初中数学三角形的边教学设计
《三角形全等的判定——边角边》教学设计
《三角形全等的判定——边角边》教学设计一、教学内容分析本节内容是华东师大版实验教科书《数学》八年级下册第19章《全等三角形》第2节第二课时内容。
“边角边”是本节三角形全等的判定方法中的第一个判定方法,通过学习掌握了“边角边”,为后续学习探究三角形全等的其它判定方法和相似形的判定条件奠定了基础,因此,本节课的知识具有承上启下的作用。
利用全等三角形可以证明线段相等、角相等,是初中数学的重要内容。
二、教学对象分析在学习本节课内容之前,学生已经了解全等图形和全等三角形以及通过三条边、三个角6个元素判断两个三角形全等。
在此基础上,学习再来探究两边和一角三个条件判断两个三角形全等的情况,此时出现“边边角”不能判定两个三角形一定全等,学生很难理解。
因此,在教学过程中,通过作图、互相交流、对比,通过学生之间的质疑对抗,发现此定理中角必为夹角,从而得出三角形全等的判定方法——边角边。
三、教学目标1.知识技能:理解三角形全等的“边角边“判定定理,并会运用“边角边”来识别和证明两个三角形全等。
2.数学思考:学生经历探究三角形全等“边角边“的过程中,通过观察、对比、猜想、证明、综合实践等活动,发展合情推理和演绎推理能力。
在探讨运用的思路中,挖掘隐含条件,体验“转化”的数学思想方法。
3.问题解决:会运用“边角边”条件解决具体问题,能利用全等三角形解决线段相等和角相等问题。
4.情感态度:通过实验探究,使学生体验获取数学知识的感受,养成尊重客观事实和形成质疑的习惯,培养学生乐于合作交流、勇于用实验的方法来验证数学猜想和创新精神,培养多方位审视问题的创造技巧,以及认真观察、对比、发现问题的能力。
四、教学重难点1.重点:理解并会运用“边角边”来判定两个三角形全等。
2.难点:探究“边角边”判定方法,锻炼学生的合情推理的能力。
五、教学方法与手段1.教学方法:实验探究和类比法。
2.教学手段:借助于多媒体课件演示及学生动手操作确认发现新知。
初中数学《三角形全等的判定(角角边)》教学设计
教学设计、、、、四、课堂小结解析:由∠1=∠2得∠BAC=∠EAD,再结合其他两个已知条件,可由角角边得出两个三角形全等.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.在△ABC和△AED中,∠C=∠D,∠BAC=∠EAD,AB=AE,∴△ABC≌△AED(AAS).方法总结:两个相等的角或者两条相等的线段之间如果有公共部分,解题时往往需要加上这段公共部分得到新的相等的角或相等的线段.类型二:利用角角边进行计算如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,AC=5,CD=3.求AB的长.解析:先根据AAS判定△ACD≌△AED,从而得出对应边相等,根据等量代换及AB=AE+BE即可求出AB的长.解:∵AD是△ABC的角平分线,∴∠CAD=∠EAD.∵∠1=∠B(已知),∴∠AED=∠1+∠B=2∠B(三角形外角的性质),DE=BE(等角对等边),又∵∠C=2∠B,∴∠C=∠AED(等量代换).在△ACD和△AED中,∠C=∠AED,∠CAD=∠EAD,AD=AD,∴△ACD≌△AED(AAS),∴AC=AE,CD=DE(对应边相等),∴CD=BE(等量代换),∴AB=AE+EB=AC+CD=5+3=8.方法总结:利用三角形全等求线段的长,可考虑所求线段与哪一条线段相等,或把要求的线段看成几条线段的和或差,再利用三角形全等及等量代换求解.、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、至此,我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.对本堂及以前所学知识的拓展创新运用。
培养学生对知识的总结归纳建立知识体系。
冀教版数学七年级下册9.1《三角形的边》教学设计
冀教版数学七年级下册9.1《三角形的边》教学设计一. 教材分析冀教版数学七年级下册9.1《三角形的边》是初中的基础课程,主要让学生了解三角形的三条边之间的关系,掌握三角形的性质。
本节内容主要包括三角形的定义、三角形的边长关系、三角形的分类等。
通过本节课的学习,学生能够理解三角形的基本概念,掌握三角形边长之间的关系,并能运用这些知识解决实际问题。
二. 学情分析七年级的学生已经学习了平面几何的基本知识,对图形的认识有一定的基础。
但是,对于三角形这一概念,他们可能还存在着模糊的认识,需要通过实例来进一步明确。
此外,学生对于数学概念的理解往往停留在表面,需要通过大量的练习来加深对概念的理解。
三. 教学目标1.知识与技能:让学生理解三角形的基本概念,掌握三角形边长之间的关系,能运用这些知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生抽象概括的能力,发展空间观念。
3.情感态度与价值观:让学生在解决实际问题的过程中,体验数学的价值,增强学习的信心,培养合作精神。
四. 教学重难点重点:三角形的基本概念,三角形边长之间的关系。
难点:对三角形概念的理解,三角形边长关系的运用。
五. 教学方法1.情境教学法:通过生活情境,让学生在实际问题中感受三角形的存在,理解三角形的基本概念。
2.活动教学法:让学生通过实际操作,自主探索三角形的性质,培养学生的动手能力。
3.引导发现法:教师引导学生发现问题,分析问题,从而解决问题,培养学生的思维能力。
六. 教学准备1.教具准备:三角板、直尺、圆规等。
2.教学课件:制作课件,展示三角形的图片,动画等。
七. 教学过程1.导入(5分钟)通过展示生活中常见的三角形图片,如自行车的三角形车架、三角形的屋顶等,引导学生发现三角形的存在,激发学生的学习兴趣。
同时,让学生举例说明生活中见到的三角形,进一步理解三角形的概念。
2.呈现(10分钟)利用课件,展示三角形的基本概念,三角形的边长关系。
初中数学《三角形的边》教案
教学设计教学过程(一)创设情境引入新课1.人不遵守交通规则,冒着生命危险斜穿马路.你能用所学的数学知识解释这种不文明的行为吗?2.展示学习目标:1、认识三角形的边、内角、顶点,能用符号语言表示三角形。
2、掌握三角形三边的关系定理,能利用定理及其推论进行简单的证明。
3、了解三角形按边分类的原则和结论。
(二) 探究新知(看书第2页,完成下列填空:)1.三角形有关的概念(1)定义:不在一条直线上的条线段相接所组成的图形叫做三角形。
(2)三角形ABC,表示为;读作: ;(3)三角形的元素: 条边、个顶点、个内角.2.三角形的分类⎧⎪⎪⎨⎪⎪⎩三角形按角分三角形三角形⎧⎪⎪⎧⎨⎪⎨⎪⎪⎪⎩⎩三角形三角形按边分三角形三角形即时训练:⑴、图中有几个三角形?用符号表示这些三角形。
⑵、图中以AB为边的三角形有哪些?⑶、图中以E为顶点的三角形有哪些?(4)、图中以D为顶点的三角形有哪些?EDCBA二.合作探究三角形三边的关系活动一:(画一画,量一量,算一算)在练习本上任画一个三角形,用a、bc 表示各边,用刻度尺量出各边的长度,并空:a= a= a= a=b= b= b= b=c= c= c= c= 计算每个三角形的任意两边之和,并与第三边比较,你能得到的结论是通过观察和实验得到的结论并不一定都正确,它的正确性必须经过严格的推理论证活动二:证明三角形三边关系,即:大于第三边已知如图,三角形ABC,求证:AB+AC>BC;AB+BC>AC;AC+BC>AB证明:由“两点之间,线段最短”,得AB+AC BC; 同理,AC+BC AB; AB+BC AC[例1] 下列长度的三条线段能否组成三角形?为什么(1)3,4,8 ()(2)2,5,6 ()(3)2:3:4 ()(4)3,5,8 ()思考:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法?方法小结:比较较短的两边之和与最长边的大小即可。
初中数学《三角形的边》教案
初中数学《三角形的边》教案7.1.1 三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P68-69图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P71,第一部分至思考,一段课文,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展示议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从BCb.从BAC(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+ACBC,可以说这两条路线的长是不一样的.四、议一议1.在用一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?按角分呢?(1)三角形按边分类如下:三角形不等三角形等腰三角形底和腰不等的等腰三角形等边三角形(2)三角形按角分类如下:三角形直角三角形斜三角形锐角三角形钝角三角形六、练一练有三根木棒长分别为3cm、6cm和2cm,用这木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm2cm用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+62,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业1.课本P71练习1.2,P75练习7.1 1.2.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
初中数学_三角形的三边关系教学设计学情分析教材分析课后反思
一、直接导入开门见山,直接点题,让学生快速进入学习状态。
一、目标展示让生明确本节课的学习目标,带着目标进入本堂课的探究。
二、探究新知通过“交流与发现”引出三边关系,通过小组合作学习得出运用三边关系的简便方法,即只要检查两条较短线段的和是否大于最长的那条线段即可。
通过同位互动出题将难点化解。
三、例题例1:先讲解一个典型例题,让生仿照例题求解其余的题目,设计题目时,各类型的都有,让生理解、识记并练习巩固例2:让生独立完成,并学会分类的重要性。
四、贴近生活走进生活,,能让生更好的理解、利用三边关系。
让学生知道数学来源于生活又应用于生活。
五、课堂小结六、当堂检测在正式学习三角形三边关系之前,学生在小学阶段生活中已经了解了一些关于三角形三边关系的知识,有了感性经验,这些经验构成了学生学习的认知基础。
教学过程中,学生在抽象概括三角形三边之间的关系时,可能在数学语言的描述上会有一定的困难,表达上也可能不够严密,但只要学生表达的意思对,教师就应该积极的给以肯定,同时教师要给学生更多探讨的空间和交流的机会,毕竟数学模型的建立和思维的发展需要经历一个渐近思辩的过程。
本节课让学生理解三角形的任意两边之和大于第三边并学会判断三条线段能否构成三角形。
让学生经历探索发现三角形的三边关系的过程,培养合作交流动手操作和归纳总结的能力。
三角形的三边关系是在学习三角形的基础上进行的,利用三边关系可以判断三条线段能否组成三角形,三角形的三边关系又是今后学习四边形、五边形等多边形的基础。
练习一:1.下列长度的三条线段能组成三角形的是()A.5,6,10B.5,6,11C.3,4,8D.4a,4a,8a(a>0)2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6B.3C.2D.112.下列长度的三根小木棒能构成三角形的是()A.2 cm,3 cm,5 cmB.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cmD.3 cm,3 cm,4cm3.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种4.已知三角形的三边长分别为4,5,x,则x不可能是()A.3B.5C.7D.95.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17(4)负数的奇次幂的相反数是正数()设计意图:更好的理解幂的符号规律课堂检测:一选择题1,.以下列长度的各组线段为边,可以构成等腰三角形是().A.1,2,1B.2,2,1C.1,3,1D.2,2,52.等腰三角形一边等于5cm,另一边等于10cm,那么第三边应等于()A.5cm B.10cmC.5或10cm D.25cm二解答题已知等腰三角形的周长为14cm,底边与一腰的比为3:2,求各边长.教学反思:《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。
初中数学教学课例《探索三角形全等的条件(“边边边”)》教学设计及总结反思
2、三边对应相等的两个三角形全等.简写为:“边 边边”或“SSS”在△ABC 和△DEF 中
∵AB=DE,BC=EF,AC=DF ∴△ABC≌△DEF.(SSS) 方法:画图----剪切———比较重合即全等 我这样设计是因为新课程标准强调,学生是数学学 习的主人,教师是数学学习的组织者、引导者与合作者。 因此向学生提出问题后,帮助他们自主探索和合作交
生熟练掌握、运用知识,有利于学生积累解题经验,形
成新的认知结构图,为以后继续学习服务。
探索三角形全等的条件:边、边、边
我们来思考下面两个问题:(多媒体展示)做一做:
(1)已知一个三角形的三个内角分别为 40°,
60°,80°.你能画出这个三角形吗?把你画的三角形
与同伴画的进行比较,它们一定全等吗?
教学过程
流,使他们在数学活动中掌握数学知识与技能、数学思 想与方法,获得数学活动的经验。
(1)本节课的设计体现了以教师为主导、学生为 主体,以知识为载体、以培养学生的思维能力为重点的 教学思想。教师以探究任务引导学生自学自悟的方式, 提供了学生自主合作探究的舞台,营造了思维驰骋的空 间,在经历知识的发现过程中,培养了学生分类、探究、 合作、归纳的能力。
与角吗? 择与设计
2、小明有一个三角形纸片,你能画一个三角形与
它全等吗?如何画?与同伴交流你的画法?
我设计这两个问题,一方面引导学生回忆学过的三
角形全等的有关知识,另一方面引出本节课要学习的内 容。为本节课的教学提供相应得知识,为学生的自主探 究提供方向和方法。
(二)、讨论交流,实验探究 1、探索三角形全等至少需要几个条件 2、探索三角形全等的条件:边、边、边 我这样设计的理由是新课程标准倡导,有效的数学 学习不能单纯的依赖模仿与记忆,动手实践,自主探究 与合作交流是学习数学的重要方式。在这里一方面引导 学生动手去画,另一方面鼓励学生合作交流。既让学生 获得知识,又让学生获得方法。为后继的学习积累经验。 (三)、应用知识、体验成功 例题讲解+随堂练习 这样设计,一方面让学生应用“SSS”条件,体会 成功的喜悦,另一方面训练学生有条理的表达自己的思 维,为学生书面表达提供范例 (四)、联系生活,探究性质 问题:取三根长度适当的木条,用钉子钉成一个三 角形的框架,你所得到的框架的形状固定吗?用四根木 条钉成的框架的形状固定吗? 这样设计,通过学生动手操作,探究三角形稳定性 及生活中的应用,让学生体验数学来源于生活,服务于
《三角形边的关系》数学教案
《三角形边的关系》数学教案《三角形边的关系》数学教案1教学内容:p.24、25教材简析:这节课教学三角形的高,三角形的高和底的概念是有关三角形的重要概念,是学习三角形面积计算的基础。
例题首先通过量人字梁的高,引导学生初步联系现实生活感知三角形的高,然后通过图示介绍三角形的高和底的意义,建立三角形的高和底的概念。
教学重点:认识三角形的高,并正确地画高。
教学目标:1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高(只限三角形内部的高)2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与显示生活的联系。
3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。
教学准备:三角尺、学具盒等教学过程:一、复习:1、在作业本上分别的画三种情况:(图略)(1)a+bc;(2)a+b=c;(3)a+bc明确:只有当两条边的长度和大于第三边的时候,这样的三条边才能围成三角形;一般判断的时候只要把最短的两条边加起来和最长的比就可以了。
2、画一个类似于人字梁的三角形(只要外面的三条边)说说三角形的组成:三条边、三个角、三个顶点二、认识三角形的底和高:1、我们刚才说到三角形有三条边,这节课我们将要来认识关于这个三角形神秘的第四条线段,你猜是什么?(高)板书:高由“高”你联想到了什么?(垂直、直角标记……)2、示范画高的方法:边画边说:以这条边为底,现在要找它的高。
板书:底用三角板的直角边和它重合,(不断移动)说说它的垂线有多少条?(无数条)其中只有一条很特殊,你能说说是哪一条吗?(从对面的顶点画下来的这条垂线)用虚线画一画。
指出:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,画完后还要画出直角标记和“高”(或用字母“h”表示)学生在作业本上,模仿板书也画一画。
3、画一个三条边都是斜方向的锐角三角形,以其中一条边为底,你能画出它的高吗?请一个学生上黑板,用三角板摆一摆它的高在哪里?学生把该样子的三角形也画在作业本上,并画出其中的一条高。
初中数学《直角三角形中的边角关系》单元教学设计以及思维导图
初中数学《直角三角形中的边角关系》单元教学设计以及思维导图直角三角形中的边角关系适用年九年级级所需时课内6课时+课外4课时间主题单元学习概述“ 锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
在初中阶段我们主要研究锐角三角函数和解直角三角形的内容。
本章重点是锐角三角函数的概念和直角三角形的解法。
其中锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
解直角三角形在实际生活中有着广泛的应用,而锐角三角函数概念的学习为解直角三角形提供了有效的工具。
对于锐角三角函数的概念新课标只要求掌握其中的三个(正切、正弦、余弦),因为相比之下正切是生活中用的最多的三角函数概念,如刻画物体的倾斜程度、山的坡度等都往往用到正切。
所以教材在第一课时首先安排了正切概念的学习,这也为锐角三角函数这个陌生的概念提供了与实际联系的机会,使学生从生活入手从而不会产生畏惧心理。
同时本节课的学习也为类比得到正弦、余弦的概念作好了铺垫。
主题单元规划思维导图主题单元学习目标知识与技能:了解三角函数的概念,学会在直角三角形中进行一些简单的计算。
过程与方法:(1)通过体验三角函数概念的形成过程增进学生的数学经验。
(2)渗透数形结合的数学思想方法。
(3)培养学生主动探索,敢于实践,勇于发现,合作交流的精神。
情感态度与价值观:(1)让学生感受数学来源于生活又应用于生活,体验数学的生活化经历。
(2)通过实际问题情境的经历探究性的学习培养学生学习数学的兴趣。
对应课标1、理解锐角三角函数的概念。
2、掌握锐角三角函数的表示。
九年级数学初三下册:第一章 直角三角形的边角关系教案 教学设计
第一章直角三角形的边角关系1 锐角三角函数第1课时正切与坡度1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能用表示直角三角形中两直角边的比来表示物体的倾斜程度和坡度(坡比)等.3.能根据直角三角形的边角关系,用正切进行简单的计算.重点理解正切、倾斜程度、坡度的数学意义,密切关注数学与生活的联系.难点理解正切的意义,并用它来表示两边的比.一、情境导入师:梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放得“陡”,那个梯子放得“平缓”,人们是如何判断的?课件出示下图,提出问题:(1)甲组中EF和AB哪个梯子比较陡?你是怎么判断的?有几种判断方法?(2)乙组中AB和EF哪个梯子比较陡?你是怎么判断的?甲组乙组二、探究新知引导学生阅读教材第2~4页的内容,完成以下问题:1.比较梯子的倾斜程度(1)如图,这里摆放的三组梯子,每组梯子中哪一个更陡?梯子的倾斜程度与什么有关?(2)分别求出每组图中的AC BC 与ED FD,想一想它们的比值与梯子的倾斜程度有什么关系? 2. 如下图,小明想通过测量B 1C 1及 AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及 AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)Rt △AB 1C 1和 Rt △AB 2C 2有什么关系? (2)B 1C 1AC 1和B 2C 2AC 2有什么关系?(3)如果改变B 2在梯子上的位置呢? 由此你得出什么结论? 3.正切是如何定义的?4.梯子的倾斜程度与tan A 的值有什么关系? 5.坡度是如何定义的? 三、举例分析例 如图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?甲 乙(1)tan α和tan β 的值分别是多少? (2)你能比较tan α和tan β 的大小吗?(3)根据tan A 的值越大,梯子越陡你能判断哪一个自动扶梯比较陡吗? 四、练习巩固1.在△ABC 中,∠C =90°,则tan A 等于( ) A.BC AB B.AC AB C.BC AC D. AB AC2.如图,在△ABC 中,∠C =90°,BC =6,若tan A =34,则AC =________.3.如图,Rt △ACB 中,∠B =90°,BC =10,tan A =512,求AB ,AC.五、课堂小结 1.易错点:(1) tan A 中常省略角的符号“∠”,用希腊字母表示角时也可省略,如:tan α,tan β 等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成tan ∠BAC 或tan ∠1,tan ∠2 等;(2) tan A 没有单位,它表示一个比值;(3) tan A 是一个完整的数学符号,不可分割,不表示“tan ”乘“A ”. 2.归纳小结:(1)tan A =∠A 的对边∠A 的邻边;(2)tan A 的值越大,梯子越陡.3.方法规律:(1)一个角的正切是在直角三角形中定义的,因此,tan A=∠A的对边∠A的邻边只能在直角三角形中适用;(2)坡面与水平面的夹角称为坡角;坡面的铅垂高度与水平宽度的比称为坡度(或坡比).六、课外作业1.教材第4页“随堂练习”第1、2题.2.教材第4页习题1.1第1、2题.本课时结合学生身边的数学现象,依据初中学生身心发展的特点,通过比较梯子哪个更徒引入新课,激发了学生的求知欲.为了突破教学难点,教学活动中运用了直观教学、几何画板动态演示和验证、几何推理等方法,既直观地呈现了知识的内在联系,培养了学生的几何直观能力,又唤起和加深了学生对教学内容的体会和理解.本课中,对梯子的倾斜程度、坡角、坡度(坡比)的认识,让学生更进一步体验了数学的实用性,加深了数学和实际生活的联系.第2课时正弦和余弦1.理解正弦、余弦及三角函数的意义.2.能够运用sin A,cos A表示直角三角形两边的比.3.根据直角三角形中的边角关系,进行简单的计算.重点理解正弦、余弦的定义,能根据直角三角形的边角关系进行简单计算.难点正弦、余弦的理解及应用.一、复习导入1.在Rt△ABC中,∠C=90°,tan A=34,AC=10,求BC,AB的长.2.若梯子与水平面相交的锐角为∠A,∠A越大,梯子越________;tan A的值越大,梯子越________.3.当Rt △ABC 中的一个锐角A 确定时,其他边之间的比值也确定吗? 可以用其他的方式来表示梯子的倾斜程度吗?二、探究新知1.正弦、余弦及三角函数的定义 课件出示:(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是什么? (2)B 1C 1AB 1和B 2C 2AB 2的关系是什么?(3)如果改变B 2在斜边上的位置,则B 1C 1AB 1和B 2C 2AB 2的关系是什么? 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小经已确定时,它的对边与斜边的比值____________,根据是________________.它的邻边与斜边的比值呢?2.梯子的倾斜程度与sin A 和cos A 的关系探究活动:梯子的倾斜程度与sin A 和cos A 之间有什么关系?如图,AB ,A 1B 1表示梯子,CE 表示支撑梯子的墙,AC 在地面上. (1)梯子AB ,A 1B 1哪个更陡?(2)梯子的倾斜程度与sin A 和cos A 有关系吗? 三、举例分析例 如图,在Rt △ABC 中,∠B =90°,AC =200,sin A =0.6,求BC 的长.(1)sin A等于图中哪两条边的比?(2)你能根据sin A=0.6写出等量关系吗?(3)根据等量关系你能求出BC的长吗?四、练习巩固1.在 Rt△ABC中,若各边的长度同时都缩小4倍,则锐角A的正弦值( )A.缩小4倍B.缩小2倍C.保持不变D.不能确定2.已知∠A,∠B为锐角.(1)若∠A=∠B,则sin A________ sin B;(2)若sin A=sin B,则∠A ________∠B.3.如图,在Rt△ABC中,∠C=90°,AC=3,AB=6,求∠B的三个三角函数值.五、课堂小结1.易错点:(1)sin A,cos A,tan A是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sin A,cos A,tan A是一个完整的符号,表示∠A的正弦、余弦、正切,习惯省去“∠”符号;(3)sin A,cos A,tan A都是一个比值,注意区别,且sin A,cos A,tan A均大于0,无单位;(4)sin A,cos A,tan A的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系.2.归纳小结:(1)正弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB 的比叫做∠A的正弦,记作sin A;(2)余弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB 的比叫做∠ A的余弦,记作cos A;(3)sin A越大,梯子越陡; cos A越小,梯子越陡.3.方法规律:两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.六、课外作业1.教材第6页“随堂练习”第1、2题.2.教材第6~7页习题1.2第1、3、4、5题.本节课结合初中学生身心发展的特点,运用了类比教学法,加深学生对教学内容的体会和了解,很容易就掌握了正弦和余弦的概念和意义.同时,探究活动培养和发展了学生的观察、思维能力.本课时贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的基本认识规律,运用了这些直观教学,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.2 30°,45°,60°角的三角函数值1.经历探索30°,45°,60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义.2.能够进行30°,45°,60°角的三角函数值的计算.3.能够根据30°,45°,60°的三角函数值说明相应的锐角的大小.重点能够进行30°,45°,60°角的三角函数值的计算;能够根据30°,45°,60°角的三角函数值说出相应的锐角大小.难点通过探索特殊三角函数值的过程,培养学生进行有关推理的能力.一、复习导入1.在Rt△ABC中,∠C =90°.(1)a,b,c三者之间的关系是什么?∠ A+∠ B等于多少度?(2)如何表示sin A,cos A,tan A,sin B,cos B,tan B? 2.观察一副三角尺,其中有几个锐角?它们分别等于多少度?二、探究新知课件出示:如图所示,在Rt△ABC中,∠ C=90°,∠ A=30°.(1)a,b,c三者之间有什么样的关系?(2)sin 30°等于多少?你是怎样得到的?与同伴交流.(3)cos 30°等于多少?tan 30°呢?(4)sin 60°,cos 60°,tan 60°呢?(5)45°角的三角函数值分别是多少呢?引导学生填写表格:三角函数值sin A cos A tan A30°45°60°三、举例分析例1 计算:(1) sin 30°+cos 45°;(2) sin 260°+cos 260°-tan 45°.处理方式:通过记忆特殊角的三角函数值求解,注意格式和过程.例2 (课件出示教材第9页例2)引导学生思考如下问题:(1)你能根据题意画出图形吗?(2)你能根据所画图形构造直角三角形吗?(3)你能找到图形中的特殊角吗?(4)你能根据特殊角的三角函数值求出正确的结果吗?四、练习巩固1.下列式子中成立的是 ( )A.cos 72°<sin 35°<tan 46°B.sin 35°<tan 46°<cos 72°C.tan 46°<cos 72°<sin 35°D.tan 46°<cos 40°<sin 35°2.已知等腰△ABC的腰长为4 3,底角为30°,则底边上的高为________,周长为________.3.若(3tan A-3)2+||2cos B-3=0,则△ABC按角分类是什么三角形?五、课堂小结1.易错点:(1)能进行含30°,45°,60°角的三角函数值的计算;(2)能根据30°,45°,60°角的三角函数值,说出相应锐角的大小.2.归纳小结:sin 30°=12,sin 45°=22,sin 60°=32;cos 30°=32,cos 45°=22,cos 60°=12;tan 30°=33,tan 45°=1,tan 60°= 3.3.方法规律:在Rt△ABC中,若∠A+∠B=90°,则有:sin A=cos (90°-A);cos A= sin (90°-A) ;sin B=cos (90°-B);cos B=sin (90°-B).六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第10页习题1.3第1~4题.本节课课程设计中引入非常直接,由三角板引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.设计开门见山,节省了时间,为后面的教学提供了方便.在讲解特殊角的三角函数值时也很详细,可以说前部分的教学很成功,学生理解得很好.3 三角函数的计算1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义.2.能用计算器由已知三角函数值求角度.3.能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.重点熟悉计数器的使用,能熟练掌握按键顺序.难点非整数度的角的三角函数值的求法.一、情境导入课件出示:如图,当登山缆车的吊箱经过点A到达点B时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m)引导学生思考以下问题:(1)在Rt△ABC中,sin α如何表示?(2)你知道sin 16°是多少吗?(3)我们可以借助科学计算器求锐角的三角函数值,那么怎样用科学计算器求三角函数值呢?二、探究新知1.已知角求三角函数值(1)引导学生阅读教材第12页用计算器求三角函数值的操作过程,提出问题:①利用计算器求三角函数值用到哪些按键?②求值过程中按键使用的先后顺序是什么?③求整数角度和用“度、分、秒”表示的角度的区别是什么?④通过自学你能利用计算器求出sin 16°的数值吗?(2)课件出示:当缆车继续由点B到达点D时,他又走过了200 m,缆车由点B到点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?引导学生思考如下问题:①缆车从点B到点D通过的路程是多少?②缆车从点B到点D水平通过的路程是多少?③缆车从点B到点D垂直高度上升了多少?2.已知三角函数值求角(1)课件出示:为了方便行人推自行车过某天桥,市政府在10 m高的天桥两端修建了40 m长的斜道,这条斜道的倾斜角是多少?引导学生思考如下问题:①在Rt△ABC中,sin A如何表示?②你能根据题目中的已知条件求出sin A的数值吗?③你能根据sin A的数值求出∠A吗?(2)引导学生阅读教材第13~14页用计算器求角的操作过程,提出问题:①利用计算器求角用到哪些按键?②求角过程中按键使用的先后顺序是什么?③如何利用计算器将求出的角度进行“度、分、秒”的换算?④你能利用计算器求出∠A的度数吗?三、练习巩固1.用计算器计算cos 44°的结果(精确到0.01)是( )A.0.90 B.0.72 C.0.69 D.0.662. 用计算器求tan 35°的值,按键顺序是____________________.3.在 Rt△ABC中,若∠C=90°,BC=20,AC=12.5,求两个锐角的度数(精确到1°).四、课堂小结1.易错点:(1)用计算器求三角函数值与用计算器求角的区别和联系;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的.2.归纳小结:(1)用计算器求三角函数值;(2)用计算器求角.3.方法规律:(1)用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定:如无特别说明,计算结果一般精确到万分位;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;先输入数字后,再按三角函数键.五、课外作业1.教材第14页“随堂练习”第1、2、3题.2.教材第15页习题1.4第1~6题.本节课在教学过程中,力求从基本知识入手,尽可能地使计算简单化,然后逐步地加深提高.但从实际的效果上看,学生的基础知识较差,计算能力薄弱,虽然训练量在增加,但效果却不明显,始终对三角函数的性质运用很不熟练.在教学过程中,我深切感到自身知识面的不足,在讲解练习时很单调,不能进行适当地扩展.在以后的教学中,我还要继续加强自身的学习,不断钻研教材教法,力争做到讲课通俗易懂.4 解直角三角形1.了解直角三角形的概念,掌握直角三角形的边角关系.2.能运用直角三角形的角与角(两锐角互余)、边与边(勾股定理)、边与角的关系解直角三角形.重点直角三角形的解法.难点灵活运用三角函数解直角三角形.一、复习导入师:在图形的研究中,直角三角形是常见的三角形之一,因此经常会遇到求直角三角形的边长或角度等问题. 为了解决这些问题,往往需要确定直角三角形的边或角.课件出示:如图,在直角三角形ABC中,∠C=90°,∠A,∠B,∠C的对边分别记作a,b,c.(1)直角三角形的三边之间有什么关系?(2)直角三角形的锐角之间有什么关系?(3)直角三角形的边和锐角之间有什么关系?师:直角三角形中有6个元素,分别是三条边和三个角.那么至少知道几个元素,就可以求出其他的元素呢?这就是我们本节课要研究的问题.二、探究新知1.已知两边解直角三角形课件出示教材第16页例1,提出问题:(1)题目中已知几个元素?分别是什么?(2)解这个直角三角形需要求出哪些元素?(3)解这个直角三角形需要用到已学的哪些知识?(4)你能正确求解吗?教师给出解直角三角形的定义及其依据.2.已知一边和一锐角解直角三角形课件出示教材第16~17页例2,提出问题:(1)题目中已知几个元素?分别是什么?(2)解这个直角三角形需要求出哪些元素?(3)解这个直角三角形需要用到已学的哪些知识?(4)你能仿照例1独立完成求解吗?3.总结(1)通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(2)除直角外有5个元素(3条边、2个锐角),要知道其中的几个元素就可以求出其他的元素?(3)通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?归纳:解直角三角形,有下面两种情况(其中至少有一边) :(1)已知两条边(一直角边一斜边;两直角边);(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角).三、练习巩固1.在Rt△ABC中,∠C=90°,sin A=34,AB=5,则边AC的长是( )A.3 B.4 C.154D.5742.已知在Rt△ABC中,∠C=90°,BC=6,sin A=23,那么AB=________.3.在△ABC中,已知∠C=90°,b+c=30,∠A-∠B=30°,解这个直角三角形.四、课堂小结1.易错点:(1)如何把实际问题转化为数学问题,进而把数学问题具体化;(2)至少需要一边,即已知两边或已知一边一锐角才能解直角三角形.2.归纳小结:(1)“解直角三角形”是由直角三角形中已知的元素求出未知元素的过程;(2)解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角;(3)解直角三角形的方法:①已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);②已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;③已知一个锐角求另一个锐角时,用两锐角互余.3.方法规律:已知斜边求直边,正弦余弦很方便;已知直边求直边,首选正切理当然;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要选好;已知锐角求锐角,互余关系要记好;已知直边求斜边,用除还需正余弦;计算方法要选择,能用乘法不用除.五、课外作业1.教材第17页“随堂练习”.2.教材第17~18页习题1.5第1~4题.本节课的重难点是直角三角形的解法,为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形、直角三角形中三边之间的关系、两锐角之间的关系、边角之间的关系.正确选用这些关系,是正确解直角三角形的关键.解直角三角形的方法灵活多样,学生可以自由选择解题方法.在处理例题时,首先让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合的思想,然后全班集体交流解法和心得,达到共同进步.5 三角函数的应用1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.重点经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.难点灵活将实际问题转化为数学问题,建立数学模型,并选择适当的三角函数来解决.一、情境导入如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续往东航行.你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.二、探究新知课件出示教材第19页“想一想”,提出问题:(1)什么是仰角?(2)在这个图中,30°的仰角、60°的仰角分别指哪两个角?(3)怎样求该塔的高度?处理方式:学生先独立思考解决问题的方法,再回答.解:(1)当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.(2)30°的仰角指∠DAC,60°的仰角指∠DBC.(3)∵CD是Rt△ADC和Rt△BDC的公共边,在Rt△ADC中,tan 30°=CDAC,即AC=CD tan 30°.在Rt△BDC中,tan 60°=CDBC,即BC=CDtan 60°,又∵AB=AC-BC=50 m,∴CD tan 30°-CDtan 60°=50.解得CD≈43 m.三、举例分析例(课件出示教材第19页“做一做”)引导学生思考:(1)你能根据题意将实际问题转化为数学问题吗?(2)你能根据题意画出示意图吗?(3)若AC代表原楼梯长,则楼高、楼梯所占地面的长度分别是多少?(4)40°和35°的角分别是哪个角?(5)在楼梯改造过程中,楼高是否发生了变化?(6)Rt△ABC中的哪条边不变?解:由条件可知,在Rt△ABC中,sin 40°=ABAC,即AB=4sin 40°,原楼梯占地长BC=4cos 40°.调整后,在Rt△ADB中,sin 35°=ABAD,则AD=ABsin35°=4sin 40°sin 35°,楼梯占地长DB=4sin 40°tan 35°.∴调整后楼梯加长AD-AC=4sin 40°sin 35°-4≈0.48(m).楼梯比原来多占DC=DB-BC=4sin 40°tan 35°-4cos 40°≈0.61(m).四、练习巩固1.一辆汽车沿坡角为α的斜坡前进500 m,则它上升的最大高度为( )A.500sin α B.500sin αC.500cos α D.500cos α2.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6 m,则斜坡上相邻两树间的坡面距离是________ m.(结果保留根号)3.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12 m处,测得∠BAC=30°,求BC的长.(结果保留根号)五、课堂小结1.易错点:(1)对于含有非基本量的直角三角形,比如有些条件中已知两边之和,中线、高线、角平分线长,角之间的关系,锐角三角函数值,周长、面积等等.对于这类问题,我们常用的解题方法是:将非基本量转化为基本量,或由基本量间关系通过列方程(组),然后解方程(组),求出一个或两个基本量,最终达到解直角三角形的目的;(2)在非直角三角形的问题中,往往是通过作三角形的高,构成直角三角形来解决,而作高时,常从非特殊角的顶点作高;对于较复杂的图形,往往通过“补形”或“分割”的方法,构造出直角三角形,利用解直角三角形的方法,实现问题的转化.2.归纳小结:解直角三角形一般有以下几个步骤:(1)审题:认真分析题意,根据题目中的已知条件,画出它的平面图,弄清已知和未知条件;(2)明确题目中的一些名词、术语的含义,如仰角、俯角、跨度、坡角、坡度及方向角;(3)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决;(4)确定合适的边角关系,细心推理计算.3.方法规律:(1)在解直角三角形中,正确选择关系式是关键:①若求边:一般用未知边比已知边,求寻找已知角的某一个三角函数值;②若求角:一般用已知边比已知边,去寻找未知角的某一个三角函数值;(2)求某些未知量的途径往往不唯一.选择关系式常遵循以下原则:一是尽量选可以直接应用原始数据的关系式;二是设法选择便于计算的关系式,若能用乘法计算就避免用除法计算.六、课外作业1.教材第20页“随堂练习”第1、2题.2.教材第21页习题1.6第1~4题.本节课尽可能站在学生的角度上思考问题,设计好教学的每一个细节.上课前多揣摩学生的认知特点,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,把课堂让给学生,让他们做课堂这个舞台的主角.教师尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作.不断总结课堂教学中的得失,不断进步,只有这样,才能真正提高课堂教学效率.6 利用三角函数测高1.能够对仪器进行调整和对测量结果进行矫正,能够对所得到的数据进行分析,从而得出符合实际的结果.2.能综合应用直角三角形的边角关系的知识解决实际问题.重点设计活动方案、自制仪器、运用仪器进行实地测量以及撰写活动报告.难点运用直角三角形的边角关系求物体的高.一、情境导入问题1:在现实生活中需要测量像旗杆、高楼、塔等较高且顶部不可到达的物体的高度,根据我们所学的知识,同学们有哪些测量方法?问题2:这些测量的方法都用到了什么知识?问题3:如何利用直角三角形的边角关系,测量底部不可以直接到达的物体的高度呢?二、探究新知1.设计活动方案,自制仪器(1)测倾器(或测角仪、经纬仪等)由哪几部分构成?(2)制作测角仪时应注意什么?处理方式:小组讨论总结测倾器的制作方法和使用步骤.2.测量倾斜角(1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.(2)转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.那么这个度数就是较高目标M的仰角.师:这样做的依据是什么?3.测量底部可以到达的物体的高度要测物体MN的高度,可按下列步骤进行:(如下图)(1)在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).师:根据测量数据,你能求出物体MN的高度吗?解:在Rt△MEC中,∠MCE=α,AN=EC=l,∴tan α=MEEC,即ME=EC·tan a=l·tan α.∵NE=AC=a,∴MN=ME+EN=l·tan α+a.4.测量底部不可以到达的物体的高度要测量物体MN的高度,可按下列步骤进行:(1)在测点A处安置测角仪,测得此时物体MN的顶端M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测角仪(点A,B,N都在同一条直线上),此时测得M的仰角∠MDE=β.(3)量出测角仪的高度AC=BD=a,以及测点A,B之间的距离AB=b.师:根据测量数据,你能求出MN的高度吗?分析:根据测量的AB的长度,AC,BD的高度以及∠MCE,∠MDE的大小,根据直角三角形的边角关系.即可求出MN的高度.解:∵在Rt△MDE中,ED=MEtan β,在Rt△MCE中,EC =MEtan α,∴EC-ED=b.∴MEtan β-MEtan αtan αtan β=b.∴ ME=btan αtan βtan β-tan α.∴ MN=btan αtan βtan β-tan α+a.三、练习巩固1.直升飞机在离地面2 000 m的上空测得上海东方明珠底部的俯角为30°,此时直升飞机与上海东方明珠底部之间的距离是( )A.2 000 m B.2 000 3 mC.4 000 m D.4 000 3 m2.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为 ________米(精确到1米).(参考数据:sin 22.3°≈0.38,cos 22.3°≈0.93,tan 22.3°≈0.41)3.九年级1班的同学为了了解教学楼前一棵树的生长情况,去年在教学楼前点A处测得树顶点C的仰角为30°,树高5 m,今年他们仍在原地A处测得大树顶点D的仰角为37°,问这棵树一年生长了多少米?(精确到0.01)(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75,3≈1.732)。
初中数学三角形的边 优秀教学设计
初中数学三角形的边优秀教学设计教学目标:1.能够区分三角形的三条边,并确定其中最长的边和最短的边。
2.能够使用比较运算符(大于、小于、等于)比较三角形的边长关系。
3.能够根据三角形边长的关系确定三角形的类型。
教学步骤:1.导入问题教师在黑板上画出一个三角形,让学生从三角形的几点出发,结合图中实际情境,思考三角形的边应该如何称呼。
2.信息输入教师将三角形的边长数据输入到黑板上并让学生与教师进行比较。
学生可以通过观察、比较三角形三边长度的大小关系,找出最短的边、中间长的边和最长的边,并用比较运算符比较三边的长度关系。
例如:三角形的三边分别为3cm,4cm,5cm,最短的边为3cm,中间长的边为4cm,最长的边为5cm。
通过比较可以发现:3<4<5。
3.活动设计接下来,教师让学生以小组形式,用尺规画出一个三角形,并测量出三边长,并用比较运算符比较三边的长度。
学生可通过口头描述,或用比较语句表达三边长度的大小关系。
例如:AB<AC<BC。
4.扩展探究继续以小组形式,让学生用三角板或直尺、圆规、量角器等工具,根据三角形三边长度的大小关系,将三角形分为等腰三角形、等边三角形、直角三角形、任意三角形等,讨论这些三角形的性质和特点。
5.课堂总结教师与学生一起回顾本课所学知识,并对不熟悉的知识点进行强化,例如如何较准测量三角形边长,前后边长相等的三角形是等腰三角形等。
同时,教师鼓励学生将数学知识应用到日常生活中,如何运用三角形的边长关系去求解实际问题。
教学反思:本课采用以学生为中心的教学方式,通过学生自主探究和小组讨论,培养学生的观察能力和团队协作能力,提高学生的参与度和自信心。
同时,通过实际测量和比较,让学生更直观地了解三角形三边长度关系。
整堂课的设计十分严密,既以教师为主,又注重以学生的思考和解决问题的能力出发,不但有符合教材的知识点和学习目标,同时有一个完整的课堂循环流程,既做到了知识的传授,又避免了学生的被动听课,充分调动了学生的积极性和学习热情。
三角形的三边关系 初中八年级上册数学教案教学设计课后反思 人教版
C,有几条线路可以选择?走那条线路 路径最短?为什么?由此可以得出那些结
出发,沿三角形的边到点A,又能得出
归纳:三角形两边的差小于第三边
综合以上两个结论可以得出:三角形两边的和大于第三边.三角形两边的差小于第三边.
课堂练习(难点巩固)三、课堂练习
1、下列长度的三条线段能否组成三角形?为什么?
(1) 5, 6, 10;(2) 3, 4, 8; (3) 5, 6, 11
归纳:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形.
2、一个三角形的三边长分别为4,7,x,那么x的取值范围是( )
A.3<x<11 B.4<x<7 C.-3<x<11 D.x>3
归纳:两边之差‹三角形的第三边‹两边之和
3、用一条长为18cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边的长是多少?
(2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
注意:第(2)小题中因为长为4cm的边可能是腰,也可能是底边,所以需要分情况讨论.
归纳:在并且求出三角形的边长后一定要检验它们是否符合实际要求,能否组成三角形。
同学们在解决实际问题中一定要养成检验的好习惯。
4、(拓展延伸)若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a -b|.
小结四、课堂小结
1、两边之差‹三角形的第三边‹两边之和
2、等腰三角形中,给定一边长度,不知道是腰还是底边的情况,要进行分类讨论。
3、在求出三角形的边长后一定要检验它们
是否符合实际要求,能否组成三角形。
初中数学三角形教案(7篇)
初中数学三角形教案(7篇)一、教材分析本节教材是学生对小学阶段三角形有初步了解的根底上进一步熟悉三角形的特点和性质。
三角形是最简洁、最根本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。
对学生更好地熟悉现实世界,拓展空间观念都有特别重要的作用,同时对今后学习三角形全等、相像和解直角三解形,解决相关的实际问题,都有不行低估的作用。
二、教学目标1、结合实物和图形理解三角形定义2、找到全部三角形的共同特点。
3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。
4、初步了解任意三角形三边之间的大小关系。
5、能应用所学学问解决日常生活中与三角形有关的实际问题。
6、初步感受三角形简洁、广泛地适用性。
7、培育学生动手、动脑、合作、沟通、探究意识。
三、教学重难点重点:三角形共同特点的理解及三角形三边关系性质的理解。
难点:应用三边关系性质解决简章的实际问题。
四、教具及材料预备三角板、实物的三角形、包装带、剪刀、头钉、白纸、透亮胶等(师生同备)五、学生状况及教学构思七年级学生年龄较小,思维正处在由详细形象思维向抽象规律思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际动身说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。
六、教学实施1、师:在小学我们进一步了解了三角形,今日我们在一起进一步熟悉三角形的定义、记法及其相关性质,随之在黑板上板书课题(1熟悉三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。
生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由很多三角形构成的。
师:在黑板上画出同学熟识的屋顶框架图。
2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?甲生:每一个三角形都有三个内角,三个顶点。
乙生:每一个三角形都由三条线段组成。
丙生:任意三角形的三内角之和都等于180°。
初中数学三角形教案(优秀5篇)
初中数学教案优秀教案_初中数学三角形教案(优秀5篇)初中数学三角形教案篇一1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美先学后教,达标导学1.教学重点:是性质定理1的应用.2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.1课时投影仪、胶片、常用画图工具.[复习提问]1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比初中数学三角形教案篇二1.经历探索直角三角形中边角关系的过程。
理解正切的意义和与现实生活的联系。
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。
1.从现实情境中探索直角三角形的边角关系。
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。
理解正切的意义,并用它来表示两边的比。
引导―探索法。
更多免费教案下载绿色圃中一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt△AB1C1和Rt△AB2C2有什么关系?⑵有什么关系?⑶如果改变B2在梯子上的位置(如B3C3)呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB 的值。
最新版初中数学教案《三角形的边》精品教案(2022年创作)
第十一章三角形——三角形的有关概念、分类及三边关系一、新课导入1.导入课题:三角形是我们早已熟悉的图形,你能列举出日常生活中形如三角形的物体吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?2.学习目标:〔1〕记住三角形的有关概念.〔2〕会用符号表示三角形,会对三角形进行分类.〔3〕能说出三角形的三边关系,并能运用三角形三边关系解决相关问题.3.学习重、难点:重点:三角形及其有关的概念;三角形的分类.难点:三角形三边关系及应用.二、分层学习1.自学指导:〔1〕自学内容:教材第2页到“思考〞前的内容.〔2〕自学时间:5分钟.〔3〕自学要求:认真阅读课本的内容,划出你认为是重点的语句.〔4〕自学参考提纲:①什么样的图形叫三角形?由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.②对照右边的图形,指出三角形的边、角、顶点.线段AB、BC、CA是三角形的边,点A、B、C是三角形的顶点,∠A,∠B,∠C是三角形的角.③三角形的边有几种表示方法?对照右边的图形写出来.除了②中的表示方法,还可以用a,b,c表示.④用符号语言表述右图的三角形记作:△ABC,读作:三角形ABC.⑤什么是等腰三角形、等边三角形?等腰三角形与等边三角形之间有什么关系?有两条边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.⑥等边三角形是特殊的等腰三角形,用图示的方法表示它们之间的包容关系.2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:三角形的知识在小学已经学习过,本节知识是对三角形知识的系统学习,而本层次主要是学习三角形的相关概念及两种特殊三角形的概念,学生能很快接受.②差异指导:a.引导学生理解三角形的概念中“首尾顺次相接〞的意思;b.让学生认识到三角形的表示方法不是单一的.〔2〕生助生:学生围绕各自的学习疑点进行互助交流.4.强化:〔1〕三角形的有关概念及等腰三角形的意义.〔2〕练习:如图,共有6个三角形,其中以AC为边的三角形是△ABC,△AEC,△ADC;以∠B为内角的三角形有ABC,△DBC,△EBC.1.自学指导:〔1〕自学内容:教材第2页“思考〞到第3页“探究〞之前的内容.〔2〕自学时间:5分钟.〔3〕自学方法:思考三角形的分类方法.〔4〕自学参考提纲:①想一想:研究三角形,我们应该从哪些方面着手?可以从角和边这两个方面着手.②试一试:按角分,可以将三角形分为哪几类?按边分,可以将三角形分为哪几类?按角分,可以分为三类:锐角三角形,直角三角形,钝角三角形;按边分可以分为两类:三边都相等的三角形,等腰三角形,而等腰三角形又包括底边和腰不相等的等腰三角形和等边三角形.③议一议:你能用图示的方法表示三角形按边分的情况吗?2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:按角分类学生比较容易理解,按边分类局部学生理解等边三角形为什么放在等腰三角形中时可能会存在一定困难.②差异指导:教师对个别学困生进行点拨指导.〔2〕生助生:学生之间相互讨论交流三角形的分类标准是什么.4.强化:三角形的分类标准,按边的分类.1.自学指导:〔1〕自学内容:探究三角形三边之间的关系.〔2〕自学时间:5分钟.〔3〕自学方法:任意画出一个三角形ABC,思考:从B点到C 点有哪几条路径?并比较各路径的长度.〔4〕探究提纲:①如图,假设一只小虫从点B出发,沿三角形的边爬到点C,有两条路线,路线B→C最近.根据是:两点之间线段最短.于是得出结论三角形两边的和大于第三边.②在三角形ABC中,可以得出:AB+BC>AC,AC+BC>AB,AB+AC>BC.③由②还可以得出:AC-AB<BC;AB-AC<BC;BC-AB<AC.由此又可得出三角形的三边关系的另一个结论是:三角形两边的差小于第三边.④以下长度的三条线段能否构成三角形,为什么?a.3、4、8b.5、6、11c.5、6、10a.不能,因为3+4<8;b.不能,因为5+6=11;c.能,因为5+6>10.⑤动手完成例题,看看你的方法和书上的方法一样吗?谁的更好?⑥思考例题〔2〕中为什么要分情况讨论?2.自学:同学们可结合自学指导进行自学.3.助学:〔1〕师助生:①明了学情:这节课中探讨三边之间的不等关系.三边关系中“两边之和大于第三边〞,学生通过观察能直接得出结论;“两边之差小于第三边〞的结论局部学生很难推导.其次,例题的解法比较多,但是学生还不习惯用方程的知识解决几何问题,因此,教师要了解学生的认知困难在哪里.②差异指导:a.引导学生先用观察或测量的方法,归纳三边之间的不等关系,形成系统的知识体系,教师讲解推导过程.b.引导学生自己动手完成例题,然后说说书上这样做的好处,让学生形成用代数方程解决几何问题的意识.〔2〕生助生:学生之间相互交流帮助.4.强化:〔1〕三角形三边不等关系.〔2〕归纳例题的解题要领.〔3〕练习:①一个等腰三角形的周长为24cm,只知其中一边的长为7cm,那么这个等腰三角形的腰长为7 或8.5cm.②以下长度的线段不能组成三角形的是〔A〕A.3,8,4B.4,9,6C.15,20,8D.9,15,8三、评价1.学生自我评价〔围绕三维目标〕:学生总结交流自己的学习收获及存在的困惑.2.教师对学生的评价:〔1〕表现性评价:对学生在学习过程的态度、方法、成果和缺乏进行点评.〔2〕纸笔评价:课堂评价检测.3.教师自我评价〔教学反思〕:教学过程中,强调学生自主探索和合作交流,经历观察、猜想、实验、数据处理、归纳、类比等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.一、根底稳固〔每题10分,共50分〕1.以下说法:①等边三角形是等腰三角形;②三角形按边分类可分为等腰三角形、等边三角形、不等边三角形;③三角形的两边之差大于第三边;④三角形按角分类应分为锐角三角形、直角三角形、钝角三角形. 其中正确的有〔B〕2.如图,以下不等关系成立的是(C)A.PA+PD>AMB.PN+PD>ADC.PN+PM>MND.PA+PM>MN3.以下长度的线段能组成三角形的是〔D〕A.3cm,12cm,8cmB.6cm,8cm,15cmC.2cm,3cm,5cmD.6.3cm,6.3cm,12cm4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是〔D〕2cm<x<8cm.二、综合应用〔第6题20分,第7题10分,共30分〕6.等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长.解:如果该等腰三角形的腰长为4,三角形的三边长分别为4,4,9.因为4+4<9,此时不能构成三角形.如果该等腰三角形的腰长为9,三角形的三边长分别为4,9,9,所以这个等腰三角形的周长为4+9+9=22.△ABC中,AB=AC,AD=BD=BC,那么图中有3个等腰三角形.三、拓展延伸〔每题10分,共20分〕8.等腰三角形的周长为20厘米.(1)假设腰长是底长的2倍,求各边的长;(2)假设一边长为6厘米,求其它两边的长.解:〔1〕设底边长为x厘米,那么腰长为2x厘米.x+2x+2x=20解得x=4.所以三边长分别为4cm,8cm,8cm.〔2〕如果6厘米长的边为底边,设腰长为x厘米,那么6+2x=20,解得x=7;如果6厘米长的边为腰,设底边长为x厘米,那么2×6+x=20,解得x=8.由以上讨论可知,其他两边的长分别为7厘米,7厘米或6厘米,8厘米.9.观察以下列图形,完成后面的问题.〔1〕第十个图形中共有55个阴影三角形.〔2〕用正整数n表示第n个图形中阴影三角形的个数.(n2+n)解:12第4课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕,关于原点的对称点为P′〔-x,-y〕及其运用.教学目标理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P〔x,y〕关于原点的对称点为P′〔-x,-y〕的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕•关于原点的对称点P′〔-x,-y〕及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备小黑板、三角尺教学过程一、复习引入〔学生活动〕请同学们完成下面三题.1.点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.〔略〕二、探索新知〔学生活动〕如图,在直角坐标系中,A 〔-3,1〕、B 〔-4,0〕、C 〔0,3〕、•D 〔2,2〕、E 〔3,-3〕、F 〔-2,-2〕,作出A 、B 、C 、D 、E 、F点关于原点O 的中心对称点,并写出它们的坐标,并答复:这些坐标与点的坐标有什么关系?老师点评:画法:〔1〕连结AO 并延长AO〔2〕在射线AO 上截取OA ′=OA〔3〕过A 作AD ′⊥x 轴于D ′点,过A ′作A ′D ″⊥x 轴于点D ″.∵△AD ′O 与△A ′D ″O 全等∴AD ′=A ′D ″,OA=OA ′∴A ′〔3,-1〕同理可得B 、C 、D 、E 、F 这些点关于原点的中心对称点的坐标.〔学生活动〕分组讨论〔每四人一组〕:讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:〔1〕从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.〔2〕坐标符号相反,即设P 〔x ,y 〕关于原点O 的对称点P ′〔-x ,-y 〕.例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B ′即可.解:点P 〔x ,y 〕关于原点的对称点为P ′〔-x ,-y 〕,因此,线段AB 的两个端点A 〔0,-1〕,B 〔3,0〕关于原点的对称点分别为A ′〔1,0〕,B 〔-3,0〕.连结A ′B ′.那么就可得到与线段AB 关于原点对称的线段A ′B ′.〔学生活动〕例2.△ABC ,A 〔1,2〕,B 〔-1,3〕,C 〔-2,4〕利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′.三、稳固练习教材 练习.四、应用拓展例3.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1.〔1〕在图中画出直线A 1B 1.〔2〕求出线段A 1B 1中点的反比例函数解析式.〔3〕是否存在另一条与直线AB 平行的直线y=kx+b 〔我们发现互相平行的两条直线斜率k 值相等〕它与双曲线只有一个交点,假设存在,求此直线的函数解析式,假设不存在,请说明理由. 两个点关于原点对称时,它们的坐标符号相反, 即点P 〔x ,y 〕关于原点O 的对称点P ′〔-x ,-y 〕.分析:〔1〕只需画出A 、B 两点绕点O 顺时针旋转90°得到的点A 1、B 1,连结A 1B 1. 〔2〕先求出A 1B 1中点的坐标,设反比例函数解析式为y=k x代入求k . 〔3〕要答复是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A 1B 1与双曲线是相切的,只要我们通过A 1B 1的线段作A 1、B 1关于原点的对称点A 2、B 2,连结A 2B 2的直线就是我们所求的直线.解:〔1〕分别作出A 、B 两点绕点O 顺时针旋转90°得到的点A 1〔1,0〕,B 1〔2,0〕,连结A 1B 1,那么直线A 1B 1就是所求的.〔2〕∵A 1B 1的中点坐标是〔1,12〕 设所求的反比例函数为y=k x 那么12=1k ,k=12∴所求的反比例函数解析式为y=12x〔3〕存在.∵设A 1B 1:y=k′x+b′过点A 1〔0,1〕,B 1〔2,0〕∴1`02b k b =⎧⎨=+⎩ ∴`11`2b k =⎧⎪⎨=-⎪⎩ ∴y=-12x+1 把线段A 1B 1作出与它关于原点对称的图形就是我们所求的直线.根据点P 〔x ,y 〕关于原点的对称点P ′〔-x ,-y 〕得:A 1〔0,1〕,B 1〔2,0〕关于原点的对称点分别为A 2〔0,-1〕,B 2〔-2,0〕 ∵A 2B 2:y=kx+b∴102`b k b -=⎧⎨=-+⎩ ∴121k b ⎧=-⎪⎨⎪=-⎩ ∴A 2B 2:y=-12x-1 下面证明y=-12x-1与双曲线y=12x相切 11212y x y x ⎧=--⎪⎪⎨⎪=⎪⎩ -12x-1=12x ⇒x+2=-1x ⇒ x 2+2x+1=0,b 2-4ac=4-4×1×1=0∴直线y=-12x-1与y=12x相切 ∵A 1B 1与A 2B 2的斜率k 相等∴A 2B 2与A 1B 1平行∴A 2B 2:y=-12x-1为所求. 五、归纳小结〔学生总结,老师点评〕本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P 〔x ,y 〕,•关于原点的对称点P ′〔-x ,-y 〕,及其利用这些特点解决一些实际问题.六、布置作业1.教材 复习稳固3、4.2.选用作业设计.作业设计一、选择题1.以下函数中,图象一定关于原点对称的图象是〔〕A .y=1xB .y=2x+1C .y=-2x+1D .以上三种都不可能 2.如图,矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,那么矩形边长中较长的一边等于〔〕A .8cmB .22cmC .24cmD .11cm二、填空题1.如果点P 〔-3,1〕,那么点P 〔-3,1〕关于原点的对称点P ′的坐标是P ′_______.2.写出函数y=-3x 与y=3x具有的一个共同性质________〔用对称的观点写〕. 三、综合提高题1.如图,在平面直角坐标系中,A 〔-3,1〕,B 〔-2,3〕,C 〔0,2〕,画出△ABC•关于x 轴对称的△A ′B ′C ′,再画出△A ′B ′C ′关于y 轴对称的△A ″B ″C ″,那么△A ″B ″C ″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A 〔0,3〕,B 〔3,0〕,现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1.〔1〕在图中画出直线A 1B 1;〔2〕求出过线段A 1B 1中点的反比例函数解析式;〔3〕是否存在另一条与直线A 1B 1平行的直线y=kx+b 〔我们发现互相平行的两条直线斜率k 相等〕它与双曲线只有一个交点,假设存在,求此直线的解析式;假设不存在,请说明不存在的理由.答案:一、1.A 2.B二、1.〔3,-1〕 2.答案不唯一 参考答案:关于原点的中心对称图形.三、1.画图略,△A ″B ″C ″与△ABC 的关系是关于原点对称.2.〔1〕如右图所示,连结A 1B 1;〔2〕A 1B 1中点P 〔1.5,-1.5〕,设反比例函数解析式为y=k x ,那么y=-2.25x . 〔3〕A 1B 1:设y =k 1x+b 1113033b k =-⎧⎨=-⎩1113k b =⎧⎨=-⎩ ∴y=x+3∵与A 1B 1直线平行且与y=2.25x 相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-2.25x 相切,x2+3x+2.25=0,b2-4ac=9-4×1×2.25=0,∴y=x+3与y=-2.25x相切.。
初中数学教学课例《三角形的边》课程思政核心素养教学设计及总结反思
研究“能围成三角形的三条边之间到底有什么关系”.通
过观察、验证、再操作,最终发现三角形任意两边之和
大于第三边这一结论.这样教学符合学生的认知特点,
既提高了学生学习的兴趣,又增强了学生的动手能力.
1.理解三角形的概念,认识三角形的顶点、边、
角,会数三角形的个数.(重点)
教学目标
2.能利用三角形的三边关系判断三条线段能否构
简.
(简要写出围绕所要研究的主题搜集的课堂教学 课例研究综
信息,并简要反思在构建高效课堂的背景下,课程教学 述
要怎么转变才能更好实现育人目标?)
成三角形.(重点)3.源自角形在实际生活中的应用.(难点)情境导入
学生学习能
出示金字塔、战机、大桥等图片,让学生感受生活
力分析 中的三角形,体会生活中处处有数学.
教师利用多媒体演示三角形的形成过程,让学生观
察.
问:你能不能给三角形下一个完整的定义?
本节课让学生经历一个探究解决问题的过程,抓住
“任意的三条线段能不能围成一个三角形”引发学生探
初中数学教学课例《三角形的边》教学设计及总结反思
学科
初中数学
教学课例名
《三角形的边》
称
本节课让学生经历一个探究解决问题的过程,抓住
“任意的三条线段能不能围成一个三角形”引发学生探
究的欲望,围绕这个问题让学生自己动手操作,发现有
的能围成,有的不能围成,由学生自己找出原因,为什
教材分析 么能?为什么不能?初步感知三条边之间的关系,重点
得 a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-
c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+
a-b=3c+a-b.
初中数学《三角形的三边关系》教案
初中数学《三角形的三边关系》教案第5课时三角形的三边关系教学目的1.让学生通过作三角形(已知三条线段)的过程中,发觉“三角形任何两边之和大于第三边”.并会利用那个不等量关系判定不知的三条线段能否组成三角形以及已知三角形的二边会求第三边的取值范畴.2.会利用三角形的稳固性解决一些实际问题.重点、难点1.重点;三角形任何两边之和大于第三边的应用.2难点:已知三角形的两边求第三边的范畴.教学过程一、复习提问1.三角形的三个内角和是多少?三角形的外角有什么性质?2.在连结两点的所有线中最短的是哪一种?二、新授我们已探究了三角形的三个内角、外角以及外角与内角之间的数量关系,今天我们要探究三角形的三边之间的不等量关系.1.让学生拿出预先预备好的四根牙签(2cm,3cm,5cm,6cm各一根),请你用其中的三根,首尾连接,摆成三角形,是不是任意三根都能摆出三角形?若不是,哪些能够,哪些不能够?你从中发觉了什么?从4根中取出3根有以下几种情形:(1)2cm,5cm,6cm (2)3cm,5cm,6cm(3)2cm,3cm,5cm (4)2cm,3cm,6cm通过实践可知(1).(2)能够摆出三角形,(3)、(4)不能摆成三角形.我们能够发觉在这三根牙签中.假如较小的两根的和不大于最长的第三根,就不能组成三角形.这确实是说:三角形的任何两边的和大于第三边.2.下面我们再通过用圆规、直尺画三角形来验证画一个三角形;使它的三条边分别为7cm、5cm、4cm.画法步骤如下:(1)先画线段AB=7cm(2)以点A为圆心,4cm长为半径画圆弧,(3)再以B为圆心,4cm长为半径画圆弧,两弧相交于点C;(4)连接AC、BC.△ABC确实是所要画的三角形.这是依照圆上任意一点到圆心的距离相等.试一试:能否画一个三角形,使它的三边分别为(1)7cm,4cm,2cm(2)9cm,5cm,4cm大伙儿在画图过程中,发觉两条弧可不能相交,这确实是说不能作出三角形.你能否利用前面说过的线段的差不多性质来说明这一结论的正确性?例1.有两根长度分别为5cm和8cm的木棒,现在再取一根木棒与它们摆成一个三角形,你说第三根要多长呢?用长度为3cm的木棒行吗?什么缘故?长度为14cm的木棒呢?3.三角形的稳固性.教师演示简易的教具用木条钉成的三角形和四边形,用力一拉四边形变形了,而三角形却一点不变.这确实是说三角形的三条边固定,那么三角形的形状和大小就完全确定了.三角形的那个性质叫做三角形的稳固性.四边形就不具有那个性质.三角形的稳固性在生产、生活实践中有着广泛的应用;如桥拉杆、电视塔架底座,差不多上三角形结构(如教科书、图9.1.13)你能举出三角形的稳固牲在生产、生活中应用的例子吗?三、巩固练习教科书第66页练习1、2、3.四、小结本节课我们研究、探究了三角形中边的不等量关系,三角形任何两边的和大于第三边.注意“任何”两宇,如三角形的三边分别为a、b、c,则a+bc,a+cb,b+ca都成立才能够,但假如确定了最长的一条线段,只要其余两条线段之和大于最长的一条,它们必定能够构成三角角形.假如已有两条线段,要确定第三条应该是什么样的长度才能使它们构成三角形?第三边的取值范畴是大于这两边的差而小于这两边的和.要练说,得练听。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学三角形的边教学设计
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味。
而好的教育一定要致力于学生用自己的眼睛去观察,用自己的心灵去感悟,用自己的头脑去判别,用自己的语言去表达,本节课中我充分体现了这一观点。
首先,通过学生生活中的例子从小明家到学校走哪条路近,呈现教学内容,学生在感性认识上获得了基础,从而为发现三角形三边关系律奠定了基础。
其次,为学生提供足够的学习时间和空间,教师启发学生用不同长度的三根小棒分别来围三角形,引导学生进行小组合作探究,师生、生生多向互动,人人体验探索规律的过程。
第三,改变了学生被动接受的学习方式,让学生根据自己对知识的理解和课堂中获得的信息进行判断和辨析,提出自己的见解和疑问。
因此,课堂上体现学生在主动参与中思维的灵活性和开拓性,出现了许多令教师意外而惊喜的资源。
如有的学生提出:判断三条线段能否围成三角形,只需要把最短的两条边相加大于第三边就可以了。
通过这节课的教学,我深深体会到:一个真实的教学过程是不可预设的,而是一个师生等多种因素间动态的相互作用的过程。
教师应多关注学生,要为学生提供必要的资源,要善于开发和利用学生资源,使课堂成为一个资源生成和动态生成的过程,成为促进师生生命共同发展的场所。
三角形的边一课是在学生知道了三角形有三条边、三个角、三个顶点以及三角形具有稳定性的基础上学习的,通过前面的学习,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触。
因此,教学中,我让学生在观察、感知的基础上,动手操
作,摆一摆,比一比,看一看,想一想,分组讨论、合作学习,运
用多媒体课件辅助教学,老师恰当点拨,适时引导。
本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从4根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的学
生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与
三角形的“边的长度”有关系,它们之间有着怎样的关系呢?这样很
自然地就导入了新课,为后面的新课做了铺垫。
二是新授部分:学
生用手中的小棒按老师的要求来摆三角形,并且做好记录。
这个过
程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而
得出结论。
教学中,我设置这些实际动手操作、共同探讨的活动,
既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
评价一节数学课,最直接有效的方式就是通过练习得到的反馈。
而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习
设计上主要采用了层层深入的原则,先是基础知识的练习;然后用三
角形的知识解决问题。
新授课中的小组合作“摆三角形”,学生分
工明确,参与性强,而练习中的小组合作却能集众人智慧,全面考虑,在有限的时间内完成学习任务。
对这堂课的教学,我也有不少遗憾之处。
1、教学设计不够精巧,没有波澜,对学生积极性的调动还是不够。
对教材内容的把握是过分拘泥于教材。
2、学习小组内的合作较好,但是组间竞争意识不强,小组加分
过于机械,没有充分调动学生竞争的积极性。
改进:在适当的课中多多运用小组学习,不要机械的运用小组,为了应用而应用。
在有的课堂上如果运用小组确实能达到很好的效
果就用,如果效果不明显时就可以不用,对于小组要灵活运用。
猜
你感兴趣:。