行测抽屉原理

合集下载

行测同余、抽屉原理

行测同余、抽屉原理

同余同余定义:若两个整数a,b 被自然数m 除有相同的余数,那么称a,b 对于模m 同余。

记作:)mod ( m b a ≡,若b a m b a -≥则有,同余性质:(利用同余的性质可以使大数化小)(1)反身性: )(mod m a a ≡(2)传递性: 若)(mod m b a ≡ )(m o d m c b ≡, 则有)(mod m c a ≡(3)对称性: 若)(mod m b a ≡,则)(mod m a b ≡(4)可加减性 :若)(mod m b a ≡ )(mod m c b ≡,则)(mod m d c b a ±≡±(5)可乘性: 若)(mod m b a ≡ )(mod m c b ≡,则)(mod m d b c a ⋅≡⋅ 可乘方性 :若)(mod m b a ≡,则)(mod m b a n n ≡ (n 为自然数)(6)可约性: 若)(mod m c b c a ⋅≡⋅,则)(mod m b a ≡(7) 若)(mod mc c b c a ⋅≡⋅,则)(mod m b a ≡例一:甲数除以13余7,乙数除以13余9,则其积除以13余多少?()13(mod 11 乙甲≡⨯)例二:求1272835707⨯被7除的余数是多少?(2)解:)7(mod 299107010351028283570735 ≡≡+⨯+⨯+⨯≡)7(mod 1127 ≡因此 )7(mod 2121272835707≡⨯≡⨯同余问题练习题1.求1957380009被19除的余数是多少?(9)2.求12166777708*390被11除的余数是多少?(7)3.一个数除以3余2,除以5余1,除以7余1,求适合这个条件的最小的三位数?(176)4.求被3除余2,被5除余3,被7除余5的最小三位数。

(173)2000年的元旦是星期六,2010年的元旦是星期五。

三角形的等积变换基本规律:(1)等底等高的两个三角形面积相等;(2)底在同一直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等;(3)若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍;例一:试说明梯形中以腰为底的两个小三角形面积相等。

行测数量关系经典题解——抽屉问题

行测数量关系经典题解——抽屉问题

《⾏政职业能⼒测验》中数量关系部分,有⼀类⽐较典型的题——抽屉问题。

对许多公考学⽣来说,这个题型有⼀定的难度,因为很难通过算式的⽅式来将其量化。

我们知道,公务员考试是测试⼀个⼈作为公务员应该具备的最基础的交流、沟通、判断、推理和计算能⼒。

同样,数量关系测试的也不全是个⼈的运算能⼒,它更倾向于考察考⽣的理解和推理能⼒。

抽屉问题就更为显著地贯彻了这⼀命题思路。

我们先来看三个例⼦:(1)3个苹果放到2个抽屉⾥,那么⼀定有1个抽屉⾥⾄少有2个苹果。

(2)5块⼿帕分给4个⼩朋友,那么⼀定有1个⼩朋友⾄少拿了2块⼿帕。

(3)6只鸽⼦飞进5个鸽笼,那么⼀定有1个鸽笼⾄少飞进2只鸽⼦。

我们⽤列表法来证明例题(1):放法抽屉 ①种 ②种 ③种 ④种 第1个抽屉 3个 2个 1个 0个 第2个抽屉 0个 1个 2个 3个 从上表可以看出,将3个苹果放在2个抽屉⾥,共有4种不同的放法。

第①、②两种放法使得在第1个抽屉⾥,⾄少有2个苹果;第③、④两种放法使得在第2个抽屉⾥,⾄少有2个苹果。

即:可以肯定地说,3个苹果放到2个抽屉⾥,⼀定有1个抽屉⾥⾄少有2个苹果。

由上可以得出:题号 物体 数量 抽屉数 结果 (1) 苹果 3个 放⼊2个抽屉 有⼀个抽屉⾄少有2个苹果 (2) ⼿帕 5块 分给4个⼈ 有⼀⼈⾄少拿了2块⼿帕 (3) 鸽⼦ 6只 飞进5个笼⼦ 有⼀个笼⼦⾄少飞进2只鸽 上⾯三个例⼦的共同特点是:物体个数⽐抽屉个数多⼀个,那么有⼀个抽屉⾄少有2个这样的物体。

从⽽得出:抽屉原理1:把多于n个的物体放到n个抽屉⾥,则⾄少有⼀个抽屉⾥有2个或2个以上的物体。

再看下⾯的两个例⼦:(4)把30个苹果放到6个抽屉中,问:是否存在这样⼀种放法,使每个抽屉中的苹果数都⼩于等于5?(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样⼀种放法,使每个抽屉中的苹果数都⼩于等于5?解答:(4)存在这样的放法。

即:每个抽屉中都放5个苹果;(5)不存在这样的放法。

公务员考试行测数量关系:容斥原理和抽屉原理练习题及答案

公务员考试行测数量关系:容斥原理和抽屉原理练习题及答案

公务员考试行测数量关系:容斥原理和抽屉原理练习题及答案1.某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?A.148B.248C.350D.5002.36名女生结伴购物,21人买了长裙,24人买了短裙,24人买了超短裙;14人买了长裙和短裙,15人买了短裙和超短裙,13人买了长裙和超短裙;只有一位羞涩的小姑娘一条裙子都没买。

请问,共有几名女生购买了三种裙子?A.1B.5C.8D.93.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。

那么,参加人数第四多的活动最多有几人参加?A.22B.21C.24D.234.如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。

它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。

且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。

问阴影部分的面积是多少?A.15B.16C.14D.185.三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。

如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是()。

A.A等和B等共6幅B.B等和C等共7幅C.A等最多有5幅D.A等比C等少5幅6.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2B.3C.7D.无法确定7.从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?A.23B.24C.25D.268.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?A.3B.4C.6D.59.某学校1999名学生去游故宫、景山和北海三地,规定每人至少去一处,至多去两地游览,那么至少有多少人游的地方相同?A.35B.186C.247D.10.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2B.3C.7D.无法确定参考答案及解析1.【答案】A。

公务员考试行测数学运算:抽屉原理

公务员考试行测数学运算:抽屉原理

公务员考试:抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

这一现象就是我们所说的抽屉原理。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。

”一.抽屉原理最常见的形式原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

原理1 2都是第一抽屉原理的表述第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

二.应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。

许多有关存在性的证明都可用它来解决。

例1:400人中至少有两个人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.“从任意5双手套中任取6只,其中至少有2只恰为一双手套。

”“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。

”一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一色的球?抽屉原理的解法:首先找元素的总量(此题35)其次找抽屉的个数:白、黄、红、蓝、绿5个最后,考虑最差的情况。

每种抽屉先m-1个球。

最后的得数再加上1,即为所求一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。

问最少抽几张牌,才能保证有4张牌是同一种花色的元素总量13*4抽屉4个m=4抽屉数*(m-1)=1212+1=13从一副完整的扑克牌中.至少抽出()张牌.才能保证至少 6 张牌的花色相同?元素总量=54抽屉=6(大小王各为一个抽屉)M=64*5+1+1+1=23袋子中有红、橙、黄、绿四种颜色的小球若干个,每个人从中任取1个或2个。

语法分析类比推理题

语法分析类比推理题

语法分析巧解类比推理题国家公务员考试行测数学运算—抽屉原理问题抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。

若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

制造抽屉是运用原则的一大关键例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。

问最少抽几张牌,才能保证有4张牌是同一种花色的?A.12B.13C.15D.16【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。

例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?A.7B.10C.9D.8【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。

另外,还有2个不能配对的数是{6}{7}。

可构造抽屉原理,共构造了7个抽屉。

只要有两个数是取自同一个抽屉,那么它们的差就等于7。

这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

例3、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()A.3B.4C.5D.6【解析】这是一道典型的抽屉原理,只不过比上面举的例子复杂一些,仔细分析其实并不难。

行测抽屉原理

行测抽屉原理

行测抽屉原理在行政能力测验(行测)中,抽屉原理是一种常见的问题解题方法。

抽屉原理是指:如果有m个物体要放进n个抽屉,那么至少有一个抽屉里至少放了⌈m/n⌉个物体,其中⌈⌉表示向上取整。

这个原理大多用于解决排列组合、概率统计等与分布相关的问题。

在行测中,抽屉原理经常被考察,因此掌握抽屉原理对于应对行测算术和逻辑推理题是非常重要的。

抽屉原理的应用可以帮助我们更好地理解一些与分布和排列组合有关的问题。

举个例子,假设有10枚硬币,其中有一个是假币,而且与其他硬币的重量不同。

现在要用一台天平找出这枚假币。

假设只能使用天平三次,那么我们可以将硬币按照以下方式分配:第一次,将硬币均匀分成3组,每组放入天平进行称重。

此时,会有两种可能的结果:如果天平平衡,说明假币在未称重的剩余硬币中,我们进行如下操作:将剩下的硬币分成3组,这样我们就可以使用第二次;如果天平不平衡,假设左端比右端重,那么说明假币在左端的硬币组中。

在这组硬币中,可以继续使用相同的方法进行下一轮的称重;第二次,将天平不平衡的那组硬币分成3组,同样放入天平进行称重。

如果天平平衡,则意味着剩余硬币中有假币,可以进行第三次操作;如果天平不平衡,假设左端比右端重,说明假币在左端的硬币组中。

在这组硬币中,继续使用相同的方法进行第三次用天平称重;第三次,将天平不平衡的那组硬币分成2组进行称重。

如果天平平衡,则剩下的一个硬币就是假币;如果天平不平衡,假设左端比右端重,那表明左端的硬币为假币;在这个问题中,我们有10枚硬币,可以放在3个抽屉中,其中的“抽屉”可以看作是天平称重的每一次。

通过抽屉原理,我们可以在不超过3次的情况下找到假币。

公务员行测解题技巧

公务员行测解题技巧

行测数学运算“真题妙解”之抽屉问题从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?A. 7B. 10C. 9D. 8【答案】D在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。

另有两个数6、7肯定不能与其他数形成差为7的情况。

由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。

从这7个抽屉中能够取8个数,则必然有2个数取自同一个抽屉。

所以选择D选项。

抽屉原理是公务员考试行政职业能力测验数量关系重要考点,也是相当一部分考生头痛的问题,华图柏老师通过历年公务员考试真题介绍了抽屉原理的应用。

一、抽屉问题原理抽屉原理最先是由19世纪的德国数学家迪里赫莱运用于解决数学问题的,所以又称为“迪里赫莱原理”,也被称为“鸽巢原理”。

鸽巢原理的基本形式可以表述为:定理1:如果把N+1只鸽子分成N个笼子,那么不管怎么分,都存在一个笼子,其中至少有两只鸽子。

证明:如果不存在一个笼子有两只鸽子,则每个笼子最多只有一只鸽子,从而我们可以得出,N个笼子最多有N只鸽子,与题意中的N+1个鸽子矛盾。

所以命题成立,故至少有一个笼子至少有两个鸽子。

鸽巢原理看起来很容易理解,不过有时使用鸽巢原理会得到一些有趣的结论:比如:北京至少有两个人头发数一样多。

证明:常人的头发数在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。

如果我们让每一个人的头发数呈现这样的规律:第一个人的头发数为1,第二个人的头发数为2,以此类推,第100万个人的头发数为100万根;由此我们可以得到第100万零1个人的头发数必然为1-100万之中的一个。

于是我们就可以证明出北京至少有两个人的头发数是一样多的。

定理2:如果有N个笼子,KN+1只鸽子,那么不管怎么分,至少有一个笼子里有K+1只鸽子。

举例:盒子里有10只黑袜子、12只蓝袜子,你需要拿一对同色的出来。

2014年政法干警行测备考:数学运算之抽屉原理

2014年政法干警行测备考:数学运算之抽屉原理

2014年政法干警行测备考:数学运算之抽屉原理题干中含有诸如“至少……才能保证……”、“要保证……至少……”这类叙述的题目,一般可以用抽屉原理来解决,称为抽屉问题。

对于这类问题,常应用到以下两个抽屉原理,中公教育政法干警考试专家通过以下两个例子为您详细解析。

抽屉原理1将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件。

抽屉原理2将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件。

除此之外,抽屉问题也可以用最差原则来考虑。

所谓最差原则,就是考虑问题发生的最差情况,然后就最差情况进行分析。

最差原则是极端法的一种应用,一般情况下,我们优先考虑用最差原则来解决抽屉问题。

【例题1】抽屉里有黑白袜子各10只,如果你在黑暗中伸手到抽屉里,最少要取出几只,才一定会有一双颜色相同?A.2B.3C.4D.5解析:此题答案为B。

应用最差原则,最差的情况是先取出两只不同的袜子,此时再取一只必然出现一双颜色相同的,故最少取出3只可保证题干条件。

【例题2】把154本书分给某班的同学,如果不管怎样分,都至少有一位同学会分得4本或4本以上的书,那么这个班最多有多少名学生?A.77B.54C.51D.50解析:此题答案为C。

此题首先考虑使用最差原则,发现不容易得出答案。

看到“至少有一位同学会分得4本或4本以上”这种抽屉问题的标准表述,因此可以考虑使用抽屉原理。

每位同学看成一个抽屉,每个抽屉内的物品不少于4件,逆用抽屉原理2,则有m+1=4,m=3。

154=3×n+1,n=51,所以这个班最多有51名学生。

公务员行测数量关系经典总结(五)

公务员行测数量关系经典总结(五)

浓度问题一、考情分析浓度问题对多数考生来说相对简单,也是公务员考试中的常考题型。

只要掌握了浓度问题的公式,弄清楚溶质与溶剂的变化,正确答题还是相对容易的。

但是要想快速解题,就需要多加练习,熟练运用解决浓度问题的各种方法,即方程法、特值法以及十字交叉法的应用。

二、基本概念和公式什么是浓度问题呢?化学定量分析常涉及溶液的配制和溶液浓度的计算,在实际生活中我们也经常遇到溶液配比的问题,由此产生的许多问题归为浓度问题。

浓度问题里面涉及到溶液、溶剂、溶质这三种东西。

这些是什么呢?溶液就是把某种固体或者液体放入水里面,两者混在一起的产物。

溶质就是放进去的那种固体或者液体,溶剂就是水。

举个例子,把盐放到水里,得到盐水,这个盐水就是溶液,盐就是溶质,水是溶剂。

浓度是什么呢?浓度就是溶质占到整个溶液的百分比,比如说,同样的一杯水,盐放得多,它占盐水的百分比就要更大一点,那么得到的盐水也就更咸一点,我们称之为盐水的浓度更大一些。

我们以盐水为例子,这四者之间的关系是这样的:盐的质量+水的质量=盐水的质量浓度=盐的质量÷盐水的质量盐的质量=盐水的质量×浓度盐水的质量=盐的质量÷浓度把不同浓度的溶液混合到一起会怎样呢?大家注意一下,我们要讲一个浓度问题最重要的结论了:混合溶液特性一种高浓度的溶液A和一种低浓度的同种溶液C混合后得到溶液B,那么溶液B的浓度肯定介于溶液A和溶液C的浓度之间。

三、解题方法(一)方程法方程法适用于大部分浓度问题,具有思维过程简单的特点。

考场容易紧张,因此以不变应万变的方程法需要优先而扎实地掌握。

一般来说,方程法有两个要素,第一是设未知数,要求易于求解;第二是找等量关系列出方程。

浓度问题中往往以浓度作为未知变量,这样等量关系易于表达,但也伴有浓度数值大部分是小数不好计算的弊病,还需要考生在实际做题中细加体会。

例题1:一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐多少克?A.12.5B.10C.5.5D.5【答案详解】设应加盐x克,则(200×15%+x)÷(200+x)=20%,解得x=12.5。

抽屉原理的经典解题思路

抽屉原理的经典解题思路

抽屉原理的经典解题思路抽屉原理在公务员考试中的数字运算部分时有出现。

抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。

许多有关存在性的证明都可用它来解决。

先来看抽屉原理的一般叙述:抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。

抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。

也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。

其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。

掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。

一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。

接着制造抽屉。

这个是关键的一步,这一步就是如何设计抽屉。

根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

最后运用抽屉原理。

观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。

例1:证明任取6个自然数,必有两个数的差是5的倍数。

证明:考虑每个自然数被5除所得的余数。

即自然数可以作为物品,被5除所得余数可以作为抽屉。

显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。

所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。

运用抽屉原理,考虑“最坏”的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

砖题库:数量关系易错题之抽屉原理

砖题库:数量关系易错题之抽屉原理

公务员考试行测、申论真题、模拟题尽收其中,千名业界权威名师精心解析,精细化试题分析、完美申论范文一网打尽!在线做题就选砖题库:/在《行政能力测试》考试科目当中,抽屉原理的题目属于常考的一种题型,这类题虽然不难,但是对于思维的缜密性要求比较高,考生在做题的过程中很容易掉入陷阱中,属于很容易做错的一类题,下面我们就针对这类题型做专门的整理。

抽屉原理这类题在考题中的明显特征是“保证”某件事情发生,“至少”怎么样,很好辨认,遇到这样的题我们的常规解题思想就是找到满足条件的“最不利”情形,最后+1即可。

简单总结就是:特征“至少+保证”,方法“最不利发生”,答案“最不利+1”.【例1】(北京应届-2007-15)在一个口袋里有10个黑球,6个白球,4个红球,至少取出几个球才能保证其中有白球( )A.14B.15C.17D.18【答案】B。

显然这是一道抽屉原理的题目,找到最不利情形:摸不到白球,就是摸黑球和红球,共14个,再加1,答案是15,选B。

【例2】(国家-2007-49)从一副完整的扑克牌中至少抽出( )张牌才能保证至少6张牌的花色相同。

A.21B.22C.23D.24【答案】C。

抽屉原理题目,找到最不利情形,要摸6张花色相同,就先给四种花色每种5张,4×5=20张,再加1就是21,这样就调入题目陷阱中了。

这个时候一定要弄清楚,+1的这最后一步必须是百分之百发生题目所要求的结果,这里第21张牌显然还有例外,就是大小王,所以必须先排除例外,20+2,只有第23张牌才能保证6张花色相同的牌一定出现。

选C。

【例3】(浙江-2010-85)某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票。

问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票()?A.382位B.406位C.451位D.516位【答案】B。

抽屉原理的题目,首先每一张票都是从10位里面选2位,就是 =45种不同的选票,题目要求至少有出现10张一样的选票,就先每一种票都选9张,就是45×9=405张,再加1,即第406张一定能保证出现10张一样的选票,选B。

公务员考试行测极值问题中的抽屉原理

公务员考试行测极值问题中的抽屉原理

纵观公务员考试行测中的数量关系部分,不管是省公务员考试还是国家公务员考试都有一类题型,题干中问的是求最多、最少或至少、至多,这类问法一般意义上来说,我们称之为极值问题。

而其中的至少、至多的问法便是大部分考生所熟知的抽屉问题。

针对这类问题,我们该如何解决呢?教育专家下面就以一些例子来与大家一起分享此类问题的解法。

抽屉原理:将多于m×n件物品任意放在m个抽屉中,那么至少有一个抽屉中的物品件数不少于n+1件。

1、有120名职工投票从甲、乙、丙三人中选举一人为劳模,每人只能投一次,且只能选一个人,得票最多的人当选。

统计票数的过程发现,在前81张票中,甲得21票,乙得25票,丙得35票。

在余下的选票中,丙至少再得几张选票就一定能当选?( )A.15B.18C.21D.31【答案】A【解析】此题是问丙至少再得几张选票就一定能当选,由题干中可以看出共有三位候选人,甲得21票,乙得25票,丙得35票,要使至少再得到几张选票丙一定能当选,那么还是首先应该考虑到,丙竞选中遇到的最不利的情况,丙遇到的最不利的情况其实就是来看,谁对丙当选的竞争最大,从开始的选票中,可以看到甲的选票比较少,对丙当选的威胁较小,可以排除;而乙得到的选票与丙是最接近的,对丙的当选最有威胁。

120名职工投票,已有的81张票中,得票最少的是甲21张,只考虑乙丙即可。

120-21=99,若丙最后当选,至少得50张票,所以丙至少再得50-35=15张票。

【命题特点与规律】最不利原则解题。

2、有红、黄、绿三种颜色的手套各6双,装在一个黑色的布袋里,从袋子里任意取出手套来,为确保至少有2双手套不同颜色,则至少要取出的手套只数是( )。

A.15只B.13只C.12只D.10只【答案】A【解析】“为确保至少有”,考虑最坏的情况,首先取出了一种颜色的全部6双手套和其他两种颜色的手套各一只,再任意取出一只,必然得到2双不同颜色的手套。

因此至少要取出2×6+2+1=15只。

行测辅导:抽屉原理解题技巧

行测辅导:抽屉原理解题技巧

一.第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

二.第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m-1)个物体。

例1:400人中至少有2个人的生日相同.例2:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.例3: 从任意5双手套中任取6只,其中至少有2只恰为一双手套。

例4:从任意5双手套中任取6只,其中至少有2只恰为一双手套。

例5:从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。

三.抽屉原理与整除问题整除问题:把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。

(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。

例1 证明:任取8个自然数,必有两个数的差是7的倍数。

四.经典练习:1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色不相同,则最少要取出多少个球?解析:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于7,故至少取出8个小球才能符合要求。

(公务员考试排列组合专题)数量关系之抽屉原理

(公务员考试排列组合专题)数量关系之抽屉原理

(公务员考试排列组合专题)数量关系之抽屉原理排列组合问题是公务员考试当中经常考察的一种题型,也是很多考生理解的不是很清晰的一类题型,所以通过几篇文章详细分析一下排列组合问题的解题思路和解题方法,希望对考生的备考有所帮助。

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。

下面介绍几种常用的解题方法和策略。

一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

二、七大解题策略1.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。

对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A) 280种(B)240种(C)180种(D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是"特殊"位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。

2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。

同时明确分类后的各种情况符合加法原理,要做相加运算。

行测抽屉原理

行测抽屉原理

行测抽屉原理行测中,抽屉原理是一个常见的逻辑推理题型。

抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

这个原理在行测中经常被用来解决排列组合、逻辑推理等问题。

下面就让我们来详细了解一下行测抽屉原理的应用。

首先,我们来看一个简单的例子。

假设有6个苹果和5个篮子,要把这6个苹果放入这5个篮子中,问至少有一个篮子中至少有两个苹果的概率是多少?这个问题就可以通过抽屉原理来解决。

我们可以假设5个篮子分别为抽屉1、抽屉2、抽屉3、抽屉4、抽屉5,然后我们把6个苹果依次放入这5个抽屉中。

根据抽屉原理,至少有一个抽屉中至少有两个苹果的概率是1减去所有抽屉中都只有一个苹果的概率。

这个概率可以通过排列组合的方法计算得出,具体步骤就不在此详述了。

除了排列组合问题,抽屉原理在行测中还经常被用来解决逻辑推理问题。

比如,有一群人中,至少有两个人生日相同的概率是多少?这个问题也可以通过抽屉原理来解决。

我们可以把365天分别看作365个抽屉,然后把这些抽屉中的物品看作人的生日。

根据抽屉原理,如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。

因此,至少有两个人生日相同的概率就是1减去所有抽屉中都只有一个物品的概率。

在行测中,抽屉原理的应用不仅仅局限于排列组合和逻辑推理问题,还可以用来解决其他类型的问题。

比如,某公司有100名员工,他们的工资都不相同,那么至少有两个员工的工资相同的概率是多少?这个问题同样可以通过抽屉原理来解决。

我们可以把员工的工资看作抽屉中的物品,然后根据抽屉原理来计算至少有两个员工的工资相同的概率。

总的来说,行测抽屉原理是一个常见且重要的逻辑推理原理,它在排列组合、逻辑推理以及其他类型的问题中都有着广泛的应用。

掌握抽屉原理的应用方法,对于提高行测解题效率和准确率都有着重要的意义。

希望大家能够通过不断的练习和总结,掌握抽屉原理的应用技巧,从而在行测中取得更好的成绩。

国家公务员考试行测答题技巧:数学运算之容斥原理和抽屉原理精讲

国家公务员考试行测答题技巧:数学运算之容斥原理和抽屉原理精讲

国家公务员考试行测答题技巧:数学运算之容斥原理和抽屉原理精讲行测答题技巧:容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。

中公教育专家在此进行详细解读。

一、容斥原理在计数时,要保证无一重复,无一遗漏。

为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

1.容斥原理1——两个集合的容斥原理如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。

如图所示:公式:A∪B=A+B-A∩B总数=两个圆内的-重合部分的【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。

A∪B=15+12-4=23,共有23人至少有一门得满分。

2.容斥原理2——三个集合的容斥原理如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。

如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。

即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C总数=三个圆内的-重合两次的+重合三次的【例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。

行测数量关系备考辅导:速解抽屉问题

行测数量关系备考辅导:速解抽屉问题

行测数量关系备考辅导:速解抽屉问题今天为大家提供行测数量关系备考辅导:速解抽屉问题,希望大家熟练掌握抽屉问题概念、核心思想以及都有哪些题型!祝大家备考顺利!行测数量关系备考辅导:速解抽屉问题在公务员考试行测中,数量关系难度大,耗时长,所以很多考生选择放弃。

但是殊不知有一些问题还是很容易的。

只要积累了相应的结论和公式,再对于这种题进行题型归纳,这些分数是可以把握住的。

在接下来,带着广大考生一起来看抽屉问题如何解决。

一、概念透析若把多于n件物品放入n个抽屉中,则一定有一个抽屉中的物品数不少于2件;若有多于m×n件物品放入n个抽屉中,则一定有一个抽屉中的物品数不少于m+1件。

二、核心思想用抽屉原理当中的2种简单的情况去体会均、等、接近的核心思想。

2个苹果放到3个抽屉里,“至少有一个抽屉是空的”是怎么得出来的?把2个苹果平均放到2个抽屉中,那肯定会有一个抽屉是空的。

3个苹果放到2个抽屉里,“至少有一个抽屉里苹果数 2”是怎么得出来的?先把2个苹果平均放到2个抽屉中,此时还多出一个苹果,但又必需放到抽屉里去,那肯定会出现有一个抽屉里的苹果数是2。

三、三种题型1、求结果数例1.121本书分给30名同学,每人至少一本,拿到最多的学生至少拿多少本书?解析:利用抽屉原理的结论可以列式:121÷30=4……1,得到m=4,最终我们可以知道拿到最多的学生至少拿5本书。

此题不难发现与我们的和定最值问题中考虑最大量的最小值是完全一样的。

2、求抽屉数例2.把150本书分给四年级某班的同学,如果不管怎样分,都至少有一位同学会分得5本或5本以上的书,那么这个班最多有多少名学生?解析:“不管怎样分,都至少有一位同学会分得5本或5本以上的书”,让每名同学先各拿到4本,150÷4=37…2,此时还剩余2本,再平均分给任何两名同学,即可满足题目要求,所以此班最多有37名学生。

3、求苹果数例3.若干本书,发给50名同学,至少需要多少本书才能保证有同学能拿到4本书?解析:“至少才能保证”就是考虑最差情况,让每名同学先各拿到3本,在这种情况下,再有一本书发给任何一名同学,就能保证有同学拿到4本书,所以,共需50×3+1=151本。

抽屉原理行测

抽屉原理行测

抽屉原理行测抽屉原理,又称鸽巢原理,是组合数学中的一个基本原理,它指出如果有n个物品要放到m个抽屉里,其中n>m,那么至少有一个抽屉里至少有两个物品。

这个原理在行测中经常被用到,我们来看一下它的具体应用。

首先,我们来看一个简单的例子。

假设有7个苹果要放到3个抽屉里,根据抽屉原理,至少有一个抽屉里至少有3个苹果。

这是因为7÷3=2余1,也就是说平均每个抽屉放2个苹果,剩下一个苹果必然要放到某一个抽屉里,这样就会有至少一个抽屉里有3个苹果。

抽屉原理还可以用来解决一些排列组合的问题。

比如,在一群人中,如果每个人最多可以选择两个人握手,那么至少有两个人握了相同数量的手。

这是因为每个人最多可以和n-1个人握手,如果人数超过n个,那么必然有两个人握了相同数量的手。

在实际生活中,抽屉原理也有很多应用。

比如在抽奖活动中,如果奖品数量少于参与者数量,那么必然有人无法获得奖品。

这是因为奖品数量有限,而参与者数量超过了奖品数量,根据抽屉原理,就会有人“空手而归”。

抽屉原理还可以用来解决一些概率问题。

比如在一个班级里,如果每个人的生日是随机分布的,那么班级里至少有两个人生日相同的概率是多少?通过抽屉原理的思想,我们可以很快得出结论,即使班级人数不多,生日相同的概率也是非常高的。

总的来说,抽屉原理是一种非常重要的数学思想,它在行测中经常被用来解决一些实际问题。

通过理解抽屉原理,我们可以更好地理解排列组合、概率等概念,提高解题的效率和准确性。

希望通过本文的介绍,读者对抽屉原理有了更深入的了解,能够在行测中灵活运用这一原理,解决各种实际问题。

当然,抽屉原理只是组合数学中的一个基本原理,还有很多其他的原理和方法,希望大家能够在学习数学的过程中,多多思考,不断提升自己的数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测抽屉原理
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
抽屉原理
在历年国家公务员考试以及地方公务员考试中,抽屉问题都是重要考点。

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。

传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。

抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。

抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

抽屉原理(2):将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。

也可以表述成如下语句:把m 个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。

其中 k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。

例1:从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?
A. 7
B. 10
C. 9
D. 8
解析:在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。

另有两个数6、7肯定不能与其他数形成差为7的情况。

由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。

从这7个抽屉中能够取8个数,则必然有2个数取自同一个抽
屉。

所以选择D选项。

例2:某班有37名同学,至少有几个同学在同一月过生日?
解析:根据抽屉原理,可以设3×12+1个物品,一共是12个抽屉,则至少有4个同学在同一个月过生日。

例3:一个小组共有13名同学,其中至少有2名同学同一个月过生日。

为什么?
解析:每年里共有12个月,任何一个人的生日,一定在其中的某一个月。

如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

例4:一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
解析:从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。

故总共至少应取出10+5=15个球,才能符合要求。

例题5:一副扑克牌有黑桃、红桃、梅花和方块各13张,为保证至少有4张牌的花色相同,则至少应当抽出多少张牌?
答案为3×4+1=13张。

例题6:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?
解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。

第一步先确保取出的筷子中有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。

首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。

其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。

这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4+7=11根筷子,就能保证达到目的。

例题7:某班参加一次数学竞赛,试卷满分是30分。

为保证有2人的得分一样,该班至少得有几人参赛?()
A. 30
B. 31
C. 32
D. 33
解析:毫无疑问,参赛总人数可作“苹果”,这里需要找“抽屉”,使找到的“抽屉”满足:总人数放进去之后,保证有1个“抽屉”里,有2人。

仔细分析题目,“抽屉”当然是得分,满分是30分,则一个人可能的得分有31种情况(从0分到30分),所以“苹果”数应该是31+1=32。

相关文档
最新文档