴对称以及旋转设计图案,正确掌握有关定义是解题重点.11.(3分)(2019?枣庄)如图,一个边长为4cm的等边三角形与BC相切于点C,与AC订交于点E,则CE的长为(ABC)的高与⊙O的直径相等.⊙OA.4cm B.3cm C.2cm D.考点:切线的性质;等边三角形的性质.剖析:连结OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,既而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连结OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.应选B.评论:本题主要考察了切线的性质,等边三角形的性质和解直角三角形的有关知识,题目不是太难,属于基础性题目.2,12.(3分)(2019?枣庄)如图是二次函数y=ax+bx+c(a≠0)图象的一部分,对称轴为x=且经过点(2,0),有以下说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上陈述法正确的选项是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.剖析:①依据抛物线张口方向、对称轴地点、抛物线与y轴交点地点求得a、b、c的符号;②依据对称轴求出b=﹣a;③把x=2代入函数关系式,联合图象判断函数值与0的大小关系;④求出点(0,y1)对于直线x=的对称点的坐标,依据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象张口向下,a<0,∵二次函数的图象交y轴的正半轴于一点,c>0,∵对称轴是直线x=,∴﹣,b=﹣a>0,abc<0.故①正确;②∵由①中知b=﹣a,a+b=0,故②正确;2③把x=2代入y=ax+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y1)对于直线x=的对称点的坐标是(1,y1),y1=y2.故④正确;综上所述,正确的结论是①②④.应选:A评论:本题考察了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象张口向上,当a<0时,二次函数的图象张口向下.二、填空题:本大题共6小题,满分24分,只需求写最后结果,每题填对得4分。

山东枣庄2019中考试卷-数学(解析版)

山东枣庄2019中考试卷-数学(解析版)

山东枣庄2019中考试卷-数学(解析版)〔本试卷总分值120分,考试时间120分钟〕第一卷(选择题共36分)【一】选择题:本大题共12小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来、每题选对得3分,选错、不选或选出的答案超过一个均计零分、1、〔2018山东枣庄3分〕以下运算,正确的选项是【】A 、2223x 2x x -=B 、()222a 2a -=-C 、()222a b a b +=+D 、()2a 12a 1--=-- 【答案】A 。

【考点】合并同类项,幂的乘方和积的乘方,完全平方公式,去括号法那么。

【分析】依照合并同类项,幂的乘方和积的乘方运算法那么,完全平方公式,去括号法那么逐一判断:A 、2223x 2x x -=,选项正确;B 、()222a 4a -=,选项错误; C 、()222a b a 2ab b +=++,选项错误;D 、()2a 12a+2--=-选项错误。

应选A 。

2、〔2018山东枣庄3分〕如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上、假如0120∠=,那么2∠的度数是【】A 、30°B 、25°C 、20°D 、15°【答案】B 。

【考点】平行线的性质。

【分析】如图,∵AB ∥CD ,0120∠=,∴03120∠=∠=。

∴00245325∠=-∠=。

应选B 。

3、〔2018山东枣庄3分〕如图是每个面上都有一个汉字的正方体的一种侧面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是【】A 、我B 、爱C 、枣D 、庄【答案】C 。

【考点】几何图形展开。

【分析】依照正方体及其表面展开图的特点,让“美”字面不动,分别把各个面围绕该面折成正方体,其中面“美”与面“枣”相对,面“爱”与面“丽”相对,面“我”与面“庄”相对。

应选C 。

5、〔2018山东枣庄3分〕如图,该图形围绕点O 按以下角度旋转后,不能..与其自身重合的是【】A 、72︒B 、108︒C 、144︒D 、216︒【答案】B 。

山东省枣庄市部分中学2019年中考数学模拟试题(解析版)

山东省枣庄市部分中学2019年中考数学模拟试题(解析版)

山东省枣庄市部分中学2019年(5月份)中考数学模拟试卷一.选择题)A. 2B. 4C. ±2D. ±4【答案】A【解析】【分析】4,4的算术平方根是2,2,故选A.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A. 6B. ﹣6C. 3D. ﹣3【答案】D【解析】分析:根据题意得出a+6=b,a=﹣b,求出即可.详解:设B点表示的数是b,根据题意得:a+6=b,a=﹣b,解得:a=-3,b=3.故选D.点睛:本题考查了相反数的应用,关键是能根据题意得出方程a+6=b,a=﹣b.3.如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A. 60°B. 50°C. 40°D. 30°【答案】B【解析】根据平行线的性质即可求解.解:∵AC∥DF,∴∠F=∠2=50°,∵AB∥EF,∴∠1=∠F=50°.故选B.4.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.【答案】B【解析】【分析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B ,新图形是中心对称图形,故此选项正确; 选项C ,新图形不是中心对称图形,故此选项错误; 选项D ,新图形不是中心对称图形,故此选项错误; 故选B .【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.5.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A. 任意买一张电影票,座位号是2的倍数的概率B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃 C. 抛一个质地均匀的正方体骰子,落下后朝上的面点数是3D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球 【答案】C 【解析】 【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P ≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】A 、任意买一张电影票,座位号是2的倍数的概率为12,故A 选项错误; B 、一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃的概率是14,故B 选项错误;C 、抛一个质地均匀的正方体骰子,朝上的面点数是3的概率是16≈0.17,故C 选项正确;D 、一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球的概率为11145=+,故D 选项错误, 故选C .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6.如图在正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A. 6B. 7C. 8D. 9【答案】C 【解析】 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰△ABC 底边;②AB 为等腰△ABC 其中的一条腰. 【详解】解:如图:分情况讨论.①AB 为等腰△ABC 底边时,符合条件的C 点有4个; ②AB 为等腰△ABC 其中的一条腰时,符合条件的C 点有4个. 故选C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,在点M ,N ,P ,Q 中,一次函数y=kx+2(k <0)的图象不可能经过的点是( )A. MB. NC. PD. Q【答案】D【解析】分析:根据一次函数的解析式得出一次函数不经过第三象限,从而得出答案.详解:∵y=kx+2(k<0),∴一次函数经过一、二、四象限,∴不可能经过点Q,∴选D.点睛:本题主要考查的是一次函数的图像,属于基础题型.理解函数图像所经过的象限是解决这个问题的关键.8.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC交于点P,OP=43,则⊙O的半径为()A. 8B. 3C. 3D. 12【答案】C【解析】【分析】连接OA、OC,由∠B的度数,利用圆周角定理可求出∠AOC的度数,根据等腰三角形的性质可得∠OAC=30°,利用30°所对的直角边等于斜边的一半,得出OA的长,即为圆O的半径.【详解】连接OA、OC,∵∠AOC和∠B是AC所对的圆心角和圆周角,∴∠AOC=2∠B=120°,∵OA=OC,∴∠OAC=∠OCA=30°,∵OP⊥AC,∴∠APO=90°,在Rt△AOP中,OP=43,∠OAC=30°,∴OA=2OP=83,∴圆O的半径为83.故选C.【点睛】此题考查了圆周角定理、等腰三角形的性质以及含30°直角三角形的性质,熟练掌握定理及性质是解本题的关键.9.关于x的方程13xx--=2+3kx-有增根,则k的值为()A. ±3B. 3C. ﹣3D. 2【答案】D【解析】【分析】根据增根的定义可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,方程两边都乘(x﹣3),得:x﹣1=2(x﹣3)+k,当x=3时,k=2,符合题意,故选:D.【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx (k<0)的图象经过点B,则k的值为()A. ﹣12B. ﹣32C. 32D. ﹣36 【答案】B【解析】【详解】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的实数);其中正确结论的个数为()A. 2个B. 3个C. 4个D. 5个【答案】B 【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由对称知,当x =2时,函数值大于0,即y =4a +2b +c >0,故①正确; ②由图象可知:a <0,b >0,c >0,abc <0,故②正确;③当x =1时,y =a +b +c >0,即b >﹣a ﹣c ,当x =﹣1时,y =a ﹣b +c <0,即b >a +c ,故③错误; ④当x =3时函数值小于0,y =9a +3b +c <0,且x =﹣2ba=1, 即a =﹣2b ,代入得9(﹣2b)+3b +c <0,得2c <3b ,故④正确; ⑤当x =1时,y 的值最大.此时,y =a +b +c , 而当x =m 时,y =am 2+bm +c , 所以a +b +c >am 2+bm +c ,故a +b >am 2+bm ,即a +b >m (am +b ),故⑤错误. 综上所述,①②④正确. 故选:B .【点睛】本题考查二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论: ①∠CAD=30°②BD=7③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =3,正确的个数是( )A. 2B. 3C. 4D. 5【答案】D【解析】【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=12AB=12,OE∥AB,根据勾股定理计算=OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=1212POEAOPSS=,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°, 故①正确;②∵BE=EC ,OA=OC , ∴OE=12AB=12,OE ∥AB , ∴∠EOC=∠BAC=60°+30°=90°,Rt △EOC 中,= ∵四边形ABCD 是平行四边形, ∴∠BCD=∠BAD=120°, ∴∠ACB=30°, ∴∠ACD=90°,Rt △OCD 中,=,∴,故②正确; ③由②知:∠BAC=90°, ∴S ▱ABCD=AB•AC , 故③正确;④由②知:OE 是△ABC 的中位线,又AB=12BC ,BC=AD , ∴OE=12AB=14AD ,故④正确;⑤∵四边形ABCD 是平行四边形,∴∴S △AOE =S △EOC =12OE•OC=12×12= ∵OE ∥AB , ∴12EP OE AP AB ==,∴12POEAOPSS=,∴S△AOP=23S△AOE=2312,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.二.填空题13.函数y=1x-中自变量x的取值范围是_____.【答案】x≥﹣12且x≠1【解析】【分析】直接利用二次根式以及分式有意义的条件分析得出答案,二次根式有意义的条件为:被开方数大于等于0,分式有意义的条件为:分母不为0.【详解】解:∵若是函数y=有意义,∴2x+1≥0且1-x≠0,解得x≥-12且x≠1.故本题答案应为:x≥-12且x≠1.【点睛】此题主要考查了函数及二次根式、分式有意义的条件,正确把握二次根式的性质及分式有意义的条件是解题关键.14.实数a,ba b++的结果是________。

山东省枣庄市2019年中考数学试卷及答案解析(word版)

山东省枣庄市2019年中考数学试卷及答案解析(word版)

2019年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。

1.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+12.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′3.某中学篮球队12名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.84.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b 的大致图象可能是()A.B.C.D.9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.410.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.11.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2π B.π C.D.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。

2019年枣庄市初中学业水平考试中考数学试题

2019年枣庄市初中学业水平考试中考数学试题

2021 年枣庄市初中学业水平考试数学考前须知:1.本试题分第一卷和第二卷两局部.第一卷为选择题,36 分;第二卷为非选择题,84 分;全卷共 6 页,总分值120 分.考试时间为120 分钟.2 .答卷时,考生务必将第一卷和第二卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上XX和XX号.考试完毕,将试卷和答题卡一并交回.第一卷〔选择题共36 分〕一、选择题:本大题共12 小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对得 3 分,选错、不选或选出的答案超过一个均计零分。

1.〔2021?枣庄〕以下运算,正确的选项是〔〕A.2x+3y=5xy B.(x-3) 2=x2-9 C.(xy 2 ) 2=x2y4 D.x6÷X÷X3=x22. 〔2021?枣庄〕以下四个图案中,不是轴对称图案的是〔〕〔2021 ?XX改编〕A.B.C.D.3.〔2021 ?枣庄〕将一副直角三角板按如下图的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,那么∠α的度数是〔〕〔2021?眉山〕A.45°B.60° C .75°D.85°4. 〔2021?枣庄〕如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P 是线段AB上任意一点〔不包括端点〕,过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,那么该直线的函数表达式是〔〕〔2021?XX改编〕数字改动A.y=﹣x+4 B .y=x+4 C .y=x+8 D .y=﹣x+85.〔2021?枣庄〕从-1 、2、3、-6 这四个数中任取两数,分别记为m、n,那么点〔m,n〕在函数y 6x图象的概率是〔2021 ?XX〕A. 12B.13C.14D.186.〔2021?枣庄〕在平面直角坐标系中,将点A〔1,﹣2〕向上平移 3 个单位长度,再向左平移 2 个单位长度,得到点A′,那么点A′的坐标是〔〕〔2021?贵港〕A .〔﹣1,1〕B.〔﹣1,﹣2〕C .〔﹣1,2〕D.〔1,2〕7.〔2021?枣庄〕如图,点E 是正方形ABCD的边DC上一点,把△ADE绕点 A 顺时针旋转90°到△ABF的位置,假设四边形AECF的面积为20,DE=2,那么AE的长为〔〕〔2021 ?XX〕A.5 B.2 5 C.6 D.2 68.〔2021?枣庄〕如图,在边长为 4 的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,那么图中阴影局部的面积是〔〕〔结果保存π〕〔2021· XX B〕A DEB CA.8 B.16 2 C.82 D .8 1 29.〔2021?枣庄〕如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA⊥x 轴,点C在函数y=〔x>0〕的图象上,假设AB =1,那么k 的值为〔〕〔2021?XX〕A.1 B.22C. D .210.〔2021?枣庄〕如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是〔〕〔2021?XX〕C. D.5. 〔2021?枣庄〕如图为O、A、B、C 四点在数线上的位置图,其中O为原点,且A C=1,OA=OB,假设C点所表示的数为a,那么B点所表示的数为〔〕〔2021?XX〕A.﹣〔a+1〕 B .﹣〔a﹣1〕 C .a+1 D .a﹣112.〔2021 ?枣庄〕如图,将△ABC沿BC边上的中线AD平移到△A'B'C' 的位置,△ABCA'D 等于〔〕〔2021·XX〕的面积为9.假设AA'=1,那么为16,阴影局部三角形的面积A.2 B.3 C.4 D.分值24 分. 只填最后结果,每题填对得 4 分.6小题,总二、填空题:本大题共1 113. 〔2021?枣庄〕假设m- =3,那么m=. 〔2021?XX〕2+2m m 14.〔2021?枣庄〕关于x 的方程ax2+2x-3=0 有两个不相等的实数根,那么a的取值X围是.15.〔2021?枣庄〕如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗端A 的仰角为53°,假设测角仪的高度是 1.5m,那么杆底部 B 点6m的位置,在D处测得旗杆顶旗杆AB的高度约为m .〔准确到0.1m.参考数据:sin53 °≈0.80 ,cos53 °≈0.60 ,tan53 °≈ 1.33 〕〔2021·XX〕16.〔2021 ?枣庄〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC= 36 度.〔2021·临安〕6. 〔2021?枣庄〕把两个同样大小的含45°角的三角尺按如下图的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.假设AB=2,那么C D=.〔2021·XX A〕18.〔2021?枣庄〕观察以下各式:〔2021?滨州〕=1+11 ,2=1+ 1213,=1+ 1314,⋯⋯请利用你所发现的规律,计算+ + +⋯+1 11 ,其结果为.2 202122021三、解答题:本大题共7个小题,总分值60 分. 解答时,要写出必要的文字说明、证明过程或演算步骤.14. 〔〔2021?枣庄〕〔此题总分值8 分〕先化简,再求值:,其中x 为整数且满足不等式组.〔2021 ?随州〕15. 〔2021?枣庄〕〔此题总分值8 分〕如图,BD是菱形ABCD的对角线,∠CBD=75°,〔1〕请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;〔不要求写作法,保存作图痕迹〕〔2〕在〔1〕条件下,连接B F,求∠DBF的度数.〔2021?XX〕21.〔2021?枣庄〕〔此题总分值8 分〕对于任意实数a、b,定义关于“〞的一种运算如下:a b=2a+b. 例如 3 4=2×3+4=10.〔1〕求 2 〔-5〕的值;〔2〕假设x 〔-y〕=2,且2y x=-1,求x+y 的值. 〔2021·XX〕22.〔2021?枣庄〕〔此题总分值8 分〕4 月23 日是世界读书日,总书记说:“读书可生励师以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。

2019年中考数学试题含答案及名家点评:枣庄市

2019年中考数学试题含答案及名家点评:枣庄市

7.(3分)(2020•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB 和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )
A 22 .
B.18
C.14
D 11 .
主要考点: 思路分析:
详细解答:
菱形的性质
根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等 角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然 后求出EC,同理可得AF,然后判断出四边形AECF是平行四边 形,再根据周长的定义列式计算即可得解. 解:在菱形ABCD中,∠BAC=∠BCA, ∵AE⊥AC, ∴∠BAC+∠BAE=∠BCA+∠E=90°, ∴∠BAE=∠E, ∴BE=AB=4, ∴EC=BE+BC=4+4=8, 同理可得AF=8, ∵AD∥BC, ∴四边形AECF是平行四边形, ∴四边形AECF的周长=2(AE+EC)=2(3+8)=22. 故选A.
A 350元
B.400元
C.450元
D 500元


主要考点: 思路分析: 详细解答:
名家点评:
一元一次方程的应用
设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即 可. 解:设该服装标价为x元, 由题意,得0.6x﹣200=200×20%, 解得:x=400. 答:该服装标价为400元. 故选B. 本题考查了一元一次方程的应用,解题关键是要读懂题目的意 思,根据题目给出的条件,找出合适的等量关系列出方程.
3.(3分)(2020•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )
A 17° .

(解析版)山东枣庄滕州2019年初三上年中数学试卷.doc

(解析版)山东枣庄滕州2019年初三上年中数学试卷.doc

(解析版)山东枣庄滕州2019年初三上年中数学试卷【一】选择题:每题3分,共45分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请把你认为正确的选项用2B铅笔填涂在答题卡相应位置,如需改动,先用橡皮擦干净,再涂改其他答案,不能直接答在试卷上、1、以下四边形中,是中心对称而不是轴对称图形的是〔〕A、平行四边形B、矩形C、菱形D、正方形2、以下关于X的方程有实数根的是〔〕A、X2﹣X+1=0B、X2+X+1=0C、〔X﹣1〕〔X+2〕=0D、〔X﹣1〕2+1=03、P为线段AB的黄金分割点,且AP《PB,那么〔〕A、AP2=AB•PBB、AB2=AP•PBC、PB2=AP•ABD、AP2+BP2=AB24、如下图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD 的周长为36,那么OH的长等于〔〕A、4、5B、5C、6D、95、方程X2=5X的根是〔〕A、X=5B、X=0C、X1=0,X2=5D、X1=0,X2=﹣56、用配方法解一元二次方程X2+8X+7=0,那么方程可化为〔〕A、〔X+4〕2=9B、〔X﹣4〕2=9C、〔X+8〕2=23D、〔X﹣8〕2=97、如图,在△ABC中,点D,E分别在边AB,AC上,且,那么S△ADE:S四边形BCED的值为〔〕A、1:B、1:2C、1:3D、1:48、四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有以下四种选法,其中错误的选项是〔〕A、选①②B、选②③C、选①③D、选②④9、放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,那么两家抽到同一景点的概率是〔〕A、B、C、D、10、小明在测量楼高时,先测出楼房落在地面上的影长BA为15米〔如图〕,然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,那么楼高为〔〕A、10米B、12米C、15米D、22、5米11、某品牌服装原价800元,连续两次降价X%后售价为512元,下面所列方程中正确的选项是〔〕A、512〔1+X%〕2=800B、800〔1﹣2X%〕=512C、800〔1﹣X%〕2=512D、800﹣2X%=51212、如图,在矩形ABCD中,边AB的长为3,点E、F,分别在AD,BC上,连接BE,DF,EF,BD,假设四边形BEDF是菱形,且EF=AE+FC,那么边BC的长为〔〕A、2B、C、6D、313、如下图,一般书本的纸张是原纸张多次对开得到矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,以此类推,假设各种开本的矩形都相似,那么等于〔〕A、0、618B、C、D、214、以下4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,那么与△ABC相似的三角形所在的网格图形是〔〕A、B、C、D、15、等腰三角形一条边的边长为3,它的另两条边的边长是关于X的一元二次方程X2﹣12X+K=0的两个根,那么K的值是〔〕A、27B、36C、27或36D、18【二】填空题〔每题3分,共24分,将答案填在题的横线上〕16、假设〔ABC≠0〕,那么=__________、17、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为12和8时,那么阴影部分的面积为__________、18、关于X的一元二次方程MX2﹣X+1=0有实根,那么M的取值范围是__________、19、正方形ABCD,以CD为边作等边△CDE,那么∠AED的度数是__________、20、在实数范围内定义运算“★”,其规那么为A★B=A2﹣B2,那么方程〔2★3〕★X=9的根为__________、21、M,N是方程X2+2X﹣6=0的两个实数根,那么M2﹣MN+3M+N=__________、__________个、23、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去、第一个矩形的面积为1,那么第N个矩形的面积为__________、【三】解答题:共7小题,共51分,解答应写出文字说明、说理过程或演算步骤24、〔1〕X2+2X﹣6=0〔2〕〔Y+2〕2=〔3Y﹣1〕2、25、小刚在研究矩形性质时,把两张完全相同的矩形纸片叠放在一起〔如图中矩形ABCD和矩形BFDE〕,请你帮他判断重叠部分的四边形BNDM的性状,并给出证明、26、甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字〔如下图〕,指针的位置固定、游戏规那么:同时转动两个转盘,当转盘停止后,假设指针所指两个区域的数字之和为3的倍数,甲胜;假设指针所指两个区域的数字之和为4的倍数时,乙胜、如果指针落在分割线上,那么需要重新转动转盘、〔1〕试用列表或画树形图的方法,求甲获胜的概率;〔2〕请问这个游戏规那么对甲、乙双方公平吗?试说明理由、27、如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD;∠ADC=90°,E为AB的中点,〔1〕求证:△ADC∽△ACB;〔2〕CE与AD有怎样的位置关系?试说明理由、28、某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系、每盆植入3株时,平均单株盈利3元;以同样的栽培条件,假设每盆增加1株,平均单株盈利就减少0、5元、要使每盆的盈利达到10元,每盆应该植多少株?29、D、E分别是不等边三角形ABC〔即AB≠BC≠AC〕的边AB、AC的中点,O是△ABC 所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E、〔1〕如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;〔2〕假设四边形DGFE是菱形,那么OA与BC应满足怎样的数量关系?为什么?〔3〕当OA与BC满足__________时,四边形DGEF是一个矩形〔直接填答案,不需证明、〕30、如图,△ABC中,∠C=90°,AC=3CM,BC=4CM,动点P从点B出发以2CM/S的速度向点C移动,同时动点Q从C出发以1CM/S的速度向点A移动,设它们的运动时间为T、〔1〕T为何值时,△CPQ的面积等于△ABC面积的?〔2〕运动几秒时,△CPQ与△CBA相似?〔3〕在运动过程中,PQ的长度能否为1CM?试说明理由、山东省枣庄市滕州市2018届九年级上学期期中数学试卷【一】选择题:每题3分,共45分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请把你认为正确的选项用2B铅笔填涂在答题卡相应位置,如需改动,先用橡皮擦干净,再涂改其他答案,不能直接答在试卷上、1、以下四边形中,是中心对称而不是轴对称图形的是〔〕A、平行四边形B、矩形C、菱形D、正方形考点:中心对称图形;轴对称图形、分析:根据中心对称图形以及轴对称图形的定义即可作出判断、解答:解:A、平行四边形是中心对称图形,不是轴对称图形,应选项正确;B、矩形既是轴对称图形,又是中心对称图形,应选项错误;C、菱形既是轴对称图形,又是中心对称图形,应选项错误;D、正方形,矩形既是轴对称图形,又是中心对称图形,应选项错误、应选A、点评:此题主要考查了中心对称图形与轴对称图形的定义,正确理解定义是解题关键、2、以下关于X的方程有实数根的是〔〕A、X2﹣X+1=0B、X2+X+1=0C、〔X﹣1〕〔X+2〕=0D、〔X﹣1〕2+1=0考点:根的判别式、专题:计算题、分析:分别计算A、B中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C进行判断;根据非负数的性质对D进行判断、解答:解:A、△=〔﹣1〕2﹣4×1×1=﹣3《0,方程没有实数根,所以A选项错误;B、△=12﹣4×1×1=﹣3《0,方程没有实数根,所以B选项错误;C、X﹣1=0或X+2=0,那么X1=1,X2=﹣2,所以C选项正确;D、〔X﹣1〕2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误、应选:C、点评:此题考查了一元二次方程AX2+BX+C=0〔A≠0〕的根的判别式△=B2﹣4AC:当△》0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△《0,方程没有实数根、3、P为线段AB的黄金分割点,且AP《PB,那么〔〕A、AP2=AB•PBB、AB2=AP•PBC、PB2=AP•ABD、AP2+BP2=AB2考点:黄金分割、分析:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值〔〕叫做黄金比、解答:解:∵P为线段AB的黄金分割点,且AP《PB,∴PB2=AP•AB、应选C、点评:此题考查了黄金分割的概念,熟记定义是解题的关键、4、如下图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD 的周长为36,那么OH的长等于〔〕A、4、5B、5C、6D、9考点:菱形的性质;直角三角形斜边上的中线;三角形中位线定理、分析:可先求得AB的长,再根据三角形中位线定理可求得OH的长、解答:解:∵四边形ABCD为菱形,且周长为36,∴AB=BC=CD=AD=9,又∵O为BD中点,H为AD的中点,∴OH为△ABD的中位线,∴OH=AB=4、5,应选A、点评:此题主要考查菱形的性质,掌握菱形的四边相等、对角线互相垂直平分是解题的关键、5、方程X2=5X的根是〔〕A、X=5B、X=0C、X1=0,X2=5D、X1=0,X2=﹣5考点:解一元二次方程-因式分解法、专题:计算题、分析:由于方程左右两边都含有X,所以用提公因式法比较简单、解答:解:把方程移项得,X2﹣5X=0即X〔X﹣5〕=0,解得X1=0,X2=5、应选C、点评:此题考查用因式分解法解一元二次方程,要先移项再解方程,不要漏掉一个根、6、用配方法解一元二次方程X2+8X+7=0,那么方程可化为〔〕A、〔X+4〕2=9B、〔X﹣4〕2=9C、〔X+8〕2=23D、〔X﹣8〕2=9考点:解一元二次方程-配方法、专题:计算题、分析:将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果、解答:解:X2+8X+7=0,移项得:X2+8X=﹣7,配方得:X2+8X+16=9,即〔X+4〕2=9、应选A点评:此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移动方程右边,然后左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解、7、如图,在△ABC中,点D,E分别在边AB,AC上,且,那么S△ADE:S四边形BCED的值为〔〕A、1:B、1:2C、1:3D、1:4考点:相似三角形的判定与性质、分析:首先根据两边对应成比例且夹角相等的两三角形相似,证得△ADE∽△ACB,再由相似三角形面积的比等于相似比的平方即可求得答案、解答:解:在△ADE与△ACB中,,∴△ADE∽△ACB,∴S△ADE:S△ACB=〔AE:AB〕2=1:4,∴S△ADE:S四边形BCED=1:3、应选C、点评:此题考查了相似三角形的判定与性质、注意相似三角形的面积的比等于相似比的平方、8、四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有以下四种选法,其中错误的选项是〔〕A、选①②B、选②③C、选①③D、选②④考点:正方形的判定;平行四边形的性质、分析:要判定是正方形,那么需能判定它既是菱形又是矩形、解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意、应选:B、点评:此题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角、③还可以先判定四边形是平行四边形,再用1或2进行判定、9、放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,那么两家抽到同一景点的概率是〔〕A、B、C、D、考点:列表法与树状图法、分析:首先用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,然后画出树状图,再由树状图求得所有等可能的结果与两家抽到同一景点的情况,继而求得答案、解答:解:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:=、应选A、点评:此题考查了树状图法与列表法求概率、用到的知识点为:概率=所求情况数与总情况数之比、10、小明在测量楼高时,先测出楼房落在地面上的影长BA为15米〔如图〕,然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,那么楼高为〔〕A、10米B、12米C、15米D、22、5米考点:相似三角形的应用、专题:应用题、分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似、根据相似三角形的对应边的比相等,即可求解、解答:解:∵=即=,∴楼高=10米、应选A、点评:此题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题、11、某品牌服装原价800元,连续两次降价X%后售价为512元,下面所列方程中正确的选项是〔〕A、512〔1+X%〕2=800B、800〔1﹣2X%〕=512C、800〔1﹣X%〕2=512D、800﹣2X%=512考点:由实际问题抽象出一元二次方程、专题:增长率问题、分析:根据降价后的价格=原价〔1﹣降低的百分率〕,此题可先用800〔1﹣X%〕表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程、解答:解:当商品第一次降价X%时,其售价为800﹣800X%=800〔1﹣X%〕;当商品第二次降价X%后,其售价为800〔1﹣X%〕﹣800〔1﹣X%〕X%=800〔1﹣X%〕2、∴800〔1﹣X%〕2=512、应选C、点评:此题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于512即可、12、如图,在矩形ABCD中,边AB的长为3,点E、F,分别在AD,BC上,连接BE,DF,EF,BD,假设四边形BEDF是菱形,且EF=AE+FC,那么边BC的长为〔〕A、2B、C、6D、3考点:菱形的性质;矩形的性质、分析:根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,再由锐角三角函数求出BE,得出AE,即可得出结果、解答:解:∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∵EF=AE+FC,AE=CF,EO=FO∴AE=EO=CF=FO,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE==2 ,∴BF=BE=2 ,∴CF=AE=BE=,∴BC=BF+CF=3 ,应选:D、点评:此题考查了矩形的性质、菱形的性质以及锐角三角函数;根据题意弄清各个角之间的关系求出角的度数是解决问题的关键、13、如下图,一般书本的纸张是原纸张多次对开得到矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,以此类推,假设各种开本的矩形都相似,那么等于〔〕A、0、618B、C、D、2考点:相似多边形的性质、分析:根据矩形ABCD与矩形ABFE相似,且矩形ABCD的面积是矩形ABFE面积的2倍,根据相似图形面积比是相似比的平方,即可得出的值、解答:解:∵矩形ABCD的面积是矩形ABFE面积的2倍,各种开本的矩形都相似,∴=〔〕2=2,∴=、应选C、点评:此题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方、14、以下4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,那么与△ABC相似的三角形所在的网格图形是〔〕A、B、C、D、考点:相似三角形的判定、专题:网格型、分析:根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案、解答:解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误、应选:B、点评:此题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键、15、等腰三角形一条边的边长为3,它的另两条边的边长是关于X的一元二次方程X2﹣12X+K=0的两个根,那么K的值是〔〕A、27B、36C、27或36D、18考点:等腰三角形的性质;一元二次方程的解、专题:分类讨论、分析:由于等腰三角形的一边长3为底或腰不能确定,故应分两种情况进行讨论:①当3为腰时,其他两条边中必有一个为3,把X=3代入原方程可求出K的值,进而求出方程的另一根,再根据三角形的三边关系判断是否符合题意即可;②当3为底时,那么其他两条边相等,即方程有两个相等的实数根,由△=0可求出K的值,再求出方程的两个根进行判断即可、解答:解:分两种情况:①当其他两条边中有一个为3时,将X=3代入原方程,得32﹣12×3+K=0,解得K=27、将K=27代入原方程,得X2﹣12X+27=0,解得X=3或9、3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,那么其他两条边相等,即△=0,此时144﹣4K=0,解得K=36、将K=36代入原方程,得X2﹣12X+36=0,解得X=6、3,6,6能够组成三角形,符合题意、故K的值为36、应选:B、点评:此题考查的是等腰三角形的性质,一元二次方程根的判别式及三角形的三边关系,在解答时要注意分类讨论,不要漏解、【二】填空题〔每题3分,共24分,将答案填在题的横线上〕16、假设〔ABC≠0〕,那么=、考点:比例的性质、专题:计算题、分析:先设=K,可得A=2K,B=3K,C=5K,再把A、B、C的值都代入所求式子计算即可、解答:解:设=K,那么A=2K,B=3K,C=5K,∴==、故答案是:、点评:此题考查了比例的性质、解题的关键是先假设=K,得出A=2K,B =3K,C=5K,降低计算难度、17、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为12和8时,那么阴影部分的面积为24、考点:菱形的性质、分析:根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果、解答:解:如下图:∵菱形ABCD的两条对角线的长分别为12和8,∴菱形ABCD的面积=×12×8=48,∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=S菱形ABCD=×48=24、故答案为:24、点评:此题考查了中心对称、菱形的性质;熟记菱形的性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键、18、关于X的一元二次方程MX2﹣X+1=0有实根,那么M的取值范围是M≤、考点:根的判别式、分析:由于X的一元二次方程MX2﹣X+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于M的不等式组,解不等式组即可求出M的取值范围、解答:解:∵关于X的一元二次方程MX2﹣X+1=0有实根,∴M≠0,并且△=B2﹣4AC=1﹣4M≥0,∴M≤且M≠0、故填空答案:M≤且M≠0、点评:总结:一元二次方程根的情况与判别式△的关系:〔1〕△》0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△《0⇔方程没有实数根、此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件、19、正方形ABCD,以CD为边作等边△CDE,那么∠AED的度数是15°或75°、考点:正方形的性质;三角形内角和定理;等腰三角形的性质;等边三角形的性质、专题:计算题、分析:当E在正方形ABCD内时,根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出即可;当E在正方形ABCD外时,根据等边三角形CDE,推出∠ADE=150°,求出即可、解答:解:有两种情况:〔1〕当E在正方形ABCD内时,如图1∵正方形ABCD,∴AD=CD,∠ADC=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°﹣60°=30°,∴AD=DE,∴∠DAE=∠AED=〔180°﹣∠ADE〕=75°;〔2〕当E在正方形ABCD外时,如图2∵等边三角形CDE,∴∠EDC=60°,∴∠ADE=90°+60°=150°,∴∠AED=∠DAE=〔180°﹣∠ADE〕=15°、故答案为:15°或75°、点评:此题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键、20、在实数范围内定义运算“★”,其规那么为A★B=A2﹣B2,那么方程〔2★3〕★X=9的根为X1=4,X2=﹣4、考点:解一元二次方程-直接开平方法、专题:新定义、分析:根据新定义列出方程,把方程的左边化成完全平方的形式,右边是一个非负数,用直接开平方法求出方程的根、解答:解:根据新定义可以列方程:〔22﹣32〕★X=9,〔﹣5〕2﹣X2=9,25﹣X2=9,X2=16,X1=4,X2=﹣4、故答案为:X1=4,X2=﹣4、点评:此题考查的是用直接开平方法解一元二次方程,根据新定义列出方程,把方程的左边化成完全平方的形式,一般是一个非负数,用直接开平方法求出方程的根、21、M,N是方程X2+2X﹣6=0的两个实数根,那么M2﹣MN+3M+N=10、考点:根与系数的关系、分析:利用一元二次方程解的定义,将X=M代入方程求得M2=6﹣2M,然后根据根与系数的关系知M+N=﹣2,MN=﹣6,最后将M2、M+N,MN的值代入所求的代数式求值即可、解答:解:∵M,N是方程X2+2X﹣3=0的两个实数根,∴M2+2M﹣6=0,即M2=6﹣2M;∵M+N=﹣2,MN=﹣6,∴M2﹣MN+3M+N=6﹣2M﹣MN+3M+N=M+N﹣MN+6=﹣2+6+6=10、故答案为:10、点评:此题考查了一元二次方程根与系数的关系,设X1,X2是关于X的一元二次方程AX2+BX+C=0〔A≠0,A,B,C为常数〕的两个实数根,那么X1+X2=﹣,X1X2=、以及一元二次方程的解、个、解答:解:〔1〕有两个角对应相等的两个三角形相似,故有一个锐角相等的两个直角三角〔3〕等边三角形的三个角均是60°,符合有两个角对应相等的两个三角形相似,故两个等〔4〕多边形相似的条件是:对应角相等,对应边成比例,任意两个矩形只具备对应角相等,故答案为:3、点评:此题主要考查了相似三角形的判定方法,多边形相似的判定方法,要注意的是一定相似的三角形有:等腰直角三角形、等边三角形、全等三角形23、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去、第一个矩形的面积为1,那么第N个矩形的面积为〔〕N﹣1、考点:矩形的性质;菱形的性质、专题:压轴题;规律型、分析:易得第二个矩形的面积为,第三个矩形的面积为〔〕2,依此类推,第N个矩形的面积为〔〕N﹣1、解答:解:第一个矩形的面积为1;第二个矩形的面积为原来的〔〕2﹣1=;第三个矩形的面积是〔〕3﹣1=;…故第N个矩形的面积为:〔〕N﹣1、点评:此题是一道找规律的题目,这类题型在2018届中考中经常出现、对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的、【三】解答题:共7小题,共51分,解答应写出文字说明、说理过程或演算步骤24、〔1〕X2+2X﹣6=0〔2〕〔Y+2〕2=〔3Y﹣1〕2、考点:解一元二次方程-公式法;解一元二次方程-因式分解法、分析:〔1〕根据配方法的步骤先移项,再在等式的两边同时加上一次项系数一半的平方,得出〔X+〕2=8,然后开方即可;〔2〕先移项,再把等号左边因式分解,然后进行计算即可、解答:解:〔1〕X2+2X﹣6=0,X2+2X=6,X2+2X+2=8,〔X+〕2=8,X+=±2,X1=,X2=﹣3;〔2〕〔Y+2〕2=〔3Y﹣1〕2,〔Y+2〕2﹣〔3Y﹣1〕2=0,【〔Y+2〕+〔3Y﹣1〕】【〔Y+2〕﹣〔3Y﹣1〕】=0,〔4Y+1〕〔﹣2Y+3〕=0,4Y+1=0,﹣2Y+3=0,Y1=﹣,Y2=、点评:此题考查了配方法和因式分解法解一元二次方程,掌握配方法的步骤和平方差公式是此题的关键、25、小刚在研究矩形性质时,把两张完全相同的矩形纸片叠放在一起〔如图中矩形ABCD和矩形BFDE〕,请你帮他判断重叠部分的四边形BNDM的性状,并给出证明、考点:菱形的判定、分析:首先根据矩形的性质可得MB∥DN,BN∥MD,进而得到四边形BNDM是平行四边形,再证明△ABM≌△EDM,可得BM=DM,然后根据邻边相等的平行四边形是菱形可得四边形BNDM是菱形、解答:解:四边形BNDM是菱形,∵四边形ABCD、BFDE是矩形,∴MB∥DN,BN∥MD,∴四边形BNDM是平行四边形,在△ABM和△EDM中,,∴△ABM≌△EDM〔AAS〕,∴BM=DM,∴四边形BNDM是菱形、点评:此题主要考查了菱形的判定,关键是掌握邻边相等的平行四边形是菱形、26、甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字〔如下图〕,指针的位置固定、游戏规那么:同时转动两个转盘,当转盘停止后,假设指针所指两个区域的数字之和为3的倍数,甲胜;假设指针所指两个区域的数字之和为4的倍数时,乙胜、如果指针落在分割线上,那么需要重新转动转盘、〔1〕试用列表或画树形图的方法,求甲获胜的概率;〔2〕请问这个游戏规那么对甲、乙双方公平吗?试说明理由、考点:游戏公平性;列表法与树状图法、分析:〔1〕根据题意列出图表,得出数字之和共有12种结果,其中“和是3的倍数”的结果有4种,再根据概率公式求出甲获胜的概率;〔2〕根据图表〔1〕得出〕“和是4的倍数”的结果有3种,根据概率公式求出乙的概率,再与甲的概率进行比较,得出游戏是否公平、解答:解:〔1〕列表如下:∵数字之和共有12种结果,其中“和是3的倍数”的结果有4种,∴P〔甲〕==;〔2〕∵“和是4的倍数”的结果有3种,∴P〔乙〕==;∵,即P〔甲〕≠P〔乙〕,∴这个游戏规那么对甲、乙双方不公平、点评:此题考查了游戏的公平性,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否那么就不公平,用到的知识点为:概率=所求情况数与总情况数之比、27、如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD;∠ADC=90°,E为AB的中点,〔1〕求证:△ADC∽△ACB;〔2〕CE与AD有怎样的位置关系?试说明理由、考点:相似三角形的判定与性质、。

2019年中考数学试卷(word版,含答案) (18)

2019年中考数学试卷(word版,含答案) (18)

2019年初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .152.函数y 中的自变量x 的取值范围是 A .x ≠12 B .x ≥1 C .x >12 D .x ≥123.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A .长方体 B .四棱锥 C .三棱锥 D .圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 8.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50° 9.如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 A .10 B .9 C .8 D .7第8题 第9题 第16题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 .12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.计算:2(3)a += .14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 16.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第17题 第18题17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙Oxy O-6OOB CABE Fxy-6OABBCHGB的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 .18.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)B《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.25.(本题满分8分)不及格“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .27.(本题满分10分)CBBAA D已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PC B′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.参考答案1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B 11.23±12.7210´ 13.269a a ++ 14.2y x =(答案不唯一) 15.3 16.x <2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a 20.(1)【解答】解:61,6121-=+=x x ; (2)【解答】解:3=x ,经检验3=x 是方程的解 21.(1) 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22. (1)12(2)开始2112121211221221ììïïïïíïïïïîïïìïïïïíïïïïîïíìïïïïïíïïïïîïïìïïïïíïïïïîî红红黑黑红红黑黑红黑红黑红黑红黑 共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(1) 作MN BO ,由垂径定理得N 为OB 中点 MN=12OA ∵MN=3∴OA=6,即A (-6,0) ∵sin ∠ABO=2,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到3y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B ,D ,四边形ABCD 即为所求(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点OEACB连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②27.(1) 令x=0,则4-=y ,∴C (0,-4) ∵ OA <OB ,∴对称轴在y 轴右侧,即02 ab- ∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = EDACBCAB∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y 即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a ) ∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角 计算可得2222221616,4,936CB m CD m DB m =+=+=+ 1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA < 28.(1)①勾股求的 易证'CBA CB P △∽△,''4B P =解得②1°如图,当∠PCB ’=90 °时,在△PCB ’中采用勾股得:222(3)t t +-=,解得t=22°如图,当∠PCB ’=90 °时,在△PCB’中采用勾股得:222(3)t t +-=,解得t=63ABP ’为正方形,解得(2)如图3-t tB'B'CBAADPD3B'CA BD∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB ’M (AAS ) ∴AD=AB ’=AB即四边形ABCD 是正方形 如图,设∠APB=x∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B ’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB ’=90°-x∴∠DAB ’=∠PAB ’-∠DAP=90°-2x ∴∠DAM=21∠DAB ’=45°-x ∴∠MAP=∠DAM+∠PAD=45°MA DP4321MB'BCB'A D PP。

最新2019年山东省枣庄市中考数学试卷含答案

最新2019年山东省枣庄市中考数学试卷含答案

最新山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a63.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>05.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.76.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.89.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=010.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则在第行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣220.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.最新山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【解答】解:的倒数是﹣2.故选:A.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1218.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则在第45行.【解答】解:∵442=1936,452=2025,∴在第45行.故答案为:45.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【解答】解:原式=2﹣+﹣3﹣+=﹣.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE =S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<022.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•A F.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N 的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D , ∴MD ∥OA , ∴△BMD ∽△BAO , ∴=,∵MN ∥AC ∴=, ∴=,∵OA=4,BC=10,BN=n +2 ∴MD=(n +2), ∵S △AMN =S △ABN ﹣S △BMN =BN•OA ﹣BN•MD=(n +2)×4﹣×(n +2)2 =﹣(n ﹣3)2+5,当n=3时,△AMN 面积最大是5, ∴N 点坐标为(3,0).∴当△AMN 面积最大时,N 点坐标为(3,0).。

山东枣庄2019中考试题数学卷解析版

山东枣庄2019中考试题数学卷解析版

绝密☆启用前注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列计算,正确的是22422422222a?a)?(1??a1)?(aaaa??aa?a?2. B.. D A. CC.【答案】考点:同底数幂的计算;合并同类项;完全平方公式.AOBOAAOBOBEE点射出一束的一边为平面镜,∠上有一点=37°36′,在2.如图,∠,从OADDCOBDEB 的度数是恰好与光线经上一点平行,则∠反射,反射光线A.75°36′ B.75°12′C.74°36′ D.74°12′第2题图B. 【答案】【解析】 1试题分析:由平行线的性质可得∠AOB=∠ADC=37°36′,根据光的反射定律可得∠ADC=∠ODE=37°36′,再由三角形外角的性质可得∠DEB=∠AOB+∠ODE=37°36′+37°36′=75°12′,故答案选B.考点:平行线的性质;三角形外角的性质.3.某中学篮球队12名队员的年龄如下表:年龄:(岁) 13 14 15 1625人数 41关于这12名队员的年龄,下列说法错误的是A.众数是14 B.极差是3C.中位数是14.5D.平均数是14.8D.【答案】考点:众数;中位数;极差;平均数.ABCAB=ACAEBCABCACE的平分线如图,在△中,0°,延长线上一点,∠为,∠与∠=34.DD等于,则∠相交于点A.15° B.17. 5° C.20° D.22.5°AD BEC题图第4A. 【答案】【解析】°,ACB=75ABC=∠中,AB=AC,∠A=30°,根据等腰三角形的性质可得∠试题分析:在△ABC°,∠°,根据角平分线的性质可得∠DBC=37.5°-75°=105-所以∠ACE=180°∠ACB=180°,根据三角形的内角和定理可得∠D=180°-∠DBC-ACD=52.5°,即可得∠BCD=127.5∠BCD=180°-37.5°-127.5°=15°,故答案选A.考点:等腰三角形的性质;三角形的内角和定理.2x有一个根为的方程5.已知关于则另一个根为0?a?xx?3,-2A.B. CD.-55 1 -.22【答案】B.【解析】试题分析:设方程的里一个根为b,根据一元二次方程根与系数的关系可得-2+b=-3,解得b=-1,故答案选B.考点:一元二次方程根与系数的关系.6.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是黄绿白红白绿红蓝黑D.黑黄 B. 红 C.A.白C.【答案】.考点:几何体的侧面展开图ADABCABCACABC上6,所在直线翻折,使点=3,现将△落在直线沿7.如图,△的面积为BPADPC上的一点,则线段的′处,的长不可能是为直线10.4 C.5.5 DA.3 B.题图第7A. 【答案】【解析】′当BCABC′的面积也为6,ABC试题分析:由题意可知,△ABC′是由△翻折得到的,所以△所以4,BP最短为,即,△ABC′的面积为6,可求得BP=4′时,⊥ADBP最短,因AC=AC=3A. 3的长不可能是,故答案选线段BP.考点:点到直线的距离2x01??2x?x?kb则一次函数8. 若关于的一元二次方程,有两个不相等的实数根bkx??y的图象可能是3B.【答案】.考点:根的判别式;一次函数的性质HABCD ABDH?6AC?8DB?9.如图,四边形是菱形,,于,则,DH等于12244 ..5 D B. CA.55DCABH第9题图A. 【答案】【解析】ABCD6??8DBAC,OB=3OA=4,试题分析:如图,四边形是菱形,,根据菱形的性质可得,124DH???SAB?ACBD A.故答案选,再由由勾股定理可得AB=5DH=即可求得,菱形25.考点:菱形的性质4a?aPa的取值范围在数轴上表示,+1)关于原点的对称点在第四象限,则10.已知点(+12正确的是B..A0 1 2-1 -2 021-1-2C.D.-10 21 -1 -2 0 1-2 -3【答案】C.考点:点的坐标;不等式组的解集.23CDCDABCDBABO,则阴影部分的面积为=,∠°,11. 如图,=是⊙的直径,弦30⊥π2π D. A.2π B.Π C.33第11题图【答案】D.【解析】试题分析:已知,AB是⊙O的直径,弦CD⊥AB,根据圆的对称性可得阴影部分的面积等于3,由圆周角定理可得∠COB=60°,在Rt△COE中,由垂径定理可得扇形AOB的面积,CE=2??2260????SS?,求得OC=2故答案选D.,所以阴影BOC扇形3603考点:垂径定理;圆周角定理;扇形面积公式.52?bxax?cy?a?0abc?0;①已知二次函数)的图象如图所示,(给出以下四个结论:12.2?0?b4acb?a?b?c?0a.其中,正确的结论有②;④;③A.1个B.2个C.3个D.4个y3x=-2x O 12题图第题图)10(第C.【答案】.考点:抛物线的图象与系数的关系第Ⅱ卷)分共84 (非选择题分.分.只填写最后结果,每小题填对得424二、填空题:本大题共6小题,满分1?3?8??29?2? 13. 计算:.5. 【答案】2【解析】51=3-. 试题分析:原式+2-2=22.考点:实数的运算AM米,如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:=414.CDMADMBCAB米为=8米,∠ =45°,∠=30°,则警示牌的高23.0.1(结果精确到米,参考数据: =1.41,=1.73)6题图第142.9.【答案】.考点:解直角三角形ACACBDCDOABE,则,=2,连接如图,在半径为3的⊙中,直径,若与弦相交于点15.D .tan =题图第1522. 【答案】【解析】在直角ACB试题分析:如图,连接BC,根据直径所对的圆周角为直角可得△为直角三角形,2所以,由圆周角定理可得∠A=,由勾股定理可得∠BC=4D,AB=6ACB三角形△中,AC=2,2BC422??AD. tan=tan=2AC. 考点:圆周角定理;勾股定理;锐角三角函数3x?ny?BC AAC,如果)如图,点16. 的坐标为(-4,0,直线与坐标轴交于点,,连结nACD .∠°,则=90的值为7yx+n3y=O A x BCD题图第1634?. 【答案】3.考点:一次函数的性质2AACBCABCABCC60°到绕点=顺时针方向旋转17. 如图,已知△中,∠,将△=90°,=BBCCABC= . ,则′△′′′的位置,连接′BA′CC B题图第1713?.【答案】62222''223?1)?(?(BCC?P?BP?2()?)31. 22 8.考点:旋转的性质;勾股定理11aaaa?a?a nn则为整数)18.一列数(,,,,…满足条件:≥2,,且3122016n1a1?21?n.=-1. 【答案】【解析】111?a?a?-12??a,试题分析:根据题意可知,,,321122?1?1 211a??a是第3=672,所以由此可得这组数据3个一循环,2016÷, (201642)-11?(a=-1. 3个数,即672个循环中的第2016.考点:规律探究题 60分.解答时,要写出必要的文字说明、证三、解答题:本大题共7小题,满分明过程或演算步骤.)8分19.(本题满分21aa2?2)??(0?x?2x3?a先化简,再求值:. ,其中的解是方程2a1a?aa?2?12a321x???x02?x?x3?∴=【答案】原式, 由,得,又0?1a?121?a232)?(932??= .原式.?a?31021??2 9. 考点:分式的化简求值;一元二次方程的解法)分本题满分820. (P n那么如果这些交点都不重合,(指落在其内部的交点)表示,边形的对角线的交点个数n P n与的关系式是:n1)n(?n2)?P?nb?an?(nab4) ,≥是常数, (其中,n24PP). 填数字 )(填数字;五边形时,(=⑴通过画图,可得四边形时,=54 b,a. 的值⑵请根据四边形和五边形对角线交点的个数,结合关系式,求5,?a?5??1PP,(2);【答案】(1)?546.?b?【解析】5??1PP分别代入公式,,n=52;(根据题意画出图形即可得试题分析:(1))把n=4,54. 可得以ab的值、为未知数的二元一次方程组,解方程组即可得、ba 试题解析:⑴由画图,可得5?4n?n5?PP1?.时,;当时,当54 10. 考点:数形结合思想;二元一次方程组的解法 8分)21.(本题满分户居民的生活用水情负责了解他所居住的小区450小军同学在学校组织的社会实践活动中, ,并绘制了样本的频数分布表:户居民的月均用水量(单位:t)况,他从中随机调查了50,③;⑴请根据题中已有的信息补全频数分布表:①,②请你通过样本估计8t”为中等用水量家庭,⑵如果家庭月均用水量“大于或等于5t且小于总体中的中等用水量家庭大约有多少户?bbbaa83?x?x?7?2,、户为范围内的两户为范围内、⑶记月均用水量在在,3、13122.户家庭来自不同范围的概率2户,试完成下表,并求出抽取的2从这5户家庭中任意抽取bbaba13221a1a2b1b2b33. )表格见解析,(1712;,③,②【答案】⑴①15612%();35 11(户))=171⑵中等用水量家庭大约有450×(20%+12%+6% ,⑶表格(略)bbaba13212bbbaaaaaa()()(,,,)(),131211112baabaabaa,,((),)(),)(112223222bbbbbaabb)()((,,)(,,)111112132bbabbabbb,,()(),(,)()122122232bbabbbbba,,)((,)(),)(?.抽取的2户家庭来自不同范围的概率P=520考点:)22.(本题满分8分FABOCFABFOAOABC的,是,上的一个动点(重合)不与如图,在矩形中,,过点=3,=2k?y EBC边交于点反比例函数的图象与.x ABF的中点时,求该函数的解析式;⑴当为EFAk⑵当的面积最大,最大面积是多少?为何值时,△33?y. S有最大值,=S【答案】(1)k=3;(2)当时,最大值4x 12k=3.∴3?y. ∴该函数的解析式为xkk(EF两点坐标分别为⑵由题意,知E,,,2),F(3,)321k111k2k???k?BE??S?(3?)AF EFA?2123222∴312?k?3)??(4123 =.k=3时,S有最大值,S所以当最大值4. 考点:反比例函数的性质;二次函数的应用分).(本题满分823CPBAPBABPAOACOBCPO.是⊙,的直径,是⊙已知∠的弦,点是⊙连接外一点,=∠,,如图,OPB⑴求证:的切线;是⊙22BCOPOPOPBCO⑵连接,若∥,且=8的半径为,求,⊙的长.13题图第232. 2)详见解析;【答案】(1)(O的切线.是⊙∴PB14.∴BC=2. 考点:切线的判定;相似三角形的判定及性质)10分24.(本题满分FPACEPFPABADEFPABCDE,,上,分别在线段已知,如图,把△放置在菱形=6中,使得顶点,,= 3636°ABEFBAD,∠>=60,且.=EPF的大小;⑴求∠AFAPAE,求的值;⑵若+=8APACADFPABEFPE长的最大值,,分别在线段⑶若△上运动,请直接写出的三个顶点,,.和最小值DD C CP F A B A BE第24题备用图第24题图3106. 的最小值为,AP)2°;(AP)的最大值为12;(3【答案】(1)120 【解析】36,根据等腰三角形的EF=PE=PF=6,P作PG⊥EF于G,已知试题分析:(1)如图,过点133EPF?∠sin中,由.得性质可在FG=EG=Rt∠,∠FPG=EPG=△FPG233FG3??,于MPM⊥AB2所以∠EPF=2∠FPG=120°FPG=.()作,可求得∠FPG=60°26PF≌△PME,再利用PM=PNHL证明Rt,,根据菱形的性质可得∠⊥PNAD于NDAC=∠BACAM=AN,1?30?DAB???PAM°,即可得△RtPNFNF=ME.AM= AN =APcos30所以,AP=10又因,2 15335310?10EFP)如图,当△AN=(3.ME+AF=(AM+=)+(AN-NF)=AM=+.所以AE2PP 之间运动,易知,AC上运动时,点P在,F,P分别在线段AB,AD,的三个顶点E219AO?3?POPO?6. AP的最小值为的最大值为,12,,所以AP12G.于⊥作PGEF试题解析:(1)如图,过点P的对角线,AC为菱形ABCD∵PM=PN.,BAC,AM=AN∴∠DAC=∠ PE=PF,,△PNF 中,PM=PNPME 在Rt△和RtPNF Rt△Rt△PME≌∴NF=ME.∴1?30?DAB?PAM??, AP=10,又2335?10=AM= AN =APcos30=°. ∴2310.+-)++(+∴AEAF=AMME(ANNF)=AMAN=16. 考点:四边形综合题)分本题满分1025. (2CxAyaxbxca,(如图,已知抛物线1=,且经过+,+0()≠0)的对称轴为直线=-1Bx.)两点,与轴的另一个交点为(0,3BCCymxnB两点,求直线⑴若直线经过=和抛物线的解析式;+,CxMMA的距离之和最小,,使点⑵在抛物线的对称轴的距离与到点=-1上找一点到点BPCMPx 为直角三角上的一个动点,求使△=-求点的坐标;⑶设点1为抛物线的对称轴P的坐标.形的点第题图2523??2xy??x3??xy共有(1)满足条件的点P2M(-1,,));(3;(2)【答案】17317?3?PPPP,,(-1,)4), .1() ,-,-四个,分别为(-12), (-1413222【解析】2CxbxyaxcA,)且经过1的对称轴为直线=-,,(10,(0)(试题分析:1已知抛物线=++的值,即可得抛物线的解析式;根据抛物cba3)两点,可得方程组,解方程组可求得、、,用待定系数法可求得直线)可求得,的坐标(线的对称性和点A10B,3点的坐标(-0)代入应为直线M最小的点)使2(BC的解析式;MA+MCBC1=-x与对称轴x=-1的交点,把17M为直角顶点,C分①B为直角顶点,②的解析式求得y的值,即可得点的坐标;(3)直线BC P③P为直角顶点三种情况分别求点的坐标.b?1,????1,?a??a2??2,?b?0,a?b?c?)依题意,得试题解析:(1解之,得????3.c?3.?c???23x?y??x?2∴抛物线解析式为.),A(1,0,且抛物线经过∵对称轴为x=-1 ).B(-3,0∴,得=mx+ny,0)、C(0,3)分别直线把B(-3222210.+(t1)+-3)=t-6t PC=(-2222210. +tPCB为直角顶点,则BC+PB=,即18+4+t=-6t①若2.解之,得t=-222,即PC=PBBC②若C为直角顶点,则+22 t.解之,得t=4.+++18t-6t10=4222,即=为直角顶点,则③若PPB+PCBC173 31722=6ttt 4++-+.,t= t18=10.解之,得2122 18.考点:二次函数综合题19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密☆启用前试卷类型:A二○一三年枣庄市2010级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=- D.93=±2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为第2题图A.240元B.250元C.280元D.300元6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交 BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的 周长为A.20B.18C.14D.137.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取 值范围是A. 1m <-B. 1m <C. 1m >-D. 1m > 8. 对于非零实数a b 、,规定11a b b a⊕=-,若2(21)1x ⊕-=,则x 的值为 A.56 B.54 C.32 D.16- 9.图(1)是一个长为2 a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称 轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中 间空的部分的面积是A. abB.2()a b + C.2()a b - D. a 2-b 210.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是 ⊙O 上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°11. 将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为(C )A. ()2321y x =-- B.()2321y x =-+ C. ()2321y x =+- D.()2321y x =++第10题图OAP B 第6题ab (1)(2)第9题图12.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME MC =,以DE 为边 作正方形DEFG ,点G 在边CD 上,则DG 的长为A.31-B.35-C.51+D.51-第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.若221163a b a b -=-=,,则a b +的值为 . 14.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是 .15. 从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是 .16.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .17. 已知正比例函数2y x =-与反比例函数ky x=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .18.已知矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE △向上折叠,使B 点落在AD 上的F 点.若四边形EFDC 与矩形ABCD 相似,则AD = .③④① ②第14题图第16题图第18题图 ABGF 第12题图M三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分) 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0132=++x x 的根.20.(本题满分8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 和点B 在小正方形的顶点上.(1)在图1中画出ABC △,使ABC △为直角三角形(点C 在小正方形的顶点上,画出一个即可);(2)在图2中画出ABD △,使ABD △为等腰三角形(点D 在小正方形的顶点上,画出一个即可).(1) (2) 第20题图 A· ·B A · · B第21题图 90童装童车 儿童玩具 类 别 儿童玩具 %25%童车 %童装 抽查件数21.(本题满分8分)“六·一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:请根据上述统计表和扇形图提供的信息,完成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?22.(本题满分8分)交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使30CAD ∠=°,60CBD ∠=°.(1)求AB 的长(精确到0.1173=.141=.);(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A 到B 用时为2秒,这辆汽车是否超速?说明理由.如图,在平面直角坐标中,直角梯形OABC 的边OC OA 、分别在x 轴、y 轴上,9045AB OC AOC BCO BC ===∥,∠°,∠°,C 的坐标为 ()180.-,(1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且42OE OD BD ==,,求直线DE24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD EF ⊥于点D ,.DAC BAC =∠∠(1)求证:EF 是⊙O 的切线;(2)求证:AB ADAC ⋅=2;(3)若⊙O 的半径为2,30ACD =∠°,求图中阴影部分的面积.第23题图第24题图如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(03)C -,,点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的绝密☆启用前二○一三年枣庄市2010级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.1214.② 15.13 16.24 17.()12-, 18.512 三、解答题:(本大题共7小题,共60分)19.(本题满分8分) 解:原式=()239322m m m m m --÷-- ……………………………………………2分 ()()()323233m m m m m m --=•-+-()133m m =+. …………………………………………………………5分∵m 是方程0132=++x x 的根,∴ 0132=++m m .题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案ADBDACBACDCD∴132-=+m m ,即(3)1m m +=-. ∴原式=)1(31-⨯=31-. …………………………………………………8分20.(本题满分8分)(1)正确画图(参考图1-图4) ··························································· 4分 (2)正确画图(参考图5-图8) ··························································· 8分21.(解:(1)(每空1分) ………………………………………………4分 (2)85.0300%80135%8875%9090=⨯+⨯+⨯.答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85 ……8分22.(本题满分8分) 解:(1)在Rt ADC △中,CD =21,30CAD ∠=°,90抽查件数童装 童车儿童玩具类 别儿童玩具% 25%童车 %童装 7513545 30∴212133633tan 3033CD AD ====.°; (2)分在Rt BDC △中,CD =21,60CBD ∠=°, ∴21731211tan 603CD BD ====.°. ………………………………………4分所以363312112422242AB AD BD =-=-=...≈.(米). ……………5分(2)汽车从A 到B 用时2秒,所以速度为2422121÷=..(米/秒). 又因为 121360043.561000⨯=.. 所以该汽车速度为4356.千米/小时,大于40千米/小时, 故此汽车在AB 路段超速. ……………………………………………………8分23. (本题满分8分)解:(1)过点B 作BF x ⊥轴于F .在Rt BCF △中,∠BCO =45°,BC =212, ∴ CF =BF =12. …………………1分 ∵点C 的坐标为()180-,, ∴AB =OF =18-12=6.∴点B 的坐标为()612-,. ………3分 (2)过点D 作DG y ⊥轴于点G .∵AB DG ∥,∴ODG OBA △∽△.∴23DG OG OD AB OA OB ===. ∵AB=6,OA=12,∴48DG OG ==,.∴()()4804D E -,,,. ………………………………………………………5分设直线DE 的解析式为()0y kx b k =+≠,将()()4804D E -,,,代入,得A B CODE y x第23题图GF48,4.k b b -+=⎧⎨=⎩ 解之,得 1,4.k b =-⎧⎨=⎩ ∴直线DE解析式为4y x =-+. …………………………………………………8分24.(本题满分10分)(1)证明:连接.OC ∵OC OA =,∴.OCA OAC =∠∠ ∵∠DAC =∠BAC ,∴.OCA DAC =∠∠∴.OC AD ∥ …………………………1分 又∵AD EF ⊥,∴.OC EF ⊥∴EF 是⊙O 的切线. ……………………3分 (2)证明:连接.BC∵AB 是⊙O 的直径,∴90ACB =∠°. ∴90.ACB ADC ==∠∠° 又∵BAC DAC =∠∠, ∴.ABC ACD △∽△ ∴ACABAD AC =, 即AB AD AC ⋅=2. ………………………………………6分(3)解:∵30ACD =∠°,∴60OCA OAC ==∠∠°. ∴OAC △是等边三角形.∴60AOC =∠°, 2.AC OC ==在Rt ADC △中,AC =2,∠ACD =30°, ∴AD =1,CD =3. …………………………………………………………8分∴()()1133123222ADCO S AD OC CD =+=+=梯形 6023603OAC S 2π⨯2π==扇形,∴第24题图332.2ADCO OAC S S S π=-=-3阴影梯形扇形 ………………………………10分 25.(本题满分10分)解:(1)将B 、C 两点的坐标代入2=++y x bx c ,得93=0,= 3.b c c ++⎧⎨-⎩解之,得=2,= 3.b c -⎧⎨-⎩所以二次函数的解析式为2=23y x x --. ………………………………… 3分(2)如图1,假设抛物线上存在点P ,使四边形POP C '为菱形,连接PP '交CO 于点E . ∵四边形POP C '为菱形, ∴PC=PO ,且PE ⊥CO .∴OE=EC=32,即P 点的纵坐标为32-.……5分由223x x --=32-,得12210210==22x x +-所以存在这样的点,此时P 点的坐标为(2102+,32-). …………7分(3)如图2,连接PO ,作PM ⊥x 于M ,PN ⊥y 于N .设P 点坐标为(x ,223x x --),由223x x --=0,得点A 坐标为(-1,0).∴AO=1,OC=3, OB=3,P M=223x x -++,PN =x .∴S 四边形ABPC =AOC S ∆+POB S ∆+POC S ∆=12AO·OC +12OB·PM +12OC·PN =12×1×3+12×3×(223x x -++)+12×3×x =239622x x -++=23375()228x --+. ………………………8分易知,当x=32时,四边形ABPC 的面积最大.此时P 点坐标为(32,154-),四边形ABPC 的最大面积为758. ………………………AC B O P y x′ EA B O ·P yx C N M………………………………………10分。

相关文档
最新文档