鲁教版初二数学《不等式试题》2
初二不等式组练习题及答案
初二不等式组练习题及答案不等式是数学中重要的概念之一,对于初中学生来说,掌握不等式的性质和解不等式的方法是十分关键的。
为了帮助大家巩固和提高对不等式的理解和应用能力,以下是一些初二不等式组的练习题及答案,希望对大家的学习有所帮助。
题目一:解下列不等式组,并将解的结果表示在数轴上。
1. {x < 3, x ≥ -2}2. {-1 < x ≤ 5, x > 2}3. {x + 3 ≥ 5, x - 2 < 8}4. {-3 < x ≤ 1, x ≥ -4}题目二:解下列不等式组,并用集合的形式表示出来。
1. {x > 3, x < 7}2. {x ≤ 5, x ≥ -3}3. {2 ≤ x < 5, x ≥ 3}4. {x > -1, x < 3, x > 2}题目三:解下列不等式组,并将解的结果表示在坐标平面上。
1. {x > 2, y < 4}2. {x ≤ 3, y ≥ -2}3. {x ≥ -1, y > 1}4. {x > -2, y ≤ 3}题目四:解下列不等式组,并用不等式表示出来。
1. {x < 3, y > 4}2. {x ≤ -3, y < -2}3. {x > 2, y ≤ 1}4. {x ≥ -1, y > 2}解答如下:题目一:1. x < 3 表示实数x小于3,取等号的原因是x可能等于3;x ≥ -2 表示实数x大于等于-2。
将两个不等式合并得到 -2 ≤ x < 3。
在数轴上标记-2和3,用一个实心圆表示-2,一个空心圆表示3,对应的数轴上的点即为-2 ≤ x < 3 的解。
2. -1 < x ≤ 5 表示实数x大于-1,小于等于5;x > 2 表示实数x大于2。
将两个不等式合并得到2 < x ≤ 5。
在数轴上标记2和5,用一个空心圆表示2,一个实心圆表示5,对应的数轴上的点即为2 < x ≤ 5 的解。
鲁教版2018初二数学第十一章 不等式与不等式组专题训练
鲁教版2018初二数学第十一章不等式与不等式组专题训练1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤232.不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、03.不等式组:的最大整数解为()A.1 B.﹣3 C.0 D.﹣14.若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b 之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣185.对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤26.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个7.关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤111.不等式组的解集在数轴上表示为()A.B.C.D.12.不等式组的解集在数轴上表示正确的是()A.B.C.D.13.不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<514.不等式组的解集表示在数轴上,正确的是()A.B.C.D.15.不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>216.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.17.不等式组的解集在数轴上表示为()A.B.C.D.18.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<119.不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x ≥220.不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2答案:CACCB CDAAA BACAA BCDCC。
鲁教版八年级上册数学期末试卷及答案(2)
鲁教版八年级上册数学期末试卷及答案(2)解得:x≠3.故选:C.【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.7.若有意义,则的值是( )A. B.2 C. D.7【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可.【解答】解:由题意得,x≥0,﹣x≥0,∴x=0,则 =2,故选:B.【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.8.已知a﹣b=1且ab=2,则式子a+b的值是( )A.3B.±C.±3D.±4【考点】完全平方公式.【专题】计算题;整式.【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可.【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,将ab=2代入得:a2+b2=5,∴(a+b)2=a2+b2+2ab=5+4=9,则a+b=±3,故选C【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( )A.aB.2aC.3aD.4a【考点】平行四边形的性质.【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD.【解答】解:∵▱ABCD的周长为4a,∴AD+CD=2a,OA=OC,∵OE⊥AC,∴AE=CE,∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a.故选:B.【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键.10.已知xy<0,化简二次根式y 的正确结果为( )A. B. C. D.【考点】二次根式的性质与化简.【分析】先求出x、y的范围,再根据二次根式的性质化简即可.【解答】解:∵要使有意义,必须≥0,解得:x≥0,∵xy<0,∴y<0,∴y =y• =﹣,故选A.【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键.11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( )A. B. C.2 D.【考点】翻折变换(折叠问题).【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长.【解答】解:∵DE垂直平分AB,∴AE=BE,设AE=x,则BE=x,EC=4﹣x.在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9,解得:x= ,则EC=AC﹣AE=4﹣ = .故选B.【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键.12.若关于x的分式方程无解,则常数m的值为( )A.1B.2C.﹣1D.﹣2【考点】分式方程的解;解一元一次方程.【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用.【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m,∵当x=3时,原分式方程无解,∴1=﹣m,即m=﹣1;故选C.【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.13.将xy﹣x+y﹣1因式分解,其结果是(y﹣1)(x+1) .【考点】因式分解-分组分解法.【分析】首先重新分组,进而利用提取公因式法分解因式得出答案.【解答】解:xy﹣x+y﹣1=x(y﹣1)+y﹣1=(y﹣1)(x+1).故答案为:(y﹣1)(x+1).【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.14.腰长为5,一条高为3的等腰三角形的底边长为8或或3 .【考点】等腰三角形的性质;三角形三边关系.【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案.【解答】解:①如图1.当AB=AC=5,AD=3,则BD=CD=4,所以底边长为8;②如图2.当AB=AC=5,CD=3时,则AD=4,所以BD=1,则BC= = ,即此时底边长为 ;③如图3.当AB=AC=5,CD=3时,则AD=4,所以BD=9,则BC= =3 ,即此时底边长为3 .故答案为:8或或3 .【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论.15.若x2﹣4x+4+ =0,则xy的值等于 6 .【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用.【专题】计算题;一次方程(组)及应用.【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值.【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0,∴ ,解得:,则xy=6.故答案为:6【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键.16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=180 度.【考点】勾股定理的逆定理;勾股定理.【分析】勾股定理的逆定理是判定直角三角形的方法之一.【解答】解:连接AC,根据勾股定理得AC= =25,∵AD2+DC2=AC2即72+242=252,∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°,故∠A+∠C=∠D+∠B=180°,故填180.【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目.三、解答题:本大题共6小题,共64分。
初二数学不等式习题(精华版)
6.如图是一个运行程序,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序进行了三次才停止,那么x的取值 范围是()
A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23
7.若x>y,则下列式子中错误的是( )
A. > B.x-3>y-3C. > D.-3x>-3y
初二不等式习题精华
1.下列说法不一定成立的是()
A.若a>b,则a+c>b+cB.若a+c>b+c,则a>b
C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b
2.不等式 -3≥2(x-3)的非负整数解有()
A.4个B.3个C.2个D.1个
3.若关于x的不等式组 的解集为x<3,则a的取值范围是()
A.a>3 B.a≥3 C.a<3 D.a≤3
4.如果不等 式组 只有一个整数解,那么a的取值范围是()
A.3<a≤4 B.3≤a<4 C.4≤a<5 D.4<a≤5
5.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打()
8.若a,b是有理数,下列说法成立的是()
A.若a>b,则a2>b2B.若a2>b2,则a>bC.若a≠b,则|a|≠|b|D.若|a|≠|b|,则a≠b
9.若关于x的ቤተ መጻሕፍቲ ባይዱ等式组 有解,则a的取值范围是( )
A.a≤3 B.a<3 C.a<2 D.a≤2
10.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有( )
【鲁教版】初二数学上期末模拟试题附答案(2)
一、选择题1.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14 2.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 3.分式242x x -+的值为0,则x 的值为( ) A .2- B .2-或2 C .2 D .1或2 4.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a +=0 D .11a b b a+--=0 5.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 6.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-57.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18C .21D .9 8.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .549.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm10.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 11.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 12.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.5二、填空题13.化简23x x+=____. 14.如果分式126x x --的值为零,那么x =________ . 15.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 16.对于2(34)x y --的计算,追风学习小组进行了激烈的讨论,①小杰说只能用公式()2222a b a ab b -=-+;②小聪说可以看成普通的多项式乘以多项式即(34)(34)x y x y ----;③小懿说可以用公式222()2a b a ab b +=++但要看准谁是a 谁是b ;④小王说口算就是22916x y +;⑤小亮说可以转化计算2(34)x y +,你认为谁的说法正确请写出序号____.17.如图,点CD 在线段AB 的同侧,CA =6,AB =14,BD =12,M 为AB 中点,∠CMD =120°.则CD 的最大值为____.18.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.19.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.20.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.三、解答题21.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?22.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.24.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.25.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数. 26.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y ,∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 2.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.3.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误; C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b ---=0,故正确. 故选D .【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 5.C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.6.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52.故选B .【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.7.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键8.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键.9.D解析:D【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB即可.【详解】解:∵AB=AC,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD⊥AC,∴∠BDA=90°,∴AB=2BD,点B到边AC的距离是3cm,即BD=3cm,∴AB=2BD=6cm,故选:D.【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.10.D解析:D【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.【详解】∵△ABC是等边三角形AB=3-1=2∴点C到x轴的距离为1+⨯=+2212∴C(2,1+由题意可得:第1次变换后点C的坐标变为(2-1,1),即(1,1-,第2次变换后点C的坐标变为(2-21),即(0,1+第3次变换后点C的坐标变为(2-3,1),即(-1,1--第n次变换后点C的坐标变为(2-n,1)(n为奇数)或(2-n,1+为偶数),∴连续经过2021次变换后,等边ABC的顶点C的坐标为(-2019,1-,故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规11.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.12.D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】 解: 长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,43∴-<x <43+,1∴<x <7,x 的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.13.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键 解析:5x. 【分析】 原式利用同分母分式的加法法则计算即可得到结果.【详解】232+3x x x+=5x =. 故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 14.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 15.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.16.①②③⑤【分析】根据多项式乘以多项式和完全平方公式计算即可【详解】①正确;②正确;③正确;④错误;⑤正确;故答案为:①②③⑤【点睛】此题考查了多项式乘以多项式和完全平方公式计算熟练掌握运算法则是解答解析:①②③⑤【分析】根据多项式乘以多项式和完全平方公式计算即可.【详解】①22222(34)(3)2(3)4(4)92416x y x x y y x xy y --=--⋅-⋅+=++,正确;②22222(34)(34)(34)(3)3443(4)92416x y x y x y x x y y x y x xy y --=----=-+⋅+⋅+=++,正确;③22222(34)(3)2(3)(4)(4)92416x y x x y y x xy y --=-+⋅-⋅-+-=++,正确; ④错误;⑤222222(34)(34)(3)234(4)92416x y x y x x y y x xy y --=+=+⋅⋅+=++,正确; 故答案为:①②③⑤【点睛】此题考查了多项式乘以多项式和完全平方公式计算,熟练掌握运算法则是解答此题的关键. 17.25【分析】作点A 关于CM 的对称点A 作点B 关于DM 的对称点B 证明△AMB 为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A 关于CM 的对称点A 作点B 关于DM 的对称点B 如下图所示:∴∠1= 解析:25作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A关于CM的对称点A’,作点B关于DM的对称点B’,学会利用两点之间线段最短解决最值问题.18.1【分析】过A作AC⊥OB首先证明△AOB是等边三角形再求出OC的长即可【详解】解过A作AC⊥OB于点C∵AB=OB∠A=60°∴∠AOB=60°且△AOB是等边三角形∵点B的坐标为(20)∴OB=解析:1【分析】过A作AC⊥OB,首先证明△AOB是等边三角形,再求出OC的长即可.【详解】解,过A作AC⊥OB于点C,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB ∴112122OC OB ==⨯= 故答案为:1.【点睛】 此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键. 19.25°【分析】利用三角形内角和定理得出∠BAC 的度数进而得出∠ADC 的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD 平分∠BAC ∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC 的度数,进而得出∠ADC 的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD 平分∠BAC ,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E 的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD 度数是解题关键.20.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等, 所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.三、解答题21.(1)原来生产防护服的工人有20人;(2)至少还需要生产9天才能完成任务.【分析】(1)设原来生产防护服的工人有x 人,根据每人每小时完成的工作量不变列出关于x 的方程,求解即可;(2)设还需要生产y 天才能完成任务.根据前面10天完成的工作量+后面y 天完成的工作量≥15500列出关于y 的不等式,求解即可.【详解】解:(1)设原来生产防护服的工人有x 人, 由题意得,800650810(7)x x =-, 解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y 天才能完成任务.每人每小时生产防护服的数量为:8005820=⨯套, 106502051015500y ⨯+⨯⨯≥,解得x≥9,答:至少还需要生产9天才能完成任务.【点睛】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.22.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.23.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.25.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=, ∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+, ∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.26.(1)证明见解析;(2)110°【分析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,在△PBC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.。
八年级鲁教版数学试卷答案
一、选择题1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1D. 0答案:D2. 如果a < b,那么下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a + 1 > b + 1D. a - 1 < b - 1答案:A3. 已知函数y = 2x - 3,当x = 4时,y的值为()A. 1B. 5C. 7D. 9答案:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点B的坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)答案:A5. 一个长方形的长是12cm,宽是8cm,它的对角线长是()A. 20cmB. 24cmC. 28cmD. 30cm答案:B二、填空题6. 若a = 3,b = -2,则a - b = _______。
答案:57. 若a = -4,b = 5,则a^2 + b^2 = _______。
答案:418. 已知一元二次方程x^2 - 5x + 6 = 0,它的两个根是x1 = _______,x2 = _______。
答案:x1 = 2,x2 = 39. 在△ABC中,∠A = 60°,∠B = 45°,则∠C = _______°。
答案:75°10. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,它行驶的距离是_______公里。
答案:180公里三、解答题11. 解下列方程:(1)3x - 5 = 2x + 1(2)5(x - 2) = 2(x + 3) - 4答案:(1)x = 6(2)x = 912. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(-1,2),求函数的表达式。
答案:y = x^2 + 2x + 113. 在△ABC中,AB = 5cm,BC = 8cm,AC = 10cm,求△ABC的面积。
2018鲁教版初二数学第十一章一元一次不等式(组)课堂检测题
2018鲁教版初二数学第十一章一元一次不等式(组)课堂检测题1. 不等式组1321x x x+<⎧⎨->⎩的解集是【 】A. 1x >B. 2x <C. 12x ≤≤D. 12x <<2. 解不等式21x x ≥-,并把解集在数轴上表示【 】A. B. C. D.3. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a <4. 使不等式12x -≥与37<8x -同时成立的x 的整数值是【 】A. 3,4B. 4,5C. 3,4,5D. 不存在5. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.6. 已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组103<0x x -≥⎧⎨-⎩,且x 为整数时,求A 的值.7. 已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B与点A 关于x 轴对称,若OAB ∆的面积为6,求m 的值.8. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?9. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.答案:1. 不等式组1321x x x+<⎧⎨->⎩的解集是【 】A. 1x >B. 2x <C. 12x ≤≤D. 12x <<【答案】D.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,13212211x x x x x x +<<⎧⎧⇒⇒<<⎨⎨->>⎩⎩. 故选D.2. 解不等式21x x ≥-,并把解集在数轴上表示【 】A.B. C. D. 【答案】B.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】由21x x ≥-解得1x ≥-. 不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 因此不等式1x ≥-在数轴上表示正确的是B. 故选B.3. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a <【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式.【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a . 故选C.4. 使不等式12x -≥与37<8x -同时成立的x 的整数值是【 】A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A.【考点】二元一次不等式组的整数解.【分析】∵1233<537<8<5x x x x x -≥≥⎧⎧⇒⇒≤⎨⎨-⎩⎩,∴使不等式12x -≥与37<8x -同时成立的x 的整数值是3,4.故选A.5. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a . (2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.6. 已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组103<0x x -≥⎧⎨-⎩,且x 为整数时,求A 的值. 【答案】解:(1)()()()2221211111111111x x x x x x x A x x x x x x x x ++++=-=-=-=--+-----. (2)解10x -≥得1x ≥;解3<0x -得<3x ,∴103<0x x -≥⎧⎨-⎩的解为1<3x ≤. ∵x 为整数,∴1,2x = .当1x =时,分式无意义;当2x =时,1121A ==-. 【考点】分式的化简求值;解一元一次不等式组;分式有意义的条件;分类思想的应用.【分析】(1)被减式分了分母因式分解后约分,进行同分母的减法即可.(2)解一元一次不等式组,求出整数解,根据分式分母不为0的条件选择恰当的x 值代入求A 的值.7. 已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B 与点A 关于x 轴对称,若OAB ∆的面积为6,求m 的值.【答案】解:(1)∵反比例函数7m y x-=的图象的一支位于第一象限, ∴该函数图象的另一支位于第三象限.∴7>0m -,解得>7m .∴m 的取值范围为>7m .(2)设7,m A a a -⎛⎫ ⎪⎝⎭, ∵点B 与点A 关于x 轴对称,∴()27m AB a-=. ∵OAB ∆的面积为6,∴()27162m a a-⋅⋅=,解得13m =. 【考点】反比例函数综合题;解一元一次不等式;轴对称点的性质.【分析】(1)根据反比例函数()0k y k x=≠的性质:当0k >时,图象分别位于第一、三象限;当0k <时,图象分别位于第二、四象限.由反比例函数7m y x-=的图象的一支位于第一象限,得另一支位于第三象限,得到7>0m -,解之即可.(2)设7,m A a a -⎛⎫ ⎪⎝⎭,根据“关于x 轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数”得到AB 的长,根据OAB ∆的面积为6列方程求解即可.8. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.9. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a . (2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.。
鲁教版2019—2020八年级数学第二章分式与分式方程单元测试题2(附答案详解)
鲁教版2019—2020八年级数学第二章分式与分式方程单元测试题2(附答案详解)1.要使分式的值为0,则x的值为( )A.3或-3 B.3 C.-3 D.22.下列各式中,正确的是()A.-=B.-=C.=D.-=3.某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个,设B型包装箱每个可以装x件文具,根据题意列方程为( )A.B.C.D.4.化简的结果是()A.B.C.D.5.空气的密度(单位体积内空气的质量)是0.00129g/cm3,用科学记数法表示0.00129为( ) A.1.29×10-3B.0.129×10-3C.0.129×10-2D.1.29×10-26.在,,,中,分式的个数为()A.B.C.D.7.若关于x的方程有增根,则m的值是().A.B.C.D.8.下列等式成立的是( )A.=0 B.=-1 C.-D.=09.计算的结果是()A.B.C.D.10.下列运算正确的是()A.B.C.D.11.计算:________.12.对于实数,b定义一种新运算“”:,例如,.则方程的解是_______.13.若关于x的分式方程有增根,则m的值为___.14.若有增根,则m=______15.计算﹣22×(2018﹣2019)0÷2﹣2的结果是_____.16.计算:﹣(﹣2)+2﹣2=_____.17.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期___________天.18.关于x的分式方程的解不小于1,则m的取值范围是_____.19.分式的最简公分母是________20.若关于x的方程的解为整数,且不等式组无解,则所有满足条件的非负整数a的和为_____.21.服装厂准备为某中学加工470套运动装,在加工完200套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了17天完成任务,问原计划每天加工服装多少套?22.已知,求代数式的值.23.解下列分式方程:(1)(2).24.先化简,再求值:,其中25.(1)解方程:. (2)求不等式组:.26.计算:2﹣1+|﹣3|﹣(1﹣)027.已知,有一组不为零的数 a ,b ,c ,d ,e ,f ,m ,满足,求解:∵a=bm ,c=md ,e=fm∴利用数学的恒等变形及转化思想,试完成:(1)244,333,422的大小关系是________;(2)已知 a ,b ,c 不相等且不为零,若,求的值.28.先化简,再求值:24511(1)()1a a a a a a -+-÷---,其中a 是不等式组2133211(1)()323x x x x +<+⎧⎪⎨-≤+⎪⎩的一个非负整数解.参考答案1.C【解析】【分析】要使分式为0,需分母不为0,分子为0,故-9=0,-+60.【详解】依题意,得x=3,x2,x3,∴x=-3.【点睛】此题主要考察分式为0的条件.2.D【解析】【分析】根据等式的性质即可一一判断.【详解】A、-=,故本选项不符合题意;B、-=,故本选项不符合题意;C、=,故本选项不符合题意;D、-=,故本选项符合题意;故选:D.【点睛】本题考查等式的性质,解题的关键是记住:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.3.B【解析】【分析】充分理解题意,列出方程,要使列出的方程能充分表达题意.【详解】根据题意,得:=−12,故答案选B.【点睛】本题考查的知识点是由实际问题抽象出分式方程,解题的关键是熟练的掌握由实际问题抽象出分式方程.4.B【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式==故选:B.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00129这个数用科学记数法可表示为1.29×10-3.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.B【解析】【分析】利用分式的定义:分母中含有字母,判断即可得到结果.【详解】解:在所列的个代数式中,分式的是和这个,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.7.B【解析】【分析】方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x−3)得,2−x−m=2(x−3),∵分式方程有增根,∴x−3=0,解得x=3,∴2−3−m=2(3−3),解得m=−1.故选:B.【点睛】考查分式方程的增根,掌握增根的概念,写出方程的增根是解题的关键.8.B【解析】【分析】根据分式的性质来计算、约分即可.【详解】A. =1,故错误;B. =-1,故正确;C. -,故错误;D. =,故错误;选B.【点睛】此题主要考察分式的运算.9.D【解析】【分析】根据分式的运算法则进行计算即可.【详解】,故选D.【点睛】本题主要考查分式的运算,熟练掌握分式的运算法则是解答的关键.10.C【解析】【分析】根据负整数指数幂,同底数幂的除法,幂的乘方,零指数幂的运算法则计算即可判断.【详解】3-1=,A错误;a5÷a-2=a7,B错误;(a-1)-3=a3,C正确;(-20)0=1,D错误;故选:C.【点睛】本题考查了负整数指数幂,同底数幂的除法,幂的乘方,零指数幂的运算,掌握它们的运算法则是解题的关键.11.【解析】【分析】根据负整数指数幂的意义计算即可.【详解】.故答案为:.【点睛】本题考查了负整数指数幂的运算,任何不等于0的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数,即(a≠0,p是正整数);0的负整数指数幂没有意义.12.x=5【解析】【分析】根据:,把转化为分式方程求解即可.【详解】∵,∴可变为:,解之得x=5.经检验x=5符合题意,∴方程的解是x=5.【点睛】本题考查了新定义运算,熟练掌握分式方程的解法是解答本题的关键,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验. 13.1.【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-3=0,得到x=3,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘x﹣3,得x﹣3m=2m(x﹣3)∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,当x=3时,m=1故m的值是1,故答案为:1.【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.-2【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-3),得x-2(x-3)=1-m,∵方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得m=-2.故答案是:-2.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.-16【解析】【分析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【详解】原式=﹣4×1÷=﹣16,故答案是:﹣16【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.16.214.【解析】【分析】根据有理数的运算法则和负指数幂意义进行分析即可. 【详解】﹣(﹣2)+2﹣2=2+14=214.故答案为:214.【点睛】考核知识点:负指数幂运算.理解运算法则是关键.17.x=4【解析】【分析】设该工期限期天,根据“两队合作1天后,余下的工程由乙队单独做,恰好按期完工”可列出;接下来根据分式方程的解法解分式方程即可得到答案,注意分式方程要验根检验.【详解】设该工期限期天,根据题意得,解得,经检验是原方程的解.故该工期限期4天.故答案为:.【点睛】本题考查了分式方程的应用,熟练掌握分式方程的应用是本题解题的关键.18.m≥5且m≠.【解析】【分析】分式方程去分母转化成整式方程,表示出整式方程的解,根据分式方程的解不小于1结合分式有意义的条件即可求出m的取值范围.【详解】方程两边同时乘以(x+3)(x-2),得:x2﹣2x﹣x2﹣4x﹣3=x﹣2m,解得:x=,由方程的解不小于1,得到≥1且≠2,解得:m≥5且m≠,故答案为:m≥5且m≠.【点睛】本题考查了解分式方程,解一元一次不等式组,正确理解分式方程的解是解题的关键. 19.12x3yz【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】因为三分式中常数项的最小公倍数12,x的最高次幂为3,y、z的最高次幂都为1,所以最简公分母是12x3yz.故答案为:12x3yz.【点睛】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.20.7【解析】【分析】先把a当常数解分式方程,x=,再将a当常数解不等式组,根据不等式组无解得:a≤5,找出当a为非负整数时,x也是整数的值时,确定a的值并相加即可.【详解】解:,去分母,方程两边同时乘以x﹣3,ax=3+a+x,x=,且x≠3,,由①得:x>5,由②得:x<a,∵不等式组无解,∴a≤5,当a=0时,x==﹣3,当a=1时,x=无意义,当a=2时,x==5,当a=3时,x==3分式方程无解,不符合题意,当a=4时,x==,当a=5时,x==2,∵x是整数,a是非负整数,∴a=0,2,5,所有满足条件的非负整数a的和为7,故答案为:7【点睛】考查了解分式方程、一元一次不等式组的解的情况,求出分式方程和不等式组的解是解本题的关键,要注意分式方程有意义,即分母不为0.21.原计划每天加工服装25套【解析】【分析】设原计划每天加工x套,则采用了新技术之后,每天加工1.2x套,根据题中等量关系可列方程.【详解】.解:设原计划每天加工服装x套,根据题意得解得:x=25经检验: x=25是原方程的解并且符合题意.答:原计划每天加工服装25套.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.22.4.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】,,,,,,∵∴∴原式【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1);(2)分式方程无解【解析】【分析】(1)先根据分式的基本性质把分子、分母化整,然后分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程整理得:﹣=40,去分母得:40x=30,解得:x=,经检验x=是分式方程的解;(2)去分母得:2+2x=5x+5,移项合并得:3x=﹣3,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.24.【解析】【分析】先算括号内的,再算除法,最后把a、b的值代入进行计算即可.【详解】原式=当时,原式=【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意把分式化为最简形式,以简化计算.25.(1)x=1;(2)﹣1≤x<1【解析】【分析】(1)根据解分式方程的步骤解方程即可,注意检验.(2)可先根据一元一次不等式的解法分别解不等式,找出解集的公共部分即可.【详解】解:(1)(x+1)(x-2)+x=x(x-2)解得:x=1;检验:x=1是原方程的根(2)解①x≥﹣1,②x<1,∴原不等式组的解集是﹣1≤x<1.【点睛】考查分式方程的解法以及解一元一次不等式组,掌握它们的解题步骤是解题的关键.26.3【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质分别化简进而得出答案.【详解】=+3﹣1=4﹣1=3.【点睛】考查了实数运算,正确化简各数是解题关键.27.(1)333>244=422;(2)【解析】【分析】(1)先将各式转化成幂相同的指数式,再来比较大小.(2)根据题意可得a+b=3ab,b+c=4bc,a+c=5ac,即(a+b)c=3abc,(b+c)a=4abc,(a+c)b=5abc,再把三个式子相加、计算即ab+bc+ac=6abc,从而即可得证.【详解】(1)解(1)∵244=(24)11=1611,333=(33)11=2711,422=(42)11=1611,∴2711>1611=1611,即333>244=422.故答案为:333>244=422.(2)解:∵∴a+b=3ab ,b+c=4bc ,a+c=5ac , ∴(a+b )c=3abc ,(b+c )a=4abc ,(a+c )b=5abc ,即ac+bc=3abc ,ab+ac=4abc ,ab+bc=5abc ,∴2(ab+bc+ac )=12abc ,即ab+bc+ac=6abc , ∴.【点睛】本题主要考查了幂的大小比较的方法,以及分式的运算,解题的关键是熟练运用分式的运算法则,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.28.a(a ﹣2);3,8或15.【解析】【分析】本题应该分成两个部分来完成,先对分式进行化简,再根据不等式组求出其非负整数解,最后进行代入求值即可.【详解】 24511(1)()1a a a a a a -+-÷--- =(1)(1)451111(1)(1)a a a a a a a a a a ⎡⎤+---⎡⎤-÷-⎢⎥⎢⎥----⎣⎦⎣⎦=a(a ﹣2), 又由不等式组2133211(1)()323x x x x +<+⎧⎪⎨-≤+⎪⎩可得25x x >-⎧⎨≤⎩, 即该不等式组的解集为﹣2<x≤5,∵a 是该不等式组的一个非负整数解,而由上式化简过程可知a≠0,a ﹣1≠0,a ﹣2≠0,∴a≠0,1,2,故在解集﹣2<x≤5中可取a=3,4,5,若a=3,得a(a﹣2)=3×1=3;若a=4,t得a(a﹣2)=4×2=8;若a=5,得a(a﹣2)=5×3=15故上式的值可以是3,8或15.。
鲁教版2019八年级数学下册第八章一元二次方程的解法课堂基础达标测试题二(较难 含答案)
鲁教版2019八年级数学下册第八章一元二次方程的解法课堂基础达标测试题二(较难含答案)1.用配方法解方程,配方后所得的方程是()A.B.C.D.2.用配方法解下列方程,在左右两边同时加上4 使方程左边成完全平方式的是()A.x2+2x=3B.x2+8x=2C.x2﹣4x=59D.2x2﹣4x=13.一个三角形的两边长为3和8,第三边的长是方程x(x-9)-13(x-9)=0的根,则这个三角形的周长是()A.20B.20或24C.9和13D.244.把方程x+3=4x配方,得()A.(x-2)2=7B.(x+2)2=21C.(x-2)2=1D.(x+2)2=25.一元二次方程x2=x的解为()A.x=0 B.x=1 C.x=0且x=1 D.x=0或x=16.三角形两边的长分别是和,第三边的长是一元二次方程的一个实数根,则该三角形的周长是()A.B.或C.D.或7.方程(x-2)2=(2x+3)2的根是( )A.x1=-,x2=-5B.x1=-5,x2=-5C.x1=,x2=5D.x1=5,x2=-58.把方程化成的形式时,的值为()A.19 B.-1 C.11 D.-219.(1)方程x(x+2)=2(x+2)的根是_______.(2)方程x2-2x-3=0的根是__________.10.一元二次方程的根的情况是________.11.已知(a+b)2-2(a+b)-3=0,则a+b=_______________.12.已知,,则,的大小关系是________.13.在《九章算术》“勾股”章里有求方程x2+34x-71000=0的正根才能解答的题目以上方程用配方法变形正确的是( )A.(x+17)2=70711B.(x+17)2=71289C.(x-17)2=70711D.(x-17)2=71289 14.关于x的一元二次方程经过配方后为,其中,那么这个一元二次方程的一般形式为______.15.把方程x2-2x-4=0用配方法化为(x+m)2=n的形式,则m=_______,n=________.16.若(a2+1)2-2(a2+1)-3=0,则 a2等于_____.17.解方程:(1)x(x﹣1)+2(x﹣1)=0 (2)2x2+x﹣3=018.解方程:(1);(2).19.解方程:x2+10x+16=0.(因式分解法)20.解方程:2﹣x=(x﹣2)221.已知关于一元二次方程x2+(2m+1)x+m(m+1)=0,试说明不论实数m取何值,方程总有实数根22.解下列方程(1)x 2﹣4=0 (2)x 2﹣6x ﹣8=0.23.x 2+2x=024.解方程:2210x x --=答案1.A解:x 2﹣4x +1=0,x 2﹣4x =-1,x 2﹣4x +4=-1+4,(x ﹣2)2=3.故选A .2.C解:对于方程x 2+2x=3,在方程左右两边同时加上1可使方程左边成完全平方式; 对于方程x 2+8x=2,在方程左右两边同时加上16可使方程左边成完全平方式;对于方程x 2-4x=59,在方程左右两边同时加上4可使方程左边成完全平方式;对于方程2x 2-4x=1,先把方程两边除以2,再在方程左右两边同时加上1可使方程左边成完全平方式.故选C .3.A解:方程x (x-9)-13(x-9)=0,分解因式得:(x-13)(x-9)=0,解得:x 1=13,x 2=9,当第三边为13时,3+8=11<13,不能构成三角形,舍去;则三角形周长为3+8+9=20.故选:A .4.C解:由题,移项得x 2-4x+3=0,该二次三项式得二次项系数是1,一次项系数是4,经完全平方公式判断,得出可配得(x-2)2,再看常数项得出结果是(x-2)2=15.C 解: 2,x x =20,x x ∴-=()10,x x -=0x =或10,x -= 120, 1.x x ∴== 故选C.6.C解:∵x 2﹣16x +60=0,∴(x ﹣6)(x ﹣10)=0,∴x =6或x =10.当x =6时,三角形的三边分别为6、4和6,∴该三角形的周长是16;当x =10时,三角形的三边分别为10、4和6,而4+6=10,∴不能构成三角形.故三角形的周长为16.故选C .7.A解:(x-2)2 (2x+3)2=0(x-2+2x+3)(x-2-2x-3)=0x-2+2x+3=0或x-2-2x-3=0即x1=,x2=5.故答案为:A.8.D解:∵,∴,∴,∴,则p=﹣5,q=16,∴=﹣21.故选D.9.x1=2,x2=—2,x1=3,x2=—1.解:(1)x(x+2)=2(x+2)移项得,x(x+2)−2(x+2)=0因式分解得,(x−2)(x+2)=0解得,(2) x2-2x-3=0分解因式得,(x−3)(x+1)=0解得,故答案为:(1) (2)10.无实数根解:∵一元二次方程的根的判别式:,∴方程无实数根;故答案为:无实数根.11.3或-1解:把a+b看做一个整体,十字相乘,(a+b)2-2(a+b)-3=0,(a+b-3)(a+b+1)=0,a+b-3=0,a+b+1=0,所以a+b=3,a+b=-1.12.解:x﹣y=a2+b2+18﹣(8b+4a﹣3)=a2+b2+18﹣8b﹣4a+3=(a﹣2)2+(b﹣4)2+1.∵(a﹣2)2≥0,(b﹣4)2≥0,∴(a﹣2)2+(b﹣4)2+1>0,也就是x>y.故答案为:x>y.13.B解:x2+34x-71000=0,x2+34x=71000,x2+34x+17²=71000+17²,(x+17)²=71289.故选B. 14.解:把m=﹣3,k=5代入方程(x﹣m)2=k得:(x+3)2=5,整理得:x2+6x+4=0.故答案为:x2+6x+4=0.15.(1)-1;(2)5.解:把方程,移项得:,配方得:,∴,即m=-1,n=5.故答案为:(1)-1;(2)5.16.2解:设a2+1=t(t>0),则原方程转化为t2-2t-3=0,整理,得(t-3)(t+1)=0,解得t=3或t=-1(舍去),则a2+1=3,所以a2=2.故答案为:2.17.(1)x1=1,x2=﹣2;(2)x1=1,x2=﹣.解:(1)x(x﹣1)+2(x﹣1)=0,分解因式得:(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2;(2)2x2+x﹣3=0,这里a=2,b=1,c=﹣3,∵△=1+24=25,∴x=,解得:x1=1,x2=﹣.18.,;解:分解因式得:,可得或,解得:,;这里,,,∵,∴.19.x1=-2,x2=-8解:x2+10x+16=0(x+2)(x+8)=0x+2=0,x+8=0;所以x1=-2,x2=-8.20.x1=2,x2=1.解:2﹣x=(x﹣2)2,(x﹣2)2+(x﹣2)=0,(x﹣2)(x﹣2+1)=0,(x﹣2)(x﹣1)=0,解得:x1=2,x2=1.21.解:∴不论实数m 取何值,方程总有实数根.22.(1)x 1=2,x 2=﹣2;(2). 解:(1)∵x 2﹣4=0∴x 2=4,∴x=±2,∴x 1=2,x 2=﹣2;(2)∵x 2﹣6x ﹣8=0,∴(x ﹣3)2=17,∴x ﹣3=, ∴.23.x 1=0,x 2=-2.解:x 2+2x=0x(x+2)=0x=0或x+2=0x=0或x=-2∴x 1=0,x 2=-224.112x =; 212x =.解: 2212x x -+=, ()212x -=, ∴12x -=±∴112x = 212x =。
【鲁教版】八年级数学下期末试卷(含答案)(2)
一、选择题1.下表为某校八年级72位女生在规定时间内的立定投篮数统计,若投篮投进个数的中位数为a ,众数为b ,则+a b 的值为( ) A .20B .21C .22D .232.今年上半年,我市某俱乐部举行山地越野车大赛,其中8名选手某项得分如下表:则这8名选手得分的平均数是( ) A .88B .87C .86D .853.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是( )A .12岁B .13岁C .14岁D .15岁4.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐5.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .不确定6.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟7.关于x的一次二项式ax+b的值随x的变化而变化,分析下表列举的数据,若ax+b=11,则x的值是()x﹣101 1.5ax+b﹣3﹣112A.3 B.﹣5 C.6 D.不存在8.对于实数a、b,我们定义max{a,b}表示a、b两数中较大的数,如max{2,5}=5,max{3,3}=3.则以x为自变量的函数y=max{-x+3,2x-1}的最小值为().A.-1 B.3 C.43D.539.如图,在平行四边形ABCD中,100B D︒∠+∠=,则B等于()A.50°B.65°C.100°D.130°10.已知,22a a那么a应满足什么条件()A.a>0 B.a≥0C.a =0 D.a任何实数11.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为EBD△.下列说法错误的是()A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE12.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示: 应聘者 网页制作 语言 甲 80 70 乙7080该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 14.如果一组数据 -2,0,1,3,x 的极差是7,那么x 的值是___________. 15.已知y +3与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为______________________.16.在平面直角坐标系中,直线6y kx =+与x 轴交于点A ,与y 轴交于点B ,若AOB 的面积为12,则k 的值为_________.17.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.18.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.19.若2<x <3,化简2(2)|3|x x -+-的正确结果是_____.20.如图,在Rt ABC 中,90B ∠=︒,AC 的垂直平分线DE 分别交AB ,AC 于,D E 两点,若4AB =,3BC =,则CD 的长为______________.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是 、众数是 和中位数是 ;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长. (2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 24.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =. (1)求线段AB 的长.(2)若3BP =,求ABP △的面积.25.化简计算(1)133123⎛⎫-+ ⎪ ⎪⎭;(2)()18246-÷;(3)238(3)32-+---.26.如图:AB =AC ,AD ⊥BC 于D ,AE =DE . 求证:(1)DE ∥AB ;(2)若∠B =60°,DE =2,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据中位数与众数的求法,分别求出投中个数的中位数与众数再相加即可解答. 【详解】第36 与37人投中的个数均为9,故中位数a=9, 11出现了13次,次数最多,故众数b=11, 所以a+b=9+11=20. 故选A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2.B解析:B【分析】由表可知,得分82的有1人,得分85的有2人,得分88的有3人,得分90的有2人.再根据平均数概念求解;【详解】解:(82×1+85×2+88×3+90×2)÷8= 87(分),所以平均数是87分.故选:B.【点睛】本题考查加权平均数的概念和计算方法,解题关键是熟练掌握加权平均数的计算公式. 3.B解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.4.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键5.A解析:A【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键.6.A解析:A 【分析】先设小华的速度为x 米/分,再根据小华返回时与小明相遇时所走的路程之和=小华家与球场之间的距离列出方程求出小华的速度为450米/分,再根据图象求出小明到达球场的时间,从而求出当小时到达球场时小华从球场出发返回家所用的时间为7分钟,所以根据“路程=速度×时间”即可求出当小时到达球场时小华离球场的距离. 【详解】解:设小华的速度为x 米/分,则依题意得: (20-18)x+180×20=10x 解得:x=450∴(450×10-3600)÷180=5(分)∴当小明到达球场时小华离球场的距离为:450×(5+2)=3150(米). 故A 选项正确;小华家距球场450×10=4500米,故B 选项错误;小华到达家时小明在球场呆的时间为:10+8+10-4500÷180=3(分) 故C 选项错误;整个过程耗时10+8+10=28(分) 故D 选项错误. 故选A . 【点睛】本题考查了从函数图象上获取信息的能力,注意观察函数图象,设出合适的未知数求出小华的速度是解题的关键.7.C解析:C 【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求. 【详解】解:设y=ax+b,把x=0,y=-1和x=1,y=1代入得:11a bb+=⎧⎨=-⎩,解得:21 ab=⎧⎨=-⎩,∴2x﹣1=11,解得:x=6.故选:C.【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.8.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算.【详解】解:当-x+3≥2x-1,∴x≤43,即-x≥-43时,y=-x+3,∴当-x=-43时,y的最小值=53,当-x+3<2x-1,∴x>43,即:x>43时,y=2x-1,∵x>43,∴2x>83,∴2x-1>53,∴y>53,∴y的最小值=53,故选:D.【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.9.A解析:A【分析】根据平行四边形的对角相等求出∠B即可得解.【详解】解:□ABCD中,∠B=∠D,∵∠B+∠D=100°,∴∠B=1×100°=50°,2故选:A.【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.10.B解析:B【分析】分别求出a与2a的被开方数中a的取值范围即可得到答案.【详解】∵a的被开方数a的取值范围是0a≥,2a的被开方数中a的取值范围是任意实数,a≥,故a应满足的条件是0故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 11.B解析:B【分析】由折叠的性质和平行线的性质可得∠ADB=∠CBD,可得BE=DE,可证AE=CE,由“SAS”可证△ABE≌△CDE,即可求解.【详解】解:如图,∵把矩形纸片ABC'D沿对角线折叠,∴∠CBD=∠DBC',CD=C'D=AB ,AD=BC=BC',∵AD ∥BC',∴∠EDB=∠DBC',∴∠EDB=∠EBD ,故选项C 正确;∴BE=DE ,∵AD=BC ,∴AE=CE ,故选项A 正确;在△ABE 和△CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a 语言的权重为b 则甲的分数为80a+70b 乙的分数为70a+80b 而甲的分数高所以80a+70b >70a+80b 解得a >b 则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a ,语言的权重为b ,则甲的分数为80a +70b ,乙的分数为70a +80b ,而甲的分数高,所以80a +70b >70a +80b ,解得a >b ,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.14.5或-4【解析】【分析】根据极差的定义求解分两种情况:x 为最大值或最小值【详解】一组数据-2013x 的极差是7当x 为最大值时x-(-2)=7解得x=5;当x 是最小值时3-x=7解得:x=-4故答案为解析:5或-4,【解析】【分析】根据极差的定义求解.分两种情况:x 为最大值或最小值.【详解】一组数据-2,0,1,3,x 的极差是7,当x 为最大值时,x-(-2)=7,解得x=5;当x 是最小值时,3-x=7,解得:x=-4.故答案为:5或-4.【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.15.【分析】根据题意设把x =2时y =7代入求出k 的值即可求解【详解】解:根据题意可得把x =2时y =7代入可得解得∴故答案为:【点睛】本题考查正比例函数的定义根据题意求出k 的值是解题的关键解析:53y x =-【分析】根据题意设3y kx ,把x =2时,y =7代入求出k 的值,即可求解. 【详解】解:根据题意可得3y kx , 把x =2时,y =7代入可得732k +=,解得5k =,∴53y x =-,故答案为:53y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.16.或【分析】求出AB 点坐标在Rt △AOB 中利用面积构造方程即可解得k 值【详解】由直线与y 轴于B 则则∴直线与x 轴于A 令则∴∴∴∴∴解得:由k≠0符合题意则k 的值为或故答案为:或【点睛】本题主要考查了一次 解析:32-或32【分析】 求出A 、B 点坐标,在Rt △AOB 中,利用面积构造方程即可解得k 值.【详解】由直线6y kx =+与y 轴于B ,则0x =,则6y =,∴(0,6)B ,直线6y kx =+与x 轴于A ,令0y =,则60kx +=,6x k =-, ∴6,0A k ⎛⎫- ⎪⎝⎭, ∴6OA k =-,6OB =, ∴1122AOB S OA OB =⋅=△, ∴64k -=, ∴64k-=±, 解得:132k =-,232k =, 由k≠0,符合题意, 则k 的值为32-或32. 故答案为:32-或32. 【点睛】本题主要考查了一次函数问题,掌握图象上点的坐标特征以及利用面积构造方程,会解方程是解题关键. 17.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.18.5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG 分别是的中点∴∵分别是BEBC 的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF 、GH 的长度,根据勾股定理计算,即可得到答案.【详解】F ,G 分别是DE ,BE 的中点, ∴142GF BD ==, ∵G ,H 分别是BE ,BC 的中点, ∴132GH CE ==, ∵∠FGH =90°,∴由勾股定理得,5FH ===,故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.【分析】根据二次根式的性质绝对值的性质先化简代数式再合并【详解】解:∵2<x <3∴|x ﹣2|=x ﹣2|3﹣x|=3﹣x 原式=|x ﹣2|+3﹣x =x ﹣2+3﹣x =1故答案为:1【点睛】此题考查化简求值解析:【分析】根据二次根式的性质,绝对值的性质,先化简代数式,再合并.【详解】解:∵2<x <3,∴|x ﹣2|=x ﹣2,|3﹣x |=3﹣x ,原式=|x ﹣2|+3﹣x=x ﹣2+3﹣x=1.故答案为:1.【点睛】此题考查化简求值,整式的加法法则,正确掌握二次根式的性质,绝对值的性质是解题的关键.20.【分析】先根据线段垂直平分线的性质得出CD=AD 故AB=BD+AD=BD+CD 设CD=x 则BD=4-x 在Rt △BCD 中根据勾股定理求出x 的值即可【详解】∵是的垂直平分线∴∴设则在中即解得∴故答案为: 解析:258【分析】先根据线段垂直平分线的性质得出CD=AD ,故AB=BD+AD=BD+CD ,设CD=x ,则BD=4-x ,在Rt △BCD 中根据勾股定理求出x 的值即可.【详解】∵DE 是AC 的垂直平分线,∴CD AD =,∴AB BD AD BD CD =+=+,设CD x =,则4BD x =-,在Rt BCD 中,222CD BC BD =+,即()22234x x =+-, 解得258x =, ∴258CD =. 故答案为: 258. 【点睛】本题考查的是勾股定理、线段垂直平分线的性质.由勾股定理得出方程是解决问题的关键.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数, 则中位数是1111112+=(吨), 故答案为:11.6吨,11吨,11吨; (2)月平均用水量不超过12吨的户数占比为204010100%70%100++⨯=, 则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.23.(1)5;(2)1612,55F ⎛⎫-⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合, OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯, 即1153422FG ⨯⨯=⨯⨯,125FG =, 在Rt OFG △中,由勾股定理得:22165OG OF FG =-=, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.25.(1)3;(22;(3)1- 【分析】(1)先化简二次根式、去括号,再计算二次根式的加减法即可得;(2)根据二次根式的除法法则即可得;(3)先计算立方根、算术平方根、化简绝对值,再计算二次根式的加减法即可得.【详解】(1)原式3=,=;(2)原式=,2=;(3)原式(232=-+-,232=-+-+1=-.【点睛】本题考查了二次根式的加减法与除法运算等知识点,熟练掌握二次根式的运算法则是解题关键.26.(1)证明见解析;(2)【分析】(1)根据三线合一得BAD =∠CAD ,由AE =DE ,得∠CAD =∠EDA ,从而∠BAD =∠EDA ,所以DE ∥AB ;(2)由AB =AC ,∠B =60°,DE ∥AB ,得∠C =60°,∠EDC =∠B =60°,从而△DEC 为等边三角形, DE =DC =EC =AE =2,最后在Rt △ADC 中,由勾股定理求AD .【详解】解:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD ,∵AE =DE ,∴∠CAD =∠EDA ,∴∠BAD =∠EDA ,∴DE ∥AB(2)∵AB =AC ,∠B =60°,∴∠C =60°∵DE ∥AB ,∴∠EDC =∠B =60°,∴△DEC 为等边三角形,∴DE =DC =EC =AE =2在Rt △ADC 中,AD【点睛】本题考查了等腰三角形三线合一、等边对等角、平行线的判定和性质、等边三角形的判定和性质、勾股定理等内容,灵活运用是解题的关键.。
鲁教版2019-2020八年级数学2.4分式方程自主学习能力达标测试题2(附答案)
鲁教版2019-2020八年级数学2.4分式方程自主学习能力达标测试题2(附答案)1.关于的方程的解为正数,且关于的不等式组有解,则符合题意的整数有()个.A.4 B.5 C.6 D.72.关于x的分式方程522x mx x-=++有增根,则m的值为()A.0 B.5-C.2-D.7-3.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-4.若方程有增根,则a的值为()A.1 B.2 C.3 D.05.小明借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )A.=14 B.=14C.=14 D.=16.已知关于x的分式方程=1的解是非负数,则m的取值范围是()A.m 1 B.m 1C.m-1且m≠0D.m-17.若关于x的分式方程2322x m mx x++=--有增根,则m的值为()A.﹣2 B.0 C.1 D.28.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A. 0000﹣10= 00B. 0000+10= 00C . 0000 ﹣10= 00D . 0000 +10= 009.甲、乙两同学同时从学校出发,步行12千米到李村.甲比乙每小时多走1千米,结果甲比乙早到15分钟.若设乙每小时走x 千米,则所列出的方程式( )A .B .C .D . 10.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( )A .90606x x =-B .90606x x =+C .90606x x =+D .90606x x =- 11.关于x 的方程=2的解为正数,则a 的取值范围为_______. 12.如果方程23111x k x x x +=---会产生增根,那么k 的值是_______________. 13.若关于x 的方程 的解是x=2,则a=__________;14.分式方程 =1的解为________.15.关于x 的方程233x k x x =+--无解,则k 的值为____。
【鲁教版】八年级数学上期末试题(带答案)(2)
一、选择题1.若整数a 使得关于x 的方程3222a x x -=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .282.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++ 3.下列各式中,无论x 取何值,分式都有意义的是( ).A .132x -B .213x +C .231x x +D .21x x + 4.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a 5.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab6.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == 7.下列运算正确的是( ).A .()2326ab a b =B .()325a a =C .236a a a ⋅=D .347a a a +=8.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820159.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,且点E 在ABC 内部,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①EBD DAE ∠=∠;②ADE BCE ≌△△;③BD AF =;④BDE ACE S S =△△,其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒11.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4 12.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12二、填空题13.计算:(﹣2a﹣2b)2÷2a﹣8b﹣3=_____.14.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.15.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.16.若a -b = 1,ab = 2 ,则a +b =______.=,M为边BC上的点,连接17.如图,在Rt ABC中,BAC90︒∠=,AB2AM.如果将ABM沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是________.18.若等腰三角形的一条边长为5cm,另一条边长为10cm,则此三角形第三条边长为__________cm.19.如图,AD为∠CAF的角平分线,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE ≌△BDF;②CE=AB+AE;③∠DAF=∠CBD.其中正确的结论有_____.(填序号)∠+∠+∠+∠+∠的度数为________.20.如图,则A B C D E三、解答题21.先化简,再求值:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦,其中12a =,112b -⎛⎫=- ⎪⎝⎭. 22.解分式方程:(1)1171.572x x += (2)21533x x x -+=-- 23.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-. 24.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.25.如图,一条河流MN 旁边有两个村庄A ,B ,AD ⊥MN 于D .由于有山峰阻挡,村庄B 到河边MN 的距离不能直接测量,河边恰好有一个地点C 能到达A ,B 两个村庄,与A ,B 的连接夹角为90°,且与A ,B 的距离也相等,测量C ,D 的距离为150m ,请求出村庄B 到河边的距离.26.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -,∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3, 由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.C解析:C【分析】根据分式的除法法则计算即可.【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可. 3.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 4.C解析:C【分析】先把除法变成乘法,然后约分即可.【详解】 解:2a b b b b a a b a a a a÷⨯=⋅⋅=,【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.5.C解析:C【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可.【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y a y x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab b a ab b ab ++-+=-==ab . 故选C .【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键. 6.D解析:D【分析】根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;故选:D .【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.7.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.8.D解析:D【分析】根据平方差公式因式分解然后约分,便可归纳出来即可.【详解】解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6,此选项不符合题意;B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意;C 、∵A 2=2131=24-, 且345674681012<<<<<, ∴n ≥2时,恒有A n ≤34, 此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯, 当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意;故选择:D .【点睛】 本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.9.D解析:D【分析】由AD 为△ABC 的高线,可得∠CBE+∠ABE+∠BAD=90°,Rt △ABE 是等腰直角三角形, 可得90ABE BAD DAE ∠+∠+∠=︒,从而可判断①;由等腰Rt ABE △可得AE BE =,结合AD BC =,∠DAE=∠CBE ,可判断②;由△ADE ≌△BCE ,可得,ADE BCE ∠=∠ 再证明∠BDE=∠AFE ,结合EBD DAE ∠=∠,AE BE =, 证明△AEF ≌△BED ,可判断③;由△ADE ≌△BCE ,可得,DE CE = 由△AEF ≌△BED ,,EF DE = 证明,EF CE =从而可判断④.【详解】解:∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴90ABE BAD DAE ∠+∠+∠=︒,∴∠DAE=∠CBE ,即EBD DAE ∠=∠,故①正确;∵Rt △ABE 是以AB 为底等腰直角三角形,∴AE=BE ,在△ADE 和△BCE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS ); 故②正确;△ADE ≌△BCE ,,ADE BCE ∴∠=∠∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,90ADB ADC ∠=∠=︒,∴∠BDE=∠AFE ,在△AEF 和△BED 中,FAE DBE AFE BDE AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴AF BD =; 故③正确;∵△ADE ≌△BCE ,∴,DE CE =△AEF ≌△BED ,,,AEF BED EF DE SS ∴== ,EF CE ∴=∴,AEF ACE SS = ∴ ,BDE ACE S S =故④正确;综上:正确的有①②③④.故选:D .【点睛】本题考查的是三角形的内角和定理,三角形的中线与高的性质,三角形全等的判定与性质,等腰直角三角形的性质,掌握以上知识是解题的关键.10.C解析:C【分析】根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.12.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+2<4,不能构成三角形;B、5+6=11,不能构成三角形;C、3+3>3,能构成三角形;D、8+4=12,不能构成三角形.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.二、填空题13.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3=2a -4-(-8)b 2-(-3),=2a 4b 5.故答案为:2a 4b 5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.14.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.【详解】设现在每天做x 个零件,则原计划每天做()20x -个零件, 依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键. 15.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 16.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 17.【分析】过点M 作MP ⊥ACMQ ⊥AB 首先证明MP =MQ 求出AC 的长度运用S △ABC =S △ABM +S △ACM 求出MP 即可解决问题【详解】如图设点B 的对应点为N 由题意得:∠BAM =∠CAMAB =AN =2 解析:43【分析】过点M 作MP ⊥AC ,MQ ⊥AB ,首先证明MP =MQ ,求出AC 的长度,运用S △ABC =S △ABM +S △ACM ,求出MP 即可解决问题.【详解】如图,设点B 的对应点为N ,由题意得:∠BAM =∠CAM ,AB =AN =2;过点M 作MP ⊥AC ,MQ ⊥AB ,则MP =MQ ,设MP =MQ=x ,∵AN =NC ,∴AC =2AN =4;∵S △ABC =S △ABM +S △ACM , ∴12AB•AC =12AB•MQ +12AC•MP ,∴2×4=2x+4x,解得:x=43,故答案为43.【点睛】该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.18.10【分析】因为等腰三角形的两边分别为5cm和10cm但没有明确哪是底边哪是腰所以有两种情况需要分类讨论【详解】当5cm为底时其它两边都为10cm5cm10cm10cm可以构成三角形;当5cm为腰时解析:10【分析】因为等腰三角形的两边分别为5cm和10cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】当5cm为底时,其它两边都为10cm,5cm、10cm、10cm可以构成三角形;当5cm为腰时,其它两边为5cm和10cm,因为5+5=10,所以不能构成三角形,故舍去.所以三角形三边长只能是5cm、10cm、10cm,所以第三边是10cm.故答案为:10.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.19.①②③【分析】根据角平分线上的点到角的两边距离相等可得DE=DF 再利用HL证明Rt△CDE和Rt△BDF全等根据全等三角形对应边相等可得CE=AF利用HL证明Rt△ADE和Rt△ADF全等根据全等三解析:①②③.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF =∠DCE ,利用“8字型”证明∠BDC =∠BAC ;根据三角形内角和定理及平角的性质,可得∠DAF =∠CBD .【详解】解:如图∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,在Rt △CDE 和Rt △BDF 中,BD CD DE DF⎧⎨⎩== ∴Rt △CDE ≌Rt △BDF (HL ),故①正确;∴CE =BF ,在Rt △ADE 和Rt △ADF 中,AD AD DE DF==⎧⎨⎩ , ∴Rt △ADE ≌Rt △ADF (HL ),∴AE =AF ,∴CE =AB +AF =AB +AE ,故②正确;∵Rt △CDE ≌Rt △BDF ,∴∠DBF =∠DCE ,∵∠AOB =∠COD ,(设AC 交BD 于O ),∴∠BDC =∠BAC ,∵AD 平分∠FAE ,∴∠DAF =∠DAE∵BD =CD∴∠DBC =∠DCB∵∠BAC +∠DAF +∠DAE =180°,∠BDC +∠DBC +∠DCB =180°,∠BDC =∠BAC∴∠DAF +∠DAE =∠DBC +∠DCB∴∠DAF =∠CBD ,故③正确综上所述,正确的结论有①②③.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等. 20.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.三、解答题21.a b --,32【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦()22222444422a ab b a b a ab a ⎡⎤=-++---÷⎣⎦()2224422a ab a ab a =--+÷()2222a ab a =--÷a b =--, ∵1122b -⎛⎫=-=- ⎪⎝⎭∴当12a =,2b =-时,原式()13222=---=. 【点睛】 本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.22.(1)1207x =;(2)无解 【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】 (1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.23.2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 24.(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB ,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P 作OA 、OB 的垂线PM 、PN 如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB .理由:左图中,在四边形PMON 中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN ,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB .【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型. 25.150米【分析】根据题意,判断出△ADC ≌△CEB 即可求解.【详解】解:如图,过点B 作BE ⊥MN 于点E ,∵∠ADC =∠ACB =90°,∴∠A =∠BCE (同角的余角相等).在△ADC 与△CEB 中,90ADC CEB A BCEAC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).∴BE =CD =150m .即村庄B 到河边的距离是150米.【点睛】本题主要考查的是全等三角形的实际应用,熟练掌握全等三角形的判定及性质是解答本题的关键.26.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.。
八年级下册数学不等式专题.doc
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.八年级下册数学不等式专题选择题如果“、"表示两个负数,且a<b,贝收a , a(A)->1 (B)-<1b b“、万是有理数,下列各式中成立的是((A)若a>b,则a2>Z?2(C)若奸b,则I a I ^\b\\ a \ +a的值一定是( ).(A)大于零(B)小于零若由.r<y可得到ax>ay,应满足的条件是().1 1(C)-<- a b)•(B)若a2>b2,则a>b(D)若* I削,则奸b(D)ab<l(C)不大于零).(C)Q>0(D)不小于零(D)Q VO若不等式(a+l)x>a+l的解集是x<l,则a必满足((A)o<0 (B)o>-1 (C)o<-1九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有().(A)2 人(B)3 人(04 人(D)5 人某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km按1km计).出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm,那么x的最大值是((A)ll (B)8 (C)7若不等式组!(A)kV2不等式组!(A)mW2)・(D>< 1(D)5某人乘这种)•]< v 2'一'有解,则上的取值范围是(). x>k(B*N2X + 9 < 5% +1,的解集是x>2,则m的取值范围是( x>m + 1对于整数。
,b, c, d,定义(C)kVl(C)mWl=ac-bd ,已知lv(D)1WK2)•则b+d的值为.如果o2.¥>«2y(o#0).那么-r y.若x是非负数,则-1〈飞三的解集是.已知(x—2)2+ I 2x~3y—a I =0, y是正数,则。
八年级数学上册第6招分式方程与方程(组)不等式(组)一次函数的综合应用习题pptx课件鲁教版五四制
每本硬面笔记本比软面笔记本都贵3元(单价均为整数).
(1)若班长小华在甲商店购买,他发现用240元购买硬面笔
记本与用195元购买软面笔记本的数量相同,求甲商店
硬面笔记本的单价;
1
2
3
4
5
6
【解】设甲商店硬面笔记本的单价为 x 元,则软面笔记
本的单价为( x -3)元,
鲁教版 八年级上册
第6招 分式方程与方程(组)、不等
式(组)、一次函数的综合应用
分式方程与方程(组)的综合应用
1. [2023·重庆]某公司不定期为员工购买某预制食品厂生产的
杂酱面、牛肉面两种食品.
(1)该公司花费3 000元一次性购买了杂酱面、牛肉面共170
份,此时杂酱面、牛肉面的价格分别为每份15元、每
当 m =5, n =5时, w =(3 700-3 200)×5+(2 700-
2 400)×5=4 000(元),
当 m =8, n =1时, w =(3 700-3 200)×8+(2 700-
2 400)×1=4 300(元).
∵4 300>4 000>3 700,
∴购进A款手机8部,B款手机1部时,总利润最高.
根据题意得
=
,解得 x =16,
−
经检验, x =16是原方程的根,且符合题意.
答:甲商店硬面笔记本的单价为16元.
1
2
3
4
5
6
(2)若班长小华在乙商店购买硬面笔记本,乙商店给出了
硬面笔记本的优惠条件(软面笔记本单价不变):一次购
买的数量少于30本,按原价售出;不少于30本按软面
八年级数学上册 综合训练 方程与不等式应用题习题 鲁教版
方程与不等式应用题(习题)例题示范例1:现要把228 吨物资从某地运往甲、乙两地,用大、小两种货车共18 辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16 吨/辆和10 吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆.(2)如果安排 9 辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 之间的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,若运往甲地的物资不少于 120 吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【思路分析】1.理解题意,梳理信息.2.建立数学模型(1)结合题中信息“用大、小两种货车共18 辆,恰好能一次性运完这批物资”,考虑方程模型;(2)结合题中信息“自变量的取值范围”,考虑建立不等式模型,寻找题目中的不等关系(显性和隐性);(3)结合题中信息“运费最少的货车调配方案”,考虑建立函数模型.3.求解验证,回归实际.⎨ ⎪ 【过程书写】解:(1)设大货车用 x 辆,则小货车用(18-x )辆,根据题意得,16x +10(18-x )=228解得,x =8即大货车用 8 辆,小货车用 10 辆.(2)由题意得, w 720 a 800(8 a ) 500(9 a ) 650[10 (9 a )]70 a 11550a ≥ 0 8 a ≥ 0∵ 9 a ≥0 10 (9 a ) ≥ 0∴ 0 ≤ a ≤ 8 ,且 a 为整数∴ w 70 a 11550( 0 ≤ a ≤ 8 ,且a 为整数)(3)由题意得,16 a 10(9 a ) ≥120解得, a ≥ 5∵ 0 ≤ a ≤ 8 ,且 a 为整数∴ 5 ≤ a ≤ 8 ,且 a 为整数在 w 70 a 11550 中∵ 70 0∴w 随 a 的增大而增大∴当 a =5 时, w min 11900(元) 即最优方案为:巩固练习1.已知 2 辆A 型车和 1 辆B 型车载满货物时一次可运货 10 吨;1 辆 A 型车和2 辆 B 型车载满货物时一次可运货 11 吨.某物流公司现有货物 31 吨,计划同时租用 A 型车和 B 型车,要求一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1 辆 A 型车和 1 辆 B 型车都载满货物时一次可分别运货多少吨?(2)请你帮助该物流公司设计出所有的租车方案;(3)若每辆 A 型车的租金为 100 元/次,每辆 B 型车的租金为120 元/次,请选出最省钱的租车方案,并求出最少的租车费.2.受金融危机的影响,某店经销的甲型号手机今年的售价与去年相比,每台降价 500 元,如果卖出相同数量的手机,去年销售额为8 万元,今年销售额只有 6 万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,今年该店决定再经销乙型号手机,已知甲型号手机每台进价为 1 000 元,乙型号手机每台进价为 800 元,计划用不多于 1.84 万元且不少于 1.76 万元的资金购进这两种手机共 20 台,则该店有哪几种进货方案?(3)若乙型号手机每台售价为 1 400 元,为了促销,打九折销售,而甲型号手机仍按今年的售价销售,则在(2)的各种进货方案中,哪种方案获利最大?最大利润是多少元?3.小王家是新农村建设中涌现出的“养殖专业户”,他准备购置 80 只相同规格的网箱,养殖 A,B 两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资多于 6.7 万元,但不超过6.91 万元,其中购置网箱等基础建设需要 1.2 万元.设他用x 只网箱养殖 A 种淡水鱼,目前平均每只网箱养殖 A,B 两种淡水鱼所需投入及产出情况如下表:(2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A 种鱼价格上涨 40%,B 种鱼价格下降 20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)思考小结1.应用题的处理框架是什么?①理解题意:分,找借助等梳理信息;②建立:方程模型、不等式(组)模型、函数模型等③求解验证,回归实际2.目前我们已经学习了几种数学模型,在什么情况下考虑对应的模型?【参考答案】巩固练习1.(1)1 辆 A 型车载满货物时一次可运货 3 吨,1 辆 B 型车载满货物时一次可运货 4 吨.(2)该物流公司共有 3 种租车方案.方案一,租用 A 型车 1 辆,B 型车 7 辆;方案二,租用 A 型车 5 辆,B 型车 4 辆;方案三,租用 A 型车 9 辆,B 型车 1 辆.(3)最省钱的租车方案为,租用 A 型车 1 辆,B 型车 7 辆.最少的租车费为 940 元.2.(1)今年甲型号手机每台售价为 1 500 元.(2)该店共有 5 种进货方案.方案一,购进甲型号手机 8 台,乙型号手机 12 台;方案二,购进甲型号手机 9 台,乙型号手机 11 台;方案三,购进甲型号手机 10 台,乙型号手机 10 台;方案四,购进甲型号手机 11 台,乙型号手机 9 台;方案五,购进甲型号手机 12台,乙型号手机 8 台.(3)购进甲型号手机 12 台,乙型号手机 8 台,所获利润最大,最大利润为 9 680 元.3.(1)小王共有 5 种养殖方案.方案一,养殖 A 种淡水鱼 45 箱,B 种淡水鱼 35 箱;方案二,养殖 A 种淡水鱼 46 箱,B 种淡水鱼 34 箱;方案三,养殖 A 种淡水鱼 47 箱,B 种淡水鱼 33 箱;方案四,养殖 A种淡水鱼 48 箱,B 种淡水鱼 32 箱方案五,养殖 A 种淡水鱼49 箱,B 种淡水鱼 31 箱.(2)养殖 A 种淡水鱼 45 箱,B 种淡水鱼 35 箱,所获利润最大.(3)价格变化后,养殖 A 种淡水鱼 49 箱,B 种淡水鱼 31 箱,所获利润最大.思考小结1.①层次,结构,表格②数学模型2.共学了3 种数学模型,分别是是方程模型,不等式(组)模型,函数模型①有共需、同时、刚好、恰好、相同等关键词时,考虑方程模型②有显示、隐性不等关系等,考虑不等式(组)模型③有最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数模型。
初二数学鲁教版试卷
初二数学鲁教版试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .cm 2B .cm 2C .cm 2D .cm 22.将一张长方形纸片按如图所示的方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95° 3.函数中,自变量x 的取值范围为( )A .>5B .≠5C .≠0D .≠0或≠5 4.下列定理中,有逆定理的是() A .对顶角相等 B .同角的余角相等C.全等三角形对应角相等D.在一个三角形中,等边对等角5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体重量x(kg)间有如下关系.(其中x≤12).下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.物体重量每增加1kg,弹簧长度y增加0.5cmD.所挂物体重量为7kg时,弹簧长度14.5cm6.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B. C. D.a2-b27.下列长度的三条线段不可能组成三角形的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、68.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>29.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为()A. B. C.2 D.410.计算的结果是-1的式子是()A. B. C. D.二、判断题11.计算或化简(1):(2)12.判断正误并改正:()13.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计).(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?14.(本题满分6分)计算:15.因式分解(1)(2)评卷人得分三、填空题16.若a>b,a<0,则﹣(a+b)>﹣b>﹣a>﹣a+b .17.如图,△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD 的面积为.18.已知点(,4)在连接点(0,8)和点(,0)的线段上,则______.19.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 度.20.比较大小:小明上八年级时的体重Wkg________20kg;评卷人得分四、计算题21.化简下列各式:(1)(a>0);(2)(a≥0,b≥0,c>0);(3).22.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.评卷人得分五、解答题23.如图,等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,试求此等腰梯形的面积.24.计算:参考答案1 .C.【解析】试题解析:连接正方形的中心和其余两个顶点可证得含45°的两个三角形全等,进而求得阴影部分面积等于正方形面积的,即是.5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1)=cm2.故选C.考点:1.正方形的性质;2.全等三角形的判定与性质.2 .C【解析】试题分析:根据折叠的性质得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根据平角的定义有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得A′BC+∠E′BD==90°,即可得到结果.∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠A′BC+∠E′BD==90°,即∠CBD=90°.故选C.考点:本题考查了折叠的性质,平角的定义点评:解答本题的关键是熟练掌握折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.3 .B【解析】由题意得x-50, 解得x5故选B4 .D【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假即可.A、逆命题是相等的角是对顶角,是假命题,故本选项错误;B、逆命题是余角相等的两个角是同一个角,是假命题,所以没有逆定理;C、逆命题是对应角相等的三角形是全等三角形,是假命题,所以没有逆定理;D、逆命题是在一个三角形中,等角对等边,是真命题,所以有逆定理;故选D.考点:本题考查逆命题的真假点评:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.5 .D【解析】根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确;B、弹簧不挂重物时的长度为10cm,正确;C、物体重量每增加1kg,弹簧长度y增加0.5cm,正确;D、所挂物体重量为7kg时,弹簧长度是:10+0.5×7=13.5cm,故本选项错误.故选D.6 .C.【解析】试题分析:中间部分的四边形是正方形,边长是a+b-2b=a-b,则面积是(a-b)2.故选:C.考点:完全平方公式的几何背景.7 .A【解析】A. ∵1+2=3,∴不能组成三角形,故A选项正确;B. ∵2+3>4,∴能组成三角形,故B选项错误;C. ∵3+4>5,∴能组成三角形,故C选项错误;D. ∵4+5>6,∴能组成三角形,故D选项错误。
八年级数学上册综合训练方程与不等式应用题讲义鲁教版(2021年整理)
2017-2018学年八年级数学上册综合训练方程与不等式应用题讲义鲁教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年八年级数学上册综合训练方程与不等式应用题讲义鲁教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年八年级数学上册综合训练方程与不等式应用题讲义鲁教版的全部内容。
方程与不等式应用题(讲义)知识点睛1.理解题意:分层次,找结构借助表格等梳理信息2.建立数学模型:方程模型、不等式(组)模型、函数模型等①共需、同时、刚好、恰好、相同等,考虑方程;②显性、隐性不等关系等,考虑不等式(组);③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数.3.求解验证,回归实际①数据是否异常;②结果是否符合题目要求及取值范围;③结果是否符合实际意义.精讲精练1.为支持某地区抗震救灾,A,B,C 三地现在分别有赈灾物资100 吨,100 吨,80吨,需要全部运往重灾地区的 D,E两县.根据灾区的情况,这批赈灾物资运往D 县的数量比运往 E 县的数量的2 倍少20 吨.要求 C 地运往 D 县的赈灾物资为 60 吨,A地运往D县的赈灾物资为x 吨(x 为整数),B 地运往D县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的 2 倍.其余的赈灾物资全部运往 E 县,且 B 地运往 E 县的赈灾物资数量不超过 23 吨.已知 A,B,C 三地的赈灾物资运往 D,E 两县的费用如下表:A 地B 地C 地运往D 县的费用(元/吨)220200200运往 E 县的费用(元/吨)250220210(1)这批赈灾物资运往 D,E 两县的数量各是多少?(2)A,B 两地的赈灾物资运往D,E 两县的方案有几种?请你写出具体的运送方案.(3)为及时将这批赈灾物资运往 D,E 两县,某公司主动承担运送这批赈灾物资的总费用,在(2)的条件下,该公司承担运送这批赈灾物资的总费用最多是多少?2.为了保护环境,某生物化工厂一期工程完成后购买了 3 台甲型和 2 台乙型污水处理设备,共花费资金 46 万元,且每台乙型设备的价格是每台甲型设备价格的 80%.实际运行中发现,每台甲型设备每月能处理污水 180 吨,每台乙型设备每月能处理污水 150 吨,且每年用于每台甲型设备的各种维护费和电费为1 万元,每年用于每台乙型设备的各种维护费和电费为 1。
初二不等式解法练习题.doc
初二不等式解法练习题个性化辅导授课教案ggggggggggggangganggang纲教师:秦晓波学生:时间:5.27时间段:15:00—17:00一、授课目的与考点分析:授课目的:(1)易错题讲解(2)综合知识点复习考点分析:典型考题(1)特殊易错题讲解;(2)因式分解二、授课内容:1、解方程:,则=2、用10%和5%的盐水合成8%的盐水10kg,问10%和5%的盐水各需多少kg?3、已知的解为正数,则k的取值范围是4、(2)若的解为x>3,则a的取值范围(3)若的解是-1<x<1,则(a+1)(b-2)=(4)若2x<a的解集为x <2,则a=(5)若有解,则m的取值范围5、已知,x>y,则m的取值范围;6、已知上山的速度为600m/h,下上的速度为400m/h,则上下山的平均速度为?7、已知,则x=,y=;8、已知(),则,;9、当m=时,方程中x、y的值相等,此时x、y 的值=。
10、已知点P(5a-7,-6a-2)在二、四象限的角平分线上,则a=。
11、的解是的解,求。
12、若方程的解是负数,则m的取值范围是。
13、船从A点出发,向北偏西60°行进了200km到B点,再从B点向南偏东20°方向走500km到C点,则∠ABC=。
14、的解x和y的和为0,则a=。
15、a、b互为相反数且均不为0,c、d互为倒数,则。
a、b互为相反数且均不为0,则。
a、b互为相反数,c、d互为倒数,,则。
16、若,则m0。
(填“>”、“<”或“=”)17、计算:;。
18、若与互为相反数,则。
19、倒数等于它本身的数是:;相反数等于它本身的数是:。
20、有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲乙两处各多少人?21、如图(1),已知△ABC中,∠BAC=900,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于 E.图1图2图3(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BDCE),其余条件不变,问BD与DE、CE的关系如何?22、如图,已知:等腰Rt△OAB中,∠AOB=900,等腰Rt△EOF中,∠EOF=900,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.23、如图示,已知四边形ABCD是正方形,E是AD的中点,F是BA延长线上一点,AF=AB,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置;(3分)(2)线段BE与DF有什么关系?证明你的结论。