(整理)遗传算法作业
遗传算法 例题 详解

遗传算法例题详解遗传算法是一种模拟自然选择和遗传机制的优化方法,它模拟了生物进化的过程,通过模拟种群的遗传变异和适应度选择,寻找最优解。
下面我们以一个简单的例题来详细解释遗传算法的原理和应用。
假设我们要解决一个简单的优化问题,找到函数 f(x) = x^23x + 4 的最小值,其中 x 的取值范围在 [0, 5] 之间。
首先,我们需要定义遗传算法的基本要素:1. 个体表示,在这个例子中,个体可以用一个实数来表示,即x 的取值。
2. 适应度函数,即要优化的目标函数,对于这个例子就是 f(x) = x^2 3x + 4。
3. 遗传操作,包括选择、交叉和变异。
接下来,我们用遗传算法来解决这个优化问题:1. 初始化种群,随机生成一定数量的个体作为初始种群。
2. 评估适应度,计算每个个体的适应度,即计算函数 f(x) 的值。
3. 选择操作,根据个体的适应度来选择父代个体,适应度越高的个体被选中的概率越大。
4. 交叉操作,对选中的父代个体进行交叉操作,生成新的个体。
5. 变异操作,对新生成的个体进行变异操作,引入一定的随机性。
6. 重复步骤2-5,直到满足停止条件(如达到迭代次数或找到满意的解)。
通过不断地迭代选择、交叉和变异操作,种群中的个体将不断进化,最终找到函数的最小值对应的 x 值。
在上述例题中,遗传算法通过模拟自然选择和遗传机制,不断优化种群中个体的适应度,最终找到了函数 f(x) = x^2 3x + 4 的最小值对应的 x 值。
这个例子展示了遗传算法在优化问题中的应用,它能够有效地搜索解空间,找到全局最优解或者接近最优解的解。
遗传算法在实际应用中有着广泛的应用,如工程优化、机器学习、数据挖掘等领域。
遗传算法求解优化问题实例

遗传算法求解优化问题实例
一个常见的优化问题是旅行商问题(Traveling Salesman Problem,TSP)。
给定一组城市和每对城市之间的距离,旅行商问题要求找到一条经过所有城市一次且回到起点的最短路径。
以下是使用遗传算法求解TSP的实例:
1. 随机生成一个初始种群,种群中的每个个体表示一条路径。
每个个体由一个城市序列表示,例如[1, 2, 3, ..., n],其中n是城市的数量。
2. 计算种群中每个个体的适应度。
适应度可以定义为路径的总长度,即经过所有城市的距离之和。
3. 选择适应度较高的个体作为父代,进行交叉和变异操作以生成新的子代。
交叉操作可以是将两条路径的一部分交换,变异操作可以是随机改变路径中的一个或多个城市顺序。
4. 计算新生成的子代的适应度。
5. 重复步骤3和4,直到达到终止条件(例如达到最大迭代次数)。
6. 返回适应度最好的个体作为最优解,即最短路径。
遗传算法的优势在于可以在大规模问题中寻找较好的解,虽然不一定能找到最佳解,但可以得到相对较优的解。
03第三章 遗传算法

第三章遗传算法习题与答案1.填空题(1)遗传算法的缩写是,它模拟了自然界中过程而提出,可以解决问题。
在遗传算法中,主要的步骤是、、。
(2)遗传算法的三个算子是、、。
解释:本题考查遗传算法的基础知识。
具体内容请参考课堂视频“第3章遗传算法”及其课件。
答案:(1)GA,生物进化,全局优化,编码,计算适应度函数,遗传算子(2)选择,交叉,变异2.对于编码长度为7的二进制编码,判断以下编码的合法性。
(1)[1020110](2)[1011001](3)[0110010](4)[0000000](5)[2134576]解释:本题考查遗传算法的二进制编码的合法性。
具体内容请参考课堂视频“第3章遗传算法”及其课件。
答案:(1)[1020110]不合法,不能出现“2”(2)[1011001]合法(3)[0110010]合法(4)[0000000]合法(5)[2134576]不合法,不能出现0、1以外的数字3.下图能够基本反映生物学遗传与优胜劣汰的过程。
理解该图,联想计算类问题求解,回答下列问题。
(1)下列说法正确的是_____。
(多选)A)任何一个生物个体的性状是由其染色体确定的,染色体是由基因及其有规律的排列所构成的,因此生物个体可由染色体来代表。
B)生物的繁殖过程是通过将父代染色体的基因复制到子代染色体中完成的,在复制过程中会发生基因重组或基因突变。
基因重组是指同源的两个染色体之间基因的交叉组合,简称为“杂交/交配”。
基因突变是指复制过程中基因信息的变异,简称“突变”。
C)不同染色体会产生不同生物个体的性状,其适应环境的能力也不同。
D)自然界体现的是“优胜劣汰,适者生存”的丛林法则。
不适应环境的生物个体将被淘汰,自然界生物的生存能力会越来越强。
解释:本题考核对生物遗传观点以及所给图片的理解。
具体内容请参考课堂视频“第3章遗传算法”及其课件。
答案:A、B、C、D关于生物遗传进化的基本观点如下:(1)生物的所有遗传信息都包含在其染色体中,染色体决定了生物的性状。
遗传算法实例参考

05 遗传算法实例:其他问题
问题描述
旅行商问题
给定一系列城市和每对城市之间 的距离,要求找出一条旅行路线, 使得每个城市恰好经过一次并最 终回到起始城市,且总距离最短。
背包问题
给定一组物品和它们的价值、重 量,要求在不超过背包承重限制 的情况下,选择一些物品放入背 包,使得背包中物品的总价值最 大。
2
在调度问题中,常用的编码方式包括二进制编码、 整数编码和实数编码等。
3
二进制编码将每个任务表示为一个二进制串,串 中的每个比特代表一个时间点,1表示任务在该 时间点执行,0表示不执行。
适应度函数
01
适应度函数用于评估解的优劣程度。
02
在调度问题中,适应度函数通常根据总成本计算得出,总成 本越低,适应度越高。
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题, 旨在寻找一条旅行路线,使得一个销售代表能够访问所有指定的城市,并最后返回 出发城市,且所走的总距离最短。
问题可以描述为:给定一个包含n个城市的集合,以及每对城市之间的距离,求 一条总距离最短的旅行路线。
函数优化
用于求解多峰函数、离散函数等复杂函数的 最大值或最小值问题。
机器学习
用于支持向量机、神经网络等机器学习模型 的参数优化。
组合优化
用于求解如旅行商问题、背包问题、图着色 问题等组合优化问题。
调度与分配问题
用于求解生产调度、车辆路径规划、任务分 配等问题。
02 遗传算法实例:旅行商问 题
问题描述
交叉操作
• 交叉操作是将两个个体的部分基因进行交换,以 产生新的个体。常用的交叉方法有单点交叉、多 点交叉等。在背包问题中,可以采用单点交叉方 法,随机选择一个交叉点,将两个个体的基因进 行交换。
(完整)用遗传算法求解TSP问题

用遗传算法求解TSP问题遗传算法(Genetic Algorithm——GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J。
Holland教授于1975年首先提出的。
J.Holland 教授和它的研究小组围绕遗传算法进行研究的宗旨有两个:抽取和解释自然系统的自适应过程以及设计具有自然系统机理的人工系统。
遗传算法的大致过程是这样的:将每个可能的解看作是群体中的一个个体或染色体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,即给出一个适应度值。
开始时,总是随机的产生一些个体,根据这些个体的适应度,利用遗传算子-—选择(Selection)、交叉(Crossover)、变异(Mutation)对它们重新组合,得到一群新的个体.这一群新的个体由于继承了上一代的一些优良特性,明显优于上一代,以逐步向着更优解的方向进化.遗传算法主要的特点在于:简单、通用、鲁棒性强。
经过二十多年的发展,遗传算法已经在旅行商问题、生产调度、函数优化、机器学习等领域得到成功的应用。
遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象.传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子.2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
3、遗传算法使用多个点的搜索信息,具有隐含并行性。
4、遗传算法使用概率搜索技术,而非确定性规则。
遗传算法是基于生物学的,理解或编程都不太难。
下面是遗传算法的一般算法步骤:1、创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样;在那里,问题的初始状态已经给定了。
遗传算法及几个例子

遗传算法及几个例子遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。
遗传算法是多学科相互结合与渗透的产物。
目前它已发展成一种自组织、自适应的多学科技术。
针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。
这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。
但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。
基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。
基本遗传算法只使用选择、交叉、变异三种基本遗传操作。
遗传操作的过程也比较简单、容易理解。
同时,基本遗传算法也是其他一些遗传算法的基础与雏形。
1.1.1 编码方法用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。
因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。
在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。
反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。
编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。
迄今为止人们已经设计出了许多种不同的编码方法。
基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。
每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。
一般染色体的长度L 为一固定的数,如X=10011100100011010100表示一个个体,该个体的染色体长度L=20。
第9章怎样研究算法遗传算法示例练习题答案解析

第9章怎样研究算法:遗传算法示例1、P类问题、NP类问题、NPC类问题是计算机科学领域关于可求解性可计算性很重要的概念。
关于P、NP和NPC类问题,回答下列问题。
(1)下列说法不正确的是_____。
(A) P类问题是计算机可以在有限时间内能够求解的问题;(B) NP类问题是计算机可以在有限时间内能够验证“解”的正确性的问题;(C) NPC类问题是对问题的每一个可能解,计算机都可以在有限时间内验证“解”的正确性的问题,被称为NP完全问题;(D)上述说法有不正确的;答案:D解释:本题考核P类问题、NP类问题、NPC类问题的概念。
P类问题指计算机可以在有限时间内求解的问题,(A)正确;NP类问题指虽然在多项式时间内难于求解但不难判断给定一个解的正确性问题,(B)正确;NPC问题指NP问题的所有可能答案都可以在多项式时间内进行正确与否的验算,称为NP-Complete问题,(C)正确;(A)(B)(C)都正确,所以(D)错误。
具体内容请参考第九章视频之“可求解与难求解问题”以及第九章课件。
(2)可解性问题是指能够找到多项式时间复杂性算法进行求解的问题,难解性问题是指找不到多项式时间复杂性算法进行求解的问题。
下列说法不正确的是_____。
(A) P类问题是可解性问题,NP类问题是难解性问题。
(B) NP类问题不一定是难解性问题,因为P类问题也一定是NP类问题;(C) NP类问题不确定是否是P类问题,但NPC类问题一定是难解性问题;(D)上述说法有不正确的;答案:A解释:本题考核对可解性问题和难解性问题概念的理解。
P类问题指计算机可以在有限时间内求解的问题,所以是可解性问题;NP类问题指虽然在多项式时间内难于求解但不难判断给定一个解的正确性问题,但P类问题是NP类问题的一个子集,所以NP类问题不一定是难解性问题;NPC问题指NP问题的所有可能答案都可以在多项式时间内进行正确与否的验算,称为NP-Complete问题,是难解性问题,综上,(A)错误。
遗传算法考试题目

遗传算法考试题目
题目1:使用遗传算法求解旅行商问题。
假设有一位旅行商需要拜访n个城市,每个城市只能访问一次,并且从一个城市回到起始城市。
每个城市之间都有距离,求解旅行商经过的最短路径。
题目2:使用遗传算法优化函数f(x)=x^2-4x+4,求解使得f(x)取得最小值的x。
题目3:使用遗传算法求解背包问题。
假设有一个背包的容量为C,同时有n个物品,每个物品有自己的重量和价值。
要求
选择一些物品放入背包中,使得背包内物品的总重量不超过C,并且物品的总价值最大。
题目4:使用遗传算法进行图像压缩。
假设有一张彩色图像,每个像素点都有RGB三个分量的值。
要求使用遗传算法对这
张图像进行压缩,使得图像的质量损失最小化的情况下,压缩比最大化。
题目5:使用遗传算法优化神经网络结构。
假设有一个神经网络,其层数和每层的节点数都是可调整的。
使用遗传算法搜索出最优的神经网络结构,使得在给定的数据集上,神经网络的预测性能最好。
遗传算法实例

遗传算法实例1. 引言遗传算法是一种启发式优化算法,常用于解决复杂的优化问题。
其模拟了自然界中的进化过程,通过遗传操作(选择、交叉和变异)对候选解进行搜索和改进,以找到最优解。
本文将介绍一个遗传算法的实例,该实例将应用于解决一个经典的旅行商问题(TSP)。
2. 问题描述旅行商问题是一个经典的组合优化问题,其目标是寻找一条最短的路径,使得旅行商能够访问所有给定的城市并回到起始城市。
在该问题中,我们假设每个城市之间的距离是已知的,并且每个城市只能被访问一次。
3. 算法步骤遗传算法通常包括以下步骤:3.1 初始化种群首先,我们需要初始化一个包含多个个体的种群。
每个个体代表了一个可能的解,即一条路径。
3.2 评估适应度对于每个个体,我们需要计算其适应度值,以评估其好坏程度。
在旅行商问题中,适应度值可以定义为路径的总距离。
适应度越小表示路径越短,个体越优秀。
3.3 选择操作选择操作的目的是为了选择优秀的个体进入下一代种群。
常用的选择方法有轮盘赌选择和排名选择等。
选择过程中,适应度值好的个体被选中的概率较大。
3.4 交叉操作交叉操作模拟了生物进化过程中的杂交。
通过交换两个个体的染色体片段,产生新的个体。
在旅行商问题中,我们可以随机选择两个个体,并选择一个交叉点,将两个个体的染色体在交叉点之后进行互换。
3.5 变异操作变异操作模拟了生物基因突变的过程。
通过随机改变个体的某个基因值,产生一个新的个体。
3.6 更新种群将选择和变异操作生成的个体加入新的种群中,并取代原来的个体。
这样,我们就得到了新的种群,继续进行下一代的迭代。
3.7 终止条件算法的终止条件可以是满足一定迭代次数或者找到了满足问题要求的最优解。
4. 遗传算法代码实现以下是一个使用Python实现的遗传算法的伪代码:# 初始化种群population = initialize_population()# 迭代计算for generation in range(max_generations):# 评估适应度fitness_values = evaluate_fitness(population)# 选择操作selected_population = selection(population, fitness_values)# 交叉操作offspring_population = crossover(selected_population)# 变异操作mutated_population = mutation(offspring_population)# 更新种群population = mutated_population# 检查终止条件if check_termination_condition():break# 获取最优解best_solution = get_best_solution(population)上述伪代码中的函数可以根据具体问题进行实现,而具体问题中的距离计算、初始化种群等操作也需要根据实际情况进行编写。
作业车间调度遗传算法python

作业车间调度是优化生产效率和资源利用的重要工作。
在实际工厂生产中,作业车间的调度问题往往十分复杂,需要考虑多个因素和约束条件。
为了解决这一问题,许多研究者提出了多种优化算法,其中遗传算法是一种常用且有效的方法之一。
一、遗传算法概述遗传算法是一种模拟自然选择和遗传机制的优化算法,其核心思想是通过模拟自然界的进化过程,利用交叉、变异、选择等操作不断迭代,最终找到最优解。
遗传算法广泛应用于组合优化、函数优化、机器学习等领域,其灵活性和高效性受到了广泛认可。
二、遗传算法在作业车间调度中的应用1.问题建模作业车间调度问题可以理解为将一组作业分配到多台设备上,并确定它们的顺序和时间安排,以最大化生产效率和资源利用率。
这一问题的复杂性体现在多个方面,例如设备之间的关系、作业的执行时间、优先级约束等。
2.遗传算法解决方案遗传算法作为一种全局搜索算法,能够有效地处理作业车间调度问题中的复杂约束条件和多目标优化。
通过编码、交叉、变异和选择等操作,遗传算法可以逐步优化作业的调度方案,找到最优解或较优解。
三、基于Python的作业车间调度遗传算法实现基于Python语言的遗传算法库有许多,例如DEAP、Pyevolve、GAlib等。
这些库提供了丰富的遗传算法工具和接口,使得作业车间调度问题的求解变得简单且高效。
1.问题建模针对具体的作业车间调度问题,首先需要将问题进行合理的数学建模,包括作业集合、设备集合、作业执行时间、约束条件等。
然后根据问题的具体性质选择适当的遗传算法编码方式和适应度函数。
2.遗传算法实现利用Python的遗传算法库进行实现,首先需要定义遗传算法的相关参数,如种裙大小、迭代次数、交叉概率、变异概率等。
然后通过编码、交叉、变异和选择等操作,逐步优化作业的调度方案,直至达到收敛或达到一定迭代次数。
3.结果评估与分析得到最终的调度方案后,需要对结果进行评估和分析。
可以比较遗传算法得到的调度方案与其他常规方法的效果,如贪婪算法、模拟退火算法等。
遗传算法求解多目标优化问题

遗传算法求解多目标优化问题随着科技的发展和社会的进步,人们对各种问题的优化需求越来越高。
在现实生活中,我们常常面临多个目标之间的冲突,需要找到一种解决方案,能够在多个目标之间取得平衡。
在这种情况下,多目标优化问题应运而生。
多目标优化问题(Multi-Objective Optimization Problem,简称MOP)是指在具有多个冲突目标的复杂系统中寻找最优解的问题。
解决MOP问题的方法有很多种,其中一种被广泛应用的方法就是遗传算法。
遗传算法是一个基于自然进化过程的优化算法,通过模拟自然进化的过程来搜索最优解。
它将问题的解表示为一个个体(也称为染色体),通过交叉和变异等遗传操作产生下一代的个体,不断迭代,最终找到较好的解。
在使用遗传算法求解多目标优化问题时,需要采取一些特定的策略和算子来克服多目标之间的冲突。
下面我将介绍一些常见的策略和算子。
第一,适应度函数的设计。
在单目标优化问题中,适应度函数往往只有一个目标。
而在多目标优化问题中,适应度函数需要同时考虑多个目标的性能。
常用的适应度函数设计方法有线性加权和Chebyshev方法。
线性加权方法将各个目标按一定权重加权求和,而Chebyshev方法则选取各个目标值中最大的值作为适应度值。
第二,选择操作的策略。
在遗传算法中,选择操作是保留适应度较高的个体,淘汰适应度较低的个体。
针对多目标优化问题,常用的选择操作策略有非支配排序和拥挤度算子。
非支配排序方法将个体划分为不同的层级,每一层级的个体相对于其他层级的个体来说都是非支配的。
拥挤度算子则是通过计算个体在解空间中的密度来保留具有多样性的解。
第三,交叉和变异操作的设计。
在多目标优化问题中,交叉和变异操作需要保证生成的新个体能够在多个目标之间取得平衡。
常用的交叉操作有模拟二进制交叉(SBX)和离散型交叉。
SBX方法通过对父代染色体的值进行交叉,产生子代染色体的值。
离散型交叉则从父代染色体中随机选择一个目标值来构建子代染色体。
用遗传算法解决TSP问题

用遗传算法解决TSP问题设计思路:1.初始化城市距离采用以城市编号(i,j=1代表北京,=2代表上海,=3代表天津,=4代表重庆,=5代表乌鲁木齐)为矩阵行列标的方法,输入任意两个城市之间的距离,用矩阵city表示,矩阵中的元素city(i,j)代表第i个城市与第j个城市间的距离。
2.初始化种群通过randperm函数,生成一个一维随机向量(是整数1,2,3,4,5的任意排列),然后将其赋给二维数组group的第一列,作为一个个体。
如此循环N次(本例生成了50个个体),生成了第一代种群,种群的每个个体代表一条路径。
3.计算适应度采用的适应度函数为个体巡回路径的总长度的函数。
具体为adapt(1,i)=(5*maxdis-dis) (1) 在式(1)中,adapt(1,i)表示第i个个体的适应度函数,maxdis为城市间的最大距离,为4077km,dis为个体巡回路径的总长度,这样定义的适应度,当路经越短时适应度值越大。
在适应度值的基础上,给出的计算个体期望复制数的表达式为adaptnum(1,i)=(N* adapt(1,i)/ sumadapt) (2) 其中,sumadapt为种群适应度之和。
4.复制采用优秀个体的大比例保护基础上的随机数复制法。
具体做法为在生成下一代个体时,先将最大适应度对应的路径个体以较大的比例复制到下一代,然后再用随机数复制法生成下一代的其他个体。
其中,有一个问题必须考虑,即若某一次生成的随机数过大,结果能复制一个或极少个样本。
为了避免这一情况,采用了限制措施,即压低了随机数的上限。
5.交叉采用的方法为按步长的单点交叉,为随机选择一对样本,再随机选择一个交叉点位置,按一定的步长进行交叉点的选择。
选择一个步长而不是将其设为1,是因为若某一位置处的城市代码因为进行了交叉而发生了改变,则其经过该处的两个距离都会改变。
这种交叉兼有遗传和变异两方面的作用,因为若交叉点处的城市编号都相同,则对两个个体而言交叉后样本无变化,否则样本有变化。
遗传算法求解实例

yjl.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值f (x) =xsin( 10 二* x) 2.0,x • [-1,2]选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25len lbub scale lbin译码矩阵结构: FieldD code译码矩阵说明:len -包含在Chrom中的每个子串的长度,注意sum(len)=length(Chrom);lb、ub -行向量,分别指明每个变量使用的上界和下界;code -二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码,code(i)=0则为格雷编码;scale -二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术刻度,scale(i)=1则为对数刻度;lbin、ubin -二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界;注:增加第22 行:variable=bs2rv(Chrom, FieldD);否则提示第26 行plot(variable(l), Y, 'bo');中variable(I)越界yj2.m :目标函数是De Jong函数,是一个连续、凸起的单峰函数,它的M文件objfun1包含在GA工具箱软件中,De Jong函数的表达式为:n2f (x) = ' X j , 一512 乞X j E 512i d这里n是定义问题维数的一个值,本例中选取n=20,求解min f (x),程序主要变量:NIND (个体的数量):=40;MAXGEN (最大遗传代数):=500;NVAR (变量维数):=20 ;PRECI (每个变量使用多少位来表示):=20;GGAP (代沟):=0.9注:函数objfun1.m 中switch改为switch1,否则提示出错,因为switch为matlab保留字,下同!yj3.m :多元多峰函数的优化实例,Shubert函数表达式如下,求min f (x)【shubert.m 】f(x 「X 2)= 7 i cos[( i T)*X t i]*7 i cos[( i ■ 1) * x 2 - i] ,- 10 乞 X t , x 2 乞 10i丄i注:第10行各变量的上下限改为[-10;10],原来为[-3;3];第25行改为:[Y, l]=min(ObjV);原来为[Y, I]=min(ObjVSel);以此将染色体的个 体值与shubert()函数值对应起来, 原表达式不具有 shubert()函数自变量和应变量的对应关系yj4.m :收获系统最优控制,收获系统(Harvest)是一个一阶的离散方程,表达式为x(k T) = a*x(k) - u (k) , k =1, 2,…,N-s.t. x(0)为初始条件x(k)三R 为状态变量u(k 厂R ■为控制输入变量精确优化解:用遗传算法对此问题求解, x(0) =100 , > -1.1,控制步骤N=20 ,决策变量u (k) 个数 NVAR=20, u(k) •二[0,200 ]注:第 20行语句原为:Chrom=crtrp(NIND,FieldDD);改为:Chrom=crtrp(SUBPOP*NIND,FieldDD);运行提示:Warning: File: D:\MA TLAB6p5\toolbox\gatbx\CRTRP .M Line: 34 Column: 19 Variable 'nargin' has bee n previously used as a function n ame. (Type "warni ngoff MATLAB:mir_warni ng_variable_used_as_fu nctio n"tosuppress this warnin g.)yj5.m :装载系统的最优问题,装载系统是一个二维系统,表达式如下X 1 ( k ' 1) = X 2 (k)丄 丄1x 2(k -1) =2 * x 2 (k) —X t (k)^u(k)N目标函数: 1Nf (x,u) - -X t (N 1)u (k)2N k 亠N _1理论最优解: min f (x, u) = _ 1 ■_ - — k 23 6N 2 N k 二目标函数: Nf(x,u)工 J u(k)k40.4 20x( N ) - x(0)k =1, 2,…,Nmax f (x)=Nx(0)(a -1) ~N 」 a (a -1)用遗传算法对此问题求解,x(0) =[0 0],控制步骤N=20,决策变量u(k)个数NVAR=20 , u(k)三[0,10]注:增加第32-35行语句,功能为实现每隔MIGGEN=20代,以迁移率MIGR=0.2在子种群之间迁移个体,增加这几行语句之前求得目标函数最小值为-0.1538,增加这几行语句之后求得目标函数最小值为-0.1544,目标函数理论最优值为-0.1544.yj6.m :离散二次线性系统最优控制问题,其一维二阶线性系统表达式如下:x(k 1)=a*x(k) b*u(k) , k =1, 2,…,N目标函数:N2 2 2f(x,u) =q*x(n 亠1)亠二[s * x( k)亠r*u(k)]k z1参数设置:求min f (x, u)yj7.m :目标分配问题描述为:m个地空导弹火力单元对n批空袭目标进行目标分配。
(整理)小袋鼠你往哪儿跳--遗传算法.

小袋鼠你往哪儿跳--遗传算法基础及其本质有很多袋鼠,它们降落到喜玛拉雅山脉的任意地方。
这些袋鼠并不知道它们的任务是寻找珠穆朗玛峰。
但每过几年,就在一些海拔高度较低的地方射杀一些袋鼠,并希望存活下来的袋鼠是多产的,在它们所处的地方生儿育女。
想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢?遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。
),TSP问题(在以后的章节里面将做详细介绍。
),生产调度问题,人工生命模拟等。
直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。
这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。
问题的提出与解决方案让我们先来考虑考虑下面这个问题的解决办法。
已知一元函数:图2-1现在要求在既定的区间内找出函数的最大值。
函数图像如图2-1所示。
极大值、最大值、局部最优解、全局最优解在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。
学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图2.1里面的表现就是一个“山峰”。
当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。
而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。
所以极大值具有局部性,而最大值则具有全局性。
因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。
所以从一个基因组到其解的适应度形成一个映射。
所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。
在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。
(完整)基本遗传算法

基本遗传算法Holland创建的遗传算法是一种概率搜索算法,它利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些串组成的个体进化过程.该算法通过有组织的、然而是随机的信息交换,重新组合那些适应性好的串.在每一代中,利用上一代串结构中适应性好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。
遗传算法是一类随机优化算法,它可以有效地利用已有的信息处理来搜索那些有希望改善解质量的串.类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题.与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来改变染色体,使适应性好的染色体比适应性差的染色体有更多的繁殖机会.第一章遗传算法的运行过程遗传算法模拟了自然选择和遗传中发生的复制、交叉和变异等现象,从任一初始种群(Population)出发,通过随机选择、交叉和变异操作,产生一群更适应环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适应环境的个体(Individual),求得问题的最优解。
一.完整的遗传算法运算流程完整的遗传算法运算流程可以用图1来描述。
由图1可以看出,使用上述三种遗传算子(选择算子、交叉算子和变异算子)的遗传算法的主要运算过程如下:(1)编码:解空间中的解数据x,作为遗传算法的表现形式。
从表现型到基因型的映射称为编码.遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合就构成了不同的点。
(2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。
遗传算法以这N个串结构作为初始点开始迭代。
设置进化代数计数器t←0;设置最大进化代数T;随机生成M个个体作为初始群体P(0)。
(3)适应度值评价检测:适应度函数表明个体或解的优劣性。
遗传算法简单易懂的例子

遗传算法简单实例为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。
例:求下述二元函数的最大值:(1) 个体编码遗传算法的运算对象是表示个体的符号串,所以必须把变量x1, x2 编码为一种符号串。
本题中,用无符号二进制整数来表示。
因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。
例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。
个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
(2) 初始群体的产生遗传算法是对群体进行的进化操作,需要给其淮备一些表示起始搜索点的初始群体数据。
本例中,群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。
如:011101,101011,011100,111001(3) 适应度汁算遗传算法中以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传机会的大小。
本例中,目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接利用目标函数值作为个体的适应度。
(4) 选择运算选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型遗传到下一代群体中。
一般要求适应度较高的个体将有更多的机会遗传到下一代群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。
其具体操作过程是:•先计算出群体中所有个体的适应度的总和fi ( i=1.2,…,M );•其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传到下一代群体中的概率,•每个概率值组成一个区域,全部概率值之和为1;•最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。
(5) 交叉运算交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某两个个体之间的部分染色体。
基于遗传算法求解作业车间调度问题本科毕业设计论文

基于遗传算法求解作业车间调度问题摘要作业车间调度问题(JSP)简单来说就是设备资源优化配置问题。
作业车间调度问题是计算机集成制造系统(CIMS)工程中的一个重要组成部分,它对企业的生产管理和控制系统有着重要的影响。
在当今的竞争环境下,如何利用计算机技术实现生产调度计划优化,快速调整资源配置,统筹安排生产进度,提高设备利用率已成为许多加工企业面临的重大课题。
近年来遗传算法得到了很大的发展,应用遗传算法来解决车间调度问题早有研究。
本文在已有算法基础上详细讨论了染色体编码方法并对其进行了改进。
在研究了作业车间调度问题数学模型和优化算法的基础上,将一种改进的自适应遗传算法应用在作业车间调度中。
该算法是将sigmoid函数的变形函数应用到自适应遗传算法中,并将作业车间调度问题中的完工时间大小作为算法的评价指标,实现了交叉率和变异率随着完工时间的非线性自适应调整,较好地克服了标准遗传算法在解决作业车间调度问题时的“早熟”和稳定性差的缺点,以及传统的线性自适应遗传算法收敛速度慢的缺点。
以改进的自适应遗传算法和混合遗传算法为调度算法,设计并实现了作业车间调度系统,详细介绍了各个模块的功能与操作。
最后根据改进的编码进行遗传算法的设计,本文提出了一种求解车间作业调度问题的改进的遗传算法,并给出仿真算例表明了该算法的有效性。
关键词:作业车间调度;遗传算法;改进染色体编码;生产周期Solving jopshop scheduling problem based ongenetic algorithmAbstractSimply speaking, the job shop scheduling problem(JSP) is the equipment resources optimization question. Job Shop Scheduling Problem as an important part of Computer IntegratedManufacturing System (CIMS) engineering is indispensable, and has vital effect onproduction management and control system. In the competion ecvironment nowadays, how touse the assignments quickly and to plan production with due consideration for all concernedhas become a great subject for many manufactory.In recent years,the genetic algorithms obtained great development it was used to solve the job shop scheduling problem early.This paper discusses the chromosome code method in detail based on the genetic algorithms and make the improvement on it. Through the research on mathematics model of JSP and optimized algorithm, theimproved adaptive genetic algorithm (IAGA) obtained by applying the improved sigmoidfunction to adaptive genetic algorithm is proposed. And in IAGA for JSP, the fitness ofalgorithm is represented by completion time of jobs. Therefore, this algorithm making thecrossover and mutation probability adjusted adaptively and nonlinearly with the completiontime, can avoid such disadvantages as premature convergence, low convergence speed andlow stability. Experimental results demonstrate that the proposed genetic algorithm does notget stuck at a local optimum easily, and it is fast in convergence, simple to be implemented. the job shop scheduling system based on IAGA and GASH is designed andrealized, and the functions and operations of the system modules are introduced detailedly. In the end ,according to the code with improved carries on the genetic algorithms desing, this paper offer one improved genetic algorithms about soloving to the job shop scheduling problem, and the simulated example has indicated that this algorithm is valid.Keywords: jop shop scheduling; genetic algorithm; improvement chromosome code; production cycl毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
遗传算法求f(x)=x+10sin(5x)+7cos(4x)的最大值

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2【问题】在-5<=Xi<=5,i=1,2区间内,求解f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.7128 2的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3【程序清单】%源函数的matlab代码function [eval]=f(sol)numv=size(sol,2);x=sol(1:numv);eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;%适应度函数的matlab代码function [sol,eval]=fitness(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=f(x);eval=-eval;%遗传算法的matlab代码bounds=ones(2,1)*[-5 5];[p,endPop,bestSols,trace]=ga(bounds,'fitness')注:前两个文件存储为m文件并放在工作目录下,运行结果为p =0.0000 -0.0000 0.0055大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
土规1101班刘迈克2011306200521 求下面加权有向图中从A到G的最短路径。
A
B1
B2 C1
C2
C3
C4
D1
D2
D3
E1
E2
E3
F1
F2
G
5 3
1
3
6
8
7
6
6
5
8
3
3
3 8
4
2
2
2
1
3
3
3
5
5
2
6
6
4
3
1
2
3 4
5
6
7
8
9
10
11
12
13
14
15
16
5 3
1
3
6
8
7
6
6
5
8
3
3
3 8
4
2
2
2
1
3
3
3
5
5
2
6
6
4
3
解:
基本思路:
第一步:确定决策变量及其约束条件。
第二步:建立优化模型。
第三步:确定编码方法。
第四步:确定解码方法。
第五步:确定个体评价方法。
第六步:设计遗传算子。
选择运算使用比例选择算子;
交叉运算使用单点交叉算子;
变异运算使用基本位变异算子。
第七步:确定遗传算法的运行参数。
程序:
% n ---- 种群规模
% ger ---- 迭代次数
% pc ---- 交叉概率
% pm ---- 变异概率
% v ---- 初始种群(规模为n)
% f ---- 目标函数值
% fit ---- 适应度向量
% vx ---- 最优适应度值向量
% vmfit ---- 平均适应度值向量
clear all;
close all;
clc;
tic;
% 生成初始种群
%power=[0 5 3 100 100 100 100 100;
% 100 0 100 1 3 6 100 100;
% 100 100 0 100 8 7 6 100;
% 100 100 100 0 100 100 100 8;
% 100 100 100 100 0 100 100 5;
% 100 100 100 100 100 0 100 3;
% 100 100 100 100 100 100 0 3;
% 100 100 100 100 100 100 100 0];
power=[0 5 3 100 100 100 100 100 100 100 100 100 100 100 100 100; 100 0 100 1 3 6 100 100 100 100 100 100 100 100 100 100;
100 100 0 100 8 7 6 100 100 100 100 100 100 100 100 100;
100 100 100 0 100 100 100 6 8 100 100 100 100 100 100 100;
100 100 100 100 0 100 100 3 5 100 100 100 100 100 100 100;
100 100 100 100 100 0 100 100 3 3 100 100 100 100 100 100;
100 100 100 100 100 100 0 100 8 4 100 100 100 100 100 100;
100 100 100 100 100 100 100 0 100 100 2 2 100 100 100 100;
100 100 100 100 100 100 100 100 0 100 100 1 2 100 100 100;
100 100 100 100 100 100 100 100 100 0 100 3 3 100 100 100;
100 100 100 100 100 100 100 100 100 100 0 100 100 3 5 100;
100 100 100 100 100 100 100 100 100 100 100 0 100 5 2 100;
100 100 100 100 100 100 100 100 100 100 100 100 0 6 6 100;
100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 4;
100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 3;
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0]; [PM PN]=size(power);
n=80;
ger=200;
pc=0.7;
pm=0.02;
% 生成初始种群
v=init_population(n,PN);
v(:,1)=1;
v(:,PN)=1;
[N,L]=size(v);
disp(sprintf('Number of generations:%d',ger));
disp(sprintf('Population size:%d',N));
disp(sprintf('Crossover probability:%.3f',pc));
disp(sprintf('Mutation probability:%.3f',pm));
% 计算适应度,并画出图形
fit=short_road_fun(v,power);
figure(1);
grid on;
hold on;
plot(fit,'k*');
title('(a)染色体的初始位置');
xlabel('x');
ylabel('f(x)');
% 初始化
vmfit=[];
it=1;
vx=[];
%C=[];
% 开始进化
while it<=ger
%Reproduction(Bi-classist Selection)
vtemp=short_road_roulette(v,fit);
%Crossover
v=short_road_crossover(vtemp,pc);
%Mutation
M=rand(N,L)<=pm;
%M(1,:)=zeros(1,L);
v=v-2.*(v.*M)+M;
v(:,1)=1;
v(:,end)=1;
%Results
fit=short_road_fun(v,power);
[sol,indb]=min(fit);
v(1,:)=v(indb,:);
media=mean(fit);
vx=[vx sol];
vmfit=[vmfit media];
it=it+1;
end
%%%% 最后结果
disp(sprintf('\n')); %空一行
% 显示最优解及最优值
disp(sprintf('Shortroad is %s',num2str(find(v(indb,:))))); disp(sprintf('Mininum is %d',sol));
v(indb,:)
% 图形显示最优结果
figure(2);
grid on;
hold on;
plot(fit,'r*');
title('染色体的最终位置');
xlabel('x');
ylabel('f(x)');
% 图形显示最优及平均函数值变化趋势figure(3);
plot(vx);
title('最优,平均函数值变化趋势'); xlabel('Generations');
ylabel('f(x)');
hold on;
plot(vmfit,'r');
hold off;
runtime=toc
结果:
Number of generations:200 Population size:80
Crossover probability:0.700
Mutation probability:0.020
Shortroad is 1 2 5 8 12 15 16
Mininum is 18
ans =Columns 1 through 13
1 1 0 0 1 0 0 1 0 0 0 1 0
Columns 14 through 16
0 1 1
runtime =1.5393
最优解为:1100100100010011
最短路为:1→2→5→8→12→15→16
最优值为:18。