数列通项公式、前n项和求法总结全
求数列通项公式+求数列前 N项和的常用方法
的前n项和Sn 解:
点拨:这道题只要经过简单整理,就可以很明显 的看出:这个数列可以分解成两个数列,一个等差 数列,一个等比数列,再分别运用公式求和,最后 把两个数列的和再求和。 三.用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使 得前后项相抵消,留下有限项,从而求出数列的前 n项和。
例题3:求数列
(n∈N*)的和 解:
点拨:此题先通过求数列的通项找到可以裂项的 规律,再把数列的每一项拆开之后,中间部分的项 相互抵消,再把剩下的项整理成最后的结果即可。
四.用错位相减法求数列的前n项和 错位相减法是一种常用的数列求和方法,应用于
等比数列与等差数列相乘的形式。即若在数列 {an·bn}中,{an}成等差数列,{bn}成等比数列,在 和式的两边同乘以公比,再与原式错位相减整理后 即可以求出前n项和。
例题4:求数列{nan}(n∈N*)的和 解:设 Sn = a + 2a2 + 3a3 + … + nan①
则:aSn = a2 + 2a3 + … + (n-1)an + nan+1② ①-②得:(1-a)Sn = a + a2 + a3 + … + an nan+1③ 若a = 1则:Sn = 1 + 2 + 3 + … + n =
求数列 前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式, 再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为 基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律, 找到适合的方法解题。
一.用倒序相加法求数列的前n项和
数列求通项的七种方法及例题
数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。
例如:已知数列{an}中,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。
例如:已知数列{an}中,S2=6,S4=20,求a3。
答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。
例如:已知数列{an}为等差数列,a1=2,d=4,求a5。
答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。
例如:已知数列{an}为等比数列,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。
例如:已知数列{an}中,S4=20,求a3。
答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。
例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。
答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。
求数列前n项和8种的方法(史上最全)
求数列前n 项和8种的方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =时,1n S na =; (2)()1111nn a q q S q-≠=-,,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+;(2)21nk k ==∑222216123(1)(21)n n n n ++++=++;(3)31nk k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n 1)-(2n ...531=++++.例1 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=xx x n--1)1(=211)211(21--n =1-n 21例2 设123n s n =++++,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f .二.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列通项公式和前n项和的求法
数列通项公式和前n 项和的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒,∵0≠d , ∴d a =1①∵255a S = ∴211)4(2455d a d a +=⋅⨯+② 由①②得:531=a ,53=d , ∴n n a n 5353)1(53=⨯-+=二、累加法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例2 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之, 即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=-, 211=a ,nn a n 1231121-=-+=∴三、累乘法(逐商相乘法):把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例4. 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴四、待定系数法:递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
数列通项公式和前n项和常见求法
数列通项公式的常见求法一.公式法1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。
(Ⅰ)求{}n a 的通项公式3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n n n n ΛΛΛΛΛ 求解。
一般先求出a1=S1,若计算出的an 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。
例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。
二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法 1、叠加法一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥; 例4、(2011四川理8)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =A .0B .3C .8D .112、叠乘法一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 例6、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
数列通项公式和前n项和求解方法(全)
数列通项公式和前n项和求解方法(全)数列通项公式的求法详解n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nna (2);122++=n n n a n (3);12+=n a n(4)1)1(1+⋅-=+n na n n .公式法1:特殊数列例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。
答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1例3. 等差数列{}na 是递减数列,且432a a a⋅⋅=48,432a a a++=12,则数列的通项公式是( )(A) 122-=n an(B) 42+=n an(C) 122+-=n an(D)102+-=n a n 答案:(D)例4. 已知等比数列{}na 的首项11=a ,公比10<<q ,设数列{}nb 的通项为21+++=n n na a b,求数列{}nb 的通项公式.简析:由题意,321++++=n n n a a b,又{}na 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}nb 是等比数列,易得)1()1(1+=⋅+=-q q q q q bn n n.点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比. 公式法2: 知ns 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s an n n.例5:已知下列两数列}{na 的前n 项和s n 的公式,求}{na 的通项公式.(1)13-+=n n Sn. (2)12-=n sn答案:(1)na =3232+-n n,(2)⎩⎨⎧≥-==)2(12)1(0n n n an点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a nn +=+的地退关系递推关系】 简析:已知a a =1,)(1n f a a nn =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得例5:已知数列6,9,14,21,30,…求此数列的一个通项. 答案:)(52N n n a n∈+=例 6. 若在数列{}na 中,31=a,nn n a a21+=+,求通项na .答案:na =12+n例7.已知数列}{na 满足31=a,)2()1(11≥-+=-n n n a an n,求此数列的通项公式. 答案:nan12-=【 形如1+n a =f (n)·n a 型】(1)当f(n)为常数,即:qaa nn =+1(其中q 是不为0的常数),此时数列为等比数列,na =11-⋅n q a.(2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}na 中,311=a ,前n 项和n S 与na 的关系是 nn a n n S )12(-= ,试求通项公式na . .答案:.)12(12(1-+=n n a n 思考题1:已知1,111->-+=+a n na an n ,求数列{a n }的通项公式.分析:原式化为 ),1(11+=++nn a n a 若令1+=n na b,则问题进一步转化为nn nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca an n ,其中aa=1)型】 (1)若c=1时,数列{na }为等差数列; (2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a,得λ)1(1-+=+c ca an n ,与题设,1d ca an n +=+比较系数得)0(,1≠-=c c d λ, 所以:)1(11-+=-+-c d a c c d an n,即⎭⎬⎫⎩⎨⎧-+1c d an 构成以11-+c d a为首项,以c 为公比的等比数列.例10:已知数}{na 的递推关系为121+=+n n a a ,且11=a求通项na .答案:12-=n na构造2:相邻项的差为特殊数列 例11:在数列{}na 中,11=a,22=a,n n n a a a313212+=++,求na .提示:变为)(31112n n n n a a a a--=-+++.构造3:倒数为特殊数列【形如sra pa a n n n+=--11】例12: 已知数列{na }中11=a且11+=+n n n a a a(N n ∈),,求数列的通项公式. 答案 nb a n n11==例13:设数列}{nc 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n nbq d n a c建立方程组,解得. 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{na 为等差数列:则cbn an+=,cnbn s n +=2(b 、c为常数),若数列}{na 为等比数列,则1-=n nAq a,)1,0(≠≠-=q Aq A Aq sn n.例14:(1)数列{na }满足01=a,且)1(2121-=++++-n a a a an n ,求数列{a n }的通项公式. 解析:由题得)1(2121-=++++-n a a a a n n ①2≥n 时,)2(2121-=+++-n a a a n ②由①、②得⎩⎨⎧≥==2,21,0n n an.(2)数列{na }满足11=a,且2121n a a a a n n =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{na 中,,2121,211+==+n n a a a求通项na .八、【讨论法-了解】(1)若da an n =++1(d 为常数),则数列{na }为“等和数列”,它是一个周期数列,周期为2,其通项分为奇数项和偶数项来讨论.(2)形如)(1n f a an n =⋅+型①若pa an n =⋅+1(p 为常数),则数列{na }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可通过逐差法得)1(1-=⋅-n f a an n,两式相除后,分奇偶项来分求通项.例15: 数列{na }满足01=a,21=++n n a a,求数列{a n }的通项公式.专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n n 2)1(2)(123-+==+=-2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n n n[例1] 已知3log 1log23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x xx 32的前n 项和.答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nSn Sn f 的最大值. 答案n =8时,501)(max =n f方法简介:此法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n nx n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积:设nnx n x x x x xS)12(7531432-+⋅⋅⋅++++=…②①-②得 nn nx n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴21)1()1()12()12(x x x n x n S n n n -+++--=+.试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.答案: 1224-+-=n nn S方法简介:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1na a +,然后再除以2得解.[例4] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 .答案S =44.5方法简介:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组;[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a aa n ,…答案2)13(11nn a a a s n n -+--=-.试一试 1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.简析:由于与nkk k a =-=⋅⋅⋅⨯=⋅⋅⋅)110(91999991111111 个个、分别求和.方法简介:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f an-+= ;(2)11++=n n a n =nn -+1;(3)nn n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n (5))121121(211)12)(12()2(2+--+=+-=n n n n n a n .[例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和.[例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n,又12+⋅=n n na a b,求数列{b n }的前n 项的和.试一试1:已知数列{a n }:)3)(1(8++=n n a n,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+cos179°的值.答案 0[例9] 数列{a n }:nn n a a a a a a-====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。
数列通项公式与前n项和的18种求法(含详细例题)
求数列前N 项和的方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1解:S n =1+5x+9x 2+······+(4n-3)x n-1 ①①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。
(完整版)数列通项公式方法大全很经典
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列求通项公式及求和9种方法
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
通项及前N项和的求法的方法总结(全)
常见数列通项公式的求法1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可. 2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法.例1、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n +==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.例2、已知数列{}n a 满足11,2,31n n n n a a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.3、待定系数法(构造法)例3、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例4、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例5、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .4、利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用111,2n n n an a S S n -=⎧=⎨-≥⎩求解.例6、已知数列{}n a 的前n 项和为322+-=n n S n ,求{}n a 的通项公式.练习1:已知数列{}n a 的前n 项和为2134n S n n =-+,求{}n a 的通项公式.练习2:若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.5、倒数法例7、已知数列{}n a 满足1=1a ,1232nn n a a a +=+,求{}n a 的通项公式.练习:已知数列{}n a 中,113,,12nn na a a a +==+则n a ________.=例8、已知数列{}n a 满足1=1a ,11234n n n a a a --=+,求{}n a 的通项公式.练习:已知数列{}n a 中,1122,,31n n na a a a +==+则n a ________.=数列前n项和的求法总结一、公式法(1)等差数列前n项和: S n=n(a1+a n)2=na1+n(n+1)2d(2)等比数列前n项和: q=1时, S n=na1;q≠1时, S n=a1(1−q n)1−q(3)其他公式: S n=1+2+3+⋯+n=12n(n+1)S n=12+22+32+⋯+n2=16n(n+1)(2n+1)S n=13+23+33+⋯+n3=[12n(n+1)]2二、倒序相加法3、设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2三、裂项相消法4、求数列(n∈N*)的和四、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
通项公式的求法及前n项和公式的求法(强烈推荐)
数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d ,∴d a =1…………………………………① ∵255a S =∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=】点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
数列求通项公式专题(完美总结)
求通项公式专题1、作差法:已知数列{a n }的前n 项和S n ,求通项公式n a例 已知数列{a n }的前n 项和S n ,求数列{a n }的通项公式.(1)S n =2n -1;(2)S n =2n 2+n +3.变式训练 已知下面各数列{a n }的前n 项和S n 的公式,求a n . (1)S n =2n 2-3n ;(2)S n =3n -2.2.累加法:型如)(1n f a a n n +=+的数列例 已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练 已知数列}{n a 满足21=a ,12123-+⋅=-n n n a a ,求}{n a 的通项公式.3.累乘法:型如)(1n f a a n n ⋅=+的数列例 已知数列}{n a 满足11=a ,n n a nn a 21+=+,求}{n a 的通项公式.变式训练 已知数列}{n a 满足11=a ,12n n n a a +=⋅,求}{n a 的通项公式.4.构造法4-1型如b ka a n n +=+1(b k 、为常数)的数列构造}{λ+n a 为等比数列▲例 已知数列}{n a 满足21=a ,321+=+n n a a ,求}{n a 的通项公式.变式训练1 已知数列}{n a 满足11=a ,231+=+n n a a ,求}{n a 的通项公式.变式训练2 已知数列}{n a 满足2171-=a ,)2(5231≥+=-n a a n n ,求}{n a 的通项公式.4-2 型如001B n A pa a n n ++=+的数列解法:设1(1)()n n a A n B p a An B ++++=++,去括号整理对比001B n A pa a n n ++=+解出A 、B的值,构造出}{B An a n ++为等比数列.理解该数列的构造原理,若出现00201C n B n A pa a n n +++=+,方法也相同.例 已知数列}{n a 满足11=a ,1231n n a a n +=+-,求}{n a 的通项公式.变式训练 已知数列}{n a 满足11=a ,1321n n a a n +=++,求}{n a 的通项公式.4-3 型如n n n q m pa a ⋅+=+1的数列将原递推公式两边同除以1n q +得q m q a q p q a n n n n +⋅=++11,设n n n a b q=,得q m b q p b n n +⋅=+1, 转化为“6-1型如b ka a n n +=+1(b k 、为常数)的数列构造}{λ+n a 为等比数列”.例 已知数列}{n a 满足11=a ,123n n n a a +=+,求}{n a 的通项公式.变式训练1 已知数列}{n a 满足21=a ,n n n a a 2211+=+,求}{n a 的通项公式.变式训练2 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
(完整版)数列前n项和的求法总结
数列前n 项和的求法总结核心提示:求数列的前n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。
当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。
一. 公式法(1) 等差数列前n 项和: S n=n(a 1+a n )2=na 1+n(n+1)2d(2) 等比数列前n 项和: q =1时, S n=na 1;q ≠1时, S n =a 1(1−q n )1−q(3) 其他公式: S n=1+2+3+⋯+n =12n (n +1)S n =12+22+32+⋯+n 2=16n(n +1)(2n +1)S n =13+23+33+⋯+n 3=[12n (n +1)]2例题1:求数列 112,214,318,……,(n +12n ),…… 的前n 项和S n解:点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。
练习:二.倒序相加法如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。
例题1:设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn =a1+a2+a3+...+an①倒序得:Sn =an+an-1+an-2+…+a1②①+②得:2Sn =(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn =n(a2+an) Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=…=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。
数列,通项公式方法,求前n项 和例题讲解和方法总结
的前n项和为
,
为等比数列,且
(Ⅰ)求数列
和 的通项公式; (Ⅱ)设 ,求数列 的前 项和 .
例2.已知数列的首项,,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)数列的前项和.
2.设数列 的前n项和为 , 为等比数列,且
(Ⅰ)求数列 和
的通项公式; (Ⅱ)设 ,求数列 的前 项和
. 三、分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适 当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其 合并即可. 2、已知数列的通项公式为,则它的前n项的和 3:求数列的前n项和。
数列求和练习
1、已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和. (1)求通项an及Sn; (2)设{bn-an}是首项为1,公差为3的等差数列,求{bn}的通项公式及 前n项和Tn.
3、已知等差数列{an}中,a5+a9-a7=10,记Sn=a1+a2+…+an,
则S13的值为( )
5、已知数列 是等差数列,且 , 是数列 的前
项和. (Ⅰ)求数列
的通项公式 及前 项和 ;
(Ⅱ) 若数列 满足 ,且 是数列 的前 项和,求 与 .
6. 设是正数组成的数列,其前n项和为 并且对于所有的自然数与2 的等差中项等于与2的等比中项. (1)求数列的通项公式; (2)令 求证:
7、已知数列 是等差数列, ;数列 的前n项和是 ,且 .
(1)公式法
①等差数列前n项和Sn=____________=________________,推导方 法:____________; ②等比数列前n项和Sn=推导方法:乘公比,错位相减法. ③常见数列的前n项和: a.1+2+3+…+n=________________; b.2+4+6+…+2n= _________________; c.1+3+5+…+(2n-1)=_____________;d. e.
数列的前n项和求法
数列的前n 项和一、公式法1、通项公式:(1)、等差数列的通项公式:a n =a 1+(n -1)d =a m +(n -m)d ; (2)、等比数列的通项公式:11-=n n q a a =m n m n q a a -=;2、a n 与Sn 的有关系:a n =⎩⎨⎧≥-=-)2(,)1(,11n S S n S n n3、前n 项和:(1)、等差数列前n 项和:Sn =2)(1n a a n +=na 1+d n n 2)1(- (2)、等比数列前n 项和:Sn =⎪⎩⎪⎨⎧≠--=--=)1(11)1()1(,111q q q a a q q a q na n n例1:已知n S =1+2+3+4+……+n ,(n ∈N +),求1)32(++n nS n S 的最大值。
【解析】: )1(21+=n n S n ,1)32(++n n S n S =64342++n n n=34641++nn ≤501变式练习1:在等比数列{n a }中,2a -1a =2,且22a 为31a 和3a 的等差中项,求数列{n a }的通项公式及前n 项和。
【解析】:设该数列的公比为q ,由已知,可得a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以,a 1(q -1)=2,q 2-4q +3=0,解得q =3或q =1.由于a 1(q -1)=2,因此q =1不合题意,应舍去.故公比q =3,首项a 1=1.所以,数列的前n 项和S n =312n -.变式练习2:已知{n a }是公差不为零的等差数列,1a =1,且1a ,3a ,9a 成等比数列。
(1)求数列{n a }的通项公式;(2)求数列{n a2}的前n 项和n S 。
【解析】:n a =n n S =221-+n二、分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。
例2: 求数列的前n 项和:121,241,381,……(n +n 21) 【解析】: n n n n S 2112)1(-++=变式练习1:求数列0.9,0.99,0.999,0.9999,0.99999……的前n 项和Sn 。
数列通项公式、前n项和求法总结全
2n2+n
变式练习:
1.已知数列{an}满足an厂an•2n •1,a^1,求数列佝}的通项公式
2. 已知数列:
3. 类型2特征:递推公式为an彳=f(n)an
变式练习:
1.已知数列Q匚中,3 = 2,an d= 3an,求通项公式an。
2.设G}是首项为1的正项数列,且(n+1)a;卅-na;+a^an= 0(n= 1,2, 3,…),求数 列的通项公式是an类型3特征:递推公式为an1二pan• q(其中p,q均为常数)
*
(1)求an,bn;
⑵求数列:an-bn[的前n项和Tn.
2.若公比为c的等比数列的首项为a^1,且满足an二a22甌(n二3,4,...)。
(1)求c的值;(2)求数列{nan}的前n项和Sn
3.倒序相加法
如果一个数列订奁,与首末两项等距的两项之和等于首末两项之和,则可用把正着写 与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特^E: a1an=a?an4 =...
设an,通分整理后与原式相比较,根据对应项系数相等得
anan +b2
bnbn,再转化为类型1 (累加法),求出bn之后得a^ pnbn
p
例6•已知数列{an}满足an^2an43n」,a^1,求数列®}的通项公式。
变式练习:已知数列:an*满足a1=1,an=3n• 2an」(n一2),求an.
二
1.公式法
(1)等差数列前n项和:Sn二"去 空=门a1^^d
2 2
(2)等比数列前n项和:
(2)求数列 {俎} 的前n项和Sn。
数列通项公式前n项和求法总结全
一. 数列通项公式求法总结:1.定义法——直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型(等差或者等比).例1 •等差数列a n是递增数列,前n项和为S n,且a!,a3,a9成等比数列,S a5 •求数列a n 的通项公式.变式练习:1.等差数列a n中,a? 4, a i9 2比,求a n的通项公式2.在等比数列{a n}中,a2 a i 2,且2a2为3印和a3的等差中项,求数列{a.}的首项、公比及前n 项和.2. 公式法S n 1求数列a n的通项a n可用公式a n 求解。
n n n S n S n 1 n 2特征:已知数列的前n项和S n与a n的关系例2.已知下列两数列{a n}的前n项和s n的公式,求{a n}的通项公式。
(1)S n n3 n 1。
(2)s n n2 1对策:把原递推公式转化为f (n),利用累乘法求解。
a n2例4.已知数列a "满足313,a"1na n ,求 a n 。
n 11.已知数列{a n }的前n 项和为S n ,且S n =2『+n , n € N*,数列{b n }满足a * =4log 2b n +3, n € N * .求 a n , b n-n 2 kn ( k N *),且S 的最大值为8,试确定常数k 22n n, nN •求数列a n 的通项公式23. 由递推式求数列通项法 类型1特征:递推公式为an1 an f (n )对策:把原递推公式转化为am a n f (n),利用累加法求解。
1 1例3.已知数列a n 满足a 1 - , a n 1 a n —2 ,求a n 。
2 n 2 n变式练习:1. 已知数列{a .}满足a n 1 a n 2n 1,印1,求数列{a .}的通项公式2. 已知数列: 求通项公式类型2特征:递推公式为 a n 1 f (n)a n2.已知数列{a n }的前n 项和S n 并求a n 。
数列知识(求通项公式前n项和全部方法)
数列重点备注:部分题目有些错误,这个是修正后的版本一、数列通项公式的求法1、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.两种常见的特殊数列:等差数列 d n a a n )1(1-+= (为公差为首项d a ,1) 等比数列 11-=n n q a a (为公比为首项q a q a n ,,0,01≠≠)例 已知首项为32的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列.求数列{}n a 的通项公式;解答: 依题意设)0(231≠=-q q a n n ,∵234,2,4S S S -成等差数列 ∴342242S S S =+-即)(2)(4)(2321432121a a a a a a a a a ++=+++++- 整理得0243=+a a 即032332=+q q 解得21-=q ∴12123-⎪⎭⎫ ⎝⎛-⋅=n n a练习:1.已知等差数列{}n a 的公差0d >,设{}n a 的前n 项和为n S ,11a =,2336S S ⋅= ,求d 及数列{}n a 的通项公式;解答:依题意设1)1(1+-=-+=d nd d n a a n ,则d a d a 21,132+=+= ∵2336S S ⋅= ∴36))((32121=+++a a a a a整理得)0(01032>=-+d d d 解得2=d∴12-=n a n2.已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.求数列{}n a 的通项公式; 解答:依题意设)0(11≠=-q qa a n n ,∵4S ,2S ,3S 成等差数列∴2342S S S =+ 即)(2213214321a a a a a a a a a +=++++++ 整理得0243=+a a 又23418a a a ++=-∴⎪⎩⎪⎨⎧-=++=+1802312113121q a q a q a q a q a 解得⎩⎨⎧-==231q a ∴1)2(3--⋅=n n a3.设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和. 记2nn nS b n c=+,N n *∈,其中c 为实数.若{}n b 是等差数列,求数列{}n b 的通项公式.解答:依题意设a d nd d n a a n +-=-+=)1(,则()2)2(21d nd a n a a n S n n -+=+=cn d nd a cn a d n cn d nd a cn d nd a cn d nd a n c n d nd a n c n nS b n n +-+-+-=+-+--++-+=+-+=+=2222222222)2(22)1(2)2(2)2(2)2(2)2(由{}n b 是等差数列知{}n b 的通项公式不含二次项,且为B A b n n +=型(B 为常数)∴02)2(22=+-+cn d nd a cn 又022≠-+d nd a ∴0=c ∴22)1(ad n b n +-=2、累加法求形如)(1n f a a n n =--()(n f 为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令1,....,3,2-=n n 得到1-n 个式子累加求得通项112211......a a a a a a a a n n n n n +-++-+-=---例 已知数列{}n a 中,11a =,对任意自然数2≥n 都有11(1)n n a a n n -=++,求n a .解答:依题意当2≥n 时,有11231112113121 (1111111)321....)1(1)1(1....112211+-=++-=+-++--++-=+⨯++-++=+-++-+-=---n n n n n n n n n n a a a a a a a a n n n n n当1=n 时,1111231=+-=a 也满足上式 ∴1123+-=n a n练习:1.已知数列{}n a 中,11a =,),2(311+--∈≥+=N n n a a n n n ,求数列{}n a 的通项公式 解答:依题意当2≥n 时,有213131)31(313...33. (1211)12211-=+--=++++=+-++-+-=------n n n n n n n n n a a a a a a a a 当1=n 时,121311=-=a 也满足上式 ∴213-=n n a2.{}n a 是首项为1的正数数列,)(0)1(11+++∈=+-+N n a a na a n n n n n ,求n a .解答:由0>n a 及0)1(11=+-+++n n n n a a na a n 得)1(11)1(11+=-++n n na a n n n设nn na b 1=,则11=b ,)1(11+=-+n n b b n n∴11212111 (1111111)121...)1(1)1(1 (1)12111+-=+-++--++-=+⨯++-++=+-++-+-=-++n n n n n n n n n b b b b b b b b n n n n n ∴当2≥n 时,n b n 12-=,又1=n 时,11121=-=b 也满足上式∴nn n b n 1212-=-=,∴12-=n a n3.已知数列{}n a 中,)(34,4,11221+++∈-===N n a a a a a n n n ,求数列{}n a 的通项公式 解答:依题意得:)(3112n n n n a a a a -=-+++,于是设n n n a a b -=+1 ∴n n b b 31=+,又03121≠=-=a a b ∴31=+nn b b 即{}n b 是首项为3,公比为3的等比数列 ∴nn b 3= 即n n n a a 31=-+∴213131)31(313...33. (111)12111-=+--=++++=+-++-+-=+--++n n n n n n n n n a a a a a a a a ∴当2≥n 时,213-=n n a ,又当1=n 时,121311=-=a 也满足上式 ∴213-=n n a3、累乘法对形如1()n naf n a +=的数列的通项,可用累乘法,即令1,....,3,2-=n n 得到1-n 个式子累加求得通项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.数列通项公式求法总结:1.定义法 —— 直接利用等差或等比数列的定义求通项。
特征:适应于已知数列类型(等差或者等比).例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.变式练习:1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.2.公式法求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
特征:已知数列的前n 项和n S 与n a 的关系例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。
(1)13-+=n n S n 。
(2)12-=n s n变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。
2. 已知数列{}n a 的前n 项和212n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。
3. 已知数列{}n a 的前n 项和*∈+=N n nn S n ,22.求数列{}n a 的通项公式。
3.由递推式求数列通项法 类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。
例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
变式练习:1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
2.已知数列: 求通项公式类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为)(1n f a a nn =+,利用累乘法求解。
例4. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
变式练习:1.已知数列{}n a 中,12a =,13nn n a a +=,求通项公式n a 。
1112nn n a a a +==+,2.设{}n a 是首项为1的正项数列,且()221110n n n n n a na a a +++-+=(n =1,2, 3,…),求数列的通项公式是n a类型3 特征:递推公式为q pa a n n +=+1(其中p ,q 均为常数)对策:(利用构造法消去q )把原递推公式转化为由q pa a n n +=+1得1(2)n n a pa q n -=+≥两式相减并整理得11,n nn n a a p a a +--=-构成数列{}1n n a a +-以21a a -为首项,以p 为公比的等比数列.求出{}1n n a a +-的通项再转化为类型1(累加法)便可求出.n a例5. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .变式练习:1. 数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
2. 已知数列{}n a 满足1a =1,131n n a a +=+.证明{}12n a +是等比数列,并求{}n a 的通项公式。
类型4特征:递推公式为1()n n a pa f n +=+(其中p 为常数) 对策:(利用构造法消去p )两边同时除以1n p+可得到111()n n n n n a a f n p p p +++=+,令n n n a b p =,则11()n n n f n b b p ++=+,再转化为类型1(累加法),求出n b 之后得nn n a p b =例6.已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式。
变式练习:已知数列{}n a 满足11=a ,123-+=n nn a a )2(≥n ,求n a .二.数列的前n 项和的求法总结1.公式法(1)等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ (2)等比数列前n 项和:q=1时,1n S na =()1111n n a q q S q-≠=-,例1. 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.变式练习:1.设等比数列{}n a 的前n 项和为n S .已知26,a =13630,a a +=求n a 和n S .2.设{}n a 是等差数列,{}n b 是各项均为正数的等比数列,且111a b ==,3521a b +=,5313a b +=。
(1)求n a ,n b ; (2)求数列{}nnb a 的前n 项和n S 。
2.错位相减法①若数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ⋅的求和就要采用此法.②将数列{}n n a b ⋅的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列{}n n a b ⋅的前n 项和. 例2.求2311234n x x x nx -+++++……的和变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =22n n +,n∈N﹡,数列{}n b 满足24log 3n bn a =+n∈N﹡.(1)求n a ,n b ;(2)求数列{}n n a b ⋅的前n 项和n T .2.若公比为c 的等比数列{}n a 的首项为11a =,且满足12(3,4,...)2n n n a a a n --+==。
(1)求c 的值;(2)求数列{}n na 的前n 项和n S3.倒序相加法如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
特征:121...n n a a a a -+=+= 把数列的各项顺序倒写,再与原来顺序的数列相加。
S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-…………例3.已知,则f x x xf f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414变式练习:1. 求222222222222123101102938101++++++++的和.2. 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值。
4.裂项相消法一般地,当数列的通项12()()n ca anb an b =++ 12(,,,a b bc 为常数)时,往往可将n a 变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项: 设12n a an b an b λλ=-++,通分整理后与原式相比较,根据对应项系数相等得21cb b λ=-,从而可得12211211=().()()()c c an b an b b b an b an b -++-++常用裂项形式有:① 111(1)1n n n n =-++; ② 1111()()n n k k n n k=-++; ③ 2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ; ⑤=<<=例4.求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S.变式练习:1. 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.2. 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(I)求数列{}n a 的通项公式.(II)设 31323log log log ,n n b a a a =++⋅⋅⋅+求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.5.分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组. 例5.求数列11111246248162n n ++,,,,,的前n 项和n S .变式练习:1.求数列11111,2,3,4,392781的前n 项和.word 版.2.若数列{}n a 的通项公式231(0)n n a a na a =+-≠,求{}n a 的前n 项和6.记住常见数列的前n 项和: ①(1)123...;2n n n +++++= ②2135...(21);n n ++++-= ③22221123...(1)(21).6n n n n ++++=++ 例6.求22222222235721()11212312n n n *+++++∈++++++N 的和.变式练习:求数列{(1)(21)}n n n ++的前n 项和.。