最新全等三角形的判定(SSS)练习题

合集下载

11.2 三角形全等的判定(SSS)(含答案)

11.2 三角形全等的判定(SSS)(含答案)

11.2 三角形全等的判定(SSS)题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

◆课堂测控测试点边边边1.如图,点B,E,C,F在同一直线上,AB=DE,AC=DF,BE=CF,∠A=•43°,求∠D的度数,下面是小红同学的求解过程,请你说明每一步的理由.解:因为BE=CF,所以BE+EC=CF+EC,即BC=EF.在△ABC与△DEF中,,,AB DEAC DFBC EF=⎧⎪=⎨⎪=⎩所以△ABC≌△DEF().所以∠D=∠A=43°().2.已知:如图,C是AB的中点,AD=CE,CD=BE,求证:△ACD≌△CBE.◆课后测控3.如图,AC=BD,AB=DC,求证:∠B=∠C.4.已知:如图,点A,C,B,D都在一条直线上,AC=BD,AM=CN,BM=DN.求证:AM∥CN.5.三月三放风筝,下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学知识给予证明.◆拓展测控6.有一块三角形的厚铁板(如图),根据实际生产需要,工人师傅要把∠MAN平分开,现在他手边只有一把尺子(没有刻度)和一根细绳,•你能帮助工人师傅想个办法吗?并说明你这样做的理由.答案:1.SSS 全等三角形对应角相等2.∵C是AB的中点,∴AC=BC.在△ACD与△CBE中,,,,AC CBAD CECD BE=⎧⎪=⎨⎪=⎩∴△ACD≌△CBE(SSS).[总结反思]三条边对应相等的两个三角形全等,•运用此结论可证明两个三角形全等.3.证明:在△ABD与△DCA中,,,,AB DCDB ACAD DA=⎧⎪=⎨⎪=⎩∴△ABD≌△DCA(SSS),∴∠B=∠C.[解题规律]证明线段相等或角相等时,常证明它们所在的两个三角形全等,本题中证明两个三角形全等已具备两个条件,运用公共边这个隐含条件是解题关键.4.∵AC=BD,∴AC+CB=BD+CB,即AB=CD.在△AMB和△CND中,,,,AM CNBM DNAB CD=⎧⎪=⎨⎪=⎩∴△AMB≌△CND(SSS).∴∠A=∠NCD,∴AM∥CN.[解题技巧]题目中条件AC=BD不能直接用来证明,可运用等式的性质变为AB=CD.5.证明:连结DH.在△DEH和△DFH中,,,.DE DFEH FHDH DH=⎧⎪=⎨⎪=⎩∴△DEH≌△DFH(SSS),∴∠DEH=∠DFH.[解题规律]连结EH即将原图形分成一对三角形,利用公共边运用SSS可得两个三角形全等.6.用绳子的一定长度在AM,AN边上截取AB=AC,再选取适当长度的绳子,将其对折,得绳子的中点D,把绳子的两端点固定在B,C两点,拽住绳子中点D,向外拉直BD和CD,•再在铁板上点出D的位置,作射线AD,则AD平分∠MAN.理由如下:如图,∵在△ABD和△ACD中,,,,AB ACBD CDAD AD=⎧⎪=⎨⎪=⎩∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠MAN.[解题技巧]这是一道实际应用问题,通过构造两个三角形全等将∠MAN平分,•解题关键是得到绳子的中点并拉直绳子,从而可知DB=DC.可以编辑的试卷(可以删除)This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.。

全等三角形判定SSS练习题

全等三角形判定SSS练习题
全等三角形判定SSS练习题
5、已知:如图,AB=DC,AD=BC, 求证:∠A=∠C
A
D
B
C
全等三角形判定SSS练习题
6、已知:如图 , AB=AC , AD=AE , BD=CE.求证:∠BAC=∠DAE.
A
E
D
B
C
全等三角形判定SSS练习题
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
4、 如图,已知AB=CD,AC=BD, 求证:∠A=∠D.
AD
O
B
C
全等三角形判定SSS练习题
5、如图,已知AB=AD,AC=AE, BC=DE,求证:∠1=∠2
A
12ELeabharlann CBD全等三角形判定SSS练习题
1、已知AD=BE,BC=EF, AC=DF,求证EF//BC
D
A
E
F
B
C
全等三角形判定SSS练习题
1、已知AB=DE,BC=EF,D,C在 AF上,且AD=CF,求证: AB//DE.
全等三角形判定SSS练习题
2、已知AB=DE,BC=EF,AF=CD, 求证EF//BC:
E
F1
A
2
C
D
B
全等三角形判定SSS练习题
3、如图,已知AB=AC,AD为 △ABC的中线,求证:AD⊥BC
A
BD C
全等三角形判定SSS练习题
2、如图,△ABC中,D是BC边的中 点,AB=AC,求证:∠B=∠C
A
B
D
C
全等三角形判定SSS练习题
3、已知:如图,B、E、C、F在一 条直线上,且BE=CF,AB=DE, AC=DF。 求证:△ABC≌△DEF

全等三角形的判定(SSS)

全等三角形的判定(SSS)

。 A
c
D
=
=
。B
E
图1
F
(2)∵△ABC≌△FDE(已证) ∴∠C=∠E(全等三角形的对应角相等)
(3)∵△ABC≌△FDE(已证) ∠A=∠F(全等三角形的对应角相等)
AC//EF(内错角相等,两直线平行)
例.有一种作已知角的平分线的方法,如图,在∠AOB的两边上 分别取点D、E,使OD=OE,再分别以D、E为圆心,大于DE一 半的长为半径作弧,两弧相交于点C,作射线OC,则OC就是 ∠AOB的平分线。试说明这种作法的正确性。
3.两个等腰直角三角形全等
(×)
4.都有两边长分别为3厘米和5厘米的两个 等腰三角形全等
(×)
5.都有两边长分别为3厘米和8厘米的两个
等腰三角形全等
(√ )
练习
已知:如图,AB=AC,DB=DC,
求证:∠B =∠C.
A
证:连接AD
在△ABD和△ACD中,
AB=AC (已知)
DB=DC (已知)
D
AD=AD (公共边)
3.连接线段A′B′ , A′C′.
A
A
B
C
B
C
△A′ B′ C′ 与 △ABC 能不能重合?是不是全等?
边边边公理:
三边对应相等的两个三角形全等。 简写为“边边边”或“SSS”
注:这个定理说明,只要三角形的三边的长度确定了, 这个三角形的形状和大小就完全确定了, 这也是三角形具有稳定性的原理。
A
B
C
∴△ABD≌△ACD (SSS)
∴∠B =∠C (全等三角形的对应角相等)
练习
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线.

全等三角形判定SSS练习题(优选)

全等三角形判定SSS练习题(优选)

A
C
F
E
B
D
11
2、如图,△ABC中,D是BC边的中 点,AB=AC,求证:∠B=∠C
A
B
D
C
12
3、已知:如图,B、E、C、F在一 条直线上,且BE=CF,AB=DE, AC=DF。 求证:△ABC≌△DEF
A
D
B
E
C
F
13
4、已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC
14
A
D
B
C
8
4、已知C是BD上一点, AC=CE,AB=CD,BC=DE, ∠B=900 求证:AC⊥CE
A
B C
E D
9
5、如图,已知AE=AB,AF=AC, EC=BF,求证:∠CMF=∠CAF
F
ቤተ መጻሕፍቲ ባይዱ
E
A
M
B
C
10
1、已知:如图,A、B、E、F在一条 直线上,且AC=BD,CE=DF, AF=BE。求证:△ACE≌△BDF
5、已知:如图,AB=DC,AD=BC, 求证:∠A=∠C
A B
D C
15
6、已知:如图 , AB=AC , AD=AE , BD=CE.求证:∠BAC=∠DAE.
A
E
D
B
C
16
点击此处添加标题
欢迎使用 可删
AD
O
B
C
4
5、如图,已知AB=AD,AC=AE, BC=DE,求证:∠1=∠2
A
12
E
C
B
D
5
1、已知AD=BE,BC=EF, AC=DF,求证EF//BC

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。

120°B.125°C。

127° D。

104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BAD B。

∠CAB=∠DBA C.OB=OC D。

∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论。

5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3 B。

4 C.5 D。

6CBA 2、如图2,AB=AC ,AD=A E,欲证△A BD ≌△A CE ,可补充条件( ) A 。

∠1=∠2B .∠B=∠C C.∠D=∠ED 。

∠BAE=∠C AD 3、如图3,AD=B C,要得到△AB D和△CD B全等,可以添加的条件是( )A .AB∥CD B。

AD ∥B CC .∠A=∠C D.∠ABC =∠CDA4、如图4,AB 与CD 交于点O ,O A=OC ,OD =OB ,∠A OD =________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,A D平分∠BAC ,请补充完整过程说明△A BD≌△ACD 的理由。

三角形全等的判定(SSS,SAS)同步训练

三角形全等的判定(SSS,SAS)同步训练

1、如图,AB=AC ,BD=CD ,求证:∠1=∠2.
2.如图, DA DB = ,AC BC =。

求证:DAC
DBC ∆≅∆
3、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .
4、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.
5.如图,点E,F在BD上,且AB=CD,BF=DE,AE=CF,AC与BD相交于点O.求证:AE∥CF.
6、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.
⑴请你添加一个条件,使△DEC≌△BFA;
⑵在⑴的基础上,求证:DE∥BF.
C B A 7、如图6,已知AB=A
D ,AC=A
E ,∠1=∠2,求证∠ADE=∠B.
8、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?
9.如图,已知在ABC △中,AB AC =,12∠=∠.
求证:AD BC ⊥,BD DC =.
A C
2 1
3 4
10. 如图,CF BE =, DC AB =, C B ∠=∠ ,求证:DCE ABF ∆≅∆
11.如图,点C 是BD 的中点 ,EC AC =, , ECB ACD ∠=∠ ,求证:EDC ABC ∆≅∆
12.如图,点M ,N 在线段AC 上,AM =CN ,AB ∥CD ,AB =CD.求证:∠1=∠2.。

全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

全等三角形的性质与判断(SSS、SAS、ASA 、AAS )练习题1.如图,在△2.如图,把△则∠ A=A ABC中,∠ A=90°, D、 E 分别是 AC、 BC上的点,若△ ADB≌△ EDB≌△ EDC,则∠ C= ABC 绕点 C 顺时针旋转35°,获得△ A′ B′ C, A′ B′交 AC 于点 D,若∠ A′ DC=90°,A' BEDAD D A' C FCB'B'AB E CB CO A B1题图2题图3题图4题图3.如图,△ AOB 中,∠ B=3 0°,将△ AOB 绕点 O 顺时针旋转 52°,获得△ A′ OB′,边 A′B′与边OB交于点 C( A′不在 OB上),则∠ A′ CO=4.如图,△ AB C≌△ ADE , BC 的延伸线过点 E,∠ ACB= ∠ AED=10 5°,∠ CAD=1 0°,∠ B=50°,则∠ DEF=5.如图, Rt △ ABC中,∠ BAC=90°, AB=AC,分别过点 B、 C 作过点 A 的垂线 BC、CE,垂足分别为 D、E,若 BD=3 , CE=2 ,求 DE 的长 .BCD A E6.如图, AD 是△ ABC的角均分线, DE⊥AB, DF⊥AC,垂足分别是 E、 F,连结 EF,交 AD 于 G,试判断AD与 EF的关系,并证明你的结论。

AEGFBDC7.如下图,在△ ABC 中, AD 为∠ BAC 的角均分线, DE⊥ AB 于 E, DF⊥ AC 于 F,△ ABC 的面积是28cm2,AB=20cm,AC=8cm,求 DE的长。

AE FB D C8.如图, AD=BD , A D⊥ BC于 D, BE⊥ AC于 E, AD与 BE 订交于点 H,则 BH与 AC相等吗?为何?AEH- 1 -B D C1 / 49.已知: BD 、 CE 是△ ABC 的高,点 F 在 BD 上, BF=AC ,点 G 在 CE 的延伸线上, CG=AB ,求证: A G⊥AFG AE DFB C10.如图:在△ ABC中, BE、 CF 分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF 的延伸线上截取CG=AB,连结 AD、 AG.试判断 AD与 AG的关系怎样?并证明之.AGF EDHB C11.已知,如图:AB=AE,∠ B=∠ E,∠ BAC=∠ EAD,∠ CAF=∠ DAF,求证:AF⊥ CDAEBC F DA12.已知:∠ B=∠ E,且AB=AE。

全等三角形综合练习题含答案

全等三角形综合练习题含答案

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)之南宫帮珍创作1、如图1, AB=AD, CB=CD, ∠B=30°, ∠BAD=46°, 则∠ACD的度数是( )°°°°2、如图2, 线段AD与BC交于点O, 且AC=BD, AD=BC, •则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中, 已知AB=A1B1, BC=B1C1, 则弥补条件____________, 可获得△ABC≌△A1B1C1.4、如图3, AB=CD, BF=DE, E、F是AC上两点, 且AE=CF.欲证∠B=∠D, 可先运用等式的性质证明AF=________, 再用“SSS”证明______≌_______获得结论.5、如图, 已知AB=CD, AC=BD, 求证:∠A=∠D.6、如图, AC与BD交于点O, AD=CB, E、F是BD上两点, 且AE=CF, DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图, A、E、F、C四点共线, BF=DE, AB=CD.⑴请你添加一个条件, 使△DEC≌△BFA;⑵在⑴的基础上, 求证:DE∥BF.全等三角形的判定(SAS)1、如图1, AB∥CD, AB=CD, BE=DF, 则图中有几多对全等三角形( )2、如图2, AB=AC, AD=AE, 欲证△ABD≌△ACE, 可弥补条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3, AD=BC, 要获得△ABD和△CDB全等, 可以添加的条件是( )∥∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4, AB与CD交于点O, OA=OC, OD=OB, ∠AOD=________,•根据_________可获得△AOD≌△COB,从而可以获得AD=_________.DC BA5、如图5, 已知△ABC 中, AB=AC, AD 平分∠BAC, 请弥补完整过程说明△ABD ≌△ACD 的理由.∵AD 平分∠BAC, ∴∠________=∠_________(角平分线的界说).在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( )6、如图6, 已知AB=AD, AC=AE, ∠1=∠2, 求证∠ADE=∠B.7、如图, 已知AB=AD, 若AC 平分∠BAD, 问AC 是否平分∠BCD ?为什么?8、如图, 在△ABC 和△DEF 中, B 、E 、F 、C, 在同一直线上, 下面有4个条件, 请你在其中选3个作为题设, 余下的一个作为结论, 写一个真命题, 并加以证明.①AB=DE ;②AC=DF ;③∠ABC=∠DEF ;④BE=CF.9、如图⑴, AB ⊥BD, DE ⊥BD, 点C 是BD 上一点, 且BC=DE, CD=AB .⑴试判断AC 与CE 的位置关系, 并说明理由.⑵如图⑵, 若把△CDE 沿直线BD 向左平移, 使△CDE 的极点C 与B 重合, 此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变动)全等三角形(三)AAS 和ASA 【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等. 【典范例题】例1.如图, AB ∥CD, AE=CF, 求证:AB=CD例2.如图, 已知:AD=AE, ABE ACD ∠=∠, 求证:BD=CE.例3.如图, 已知:ABD BAC D C ∠=∠∠=∠., 求证:OC=OD.例4.如图已知:AB=CD, AD=BC, O 是BD 中点, 过O别交DA 和BC 的延长线于E, F.求证:AE=CF.例5.如图, 已知321∠=∠=∠, AB=AD.求证:例6.如图, 已知四边形ABCD 中点E 在BC 上, AF=CE, EF 的对角线BD交于征?【经典练习】1.△ABC 和△C B A '''中, C B C B A A ''='∠=∠,', ∠C B A '''.2.如图, 点C, F 在BE 上, ,,21EF BC =∠=∠请弥补一个条件, 使△ABC ≌DFE,弥补的条件是.3.在△ABC 和△C B A '''中, C B A '''全等的个数有( )①A A '∠=∠B B '∠=∠, C B BC ''=②A A '∠=∠, B B '∠=∠, C A C A ''='③A A '∠=∠B B '∠=∠, C B AC ''=④A A '∠=∠,B B '∠=∠,C A B A ''='A . 1个B. 2个C. 3个D. 4个4.如图, 已知MB=ND, NDC MBA ∠=∠, 下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN5.如图2所示, ∠E =∠F =90°, ∠B =∠C , AE =AF , 给出下列结论:C①∠1=∠2 ②BE=CF ③△ACN≌△ABM ④CD=DN其中正确的结论是__________________.(注:将你认为正确的结论填上)图2 图36.如图3所示, 在△ABC和△DCB中, AB=DC, 要使△ABO≌DCO, 请你弥补条件________________(只填写一个你认为合适的条件). 7. 如图, 已知∠A=∠C, AF=CE, DE∥BF, 求证:△ABF≌△CDE. 8.如图, CD⊥AB, BE⊥AC, 垂足分别为D、E, BE交CD于F, 且AD=DF, 求证:AC= BF.9.如图, AB, CD相交于点O, 且AO=BO, 试添加一个条件, 使△AOC≌△BOD, 并说明添加的条件是正确的.(很多于两种方法)10.如图, 已知:BE=CD, ∠B=∠C, 求证:∠1=∠2.11.如图, 在Rt△ABC中, AB=AC, ∠BAC=90º, 多点AAN, BD⊥AN于D,CE⊥AN于E, 你能说说DE=BD-CE的理由吗?直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等.【典范例题】例1 如图, B、E、F、C在同一直线上, AE⊥BC, DF⊥BC, AB=DC, BE=CF, 试判断AB与CD的位置关系. A例2 已知 如图, AB ⊥BD, CD ⊥BD, AB=DC, 求证:AD ∥BC.例 3 公路上A 、B为两村落(视为两个点), DA ⊥AB 于点A, CB DA=16km, BC=10km, 现要在公路AB 上建一个土特产收购站CD两村落到E 站的距离相等, 那么E 站应建在距A 理?例4 如图, AD 是△ABC 的高, E 为AC 上一点, BE 交AD 于F, 具有BF=AC, FD=CD, 试探究BE 与AC 的位置关系.例 5 如图, A 、E 、F 、B 四点共线, AC ⊥CE AC=BD, 求证:△ACF ≌△BDE. 【经典练习】1.在Rt △ABC 和Rt △DEF 中, ∠ACB=∠DFE=90那么Rt △ABC 与Rt △DEF(填全等或不全等)2.如图, 点C 在∠DAB 的内部, CD ⊥AD 于D, CB ⊥AB 于B, CD=CB 那么Rt △ADC ≌Rt △ABC 的理由是( )A .SSS B. ASA C. SAS D. HL3.如图, CE ⊥AB, DF ⊥AB, 垂足分别为E 、F, AC ∥DB, 且AC=BD, 那么Rt △AEC ≌Rt △BFC 的理由是( ).A .SSSB. AASC. SASD. HL 4.下列说法正确的个数有( ).②有两边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个直角三角形全等;BBC BC④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个5.过等腰△ABC 的极点A 作底面的垂线, 就获得两个全等三角形, 其理由是.6.如图, △ABC 中, ∠C=︒90, AM 平分∠CAB, CM=20cm, 那么M 到AB 的距离是( )cm.7.在△ABC 和△C B A '''中, 如果AB=B A '', ∠B=∠B ', AC=C A '', 那么这两个三角形( ).A .全等B. 纷歧定全等 C. 不全等D. 面积相等, 但不全等 8.如图, ∠B=∠D=︒90, 要证明△ABC 与△ADC 全等, 还需要弥补的条件是.9.如图, 在△ABC 中, ∠ACB=︒90, AC=BC, 直线MN 经过点C, 且AD ⊥MN 于D, BE ⊥MN 于E,求证:DE=AD+BE.10.如图, 已知AC ⊥BC, AD ⊥BD, AD=BC, CE ⊥AB, DF ⊥AB,垂足分别为E 、F, 那么, CE=DF 吗?谈谈你的理由! 11.如图, 已知AB=AC, AB ⊥BD, AC ⊥CD, AD, BC 相交于点E, 求证:(1)CE=BE ;(2)CB ⊥AD.提高题型: 1.如图, △ABC 中, D 是BC 上一点, DE⊥AB, DF⊥AC, E、F 分别为垂足, 且AE=AF, 试说明:DE=DF, AD 平分∠BAC.2.如图, 在ABC 中, D 是BC 的中点, DE⊥AB, DF⊥AC, 垂足分别是E 、F, 且DE=DF, 试说明AB=AC.3.如图, AB=CD, DF ⊥AC 于F, BE ⊥AC 于E, DF=BE, 求证:AF=CE.4.如图, △ABC 中, ∠C=90°, AB=2AC, M 是AB 的中点, 点N 在BC 上, MN ⊥AB.求证:AN 平分∠BAC.创作时间:二零二一年六月三十日┐ AB M CAC DBA DB ENC A B C DE F AE DBCAD C BFEM。

全等三角形的判定精选练习题 简单(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题 简单(分SSS、SAS、AAS、ASA、HL分专题)

CBA全等三角形的判定(SSS)不要写在上面,答案写在纸上1、如图1,已知AB=CD,AC=BD,求证:∠A=∠D.图1 图2 图3 图42、如图2,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.3、已知如图3,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.4、如图4,AB=AC,BD=CD,求证:∠1=∠2.全等三角形的判定(SAS)4、如图4,AB与CD交于点O,OA=OC,OD=OB,求证AD=CB.图7 图8 图95、如图5,已知△ABC中,AB=AC,AD平分∠BAC,求证△ABD≌△ACD6、如图6,已知AB=AD,AC=AE,∠1=∠2,求证∠ADE=∠B.7、如图7,已知AB=AD,若AC平分∠BAD,求证AC平分∠BCD8、如图8,在△ABC和△DEF中,B、E、F、C,在同一直线上,①AB=DE;③∠ABC=∠DEF;④BE=CF. 证明AC=DF9、如图9,AB⊥BD,DE⊥BD,点C是BD上一点,且BC=DE,CD=AB.⑴如图1证明AC与CE垂直⑵如图2,若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第⑴问中AC与BE的位置关系还成立吗?(注意字母的变化)【典型题】1.如图1,AB∥图5图2 图32.如图2,已知:AD=AE,ABEACD∠=∠,求证:BD=CE.3.如图3,已知:ABDBACDC∠=∠∠=∠.,求证:OC=OD. 图64.如图4已知:AB=CD,AD=BC,O是BD中点,过O点的直线分别交DA和BC的延长线于E,F.求证:AE=CF.5.如图5,已知321∠=∠=∠,AB=AD.求证:BC=DE.6.如图6,已知四边形ABCD中,AB=DC,AD=BC,点F在AD上,点E在BC上,AF=CE,EF的对角线BD交于O,求证:OF=OE 7. 如图7,已知∠A=∠C,AF=CE,DE∥BF,求证:△ABF≌△CDE.8.如图8,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF,求证:AC= BF。

全等三角形判定(SSS)

全等三角形判定(SSS)
D
E
F
用 数学语言表述:
在△ABC和△ DEF中
∴ △ABC ≌△ DEF(SSS)
AB=DE BC=EF CA=FD
结论:三边分别都相等的两个三角形全等(SSS)
例1. 如下图,△ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。 求证:△ ABD≌ △ ACD
添加标题
小结
添加标题
知道三角形三条边的长度怎样画三角形。
添加标题
①只给一条边:
②只给一个角:
60°
60°
60°
探究:
只给出一个条件时不能保证所画的两个三角形一定全等.
2.给出两个条件:
①一边一内角:
②两内角:
③两边:
30°
30°
30°
30°
30°
50°
50°
2cm
2cm
4cm
4cm
可以发现按两个条件画的两个三角形也不能保证一定全等。
已知一个三角形的三个内角是80°、60°、40°,它们全等吗?
∴ △ ABD≌ △ACD(SSS)
A
B
C
D
证明:∵D是BC的中点 ∴BD=CD 在△ABD和△ACD中,
AB=AC(已知) AD=AD(公共边) DB=DC
∴ △ ABD≌ △ACD(SSS)
∴∠1= ∠2(全等三角形对应角相等) ∵ ∠1+∠2=180º
∴∠1= ∠BDC=90º
结论:三个内角对应相等的两个三角形不一定全等。
A
B
C
60°
80°
40°
D
E
F
60°
40°
80°
3、给出三个条件:(三个角相等)

三角形全等的判定(SSS、SAS) 习题

三角形全等的判定(SSS、SAS) 习题

全等三角形(SSS 、SAS)之羊若含玉创作例1:如图, CE=DE ,EA=EB ,CA=DB ,求证:∠CAB=∠DBA 证明∵CE=DE , EA=EB ( )∴________=________即:_______=________在△ABC 和△BAD .中,∵()()()⎪⎩⎪⎨⎧===___________________________________________已证已知∴△ABC ≌△BAD .( )∴∠CAB=∠DBA ( )练一练:1、如图,AC =BD ,BC =AD ,说明.∠C=∠D证明:在△ABC 与△BAD 中,∴△ABC ≌△BAD ( )∴∠C=∠___ ( ) 2、如图,AB=DF ,AC=DE ,BE=FC ,问:(1)ΔABC 与ΔDFE 全等吗? (2)AB 与DF 平行吗?请说明你的来由.3、如图1所示,点C 、F 在直线AD 上,且AF=DC ,AB=DE ,BC=EF.(1)试说明AB ∥DE;(2)不雅察图2,图3,指出它们是怎样由图1变换得到的?(3)在知足已知条件的情况下依据图2,试证明BC ∥EF. A DF B AC B A C A BF C4、已知AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE ,点B 、C 、D 在一条直线上,求证:AC ⊥CE.5、(多变题)已知AB=CD ,AD=CB ,求证:∠A=∠C一变:已知AD ∥BC ,AD=CB ,试证明:△ADC ≌△CBA 二变:已知AD ∥BC ,AD=CB ,AE=CF.试证:△AFD ≌△CEB 6、(实际运用)有一湖的湖岸在A 、B 之间呈不规矩形状,A 、B 之间的距离不克不及直接丈量,你能用已学过的知识或办法设计丈量计划并求出A 、B 之间的距离吗?做一做:7、如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了便利起见,需带上________块,其来由是__________.8、如图所示,AB ,CD 相交于O ,且AO =OB ,不雅察图形,图中已具备的另一相等的条件是________,联想到SAS ,只需填补条件________,则有△AOC ≌△_______9、如图,已知CA=CB ,AD=BD ,E ,F 分离为CB ,CA 的中点,求证:DE=DF10、如图,已知AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点.求证:AF ⊥CD.11、已知△ABE 和三角形DEC 均为等边三角形,衔接BD ,AC ,求证:AC =BD D E B A C FE C B DA。

全等三角形的判定精选练习题(分专题)

全等三角形的判定精选练习题(分专题)

全等三角形的判定(SSS)针对性训练题1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)针对性训练题1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA4、如图4,AB与CD交于点O,OA=OC,OD=OB,∠AOD=________,•根据_________可得到△AOD≌△COB,从而可以得到AD=_________.5、如图5,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.∵AD平分∠BAC,∴∠________=∠_________(角平分线的定义).在△ABD和△ACD中,∵____________________________,∴△ABD≌△ACD()DC BA 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由. ⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形的判定(AAS)和(ASA)针对性训练题 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA和BC 的延长线于E ,F.求证:AE=CF. 例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?AEABDC EO12 3 AFDOBECABCDO【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''='A . 1个B. 2个C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A .N M ∠=∠ B. AB=CDC . AM=CND. AM ∥CN5.如图所示, ∠E =∠F =90°,∠B =∠C ,AE =AF , 给出下列结论①∠1=∠2 ②BE=CF ③△ACN ≌△ABM④CD=DN ,其中正确的结论是_________。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图 1, AB=AD , CB=CD ,∠ B=30 °,∠ BAD=46 °,则∠ ACD 的度数是 ()A.120 °B.125 °C.127°D.104 °2、如图 2,线段 AD 与 BC 交于点 O,且 AC=BD , AD=BC , ? 则下面的结论中不正确的是()A. △ ABC ≌△ BADB. ∠ CAB= ∠ DBAC.OB=OCD.∠ C= ∠D3、在△ ABC 和△ A 1B 1C1中,已知 AB=A 1B 1, BC=B 1C1,则补充条件 ____________,可得到△ ABC ≌△A 1B1C1.4、如图 3,AB=CD ,BF=DE ,E、F 是 AC 上两点,且AE=CF .欲证∠ B= ∠ D,可先运用等式的性质证明AF=________ ,再用“ SSS”证明 ______≌ _______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠ A= ∠ D.6、如图, AC 与 BD 交于点 O, AD=CB ,E、F 是 BD 上两点,且AE=CF ,DE=BF. 请推导下列结论:⑴∠ D=∠B ;⑵ AE ∥CF.7、已知如图,A 、 E、F、 C 四点共线, BF=DE , AB=CD.⑴请你添加一个条件,使△ DEC ≌△ BFA ;⑵在⑴的基础上,求证: DE∥ BF.全等三角形的判定(SAS)1、如图1, AB ∥ CD , AB=CD, BE=DF ,则图中有多少对全等三角形()A.3B.4C.5D.62、如图2, AB=AC,AD=AE,欲证△ABD≌△ ACE ,可补充条件()A. ∠ 1= ∠23、如图 3, AD=BCA.AB ∥ CDB.∠ B= ∠ C,要得到△ ABDB.AD ∥ BCC.∠ D= ∠ ED. ∠BAE= ∠CAD 和△CDB 全等,可以添加的条件是 ( C.∠A=∠ C D. ∠ABC= ∠ CDA)4、如图 4, AB 与 CD 交于点 O, OA=OC , OD=OB ,∠ AOD=________ , ? 根据 _________可得到△ AOD≌△ COB,从而可以得到AD=_________ .5、如图 5,已知△ ABC 中, AB=AC , AD 平分∠ BAC ,请补充完整过程说明△∵ AD 平分∠ BAC ,∴∠ ________=∠ _________(角平分线的定义).在△ ABD 和△ ACD 中,∵ ____________________________ ,∴△ ABD≌△ ACD(ABD)≌△ ACD的理由.6、如图 6,已知 AB=AD , AC=AE ,∠ 1= ∠ 2,求证∠ ADE= ∠ B.7、如图,已知AB=AD ,若 AC 平分∠ BAD ,问 AC 是否平分∠ BCD ?为什么?BA CD8、如图,在△ABC 和△ DEF 中, B 、 E、 F、 C,在同一直线上,下面有 4 个条件,请你在其中选 3 个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ;② AC=DF ;③∠ ABC= ∠ DEF ;④ BE=CF.9、如图⑴, AB ⊥ BD , DE⊥ BD ,点 C 是 BD 上一点,且BC=DE , CD=AB .⑴试判断AC 与 CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线 BD 向左平移,使△CDE 的顶点 C 与 B 重合,此时第⑴问中的位置关系还成立吗?(注意字母的变化)AC与BE全等三角形(三) AAS和 ASA【知识要点】1.角边角定理( ASA):有两角及其夹边对应相等的两个三角形全等.2 .角角边定理( AAS):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例 1.如图, AB∥ CD, AE=CF,求证: AB=CDD FC O例 2.如图,已知: AD=AE,ACD ABE ,求证:BD=CE.AE BAD E例 3.如图,已知:CD . BAC ABD ,求证:OC=OD.B CD COA B例 4.如图已知: AB=CD,AD=BC,O是 BD中点,过 O点的直线分别交DA和 BC的延长线于E,F. 求证: AE=CF.FDCOAB例 5.如图,已知123 ,AB=AD.求证:BC=DE.EA2E1OB D 3C例6.如图,已知四边形 ABCD中, AB=DC,AD=BC,点 F 在 AD 上,点 E 在 BC上, AF=CE, EF 的对角线 BD 交于 O,请问 O点有何特征?A F DOB EC【经典练习】1. △ ABC和△A B C中,A A' , BC B C ,C C 则△ABC与△ A B C.2.如图,点 C,F 在 BE上,12, BC EF ,请补充一个条件,使△ABC≌DFE,补充的条件是.A DB 12EC F3.在△ ABC和△A B C中,下列条件能判断△ABC和△A B C全等的个数有()① A AB B , BC B C② AA , B B , AC A C③ A AB B , AC B C④ AA , B B , AB A CA . 1 个 B. 2 个 C. 3 个 D. 4 个4.如图,已知 MB=ND,MBA NDC ,下列条件不能判定是△ABM≌△CDN的是()A.M NB. AB=CD M NC. AM=CND. AM∥ CN5.如图 2 所示,∠E=∠ F=90°,∠ B=∠ C, AE=AF,给出下列结论:①∠ 1=∠2② BE=CF③△ ACN≌△ ABM④ CD=DN A C B D 其中正确的结论是_________ _________ 。

三角形全等的判定(SSS)同步作业(含答案)

三角形全等的判定(SSS)同步作业(含答案)

11.2三角形全等的判定(SSS)♦随堂检测1. 已知线段a、b、c,求作△ ABC,使BC=a , AC=b , AB=c,下面作法的合理顺序为①分别以B、C为圆心,c、b为半径作弧,两弧交于点A;②作直线BP,在BP上截取BC=a;③连结AB、AC,△ ABC为所求作三角形.2. 如图,是一个三角形测平架,已知AB = AC,在BC的中点D挂一个重锤,自然下垂•调整架身,使点A恰好在重锤线上,AD和BC位置关系为 ____________ 3•如图,CAC=AD , BC=BD , AB是/ CAD的平分线吗?♦典例分析例:工人师傅常用角尺平分任意角,做法如下:如图:/ AOB是一个任意角,在OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点P的射线OP便是/ AOB的平分线。

你知道这样做的理由吗?解读:工人师傅在做法中创设边边边”构造全等三角形,得出对应角相等。

•/ OM=ON , PM=PN , OP=OP,•••△ OMP ◎△ ONP(SSS),•••/ AOP= / BOP即射线OP便是/ AOB 的角平分线。

♦课下作业•拓展提高1 如图,AC=DF , BC=EF , AD=BE,/ BAC=72°,/ F=32 ° 则/ ABC=2. 如图,已知AB=AC , BD=DC,那么下列结论中不正确的是()A . △ABD ◎△ ACDB . Z ADB=90°C . Z BAD 是Z B 的一半 D . AD 平分Z BAC3. 如图,是一个风筝模型的框架,由DE=DF , EH=FH,4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC。

就说明Z DEH= Z DFH。

试用你所学的知识说明理由。

请说明Z A= Z C.•感受中考1. (2009 年怀化)如图,AD=BC,AB=DC.求证:/ A+ / D=1802. (2009年四川省宜宾市)已知:如图,在四边形ABCD中,AB=CB,AD=CD. 求证:/ C=Z A.随堂检测:1、②①③.解读:本题是利用 SSS 画全等三角形的尺规作图步骤, 作直线BP ,在BP 上截 取Bc=a 也可表达为画线段Bc=a2、 由全等可得 AD 垂直平分BC3、 公共边相等是两个三角形全等的一个条件.由于 AC=AD , BC=BD , AB=AB ,所以,△ ABC ◎△ ABD (SSS ),所以,/ CAB= / DAB , 即AB 平分/ CAD.拓展提高:1、76°.解读:先证明全等,再利用全等三角形的对应角相等和三角形内角和定理答案:2、 C .解读:利用SSS 证明两个三角形全等3、 由于已知 DE=DF , EH=FH ,连结DH ,这是两三所以△ DEH DFH ( SSS ),所以/ DEH= / DFH (全等三角形的对应角相等)。

三角形全等的判定SSS练习

三角形全等的判定SSS练习

三角形全等的判定SSS 练习(2)一、选择题1.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A .ABD ACD △≌△ B .ABE ACE △≌△ C .BDE CDE △≌△D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( ) A.AC=BD B.AC=BC C.BE=CE D.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是( ) A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°5. 如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( )A.△ABC ≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D6. 如图,AB=CD,BC=DA,E 、F 是AC 上的两点,且AE=CF,DE=BF,,那么图中全等EDCB AAEB DC 第1题图第2题图 第3题图第4题图第5题图三角形共有( )对A .4对B .3对C .2对D .1对7. 如图 ,AB=CD ,BC=AD ,则下列结论不一定正确的是( ).A.AB ∥DCB. ∠B =∠DC. ∠A =∠CD. AB=BC8. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( ) A .73B .3C .4D .5二、填空题9.(2011湖北十堰)工人师傅常用角尺平分一个任意角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定(SSS )练习题
1.如图,ABE ∆≌DCF ∆,
点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 .
2.如图,ABC ∆≌AED ∆,
若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,=∠DAC .
3.已知ABC ∆≌DEF ∆,若ABC ∆的周长为23,AB=8,BC=6,则AC= ,EF= .
4.如图,若AB=AC ,BE=CD ,AE=AD ,则ABE ∆ ACD ∆,所以
=∠AEB ,=∠BAE ,=∠BAD .
5.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.
6.如图,ABC ∆≌DEF ∆,cm CE cm BC A 5,9,50==︒=∠,求DEF ∠的度数及CF 的长.
7.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠
B
第1题图
D
第2题图

4题图
8.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠
9.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ∆≌FED ∆;②AB//EF
10.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠
D
F
E。

相关文档
最新文档