四川大学概率统计往年期末试题

合集下载

2020年大学基础课概率论与数理统计期末考试卷及答案(精品)

2020年大学基础课概率论与数理统计期末考试卷及答案(精品)

2020年大学基础课概率论与数理统计期末考试卷及答案(精品)一、单选题1、在一次假设检验中,下列说法正确的是______(A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误(C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误【答案】A2、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

那么对任意给定的a 都有A )0()1()a f a f x dx -=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F【答案】B3、下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) x x F arctan 121)(π+=C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B4、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值 A )与a 无关,随λ的增大而增大 B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小【答案】C5、下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) x x F arctan 121)(π+=C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B6、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。

大学概率统计-02-03期末.

大学概率统计-02-03期末.
(3)设Z表“100名考生中成绩超过600分的人数”, 则 Z~B(100, 0.0668)
np 6.68,由Poission定理,近似地有 Z ~ P(6.68)。
P(Z 2) 1 P(Z 0) P(Z 1)
1 (6.68)0 e6.68 (36.68)1 e6.68 1 7.68e6.68 0.9904.
x
1
1.5
2
(x) 0.8413 0.9332 0.9772
解:(1)
P( X

600)
1
P( X

600)

1


600 450 100
1 (1.5) 0.0668;
(2)设Y表“10名考生中成绩超过600分的人数”, 则Y~B(10, 0.0668);
P(Y 2) 1 P(Y 0) P(Y 1) 1 (0.9332)10 C110 (0.0668)1 (0.9332)9 0.1406;
3. (9分)设某高考成绩 X ~ N (450,1002 )。 (1)任取一名考生,求其高考成绩在600分以上的概 率; (2)任取10名考生,用二项分布计算至少有2名考生 高考成绩在600分以上的概率; (3)任取100个家庭,用Poisson定理计算至少有2名 考生高考成绩在600分以上的概率。 附:正态分布表
0!
1!
4.(16分)如图,二维随机变量(X ,Y)在G上服从均匀
分布,求:
y
(1)(X,Y)的联合密度;
1
(2)E(X )、E(Y )、D(X )、D(Y )、Cov(X ,Y ); G
(3)


XY

15-16A概率统计(III)

15-16A概率统计(III)

矩估计量为
.
二、解答题(共 7 小题,共 79 分)
1.(10 分)某商场销售一批照相机共 10 台,其中有 3 台次品,其余均为正品,某顾客去选购时,已
售出 2 台,该顾客从剩下的 8 台中任意选购 1 台,求
(1)顾客买到正品的概率;(2)若已知顾客买到的是正品,则已售出的 2 台都是次品的概率是多少?
.
6. 设 X1 , X2 ,, X6 是 来 自 正 态 总 体 X ~ N (0, 2 ) 的 简 单 随 机 样 本 , 统 计 量
T a X1 X 2 X 3 服从 t 分布,则常数 a
.
X
2 4
X
2 5
X
2 6
7. 设 X1, X2 ,, X n 是来自总体 X ~ U ( , 2) 的简单随机样本,X 为样本均值,则未知参数 的
1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点; 2、不带手机进入考场; 3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。
考生签名:
注:考试时间 120 分钟。请将答案写在答题纸规定的方框内,否则记 0 分。
一、填空题(每题 3 分,共 21 分)
1. 已知 P( A) p, P(B) q, P( A B) p q ,则 P( A B)
附:标准正态分布、 t 分布、 2 分布上侧分位点值: u 0.025 1 .9 6 , u 0.05 1 .6 4 5
t0.025 ( 9 ) 2 .2 6 2 , t0.025 ( 8 ) 2 .3 0 6 , t0.05 ( 9 ) 1 .8 3 3 , t0.05 ( 8 ) 1 .8 6 ,

(2)求Y y 的条件下, X 的条件概率密度,并计算概率 P{ X 2 Y 4} ;

《线性代数、概率统计》期末考试试卷及详细答案

《线性代数、概率统计》期末考试试卷及详细答案
《线性代数、概率论》期末考试试卷答案
一、选择题�每小题后均有代号分别为 A, B, C, D 的被选项, 其中只有一项是正
确的, 将正确一项的代号填在横线上�每小题 2 分�共 40 分��
1�行列式 G 的某一行中所有元素都乘以同一个数 k 得行列式 H�则------------C-------------;
.
(A) �2 ;
(B) �2 ;
(C) �2-�2;
(D) �2+�2;
二、解答题(每小题 8 分�共 48 分)
1�解矩阵方程� X ����11
12����

�� � ��
1 2 1
� 1�� 0� 2 ��
解�
X

�� 1 �2
�� 1
�021���������11
1 2
����
�1

�� 1 �2 �� 1
(4 分) (8 分)
� �1 �1 0 �E � A � 0 � �1 �1 � (� �1)3
0 0 � �1
�3 分�
得 A 的特征值 �1=�2=�3=1。 以�=1�代入 (�E � A)X � 0 �得
�4 分�
�� ���
x2 x3
� �
0 0
�6 分�
4
�1� 其基础解系是 X � ��0�� �
� � ���
是齐次线性方程组
XA=0
的一个基础解系。
�� 3�� �� 2��
∴方程组 XA=B 的通解为
X=k�+�1=
k �� ���
4 5 6
� � ���

� � ���
3 4 5

概率统计(I)2015-2016-2(15级)期末试题及参考答案

概率统计(I)2015-2016-2(15级)期末试题及参考答案
P Y 1 1 P Y 1 1 P Y 0 P Y 1
0 1 1 C4 1 2 1 2 C 4 1 2 1 2 0 4 1 3
11 0.6875. 16
1 1, 2; 4, 25; 4. X , Y N 2 E X 1, E Y 2, D X 4, D Y 25, R X , Y
2 待检检验为:
H 0 : 0 0.27,
0 .
因总体方差已知,用 U 检验法,即检验统计量为
U X 0

n
. 因 0.05 ,查表得拒绝域为
W U : U U : U 0.95 U : U 1.645 .
2. FY y P Y y P 2 X 1 y
y 1 y 1 y 1 PX FX F . 2 2 2 1 1 3. X U 1,1 P X 0 Y B 4, 2 2
i
n
n
3
xi
i 1
n
e 3n ,
i 1
i 1
显然可见, L 关于 单调递增;又 xi , i 1, 2,, n , 从而 min x1 , x2 ,, xn ;故 的极大似然估计值为
ˆ min x ,极大似然估计量为 ˆ min X ; l i l i
1
fX x


f x, y dy
1 1 x , 1 x 1 x 1dy , 1 x 1 ; , 其它 0 其它 0,
fY y

2021年大学必修课概率论与数理统计期末考试卷及答案(完整版)

2021年大学必修课概率论与数理统计期末考试卷及答案(完整版)

2021年大学必修课概率论与数理统计期末考试卷及答案(完整版)一、单选题 1、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对 【答案】C2、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 【答案】B 3、设()(P Poission λX分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ=A )1,B )2,C )3,D )0 【答案】A4、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B5、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C6、在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】A7、在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】A8、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C9、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B 10、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C 二、填空题1、一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________【答案】2/32、设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -=【答案】7.43、用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 【答案】F(b,c)-F(a,c)4、设为来自正态总体的一个简单随机样本,其中参数和均未知,记,,则假设:的检验使用的统计量是 。

四川大学概率统计往年期末试题

四川大学概率统计往年期末试题

四川大学期末考试试题(2020-2020学年第二学期)一、单项选择题(每空2分,共10分)1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P ( )(A) (B) (C) (D)2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61)(625102π那么E(X)=( )(A)5 (B)3 (C)-3 (D)-53.设X 有散布函数),(x F 令53-=X Y ,那么Y 的散布函数为( )(A)⎪⎭⎫ ⎝⎛+3531y F (B))53(+y F (C) )353(-y F (D) ⎪⎭⎫ ⎝⎛+35y F 4.设整体n X X X ,,,21 是独立同散布的随机变量序列,均服从参数为1的指数散布,令∑==n i i X n X 1221,那么−→−P X 2( ) (A)1 (B)2 (C)3 (D)45.设整体3212,,),,(~X X X N X σμ是来自X 的样本,记 3211414121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估量量中,( )最有效(A)1Z (B)2Z (C)3Z (D)无法判定二、填空题(每空2分,共10分)1.一个袋子中有3个红球,2个白球,从中任取3个球,那么至少取得一个白球的概率是______;2.设),3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______;3.设)43;914,1,1(~),(-N Y X 的二维正态散布,记Y X Z 32-=,那么~Z_________散布;4.设)(~λP X ,已知1)]2)(1[(=--X XE ,那么=λ__________; 5.设整体)1,0(~N X ,321,,X X X 别离是来自X 的样本,2321)(31X X X W ++=,那么W~______散布. 三、解答题1.(10分)有甲乙两箱同类型的产品,其中甲箱有11件正品,1件次品,乙箱中有9件正品,1件次品。

四川大学概率统计习题册答案及解答前8章

四川大学概率统计习题册答案及解答前8章
2. 0.7283 , B = “该种动物活到 15 岁” ,由已知条件得所求 设 A = “该种动物活到 10 岁” 概率为 p = P B A = 3. 0.2333, 0.4651 因 AB = A − B ,所以
(
)
P (AB ) P (A)
=
P (B ) P (A)
=
0.67 = 0.7283 0.92
(
)=
P (AB ) P (A ∪ B )
=
P (A) P (B ) P (A) + P (B ) − P (AB )
0.2 × 0.6 = 0.2308 0.2 + 0.4 − 0.2 × 0.4
=
2. D 3. C
P (A) P (B ) P (A) + P (B ) − P (A) P (B )

P (A) − P (B ) ≤ P (A − B ) ≤ P (A) ≤ P (A ∪ B ) ≤ P (A) + P (B ) .
2. 证明:
P (A) ≥ P A (B ∪ C ) = P (AB ∪ AC ) = P (AB ) + P (AC ) − P (ABC ) ≥ P (AB ) + P (AC ) − P (BC ) ,
1 πa 2 ,设 A 表事 2
件“原点与该点的连线与 x 轴的夹角小于
π 1 1 2 2 ” ,则 m (A) = πa + a ,所以所求概 4 2 4
1 1 πa 2 + a 2 2+π 2 = 4 = 率为 P (A) = . 1 2π m (Ω) 2 πa 2 m (A)
2.
3 8
因事件 A 发生导致事件 B 发生,则 A ⊂ B 或 AB = A ;事件 B 与事件C 互斥,则

2020年大学基础课概率论与数理统计期末考试题及答案精华版

2020年大学基础课概率论与数理统计期末考试题及答案精华版

2020年大学基础课概率论与数理统计期末考试题及答案(精华版),02未知,X ,X ,X ,X 为其样本,下列各项不是统计量的是 1234(A) X =11 X4ii =1(B) X + X — 2R14(A) X = - 1 X4ii =1(B) X + X — 2R14(C) K = — 1(X — X )202ii =1【答案】C 4、若X 〜t (n )那么%2〜【答案】A5、设X ,X ,…,X 为总体X 的一个随机样本,E (X ) = R ,D (X )=02 12 n C=(C) K = — 102i =1(X — X )2i(D) S 2 = 1 1(X — X )3ii =1【答案】C 2、设 X 〜P(1, p ) ,X ,X ,…,X ,是来自X 的样本,那么下列选项中不正确的是 12n-A) 当n 充分大时 近似有X 〜N B) P {X = k } = C k p k (1 — p )n —k , k =0,1,2,…,n n C) k 、 一 〜、 ・—一P { X =—} = C k p k (1— p )n -k , k =0,1,2,…,n n n D) P {X= k } = C k p k (1 — p )n -k ,1 < i <n 【答案】B 3、设 X ~ N (R ,O 2),其中R 已知,o 2未知,X , X , X , X 为其样本,下列各项不是统计量的是 1234(A)F (1,n )(B )F (n ,1)(C)殍(n )(D) t (n)一、单选题1、设X 〜N (R ,o 2),其中R 已知(D) S 2 =1 X ( X —X )3i0 2= C 乏1(X — X )2为02的无偏估计, i +1 i【答案】C6、对于事件人,B,下列命题正确的是(A)若A, B互不相容,则才与B也互不相容。

(B)若A, B相容,那么%与B也相容。

2021年大学必修概率论与数理统计期末考试题及答案含解析

2021年大学必修概率论与数理统计期末考试题及答案含解析

2021年大学必修概率论与数理统计期末考试题及答案(含解析)一、单选题1、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人 取到黄球的概率是 (A )1/5(B )2/5 (C )3/5(D )4/5 【答案】B2、设x 「X 2,…,x n 为来自正态总体N (Ne 2)的一个样本,若进行假设检验,当 时,一般采用统计量【答案】D3、设某个假设检验问题的拒绝域为W,且当原假设H °成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则 犯第一类错误的概率为 ___________ 。

(A ) 0.1 (B ) 0.15 (C ) 0.2 (D ) 0.25【答案】B4、设X ,…,X 是来自总体X 的样本,且EX = N ,则下列是N 的无偏估计的是()1n【答案】D统计量的是( ) (A) _L(X 2 + X 2 + X 2)(B)X + 3No 21 231(C) max(X ,X ,X )(D)1(X + X + X )1233123【答案】A 6、设X〜N(N ,o 2),那么当o增大时,尸{X -N<o} =A )增大B )减少C )不变D )增减不定。

(A)日未知,(B)日已知,检验o 2= o 2 0(C)o 2未知, 检验N =N(D )o2已知,检验N = N(A )1处X(8) 占Z Xi =1(C )- E Xni =21 n -1(D )工5、设5~ N Q,o 2),其中N 已知,o 2未知,X ,X ,X 为其样本,123下列各项不是X - A t = -=o S / nn日未知,检验o 2= o 2(A) 0日已知,检验o 2= O 2(B)o 2未知,检验A =A(C)o 2已知,检验A =A(D)【答案】CZ10、X , X ,…,X 是来自总体X 〜N(0,1)的一部分样本,设:Z = X 2+…+ X 2 Y = X 2+…+ X 2,则一~()121618916Y(A ) N(0,1) (B ) t(16) (C ) x 2(16) (D ) F(8,8)7、 设X , X ,…X 为来自正态总体N (从,。

2021年大学必修概率论与数理统计期末考试题及答案(完整版)

2021年大学必修概率论与数理统计期末考试题及答案(完整版)

2021年大学必修概率论与数理统计期末考试题及答案(完整版)一、单选题1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

【答案】D2、服从正态分布,,,是来自总体的一个样本,则服从的分布为___ 。

(A)N (,5/n) (B)N (,4/n) (C)N (/n,5/n) (D)N (/n,4/n)【答案】B3、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对【答案】C4、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A5、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

那么对任意给定的a 都有A )0()1()a f a f x dx -=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F【答案】B6、若X ~()t n 那么2χ~A )(1,)F nB )(,1)F nC )2()n χD )()t n【答案】AX 1-=EX 25EX =),,(1n X X X ∑==ni i n X X 111-1-1-1-7、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。

【答案】C8、掷一颗均匀的骰子600次,那么出现“一点”次数的均值为A ) 50B ) 100C )120D ) 150【答案】B9、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A10、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。

09级概率统计期末考试试卷

09级概率统计期末考试试卷
(4) 求条件密度函数 f (y x ) .
YX
1
y = x2
o
1
解答: 1 由有密度函数的归一性有
+¥ +¥
()
x
1=
-¥ -¥
A ò ò f (x, y )dxdy = ò dx ò Axdy = 4 ,
0
x2
1
1
故A = 4 ;
(2) 由边缘密度函数公式得
1 ì ï ï 4xdy = 4x (1 - x 2 ), x Î (0, 1) ï ò ï fX (x ) = ò f (x, y )dy = í 2 x ï ï -¥ 0, others ï ï î y ì ï +¥ ï ï 4xdx = 2y, y Î (0, 1) fY (y ) = ò f (x, y )dx = ï íò 0 ï ï -¥ 0, others ï ï î +¥

5.设样本 X1, X 2 , , Xn 来自正态总体 N m, s
(
2
) , X 为样本均值.
P (X + 1 > 0) =
1 ,则 m = ( -1 ). 2
解答: P X + 1 > 0 =
(
)
1 E (X ) = -1 m = E (X ) = -1 2
二、单项选择题 3 ¢ ´ 5 = 15¢
用中心极限定理完成
(1) 若一盒产品装有 100 个,求一盒中至少有 85 个一等品的概率; (2) 设一盒装有 n 个产品,若要求至少有 70% 的产品为一等品概率不低于 0.9772 ,
则 n 至少应取多少?? 附正态分布表:
x
1 0.8413
1.25 0.8944

四川大学期末考试试卷

四川大学期末考试试卷

四川大学期末考试试卷 概率论与数理统计(03-04)一、 单项选择(每题3分,共15分)1. 设A 、B 、C 是三事件,则A 发生而B 、C 不发生可表为:CB A A ⋃⋃)(CB A B ⋃⋂)(CB AC ⋃⋃)(CB A D ⋃⋂)(2、设A 、B 为两事件,1)(0<<A P ,且1)(=A B P ,则( )成立互斥与B A A )()(=)(AB P BAB C ⊂)(1)(=)(B P D3、若随机变量X 是有密度函数8)1(2221)(--=x ex f π,则=-)12(2X E ( ) 1)(A2)(B3)(C9)(D4、若随机变量X 的方差为2,由切比雪夫不等式,≤≥-)1)((aX E XP ()2)(A1)(B22)(aC22)(aD5、设总体X~),(2σμN ,2σ未知,521,,X X X 为总体的一个样本,则检验00:μμ=H 可以使用统计量( )5/)(0S X A μ-5/)(0σμ-X B4/)(0S X C μ-σμ0)(-X D二、 填空(每题3分,共15分)1、 某城的电话号码是一个8位数,今任取一个号码,则第一位是偶数,其余各位不相同,且没有一位是8的概率是( )(只列式,不计算) 2、 设X 有分布律X~⎥⎦⎤⎢⎣⎡-1.02.03.04.04201,则方差D (X )=( )3、 设X 服从参数为91=λ的指数分布,则概率=≤<)93(XP ( )4、 设)3.0;4,9;2,1(~),(N Y X ,则方差=-)(Y X D ( )5、 设总体)4,(~μN X,1621,,X X X 为来自总体的一个容量为16的样本,求得X =10,则μ的置信度为95%的置信区间为( )(96.1,645.1975.095.0==u u )三、 解答题1(9分)设机器正常时,生产合格品的概率为90%,不正常时生产合格品的概率为40%,设机器的无故障率为90%,某天工人上班时,先开机生产一件产品,发现不合格,问当日机器不正常的概率是多少?2(12分)设X 有密度函数⎪⎩⎪⎨⎧≤≤-+=elsex x A x f 0111)(2求(1)A=? (2)=≤)33(XP (3)若3XY=,求)(y f Y3(9分)某产品的次品率为8%,(1)任取8件这样的产品,求至少2件为次品的概率;(2)任取100件这种产品,用泊松定理计算至少有2件次品的概率;(3)用中心极限定理计算(2) 附:正态分布表见书4(18分)如图,(X ,Y )有联合密度⎩⎨⎧∈=elseG y x yy x f 0),(6),( 求:(1) 边缘密度)(x f X ,)(y f Y(2) 边缘数字特征E (X ),E (Y ),D (X ),D (Y ) (3) X 与Y 的协方差及相关系数 (4) X 与Y 是否独立?5(8分)某糖厂自动包装机包装出厂砂糖,每袋重量服从正态分布,其标准重kg500=μ,某日开工后,任取10袋称重,测得kgx i i2.492101=∑=,2101272.8)(kgx xi i=-∑=,(1) 在α=0.05下,检验当日平均重是否偏轻; (2) 求该日包装砂糖平均重的95%置信区间。

09-10学年第二学期概率统计期末考试试卷A及答案

09-10学年第二学期概率统计期末考试试卷A及答案

Þ (E 2X 2 - 1)= 2E(X )2 - 1 = 9
评注:本题考查了正态分布密度函数与其期望和方差的对应问题.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2020年大学公共课概率论与数理统计期末考试题及答案(含解析)

2020年大学公共课概率论与数理统计期末考试题及答案(含解析)

2020年大学公共课概率论与数理统计期末考试题及答案(含解析)一、单选题 1、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C2、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____(A)4114i i X X ==∑ (B)142X X μ+-(C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑【答案】C3、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是(A) (,)F m n (B) (1,1)F n m -- (C) (,)F n m (D)(1,1)F m n -- 【答案】C4、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C5、掷一颗均匀的骰子600次,那么出现“一点”次数的均值为 A ) 50 B ) 100 C )120 D ) 150 【答案】B6、对总体的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间 (A)平均含总体95%的值 (B)平均含样本95%的值2~(,)X N μσμ(C)有95%的机会含样本的值 (D)有95%的机会的机会含的值 【答案】D7、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C 8、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C9、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B10、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C 二、填空题1、设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。

四川大学历届概率统计期末试题含讲解

四川大学历届概率统计期末试题含讲解
附正态分布表:
x 0.32 1 1.6 1.64 1.96 2
(x) 0.62550.84130.94520.9500.9750.9773
解(: 1)由 题 意:X 知~N(,25),即: 16
X ~N(0,1),(2分), 5/4
P(|X|2)P(X1.6)2(1.6)1 5/4
xt1(n1) 2
6.88892.30 60
n
9
6.59,5
xt1(n1) 2
s 6.88892.30 630.8224
n
9
7.18,3
故所求置信区间6为5.9: 5,7( 1.83),(3分)
( 2) 待 检 假 设
H0:07;2H1: 72
拒 绝 域 W: {|t|t1/2(n1)}其 , 中
3
近似的有Y ~ N(1800 1 ,1800 1 2)
3
33
N(600,400),故
P(Y 640) (640600) (2) 0.9773 20
(4分)
6(12分)某医生测试了9例慢性中毒者的脉搏,
(单位:次 / 分),得到样本均值x 68.8889, 标
则X ~ B(10, 1 ),(2分),于是: 3
P(X 2) 1 P(X 0) P(X 1)

1

C03
.
(
1 3
)0
.(1

1 )30 3

C13 (
1 )1(1 3

1 )31 3
0.896, (4分)
(2)由Y表示抛1掷80次 0 出现正面的次数 则Y~ B(180,01),(2分),由 中 心 极 限 定 理

《概率统计》期末考试题(有答案)

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题一填空题(每小题2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为()。

2.设,则().3.设随机变量的分布函数为,则(),( ).4.设随机变量服从参数为的泊松分布,则( )。

5.若随机变量X的概率密度为,则()6.设相互独立同服从区间(1,6)上的均匀分布,().7.设二维随机变量(X,Y)的联合分布律为X Y 1 21则8.设二维随机变量(X,Y)的联合密度函数为,则()9.若随机变量X与Y满足关系,则X与Y的相关系数()。

10.设二维随机变量,则( ).二.选择题(每小题2分,共10 分)1.设当事件同时发生时事件也发生,则有().2.假设事件满足,则()。

(a) B是必然事件(b)(c) (d)3.下列函数不是随机变量密度函数的是( ).(a) (b)(c)(d)4.设随机变量X服从参数为的泊松分布,则概率( )。

5.若二维随机变量(X,Y)在区域内服从均匀分布,则=().三、解答题(1—6小题每题9分,7-8小题每题8分,共70分)1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三车间的正品率分别为0。

95, 0。

96, 0.98。

现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。

2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数的概率分布;(2)求的分布函数.3.设随机变量的密度函数为.(1)求参数;(2)求的分布函数;(2)求.4.设随机变量的密度函数为,求的密度。

5.设二维随机变量(X,Y)在区域内服从均匀分布,求(X,Y)的联合密度函数与两个边缘密度函数,并判断是否独立。

6.设随机变量的数学期望均为0,方差均为1,且任意两个变量的协方差均为.令,求的相关系数。

.7.设X与Y相互独立且同服从参数为的指数分布,求的密度函数。

四川大学历届概率统计期末试题含讲解

四川大学历届概率统计期末试题含讲解

6(12分)某 医 生 测 试 了 9例 慢 性 中 毒 者 的 脉 搏 , (单 位 : 次/ 分), 得 到 样 本 均 值 x 68.8889 ,标 准 差s 3.8224 ,设 人 的 脉 搏 服 从 正 态布 分。 (1)求 慢 性 中 毒 者 平 均 脉 95 搏%的 置 信 区 间 (置 信 限 精 确 到 小 数 点 2 后 位 ); ( 2 )设正常人的 脉搏为 72次 / 分 , 问 中 毒 者 与 正 常 的 人脉 搏 有 无 显著差异 ( 0.05 )? 附t分 布 表 :
1 2
பைடு நூலகம்
(n 1) t 0.975 (8) 2.306, 将 观 测 值
代入,得:
s 3.8224 x t (n 1) 68.889 2.3060 1 n 9 2 65.95,
s 3.8224 x t (n 1) 68.889 2.3060 1 n 9 2 71.83,
综上所述 , Y的 密 度 函 数 为 : 1 2 4 ,e y e , f Y ( y ) 2y ( 1分 ) 0, 其 它
3(10分), 设X ~ N(,25).(1)从 总 体 X中 抽 取 容量为 16的 样 本 , 求 样 本 均 值 X与之 差 的 绝对值小于 2的 概 率 ; ( 2 )欲使样本均值 X 与之 差 的 绝 对 值 小 于 2的 概 率 不 小 于 95%, 则 样 本 容 量 至 少 应 该多 取 少?
p n
0.95 1.8595 1.8331
0.975 2.3060 2.2622
8 9
设人的脉搏 X ~ N( , ), ( , 均 未 知 ),
2 2
s 的 置 信 区 间 为 ( x t (n 1) , 1 n 2 s ( x t (n 1) ), ( 3分 ) 1 n 2 查表得 t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川大学期末考试试题
(2008-2009学年第二学期)
一、单项选择题(每空2分,共10分)
1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P ( )
(A) (B) (C) (D) 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61
)(625102π则
E(X)=( )
(A)5 (B)3 (C)-3 (D)-5
3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( )
(A)⎪⎭⎫ ⎝⎛+3531y F (B))53(+y F (C) )353(-y F (D) ⎪⎭
⎫ ⎝⎛+35y F 4.设总体n X X X ,,,21 是独立同分布的随机变量序列,均服从参数为1的指数分
布,令∑==n i i X n X 122
1,则−→−P X 2( ) (A)1 (B)2 (C)3 (D)4
5.设总体3212
,,),,(~X X X N X σμ是来自X 的样本,记 32114
14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效
(A)1Z (B)2Z (C)3Z (D)无法判断
二、填空题(每空2分,共10分)
1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______;
2.设),
3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______;
3.设)4
3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则
~Z _________分布;
4.设)(~λP X ,已知1)]2)(1[(=--X X
E ,则=λ__________; 5.设总体
)1,0(~N X ,321,,X X X 分别是来自X 的样本,2321)(3
1X X X W ++=,则W~______分布. 三、解答题
1.(10分)有甲乙两箱同类型的产品,其中甲箱有11件正品,1件次品,乙箱中有9件正品,1件次品。

今从甲箱任取1件产品放入乙箱,然后再从乙箱中任取1件产品。

(1)求从乙箱中任取的这件产品是次品的概率;(2)已知从乙箱中取得的产品是次品,求从甲箱中取得的产品是次品的概率。

2.(9分)设)2,1(~U X ,记X e Y
2=,求Y 的密度函数)(y f Y 。

3.(10分)设)25,(~μN X ,(1)从总体X 中抽取容量为16的样本,求样本均值X 与μ之差的绝对值小于2的概率;(2)欲使样本均值X 与μ之差的绝对值小于2的概率不小于,样本容量n 至少应该取多少?
4.(16分)设二维随机变量),(Y X 有联合密度函数 ⎩⎨⎧∉∈=G
y x G y x Ax y x f ),(,0),(,),( 其中G 由x 轴,直线2,2
==x x y 围成。

(1)求A 的值;(2)求边缘密度
)(x f X ,)(y f Y ;(3)求条件密度)|(|y x f Y X ;(4)判断X 与Y 是否独立?
5.(12分)设一枚质地不均匀的硬币正面出现的概率为3
1,(1)将这枚硬币独立重复抛掷10次,求至少有2次正面出现的概率;(2)将这枚硬币独立地重复抛掷1800次,用中心极限定理计算正面出现次数至多640次的概率。

6.(12分)某医生测试了9例慢性中毒者的脉搏(单位:次/分),得到样本均值8889.68=x ,标准差8224.3=s . 设人的脉搏服从正态分布。

(1)求慢性中毒者平均脉搏的95%的置信区间(小数点后取2位);(2)设正常人的平均脉搏为72次/分,问中毒者与正常人的脉搏有无显著差异)05.0(=α

7.(11分)设总体X 有密度函数 ⎩⎨⎧<≥=--θ
θθθx x e x f x ,0),(),(
其中0>θ为未知参数,n x x x ,,,21 为来自X 的样本观察值.
(1)求θ的矩估计量θˆ;(2)用讨论法求θ的极大似然估计L
θˆ; (3)(此问3分)证明:L
θˆ是θ的有偏估计.。

相关文档
最新文档