一元二次方程及一元二次方程的解法测试题(绝对经典)

合集下载

(完整版)一元二次方程解法及其经典练习题

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。

1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案) 一元二次方程测试题1.一元二次方程$(1-3x)(x+3)=2x^2+1$化为一般形式为:二次项系数$2$,一次项系数$-7$,常数项$10$。

2.若$m$是方程$x^2+x-1=3mx+1$的一个根,代入可得$m+2\sqrt{m+2013}$的值为$-1$,解得$\sqrt{m+2013}=-\frac{m+1}{2}$,代入可得$m=-2014$。

4.关于$x$的一元二次方程$(a-2)x^2+x+a-4$的一个根为$1$,代入可得$a=5$。

5.若代数式$4x-2x-5$与$2x+1$的值互为相反数,则$x=-\frac{3}{2}$。

6.已知$2y+y-3=2$,代入可得$4y^2+2y+1=27$。

7.若方程$(m-1)x+m\cdot x=1$是关于$x$的一元二次方程,则$m$的取值范围为$m\neq 0$。

8.已知关于$x$的一元二次方程$ax+bx+c(a\neq 0)$的系数满足$a+c=b$,则此方程必有一根为$\frac{c}{a}$。

10.设$x_1,x_2$是方程$x^2+bx+b-1=0$有两个相等的实数根,则$b=2$。

12.若$x=-2$是方程$x^2+mx-6=0$的一个根,则方程的另一个根是$3$。

13.设$m,n$是一元二次方程$x^2+4x+m=0$的两个根,则$m+n=-4$。

14.一元二次方程$(a+1)x^2-ax+a-1=0$的一个根为$1$,代入可得$a=2$。

15.若关于$x$的方程$x^2-2ax+a^2=0$的两个根互为倒数,则$a=\pm\sqrt{2}$。

17.已知关于$x$的方程$x^2-x-2=0$与$2x^2-(a+b)x+ab-1=0$有一个解相同,则$a=1$。

18.$a$是二次项系数,$b$是一次项系数,$c$是常数项,且满足$a-1+(b-2)+|a+b+c|=0$,则满足条件的一元二次方程为$(a-1)x^2+(b-2)x+c=0$。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

、选择题:(每小题3分,共24分)1. 下列方程中,常数项为零的是()A.x 2+x=1B.2x-x-12=12 ; C.2(x -1)=3(x-1) D.2(x2+1)=x+2N- 31 22—2x2. 下列万程:①x =0,② —-2=0,③2 x +3x=(1+2x)(2+x),④3x - J x =0,⑤ ------------ 8x+ 1=0xx中,一元二次方程的个数是() A.1 个 B2 个 C.3 个 D.4 个3.把方程(x- J5) (x+J5) +(2x-1) 2=0化为一元二次方程的一般形式是 ()A.5x 2-4x-4=0B.x -5=0C.5x -2x+1=0D.5x2-4x+6=04. 方程x 2=6x 的根是()A.x =0,x =-6B.x=0,x =6 C.x=6D.x=05. 方2x-3x+1=0经为(x+a) 2=b 的形式,正确的是() A. fx —3j=16; B. 2「x —V 2=1; C.f x WT=【;D.以上都不对2,416. 4 166.若两个连续整数的积是 56,则它们的和是()A.11B.15C.-15D.土 1510. 关于x 的一元二次方程 x 2+bx+c=0有实数解的条件是 . 11. 用 法解方程3(x-2) =2x-4比较简便.12. 如果2x+1与4x 2-2x-5互为相反数,则x 的值为 . 13.如果关于 x 的一元二次方程2x(kx-4)-x +6=0没有实数根,那么k 的最小整数值是14. 如果关于x 的方程4mx-mx+1= 0有两个相等实数根,那么它的根是练习一7. 不解方程判断下列方程中无实数根的是 ()A.-x =2x-1B.4x+4x+— =0; C. 、、2x 2 - X -、3 =048. 某超市一月份的营业额为 200万元,已知第一季度的总营业额共增长率为x,则由题意列方程应为() A.200(1+x) =1000 B.200+200 X 2x=1000 C.200+200 X 3x=1000D.200[1+(1+x)+(1+x)]=1000二、填空题:(每小题3分,共24分)一(x -1)2 5 9. 万程 ----- - +3x =—化为一元二次方程的一般形式是 D.(x+2)(x-3)==-51000万元,如果平均每月,它的一次项系数是15. 若一元二次方程(k-1)x 2-4x-5=0有两个不相等实数根,则k 的取值范围是 .16. 某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每 次降价的百分率为 . 三、 解答题(2分)17. 用适当的方法解下列一元二次方程 .(每小题5分,共15分) (1)5x(x-3)=6-2x;(2)3y2+1=2^3y ; ⑶(x-a)2=1-2a+a(a 是常数)18. (7分)已知关于x 的一元二次方程 x 2+mx+n=0的一个解是2,另一个解是正数,而且也是方程(x+4) -52=3x 的解,你能求出m 和n 的值吗? 19. (10分)已知关于x 的一元二次方程 x 2-2kx+ - k 2-2=0.2(1) 求证:不论k 为何值,方程总有两不相等实数根. (2) 设x ,x 是方程的根,且x -2kx +2xx=5,求k 的值.四、 列方程解应用题(每题10分,共20分)20. 某电视机厂计划用两年的时间把某种型号的电视机的成本降低 36%,若每年下降的百分数相同,求这个百分数. 21.某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施, 改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每 月销售额增长的百分率.答案一、 DAABC ,DBD 二、9. x 2+4x-4=0,4 10. b 2 -4c —0 11. 因式分解法 1或-32 181 lk >一且k #15 30%12. 13. 14. 15.16.17. (1) 3, —2 ; (2) —; (3) 1, 2a-15 318. m=-6,n=819. (1) △ =2k2+8>0, 不论k为何值,方程总有两不相等实数根(2) k = .14四、20. 20%21. 20%练习二一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程练习题 含答案(解法20题 题海111题)

一元二次方程练习题 含答案(解法20题 题海111题)

经典解法20题(1)(3x+1)^2=7(2)9x^2-24x+16=11(3) (x+3)(x-6)=-8(4) 2x^2+3x=0(5) 6x^2+5x-50=0 (选学)(6)x^2-4x+4=0 (选学)(7)(x-2)^2=4(2x+3)^2(8)y^2+2√2y-4=0(9)(x+1)^2-3(x+1)+2=0(10)x^2+2ax-3a^2=0(a为常数)(11)2x^2+7x=4.(12)x^2-1=2 x (13)x^2 + 6x+5=0(14) x ^2-4x+ 3=0(15)7x^2 -4x-3 =0(16)x ^2-6x+9 =0(17)x²+8x+16=9(18)(x²-5)²=16(19)x(x+2)=x(3-x)+1(20) 6x^2+x-2=0海量111题1)x^2-9x+8=0(2)x^2+6x-27=0(3)x^2-2x-80=0(4)x^2+10x-200=0(5)x^2-20x+96=0(6)x^2+23x+76=0(7)x^2-25x+154=0(8)x^2-12x-108=0(9)x^2+4x-252=0(10)x^2-11x-102=0(11)x^2+15x-54=0(12)x^2+11x+18=0(13)x^2-9x+20=0(14)x^2+19x+90=0(15)x^2-25x+156=0(16)x^2-22x+57=0(17)x^2-5x-176=0(18)x^2-26x+133=0(19)x^2+10x-11=0(20)x^2-3x-304=0(21)x^2+13x-140=0(23)x^2+5x-176=0(24)x^2+28x+171=0(25)x^2+14x+45=0(26)x^2-9x-136=0(27)x^2-15x-76=0(28)x^2+23x+126=0(29)x^2+9x-70=0(30)x^2-1x-56=0(31)x^2+7x-60=0(32)x^2+10x-39=0(33)x^2+19x+34=0(34)x^2-6x-160=0(35)x^2-6x-55=0(36)x^2-7x-144=0(37)x^2+20x+51=0(38)x^2-9x+14=0(39)x^2-29x+208=0(40)x^2+19x-20=0(41)x^2-13x-48=0(42)x^2+10x+24=0(43)x^2+28x+180=0(45)x^2+23x+90=0(46)x^2+7x+6=0(47)x^2+16x+28=0(48)x^2+5x-50=0(49)x^2+13x-14=0(50)x^2-23x+102=0(51)x^2+5x-176=0(52)x^2-8x-20=0(53)x^2-16x+39=0(54)x^2+32x+240=0(55)x^2+34x+288=0(56)x^2+22x+105=0(57)x^2+19x-20=0(58)x^2-7x+6=0(59)x^2+4x-221=0(60)x^2+6x-91=0(61)x^2+8x+12=0(62)x^2+7x-120=0(63)x^2-18x+17=0(64)x^2+7x-170=0(65)x^2+6x+8=0(67)x^2+24x+119=0(68)x^2+11x-42=0(69)x^20x-289=0(70)x^2+13x+30=0(71)x^2-24x+140=0(72)x^2+4x-60=0(73)x^2+27x+170=0(74)x^2+27x+152=0(75)x^2-2x-99=0(76)x^2+12x+11=0(77)x^2+17x+70=0(78)x^2+20x+19=0(79)x^2-2x-168=0(80)x^2-13x+30=0(81)x^2-10x-119=0(82)x^2+16x-17=0(83)x^2-1x-20=0(84)x^2-2x-288=0(85)x^2-20x+64=0(86)x^2+22x+105=0(87)x^2+13x+12=0(89)x^2+26x+133=0(90)x^2-17x+16=0(91)x^2+3x-4=0(92)x^2-14x+48=0(93)x^2-12x-133=0(94)x^2+5x+4=0(95)x^2+6x-91=0(96)x^2+3x-4=0(97)x^2-13x+12=0(98)x^2+7x-44=0(99)x^2-6x-7=0 (100)x^2-9x-90=0 (101)x^2+17x+72=0 (102)x^2+13x-14=0 (103)x^2+9x-36=0 (104)x^2-9x-90=0 (105)x^2+14x+13=0 (106)x^2-16x+63=0 (107)x^2-15x+44=0 (108)x^2+2x-168=0 (109)x^2-6x-216=0(111)x^2+18x+32=0答案(1)(3x+1)^2=7解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= (±√7-1)/3(2)9x^2-24x+16=11解:9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= (±√11+4)/3 ∴原方程的解为x1=(√11+4)/3 x2=(-√11+4)/3(3) (x+3)(x-6)=-8解:(x+3)(x-6)=-8 化简整理得x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

(完整版)一元二次方程经典测试题(含答案)

(完整版)一元二次方程经典测试题(含答案)

一元二次方程测试题考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共12小题,每题3分,共36分)1.方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣52.下列方程是一元二次方程的是( )A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为()A.﹣1 B.1 C.1或﹣1 D.34.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17 B.17(1﹣x)=12C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=175.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是( )A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x米,可列方程为()A.x(x+12)=210 B.x(x﹣12)=210C.2x+2(x+12)=210 D.2x+2(x﹣12)=2107.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是()A.有两个正根 B.有一正根一负根且正根的绝对值大C.有两个负根 D.有一正根一负根且负根的绝对值大8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1 B.或﹣1 C.D.﹣或19.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根 B.有两个负根C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=111.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7 B.11 C.12 D.1612.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,每题3分,共24分)13.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.14.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x 1•x2=1,则b a的值是.15.已知2x|m|﹣2+3=9是关于x的一元二次方程,则m= .16.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .17.已知关于x的一元二次方程(m﹣1)x2﹣3x+1=0有两个不相等的实数根,且关于x的不等式组的解集是x<﹣1,则所有符合条件的整数m的个数是.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.19.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为米.20.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△0(填:“>"或“=”或“<”).评卷人得分三.解答题(共8小题)21.(6分)解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)22.(6分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.23.(6分)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.24.(6分)关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)若x1x2+|x1|+|x2|=7,求k的值.25.(8分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.26.(8分)如图,为美化环境,某小区计划在一块长方形空地上修建一个面积为1500平方米的长方形草坪,并将草坪四周余下的空地修建成同样宽的通道,已知长方形空地的长为60米,宽为40米.(1)求通道的宽度;(2)晨光园艺公司承揽了该小区草坪的种植工程,计划种植“四季青”和“黑麦草”两种绿草,该公司种植“四季青”的单价是30元/平方米,超过50平方米后,每多出5平方米,所有“四季青”的种植单价可降低1元,但单价不低于20元/平方米,已知小区种植“四季青"的面积超过了50平方米,支付晨光园艺公司种植“四季青”的费用为2000元,求种植“四季青”的面积.27.(10分)某商店经销甲、乙两种商品,现有如下信息: 信息1:甲、乙两种商品的进货单价之和是3元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元; 信息3:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲乙两种商品各500件,经调查发现,甲种商品零售单价每降0。

一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案

一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

(完整版)一元二次方程经典习题及深度解析

(完整版)一元二次方程经典习题及深度解析

一元二次方程及解法经典习题及解析知识技能: 一、填空题:1.下列方程中是一元二次方程的序号是 .42=x ① 522=+y x ② ③01332=-+x x 052=x ④5232=+x x ⑤ 412=+x x⑥ x x x x x x 2)5(0143223-=+=+-。

⑧⑦ ◆答案:⑤④③①,,,◆解析:判断一个方程是否是一元二次方程,要根据一元二次方程的定义,看是否同时符合条件 ①含有一个未知数;②未知数的最高次数是③;2整式方程.若同时符合这三个条件的就是一元次方程,否则缺一不可.其中方程②含两个未知数,不符合条件①;方程⑥不是整式方程,lil 不符合条件③;方程⑦中未知数的最高次数是3次,不符合条件②;方程⑧经过整理后;次项消掉,也不符合条件②. 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a◆答案:5-=/◆解析:方程12)5(2=-+ax x a 既然是一元二次方程,必符合一元二次方程的定义,所以未知数 的最高次数是2,因此,二次项系数,05=/+a 故.5-=/a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程.◆答案:2±◆解析:方程05)3()4(22=+-+-x k x k 不是关于2的一元二次方程,则二次项系数.042=-k 故.2±=k4.解一元二次方程的一般方法有 , , , ·◆答案:直接开平方法;配方法;公式法;因式分解法 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: .◆答案:◆解析:此题不可漏掉042≥-ac b 的条件.6.(2004·沈阳市)方程0322=--x x 的根是 .◆答案:3.1-◆解析:.4)1(,412,032222=-=+-=--x x x x x 所以.3,121=-=x x7.不解方程,判断一元二次方程022632=+--x x x 的根的情况是 .◆答案:有两个不相等的实数根◆解析:原方程化为,02)26(32=++-x x,04864348234)]26([422>-=-=⨯-+-=-ac b.‘.原方程有两个不相等的实数根.8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 .◆答案:425≤k ◆解析:‘..方程有实根,⋅≤∴≥-=-∴425,045422k k ac b 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根.◆答案:43≥◆解析:..‘方程0)2()12(22=-+++m x m x 有实数根.⋅≥∴≥-=-+-++=--+=-∴43,0152016164144)2(4)12(42.2222m m m m m m m m ac b 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 .◆答案:无实根 ◆解析:,)2(4)44(4162044)4)(1(4)2(422242422222+-=++-=---=++--=-k k k k k k k k k ac b∴<-∴>+∴≥,04,02,0222ac b k k 原方程无实根. 二、选择题:11.(2004·北京市海淀区)若a 的值使得1)2(422-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2◆答案:C◆解析:,341441)2(222++=-++=-+x x x x x a 的值使得,3,341)2(4222=∴++=-+=++a x x x a x x 故C 正确.12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( )3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D◆答案:C ◆解析:方程x x 332-=-化为.0332=-+x x 故.3.3.1-===c b a 故C 正确. 13.方程02=+x x 的解是( )x A .=土1 0.=x B 1,0.21-==x x C 1.=x D◆答案:C◆解析:运用因式分解法得,0)1(=+x x 故.1,021-==x x 故C 正确.14.(2006·广安市)关于X 的一元二次方程有两个不相等的实数根,则k 的取值范围是( )1.->k A 1.>k B 0.=/k C 1.->k D 且0=/k ◆答案:D◆解析:由题意知⎩⎨⎧>+=/.044,0k k 解得1->k 且.0=/k15.(2006·广州市)一元二次方程0322=--x x 的两个根分别为( )3,1.21==x x A 3,1.21-==x x B 3,1.21=-=x x C 3,1.21-=-=x x D◆答案:C16.解方程.251212;0)23(3)32(;0179;072222x x x x x x x =+=-+-=--=-④③②① 较简便的方法是( )A .依次为:开平方法、配方法、公式法、因式分解法B .依次为:因式分解法、公式法、配方法、直接开平方法①.C 用直接开平方法,②④用公式法,③用因式分解法 ①.D 用直接开平方法,②用公式法,③④用因式分解法 ◆答案:D17.(2004·云南省)用配方法解一元二次方程.0782=++x x 则方程可变形为( )9)4.(2=-x A 9)4.(2=+x B 16)8.(2=-x C 57)8.(2=+x D ◆答案:B18.一元二次方程012)1(2=---x x k 有两个不相等的实数根,则k 的取值范围是( )2.>k A 2.<k B 且1=/k 2.<k C 2.>k D 且1=/k◆答案:B◆解析:‘.‘方程有两个不相等的实根4)2(4,22--=-∴ac b(1,048)1()>-=-⨯-k k 2<∴k 且,1=/k 故B 正确.19.下列方程中有两个相等的实数根的方程是( )09124.2=++x x A 032.2=-+x x B 02.2=++x x C 072.2=-+x x D ◆答案:A◆解析:只有A 的判别式的值为零,故A 正确.20.(2004·大连市)一元二次方程0422=++x x 的根的情况是( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆答案:D◆解析:∴<-=⨯-=-,012442422ac b 方程没有实数根,故D 正确 21.下列命题正确的是( )x x A =22.。

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题一元二次方程的解法及经典练题方法一:直接开平方法(基于平方根的定义)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

即,如果x²=a,那么x=±√a。

注意,x可以是多项式。

一、使用直接开平方法解下列一元二次方程:1.4x²-1=22.(x-3)²=233.81(x-2)²=1644.(x+1)²/4=255.(2x+1)²=(x-1)²6.(5-2x)²=9(x+3)²7.2(x-4)²/3-6=0.方法二:配方法解一元二次方程1.定义:把一个一元二次方程的左边配成一个平方,右边为一个常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2.配方法解一元二次方程的步骤:1)将方程移项,使等式左边为完全平方,右边为常数。

2)将等式左右两边开平方。

3)解出方程的根。

二、使用配方法解下列一元二次方程:1.y²-6y-6=02.3x²-2=4x3.3x²-4x=94.x²-4x-5=05.2x²+3x-1=06.3x²+2x-7=0方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法。

2.公式的推导:使用配方法解方程ax²+bx+c=0(a≠0),解得x=[-b±√(b²-4ac)]/(2a)。

3.由上可知,一元二次方程ax²+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因为1)当b²-4ac>0时,方程有两个实数根,x₁=[-b+√(b²-4ac)]/(2a),x₂=[-b-√(b²-4ac)]/(2a)。

2)当b²-4ac=0时,方程有一个实数根,x₁=x₂=-b/(2a)。

初中数学浙教版八年级下册第2章 一元二次方程2.2 一元二次方程的解法-章节测试习题(49)

初中数学浙教版八年级下册第2章 一元二次方程2.2 一元二次方程的解法-章节测试习题(49)

章节测试题1.【答题】一元二次方程x2+2=0的根的情况为()A. 没有实根B. 有两个相等的实根C. 有两个不等的实根D. 有两个实根【答案】A【分析】先求出△的值,再进行判断即可得出答案.【解答】解:一元二次方程x2+2=0中,△=0-4×1×2<0,故原方程没有实数根.选A.2.【答题】关于x的一元二次方程x2-(m+3)x+3m=0的根的情况一定是()A. 有实数根B. 有两个相等的实数根C. 有两个不等的实数根D. 无实数根【答案】A【分析】计算判别式的值,利用配方法得到△=(m-3)2≥0,然后根据判别式的意义对各选项进行判断.【解答】解:∵△=(m+3)2-4×3m=m2+6m+9-12m=m2-6m+9=(m-3)2≥0,∴方程有两个实数根.选A.3.【答题】已知关于x的方程x2+mx+1=0根的判别式的值为5,则m=()A. ±3B. 3C. 1D. ±1【答案】A【分析】根据根的判别式得出方程m2-4×1×1=5,求出方程的解即可.【解答】解:∵关于x的方程x2+mx+1=0根的判别式的值为5,∴m2-4×1×1=5,解得:m=±3,选A.4.【答题】m,b,n为常数,且(m-n)2>m2+n2,关于x的方程mx2+bx+n=0根的情况是()A. 有两个相等的实数根B. 有一根为0C. 无实数根D. 有两个不相等的实数根【答案】D【分析】利用(m-n)2>m2+n2得到m≠0,mn<0,则可判断△=b2-4mn>0,然后根据判别式的意义对各选项进行判断.【解答】解:∵(m-n)2>m2+n2,∴-2mn>0,即mn<0,∴m≠0,∴△=b2-4mn>0,∴方程有两个不相等的实数根,.选D.5.【答题】下列方程中,没有实数根的是()A. x2-6x+9=0B. x2-2x+3=0C. x2-x=0D. (x+2)(x-1)=0【答案】B【分析】分别进行判别式的值,再利用判别式的意义对A、B、C进行判断;利用因式分解法解方程可对D进行判断.【解答】解:A、△=(-6)2-4×9=0,∴方程有两个相等的实数解,∴A选项错误;B、△=(-2)2-4×3<0,∴方程没有实数解,∴B选项正确;C、△=(-1)2-4×0>0,∴方程有两个不相等的实数解,∴C选项错误;D、方程两个的实数解为x1=-2,x2=1,∴D选项错误.选B.6.【答题】关于x的一元二次方程x2+x+3=0的根的情况是()A. 有两个不相等的实数根B. 没有实数根C. 有两个实数根D. 有两个相等的实数根【答案】B【分析】根据方程的系数结合根的判别式,可得出△=-11<0,进而可得出该方程没有实数根.【解答】解:a=1,b=1,c=3,∵△=b2-4ac=12-4×1×3=-11<0,∴关于x的一元二次方程x2+x+3=0没有实数根.选B.7.【答题】一元二次方程x2+3=2x的根的情况为()A. 没有实数根B. 有两个相等的实数根C. 有一个实数根D. 有两个不相等的实数根【答案】A【分析】二次方程根的判别.【解答】∵方程化为一般式得x2-2x+3=0,∴△=(-2)2-4×1×3=-8<0,∴方程没有实数根.故答案为:A.8.【答题】下列关于x的方程有实数根的是()A. x2-x+1=0B. x2+x+1=0C. x2-x-1=0D. (x-1)2+1=0【答案】C【分析】由于一元二次方程的判别式△=b2-4ac,首先逐一求出△的值,然后根据其正负情况即可判定选择项.【解答】解:A、△=b2-4ac=1-4=-3<0,此方程没有实数根;B、△=b2-4ac=1-4=-3<0,此方程没有实数根;C、△=b2-4ac=1+4=5>0,此方程有两个不相等的实数根;D、△=b2-4ac=4-8=-4<0,此方程没有实数根.选C.9.【答题】定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为"和谐"方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0那么我们称这个方程为"美好"方程,如果一个一元二次方程既是"和谐"方程又是"美好"方程,则下列结论正确的是()A. 方有两个相等的实数根B. 方程有一根等于0C. 方程两根之和等于0D. 方程两根之积等于0【答案】C【分析】根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=-1,再判断即可.【解答】解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=-1代入方程ax2+bx+c=0得出a-b+c=0,∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=-1,∴1+(-1)=0,即只有选项C正确;选项A、B、D都错误;选C.10.【答题】下列方程中,无实数根的是()A. 3x2-2x+1=0B. x2-x-2=0C. (x-2)2=0D. (x-2)2=10【答案】A【分析】利用根的判别式进行判断,△<0无实根.【解答】解:A.∵△=(-2)2-4×3×1=-8<0,∴方程3x2-2x+1=0无解,故A符合题意;B. ∵△=(-1)2-4×1×(-2)=9>0,∴方程x2-x-2=0有两个不相等的实数根,故B不符合题意;C. ∵(x-2)2=0,∴x1=x2=2,故C不符合题意;D. ∵(x-2)2=10,∴x-2=±,∴x1=2+,x2=2-,故D不符合题意.故答案为:A.11.【答题】下列一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0B. x2=xC. x2+3=2xD. (x-1)2+1=0【答案】B【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=xx2-x=0△=(-1)2-4×1×0=1>0两个不相等实数根;C、x2+3=2xx2-2x+3=0△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0(x-1)2=-1,则方程无实根;选B.12.【答题】方程3x2-7x-2=0的根的情况是()A. 方程没有实数根B. 方程有两个不相等的实数根C. 方程有两个相等的实数很D. 不确定【答案】B【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:由根的判别式△=b2-4ac=(-7)2-4×3×(-2)=49+24=73>0,∴方程有两个不相等的实数根.选B.13.【答题】关于一元二次方程x2-2x-1=0根的情况,下列说法正确的是()A. 有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根【答案】C【分析】根据根的判别式,可得答案.【解答】解:a=1,b=-2,c=-1,△=b2-4ac=(-2)2-4×1×(-1)=8>0,一元二次方程x2-2x-1=0有两个不相等的实数根,选C.14.【答题】一元二次方程(x+1)(x-3)=2x-5根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【分析】直接整理原方程,进而解方程得出x的值.【解答】解:(x+1)(x-3)=2x-5整理得:x2-2x-3=2x-5,则x2-4x+2=0,(x-2)2=2,解得:x1=2+>3,x2=2-,故有两个正根,且有一根大于3.选D.15.【答题】已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 可能有且只有一个实数根D. 没有实数根【答案】D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而△=(2c)2-4(a+b)(a+b)=4c2-4(a+b)2,根据三角形的三边关系即可判断.【解答】解:△=(2c)2-4(a+b)(a+b)=4c2-4(a+b)2=4(c+a+b)(c-a-b).∵a,b,c分别是三角形的三边,∴a+b>c.∴c+a+b>0,c-a-b<0,∴△<0,∴方程没有实数根.选D.16.【答题】下列方程中,没有实数根的是()A. x2-2x=0B. x2-2x-1=0C. x2-2x+1=0D. x2-2x+2=0【答案】D【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(-2)2-4×1×0=4>0,方程有两个不相等的实数根,∴A选项错误;B、△=(-2)2-4×1×(-1)=8>0,方程有两个不相等的实数根,∴B选项错误;C、△=(-2)2-4×1×1=0,方程有两个相等的实数根,∴C选项错误;D、△=(-2)2-4×1×2=-4<0,方程没有实数根,∴D选项正确.选D.17.【答题】方程x2-4x-m2=0根的情况是()A. 一定有两不等实数根B. 一定有两实数根C. 一定有两相等实数根D. 一定无实数根【答案】A【分析】先计算判别式得到△=4m2+16,再根据非负数的性质得到△>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意得△=(-4)2-4×1×(-m2)=4m2+16,∵4m2+16≥0,∴4m2+16>0,即△>0,∴方程有两个不相等的实数根.18.【答题】下列一元二次方程中,有两个相等实数根的方程是()A. (x-1)2=0B. x2+2x-19=0C. x2+4=0D. x2+x+1=0【答案】A【分析】通过解方程或根据方程的系数结合根的判别式,找出四个选项中△的值,再结合"当△=0时,方程有两个相等的实数根"即可得出结论.【解答】解:A、解该方程得到x1=x2=1,即该方程有两个相等的实数根,A符合题意;B、∵△=22-4×1×(-19)=80>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=02-4×1×4=-16<0,∴该方程无实数根,C不符合题意;D、∵△=12-4×1×1=-3<0,∴该方程无实数根,D不符合题意.19.【答题】关于x的一元二次方程x2+x+1=0的根的情况是()A. 两个不等的实数根B. 两个相等的实数根C. 没有实数根D. 无法确定【答案】C【分析】计算方程根的判别式即可求得答案.【解答】解:∵x2+x+1=0,∴△=12-4×1×1=-3<0,∴该方程无实数根,选C.20.【答题】若关于x的一元二次方程x2-2x+m=0没有实数根,则实数m的取值是()A. m<1B. m>-1C. m>1D. m<-1【答案】C【分析】方程没有实数根,则△<0,建立关于m的不等式,求出m的取值范围.【解答】解:由题意知,△=4-4m<0,∴m>1选C.。

九年级数学解一元二次方程专项练习题【40道】

九年级数学解一元二次方程专项练习题【40道】

解一元二次方程专项练习题(带答案)1、用配方法解以下方程:( 1)x2+12 x+25=0(2)x2+4x=10( 3)x2-6x=11(4)x 2-2x-4=02、用配方法解以下方程:( 1)6x 2- 7x+1=0(2)5x2-18=9x( 3)4x 2- 3x=52(4)5x2=4-2x3、用公式法解以下方程:( 1)2x 2-9x+8=0(2)9x 2+6x+1=0( 3)16x2+8x=3(4)2x2-4x-1=04、运用公式法解以下方程:(1)5x2+2x-1=0(2)x 2+ 6x+9=7( 3)5x+ 2=3x 2(4)( x- 2)(3x-5)=15、用分解因式法解以下方程:( 1)9x2+6x+1=0(2)3x( x-1)=2-2x( 3)(2x+3)2=4(2 x+3)(4)2(x-3)2=x2-96、用适合方法解以下方程:(1)(3 x)2x25(2)x2 2 3x 30 ( 3)(3x 11)( x 2) 2 ;(4) x(x 1) 1 ( x 1)( x 2)3 4 7、解以下对于x 的方程:(1)x2+2x-2=0(2) 3x2+4x-7=(3) ( x+3)( x-1)=522 x=0 ( 4) ( x-2 ) +48、解以下方程( 12 分)( 1)用开平方法解方程:( x 1)2 4 (2)用配方法解方程:x2— 4x+1=0( 3)用公式法解方程:3x2+5(2 x+1)=0(4)用因式分解法解方程:3( x-5) 2=2(5- x)9、用适合方法解以下方程:( 1)x( x-14)=0(2)x2+12x+27=0( 3)x2=x+56(4)x(5x+4)=5x+4( 5)4x2-45=31x(6)-3x2+22 x-24=0( 7)( x+8)( x+1)=-12(8)(3x+2)( x+3)=x+14解一元二次方程专项练习题答案1、【答案】( 1)-6 11 ;(2)-2 14 ;(3)3 2 5 ;(4)15 2、【答案】( 1)x1=1,x2=1(2)x1=3,x2=-6 6 5( 3)x1=4,x2=-13(4)x=-121 4 53、【答案】() x=917 ()x1=x 2=-11 42 3( 3)x1=1,x2=-3( 4)x=26 4 4 24、【答案】(1)x1= 16, x2 1 6 (2). x1=-3+7, x2=-3-7 5 5( 3)x=2,x=-1( 4)x=11131 2 3 6 5、【答案】( 1)x1=x2=-1(2)x1=1,x2=-23 3( 3)x1=-3,x2=1(4)x1=3,x2=9 2 26、【答案】(1)x1=1,x2=2 ( 2)x1=x2=- 3( 3) x 15, x 2 4;( 4) x 1 2, x 2337、【答案】(1) x =- 1± 3 ;(2)x =1, x =-7123(3) x 1=2, x 2=- 4;(4)=x 2=-28、【答案】解:( 1) x 1 3, x 21( 2) x 1 23, x 2 235 105 10( 4) x 1 5, x 213 ( 3) x 13, x 23。

人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)

人教版初三上学期数学一元二次方程及解法练习题(附答案)人教版初三上学期数学一元二次方程及解法练题(附答案)综合练:1.观察下列方程:①x²=1 ②3x²=1-x ③x(x-1)=x-1 ④x²-(x-3)²=9,其中是一元二次方程的是哪些。

2.把方程(x-2)(x+3)=5化为一元二次方程一般形式,其中二次项系数为,一次项系数为,常数项为。

3.关于x的方程(m+2)x-(2m-1)x-3=0,当时,它是一元二次方程还是一元一次方程。

能力提升:1.关于x的方程(n-1)x-(2n+1)x-3=0,当n=时,它是一元二次方程。

2.解一元二次方程:(1)x²+2x+1=4 (2)x²+2x-3=0配方法步骤:举例说明。

题组训练:1、把下列方程化为(x+ m)²=n(m,n是常数,n≥0)的形式:(1)x²+2x=48;(2)x²-4x=12;(3)x²-6x+6=0;(4)x²+x-5=4.2、完成下列填空:x²+4x+4=(__+__)²16x²+__x+1=(__+__)²9x²-__x+25=(___+__)²3、用配方法解方程:1)x²-10x-11=04)x²-4x=12;7)x²-4x-5=010)2y²+y-6=0x²-8x+___=(__—__)²4x²+__x+25=(___+__)²x²+10x+___=(__+__)²x²-5x+___=(__—__)²9x²-__x+1=(__-__)²2)x²-6x+4=0 (3)x²+4x-16=05)x²-6x=7 (6)x²+8x+2=08)x²+5x+2=0 (9)3x²+2x-5=011)3x²+8x-3=0 (12)-2x²=5x-3.一元一次方程及解法求根公式推导过程:(和应用求根公式的步骤)根的判别式与根的关系:我们可以使用根的判别式来判断方程的根的情况,然后再求解。

专题21.4一元二次方程的解法(精选精练100题)(专项练习)1「含答案」

专题21.4一元二次方程的解法(精选精练100题)(专项练习)1「含答案」

专题21.4 一元二次方程的解法(精选精练100题)(专项练习)【题型目录】1、直接开平方法解一元二次方程(1-20题);2、配方法解一元二次方程(21-40题);3、公式法解一元二次方程(41-60题);4、因式分解法解一元二次方程(61-80题);5、换元法解一元二次方程(81-90题);6、解可化以一元二次方程的分式方程(91-100题).四、因式分解法解一元二次方程1.用因式分解法解方程:(1)2411x x =;(2)()2224x x -=-2.用因式分解法解下列方程:(1)()()()262x x x --=-;(2)()()22167920x x --+=.3.用因式分解法解下列方程:(1)()()120x x +-=;(2)()()3521127x x x --=-+.4.用因式分解法解下列方程:(1)269x x -=-;(2)224(3)25(2)0x x ---=.5.用因式分解法解下列方程:(1)250x x +=;(2)(5)(6)5x x x --=-.6.用因式分解法的方法解下列方程:(1)22150x x --= ;(2)2326x x (+)=+7.因式分解法解方程:(1)()()23525x x -=-;(2)()()22200abx a b x ab ab -++=¹;8.用因式分解法解下列方程:(1)()2236x x +=+;(2)231212x x +=;(3)()223240x x +-=;(4)()()()521123x x x -=-+.9.用因式分解法解下列一元二次方程:(1)21502x x -=;(2)()()23727x x -=-;(3)()22210x x +-=.10.用因式分解法解下列方程:(1))23x x =;(2)()()221210x x x ---=.11.用因式分解法解下列方程.(1)2560x x --=(2)3(2)2(2)x x x -=-12.用因式分解法解下列方程:(1)()2218x x -=-;(2)()()2222x x x -=-;(3)23x -=-.13.用因式分解法解下列方程:(1)2350y y -=;(2)2412x x =;(3)296x x +=-;(4)229(1)x x =-.14.用因式分解法解下列方程.(1)()()222320x x ---=;(2)()2211t t -+=.15.用因式分解法解下列方程:(1)()2212x x -=;(2)()()222310y y +--=.16.用因式分解法解下列方程:(1)(2)(4)0x x +-=; (2)4(21)3(21)x x x +=+.17.用因式分解法解下列方程:(1)(2)(23)6x x --=;(2)()44x x -=-.18.用因式分解法解方程:(1)3x (2x +1)=2(2x +1);(2)22(3)(52)x x -=-.19.用因式分解法解方程.(1)22437365x x x x +-=--(2)()233x x x -=-20.用因式分解法解一元二次方程(1)()()41570x x +-=;(2)2(23)4(23)x x +=+.五、换元法解一元二次方程21.()()233320y y -+-+=.22.解方程:2231712x x x x -+=-.23.若实数x ,y 满足2222()(2)3x y x y ++-=,求22x y +的值.24.解方程:226212x x x x--=-.25.解方程()225160x --=.26.如果2222()(2)3x y x y ++-=,请你求出22xy +的值.27.阅读下面的例题,回答问题:例:解方程:220x x --=令y x =,原方程化成220y y --=解得122,1y y ==-(不合题意,舍去) 2,2x x \=\=±\ 原方程的解是122,2x x ==-.请模仿上面的方法解方程:()21160x x ----=28.阅读下列材料:为解方程4260x x --=可将方程变形为()22260x x --=然后设2x y =,则()222x y =.例:4260x x --=,解:令2x y =,原方程化为260y y --=,解得12y =-,23y =,当12y =-时,22x =-(无意义,舍去)当23y =时,23x =,解得x =\原方程的解为1x =2x =.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即:换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)()()22225260x x x x ----=;(2)()23511x x ++-=.29.阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如: 解方程:2–320x x +=.解:设x t =,则原方程可化为:2–320t t +=.解得:1212t t ==,.当1t =时,1x =,∴1x =±;当2t =时,2x =,∴2x =±.∴原方程的解是:12341122x x x x ==-==-,,,.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:220x x -=;(2)解方程:42–1090x x +=.(3)解方程:221211x x x x +-=+.30.换元法是数学中的一种解题方法.若我们把其中某些部分看成一个整体,用一个新字母代替(即换元),则能使复杂的问题简单化.如:解二元一次方程组2()3()22()3x y x y x y x y ++-=-ìí+--=î,按常规思路解方程组计算量较大.可设x y a +=,x y b -=,那么方程组可化为23223a b a b +=-ìí-=î,从而将方程组简单化,解出a 和b 的值后,再利用x y a +=,x y b -=解出x 和y 的值即可.用上面的思想方法解方程:(1)222432x x x x ++=+;(2)2250x x ++-=六、解可化以一元二次方程的分式方程31.解分式方程:2216111x x x +-=--.32.解分式方程:221226x x x x+++=.33.解分式方程:11133x x +=+-34.解分式方程:()2218111x x x --=+-35.解分式方程:241142x x +=--.36.解分式方程:224124x x x -=-+-37.解分式方程21211x x x -=++38.解分式方程:252112x x x+-=3.39.解分式方程:2164122x x x x +=--40.解分式方程:2212111x x x -+=--1.(1)10x =,2114x =(2)12x =,24x =【分析】本题考查了因式分解法解一元二次方程,掌握因式分解的方法是解题的关键;(1)先移项然后提公因式,根据因式分解法解一元二次方程;(2)先移项然后提公因式,根据因式分解法解一元二次方程,即可求解.【详解】(1)解:移项,得:24110x x -=,因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =.(2)移项,得()22240x x --+=,即()()22220x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=,于是,得20x -=或40x -=,∴12x =,24x =.2.(1)12x =,27x =(2)1227x =,234x =【详解】(1)方程左右两边都有因式()2x -,先移项,然后利用提公因式法将等式的左边因式分解;(2)直接利用平方差公式将方程的左边因式分解.(1)移项,得()()()2620x x x ----=,∴()()2610x x ---=,即()()270x x --=,∴20x -=或70x -=,∴12x =,27x =.(2)因式分解,得()()42836428360x x x x -++---=.化简,得()()072234x x --=,∴7220x -=或340x -=,∴1227x =,234x =.3.(1)11x =-,22x =(2)112x =-,223x =【详解】解:(1)()()120x x +-=Q ,10x \+=或20x -=,11x \=-,22x =.(2)原方程可化为2620x x --=,()()21320x x \+-=,210x \+=或320x -=,112x \=-,223x =.4.(1)123x x ==(2)12164,73x x ==【分析】(1)先移项,然后利用完全平方公式因式分解求解;(2)先移项,然后直接开平方即可解答此方程.【详解】(1)解:269x x -=-2690x x -+=()230x -=解得:123x x ==;(2)解:224(3)25(2)0x x ---=[][]220()5232()x x --=-,[][]2(3)5(2)2(3)5(2)0x x x x -+----=,()5()0232x x --+=或()5()0232x x ---=,解得12164,73x x ==.【点睛】本题考查解一元二次方程,解题的关键是明确方程的特点,选择合适的方法解方程.5.(1)10x =,25x =-(2)15=x ,27x =【分析】(1)直接用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】(1)∵250x x +=∴()50x x +=∴0x =或50x +=∴10x =,25x =-(2)∵(5)(6)5x x x --=-∴()(5)(6)50x x x ----=∴(5)(61)0x x ---=∴50x -=或610x --=∴15=x ,27x =【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解答本题的关键.6.(1)15x =,23x -=;(2)13x -=,21x -=【分析】(1)直接利用因式分解法求解即可;(2)先移项,再利用因式分解法求解即可.【详解】(1)解:22150x x --= ,(x ﹣5)(x +3)=0,则x ﹣5=0或x +3=0,∴15x =,23x -=;(2)解:2326x x ++()=,2323x x ++()=(),移项,得23230x x ++()﹣()=,则(x +3)(x +1)=0,∴x +3=0或x +1=0,∴1231x x --=,=.【点睛】本题考查了因式分解法求解一元二次方程,熟练进行因式分解是解题的关键.7.(1)121353x x ==,(2)12b a x x a b==【分析】(1)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;【详解】(1)解:()()23525x x -=-方程变形为:()()23525x x -+-=0,∴()()50532x x éù+ë-=û-,∴()()53130x x --=,∴12135,3x x ==;(2)解:()()22200abx a b x ab ab -++=¹()()0ax b bx a --=,∵0ab ¹,∴0,0a b ¹¹,∴12,ba x x a b==【点睛】本题考查的知识点是解一元二次方程,掌握用因式分解法解一元二次方程是解此题的关键.12(2)122x x ==(3)12x =-,225x =-(4)112x =,28x =-【分析】利用因式分解法解一元二次方程即可.【详解】(1)原方程可变形为()()2230x x ++-=,即()()210x x +-=,所以20x +=或10x -=,即12x =-,21x =.(2)原方程可变形为2440x x -+=,即()220x -=,所以122x x ==.(3)原方程可变形为()()3223220x x x x +-++=,即()()2520x x ++=,所以20x +=或520x +=,即12x =-,225x =-.(4)原方程可变形为()()21530x x -++=,即()()2180x x -+=,210x -=或80+=x ,∴112x =,28x =-.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握适合因式分解法解一元二次方程——把方程的右边化为0,左边能通过因式分解化为两个一次因式的积的形式的方程是解题的关键.12(2)17x =,2193x =(3)113x =-,21x =-【分析】(1)利用提公因式法进行因式分解,求解即可;(2)通过移项,提公因式法进行因式分解,求解即可;(3)利用平方差公式,进行因式分解,求解即可.【详解】(1)解:21502x x -=因式分解,得1502x x æö-=ç÷èø.于是0x =,1502x -=,解得10x =,210x =;(2)()()23727x x -=-移项,得()()237270x x ---=,因式分解,得()()73720x x --+=éùëû,于是70x -=,3190x -=,解得17x =,2193x =;(3)()22210x x +-=因式分解,得()()21210x x x x éùéù+++-=ëûëû,于是310x +=,10x +=,解得113x =-,21x =-.【点睛】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的有关方法.10.(1)120x x =,(2)12112x x ==,【分析】利用因式分解法解方程即可.【详解】(1)解:∵)23x x =,∴)230x x -=,∴)310x x éù-=ëû,∴)310x -=或0x =,解得120x x ==,;(2)解:∵()()221210x x x ---=,∴()()21210x x x ---=,即()()1210x x --=,∴10x -=或210x -=,解得12112x x ==,.【点睛】本题主要考查了解一元二次方程,熟知因式分解法解一元二次方程的步骤是解题的关键.11.(1)18x =,27x =-(2)12x =,223x =【分析】(1)首先把方程变形可得(8)(7)0x x -+=,进而得到两个一元一次方程,然后分别求出x 的值即可;(2)首先对方程进行整理,得出3(2)2(2)0x x x ---=,再因式分解可得(2)(32)0x x --=,然后得出两个一元一次方程,求解即可得出答案.【详解】(1)2560x x --=,(8)(7)0x x \-+=,80x \-=或70x +=,18x \=;27x =-;(2)3(2)2(2)x x x -=-,移项,得3(2)2(2)0x x x ---=,(2)(32)0x x \--=,20x \-=或320x -=,12x \=;223x =.【点睛】本题考查用因式分解法解一元二次方程,熟练掌握用因式分解法解一元二次方程的方法和步骤是解题关键.12.(1)1212x x ==-(2)12x =,22x =-(3)12x x ==【分析】(1)先移项,再把括号展开进行因式分解,即可求解;(2)先移项,再提取公因式()2x -进行因式分解,即可求解;(3)先移项,再用完全平方公式进行因式分解,即可求解.【详解】(1)解:()22180x x +-=,241840x x x -+=+,24410x x ++=,()2210x +=,210x +=,21x =-,1212x x ==-.(2)解:()()22220x x x ---=,()()2220x x x ---=,()()220x x ---=,20x -=或20x --=,12x =,22x =-.(3)解:230x -+=,(20x =,0x =,12x x ==【点睛】本题主要考查了用因式分解法求解二元一次方程,解题的关键是熟练掌握因式分解的方法.13.(1)1250,3y y ==(2)120,3x x ==(3)123x x ==-(4)1211,42x x ==-【分析】(1)根据题意,利用因式分解法解一元二次方程;(2)根据题意,利用因式分解法解一元二次方程;(3)根据题意,利用因式分解法解一元二次方程;(4)根据题意,利用因式分解法解一元二次方程即可求解.【详解】(1)解:2350y y -=,()350y y -=,解得:1250,3y y ==;(2)解:2412x x =,24120x x -=,()430x x -=,解得:120,3x x ==;(3)解:296x x+=-2690x x ++=即()230x +=,解得:123x x ==-;(4)解:229(1)x x =-,()22910x x --=,即()()22310x x --=,∴()()31310x x x x +--+=,即()()41210x x -+=,解得:1211,42x x ==-.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.14.(1)125,13x x ==(2)1211,2t t ==【分析】(1)利用因式分解法解答,即可求解;(2)利用因式分解法解答,即可求解.【详解】(1)解:()()222320x x ---=,∴()()()()2322320x x x x -+--éùé-ùëûëû-=,∴()()3510x x --=,∴350x -=或10x -=,∴125,13x x ==.(2)解:()2211t t -+=∴()22110t t -+-=,∴()()1210t t --=,∴1211,2t t ==.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.123(2)1213,42y y =-=【分析】(1)根据因式分解法解一元二次方程;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:移项,得()22120x x --=,因式分解,得()()12120x x x x -+--=,得10,130x x -=-=或,解得:1211,3x x ==;(2)解:因式分解,得()()2312310y y x y ++-+-+=,合并同类项,得()()41230y y +-+=,得410230y y +=-+=或,解得:1213,42y y =-=.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.16.(1)12=2,=4x x -;(2)1213,24x x =-=.【分析】运用因式分解法解一元二次方程即可.【详解】解:(1)∵(2)(4)0x x +-=;∴20x +=,40x -=,∴12x =-,24x =;(2)4(21)3(21)x x x +=+,4(21)3(21)0x x x +-+=,(21)(43)0x x +-=,∴210x +=或430x -=,∴112x =-,234x =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解的方法是解本题的关键.122(2)122x x ==【分析】(1)先化为一般形式,再利用因式分解法解一元二次方程;(2)先化为一般形式,再利用因式分解法解一元二次方程即可求解.【详解】(1)解:(2)(23)6x x --=,223466x x x --+=,即2270x x -=,∴()270x x -=,解得:12720,x x ==;(2)解:()44x x -=-,即2440x x -+=,()220x -=,解得:122x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.18.(1)1x =-12,2x =23;(2)1x =2,2x =83.【分析】(1)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值;(2)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值.【详解】(1)解:∵3x (2x +1)-2(2x +1)=0,∴(2x +1)(3x -2)=0,∴2x +1=0或3x -2=0,解得1x =-12,2x =23;(2)解:∵22(3)(52)x x -=-,∴22(3)(5)02x x --=-,∴(352)(3520)x x x x +---+=-,即(2)(308)x x --=,∴2-x =0或3x -8=0,解得1x =2,2x =83.【点睛】本题考查解一元二次方程-因式分解法,解题的关键是掌握因式分解法解一元二次方程的一般步骤.19.(1)113x =-,213x =(2)112x =,23x =【分析】(1)先将原方程化成一般式,然后再因式分解法求解即可;(2)先将原方程化成一般式,然后再因式分解法求解即可.【详解】(1)解:22437365x x x x +-=--2910x -=(3x +1)(3x -1)=03x +1=0,3x -1=0113x =-,213x =.(2)解:()233x x x -=-2263x x x -=-22730x x -+=(2x -1)(x -3)=02x -1=0,x -3=0112x =,23x =.【点睛】本题主要考查了解一元二次方程,掌握运用因式分解法解一元二次方程是解答本题的关键.20.(1)114x =-,275x =(2)132x =-,212x =【分析】(1)将一元二次方程化为两个一元一次方程即可;(2)将一元二次方程化为两个一元一次方程即可.【详解】(1)解:()()41570x x +-=;410x +=,570x -=,解得:114x =-,275x =(2)解:()()223423x x +=+,()()2234230x x +-+=,()()232340x x ++-=;()230x +=,()2340x +-=解得:132x =-,212x =.【点睛】本题考查因式分解法解一元二次方程,解题关键是将它化为两个一元一次方程.21.2y =或1y =【分析】本题考查了解一元二次方程的方法,将()3y -看作一个整体,设3y t -=,利用因式分解法求得t 的值,进而即可求得y .【详解】解:设3y t -=,则原方程即2320t t ++=,∴()()120t t ++=,∴10t +=或20t +=,解得1t =-或2t =-,∴31y -=-或32y -=-,解得,2y =或1y =.22.1234111,22x x x x =+==-=【分析】本题考查了换元法解可以化为一元二次方程的分式方程等知识.设21x y x =-,原方程变为1732y y +=,解得12y =或23y =.再分别代入21x y x =-,求出1x =或12x =-或2x =,代入最简公分母进行检验即可求解.【详解】解:设21x y x =-,则211x x y-=,原方程变为1732y y +=,去分母得:26720y y -+=,解得12y =或23y =.当2112x x =-时,去分母得:2210x x --=,解得:1x =当2213x x =-时,去分母得:22320x x --=,解得:12x =-或2x =,检验:当1x =()()2110x x x +-¹,当12x =-或2x =时,()()2110x x x +-¹,∴分式方程的解为1234111,22x x x x ===-=.23.223x y +=.【分析】本题主要考查用换元法解一元二次方程,解答本题的关键在于,掌握整体代换思想方法的应用,将22x y +看成一个整体t ,转换成一个关于t 的一元二次方程求解即可.【详解】解:令22x y t +=,则,原方程变为,()23t t -=,即,2230t t --=,()()310t t -+=解得:13t =,21t =-;又220x y +³Q ,∴223x y +=.24.123,1x x ==-【分析】本题考查用换元法解分式方程的能力,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.可根据方程特点设22y x x =-,则原方程可化为260y y --=,解一元二次方程求y ,再求x .【详解】设22y x x =-,则原方程化为61y y-=\260y y --=,即()()320y y -+=,解得12y =-,23y =.当12y =-时,222x x -=-,该方程无解,当23y =时,223x x -=.解得13x =,21x =-,检验:当13x =时,原方程左边69632196=--=-==-右边,当21x =-时,原方程左边61232112=+-=-==+右边,∴13x =,21x =-都是原方程的根,∴原方程的根是13x =,21x =-.25.13x =,23x =-,31x =,41x =-【分析】设25y x =-,求出y 后,可得关于x 的方程,再解方程即可.【详解】设25y x =-,原方程化为2160y -=,解得14y =,24y =-,当14y =时,254x -=,29x =,则13x =,23x =-;当24y =-时,254x -=-,21x =,则31x =,41x =-,所以原方程的解为13x =,23x =-,31x =,41x =-.【点睛】本题考查了换元法和直接开平方法解方程,掌握求解的方法是关键.26.22x y +的值为3【分析】设22x z y +=,然后用因式分解法求解即可,求解时注意220x y +>.【详解】设22x z y +=,∴(2)3z z -=.整理得:2230z z --=,∴(3)(1)0z z -+=.∴121,3z z ==-.∵220z x y =+>,∴1z =- (不合题意,舍去)∴3z =.即22x y +的值为3.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.27.1224x x =-=,【分析】本题主要考查了换元法解一元二次方程,令1m x =-,则原方程化为260m m --=,解方程得到3m =,则1=3x -,据此求解即可.【详解】解:令1m x =-,则原方程化为260m m --=,∴()()320m m -+=,解得3m =或2m =-(不合题意,舍去),∴1=3x -,∴13x -=±,解得1224x x =-=,.28.(1)11x =,21x =,341x x ==(2)10x =、25x =-【分析】本题考查了换元法解一元二次方程;(1)令22x x y -=,原方程化为2560y y --=,进而得出226x x -=,221x x -=-,解方程,即可求解;(2y =,原方程化为2321y y -=,解得113y =-,21y =,进而分别解一元二次方程,即可求解.【详解】(1)解:令22x x y -=,原方程化为2560y y --=,解得16y =,21y =-.当16y =时,226x x -=,解得1x =.当21y =-时,221x x -=-,解得1x =.\原方程的解为:11x =,21x =,341x x ==(2y =,原方程化为2321y y -=,解得113y =-,21y =当113y =-13=-(无意义舍去)当21y =1=,解得10x =、25x =-.\原方程的解为10x =、25x =-.29.(1)1234022x x x x ====-,,;(2)12341133x x x x ==-==-,,,;(3)1x =和12x =-.【分析】本题考查了整体换元法,整体换元法是我们常用的一种解题方法,在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.(1)设x t =,则原方程可化为220t t -=,解方程求得t 的值,再求x 的值即可;(2)设2x a =,则原方程可化为2–1090a a +=,解方程求得a 的值,再求x 的值即可;(3)设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,解方程求得m 的值,再求x 的值,检验后即可求得分式方程的解.【详解】(1)解:设x t =,则原方程可化为:220t t -=.解得:1202t t ==,.当0=t 时,0x =,∴0x =;当2t =时,2x =,∴2x =±.∴原方程的解是:1234022x x x x ====-,,;(2)解:设2x a =,则原方程可化为2–1090a a +=,即()()190a a --=,解得:1a =或9a =,当1a =时,21x =,∴1x =±;当9a =时,29x =,∴3x =±;∴原方程的解是:12341133x x x x ==-==-,,,;(3)解:设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,∴()()120m m +-=,解得:1m =-或2m =,当1m =-时,211x x+=-,即210x x ++=,由141130D =-´´=-<知此时方程无解;当2m =时,212x x+=,即2210x x --=,解得:1x =或12x =-,经检验1x =和12x =-都是原分式方程的解.30.(1)1=1x -;2=2x ;31x =41x =(2)11x =-,21x =【分析】该题主要考查了换元思想解方程,一元二次方程的解答,分式方程的解答,解题的关键是运用换元法进行整体代换;(1)设2(0)2x t t x =¹+,将原方程化为2320t t -+=,解得2t =或1t =,再分别代入22x t x =+求解分式方程的解即可;(2()0t t =³,则有222x x t +=,将原方程化为:2450t t +-=,解得5t =-(舍)或1t =t =求解即可;【详解】(1)设2(0)2x t t x =¹+,\原方程化为23t t+=,\2320t t -+=,解得2t =或1t =,当1t =时,212x x =+,解得2x =或=1x -,经检验,=1x -或2x =是方程的解;当2t =时,222x x =+,解得1x =1x =-,经检验,1x =或1x =∴原方程的解为:1=1x -;2=2x ;31x =;41x =(2()0t t =³,则有222x x t +=,\原方程可化为:2450t t +-=,解得5t =-(舍)或1t =,1=,\2210x x +-=,解得11x =-或21x =-;经检验:11x =,21x =是原方程的解.31.4x =-【分析】本题主要考查了解分式方程,根据解分式方程的步骤求解即可,注意解分式方程最后要验根,熟练掌握分式方程的解法是解题的关键.【详解】解:2216111x x x +-=--方程左右同乘以21x -、去分母得:()()()221116x x x ++--=,去括号得:2222116x x x x +++-+=,移项、合并同类项得:2340x x +-=,因式分解得:()()410x x +-=,∴40x +=或10x -=,解得:14x =-,21x =,检验:14x =-,则211150x -=¹,故是原分式方程的根,21x =,则2210x -=,故是原分式方程的增根,∴原分式方程的解为4x =-.32.12x =-,22x =-,31x =【分析】本题考查了解分式方程和解一元二次方程,能把解分式方程转化成解一元二次方程是解此题的关键,注意:解分式方程一定要进行检验.原方程化为211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x +=,则原方程变形为2226a a +-=,求出a 的值,当4a =-时,方程为14x x+=-,求出方程的解,当2a =时,方程为12x x +=,求出方程的解,最后进行检验即可.【详解】解:原方程化为:211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x+=,则原方程化为:2226a a +-=,即2280a a +-=,解得:4a =-或2a =,当4a =-时,14x x+=-,整理得:2410x x ++=,Q 24411120D =-´´=>,x \=解得:12x =-,22x =-;当2a =时,12x x +=,整理得:2210x x -+=,()210x -=,解得:1x =,经检验12x =-,22x =-,31x =都是原方程的解,所以原方程的解是12x =-22x =-,31x =.33.12x x ==【分析】方程两边同乘以()()33x x +-可得一个关于x 的一元二次方程,再利用直接开平方法解一元二次方程即可得.【详解】解:11133x x +=+-,方程两边同乘以()()33x x +-,得()()3333x x x x +--+=+,去括号,得2933x x x --+=+,移项、合并同类项,得215x =,直接开平方,得12x x ==经检验,12x x ==【点睛】本题考查了解分式方程、解一元二次方程,熟练掌握解分式方程的方法是解题关键,需注意的是,分式方程的解要进行检验.34.5x =【分析】根据分式方程的解法步骤求解即可.【详解】解:去分母,得()222181x x --=-,去括号,得2224281x x x -+-=-移项、合并同类项,得2450x x --=,解得11x =-,25x =,经检验,5x =是方程的解.【点睛】本题考查解分式方程、解一元二次方程,熟练掌握分式方程的解法步骤是解答的关键.35.=1x -【分析】方程两边同时乘以()24x -,化为整式方程,解方程即可求解,最后要检验.【详解】解:241142x x +=--,方程两边同时乘以()24x -,得()2442x x +-=+,即220x x --=,()()210x x -+=,解得122,1x x ==-,检验:当2x =时,()24x -0=,当=1x -时,()240x -¹.∴=1x -是原方程的解.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键,注意要检验.36.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可.【详解】解:224124x x x -=-+-,两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.37.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可.【详解】解:21211x x x -=++化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1¹0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点睛】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.38.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18,检验:当x =56或18时,x (2x ﹣1)≠0.即原方程的解为:x 1=56,x 2=18.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键.39.83x =-【分析】将分式方程转化为整式方程,然后解整式方程,注意分式方程的结果要进行检验.【详解】解:整理,得:1641(2)2xx x x +=--,去分母,得:216(2)4x x x +-=,221624x x x +-=,232160x x +-=,(2)(38)0x x -+=,解得:12x =,283x =-,检验:当2x =时,(2)0x x -=,2x \=不是原分式方程的解,当83x =-时,(2)0x x -¹,83x \=-是原分式方程的解,\分式方程的解为83x =-.【点睛】本题考查解分式方程,解一元二次方程,掌握解分式方程和因式分解法解一元二次方程的步骤是解题关键,注意分式方程的结果要进行检验.40.2x =-【分析】先去分母化为整式方程求解,最后记得检验即可.【详解】解:原方程可化为()()2121111x x x x --=-+-去分母得()()()()211211x x x x -+-=+-,解得11x =,22x =-经检验11x =是增根,2x =-是原方程的解,\原方程的解为2x =-.故答案为2x =-.【点睛】本题考查了解分式方程,熟练掌握一般步骤是解题的关键,需要注意的是最后要记得检验是否为方程的根.。

(完整版)一元二次方程100道计算题练习(附答案)

(完整版)一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、(x 4)25(x 4) 2、(x 1)24x 3、(x 3)2(1 2x)24、2x210x 35、〔x+5〕2=166、2〔2x-1〕-x〔1-2x〕=07、x2=648、5x229、8〔3-x〕2–72=0-=0510、3x(x+2)=5(x+2) 11、〔1-3y〕2+2〔3y-1〕=0 12、x2+2x+3=013、x2+6x-5=0 14、x2-4x+3=0 15、x2-2x-1=016、2x2+3x+1=0 17、3x2+2x-1=0 18、5x2-3x+2=019、7x2-4x-3=0 20、-x2-x+12=0 21、x2-6x+9=022、(3x 2)2(2x 3)223、x2-2x-4=0 24 、x2-3=4x25、3x2+8x-3=0〔配方法〕26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3)2=x2-9 29、-3x2+22x-24=0 30、〔2x-1〕2+3〔2x-1〕+2=031、2x2-9x+8=0 32、3〔x-5〕2=x(5-x) 33 、(x+2)2=8x34、(x-2)2=(2x+3)235、7x22x036、4t24t12xx3038、6x231x350237、4x339、2x31210 40、2x223x 65 0一、用因式分解法解以下方程(x-2)2=(2x-3)2x24x03x(x1)3x3x2-2 3x+3=0 x 528x 5 16 0二、利用开平方法解以下方程(2y1)214〔x-3〕2=25(3x2)2245三、利用配方法解以下方程x252x203x26x120x27x100四、利用公式法解以下方程-3x2+22x-24=02x〔x-3〕=x-3.3x2+5(2x+1 )=0五、选用适当的方法解以下方程(x+1)2-3(x+1)+2=0(2x1)29(x3)2x22x302x(x 1)(x1)(x2 )314(3x 11)(x 2) 2 x〔x+1〕-5x=0. 3x(x-3)=2(x-1)(x+1).答案第二章一元二次方程备注:每题分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。

一元二次方程50道题

一元二次方程50道题

一元二次方程50道题一、基础形式类(1 - 10题)1. 解方程x^2+3x + 2 = 0。

这个方程就像是一个小迷宫,我们得找到让这个等式成立的x的值哦。

2. 求解方程x^2-5x + 6 = 0。

这就好比是给x找一个合适的家,让这个等式舒舒服服的。

3. 解一元二次方程x^2+x - 6 = 0。

这个方程像是一个小谜题,x是那个神秘的答案呢。

4. 求方程x^2-3x - 4 = 0的解。

感觉就像在数字的森林里找宝藏,宝藏就是x的值。

5. 解方程x^2+2x - 3 = 0。

这个方程是一个等待我们破解的小密码,密码就是x 的正确数值。

6. 求解x^2-4x + 3 = 0。

这就像是一场数字的捉迷藏,x躲在某个地方,我们要把它找出来。

7. 解一元二次方程x^2+4x + 3 = 0。

这个方程像是一个数字的小盒子,我们要打开它找到x。

8. 求方程x^2-2x - 8 = 0的解。

就像是在数字的海洋里捞针,针就是x的值。

9. 解方程x^2+5x - 14 = 0。

这个方程是一个数字的小挑战,看我们能不能征服它找到x。

10. 求解x^2-6x + 8 = 0。

这就像给x安排一个合适的位置,让这个等式完美成立。

二、含系数类(11 - 20题)11. 解2x^2+3x - 2 = 0。

这个方程里2就像是x的一个小跟班,我们要一起找到合适的x。

12. 求解3x^2-5x + 2 = 0。

3在这儿可有点小威风,不过我们可不怕,照样能找到x。

13. 解一元二次方程 - x^2+2x + 3 = 0。

这个负号就像个小捣蛋鬼,但我们能搞定它找到x。

14. 求方程4x^2-4x + 1 = 0的解。

4这个家伙让方程看起来有点复杂,不过没关系。

15. 解方程 - 2x^2-3x + 1 = 0。

这个负2就像个小乌云,我们要拨开乌云见x。

16. 求解5x^2+2x - 3 = 0。

5在这里就像个大力士,不过我们要指挥它来找到x。

初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题(27)

初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题(27)

章节测试题1.【答题】方程的解是()A. ,B.C. D.【答案】C【分析】根据直接开平方法解答即可.【解答】∵(x+1)2=4,∴x+1=±2,解得x1=1,x2=﹣3.选C.2.【答题】一元二次方程(x+2017)2=1的解为()A. ﹣2016,﹣2018B. ﹣2016C. ﹣2018D. ﹣2017 【答案】A【分析】根据直接开平方法解答即可.【解答】(x+2017)2=1x+2017=±1,∴x1=-2018,x2=-2016.选A.3.【答题】一元二次方程(x-1)2=9的解为()A. 4B. -2C. 4或-2D. 3或-3 【答案】C【分析】根据直接开平方法解答即可.【解答】∵(x-1)2=9,∴x-1=±3,∴x=4或x=-2.选C.4.【答题】若(a+b﹣1)(a+b+1)﹣4=0,则a+b的值为()A. 2B. ±2C.D. ±【答案】D【分析】把a+b看作一个整体,根据直接开平方法解答即可.【解答】(a+b)2﹣1﹣4=0,(a+b)2=5,∴a+b=±.选D.5.【答题】方程3+9=0的根为()A. 3B. -3C. ±3D. 无实数根【答案】D【分析】根据直接开平方法解答即可.【解答】原方程可化为:,∵负数没有平方根,∴原方程无实数根.选D.6.【答题】已知三角形的两边长是4和6,第三边的长是方程(x-3)2-1=0的根,则此三角形的周长为()A. 10B. 12C. 14D. 12或14【答案】C【分析】根据直接开平方法解答即可.【解答】∵(x-3)2-1=0,∴x-3=±1,解得:x=4或x=2.∵6-4<x<6+4,即2<x<10,∴x=4,故周长为:4+6+4=14.选C.7.【答题】有下列方程:①x2-2x=0;②9x2-25=0;③(2x-1)2=1;④.其中能用直接开平方法做的是()A. B. C. D.【答案】C【分析】根据直接开平方法解答即可.【解答】①x2-2x=0,因式分解法;②9x2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④,直接开平方法,则能用直接开平方法做的是②③④.选C.8.【答题】若a,b,c满足则关于x的方程的解是()A. 1,0B. -1,0C. 1,-1D. 无实数根【答案】C【分析】由方程组得到a+c=0,即a=-c,b=0,再代入方程可求解.【解答】∵a+b+c=0——①;a-b+c=0——②且a≠0,联立两式①+②得a+c=0,即a=-c,b=0,代入ax²+bx+c=0得:ax²-a=0解得x=1或x=-1选C9.【答题】如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是______.【答案】【分析】直接利用一元二次方程的定义得出m的取值范围,再代入方程解方程即可.【解答】由题意得:,∴m=1,原方程变为:﹣x2+2=0,x=,故答案为.10.【答题】已知,则的值为______.【答案】1【分析】根据直接开平方法解答即可.【解答】∵,∴,∴,∴,∴.故答案为1.11.【答题】一元二次方程(4-2x)2-36=0的解是______.【答案】x1=-1,x2=5【分析】根据直接开平方法解答即可.【解答】移项得:(4﹣2x)2=36,开方得:4﹣2x=±6,解得:x1=﹣1,x2=5.故答案为:x1=﹣1,x2=5.12.【答题】若2x2+3与2x2﹣4互为相反数,则x为______.【答案】±【分析】根据直接开平方法解答即可.【解答】由题意可得:解得:故答案为13.【答题】已知,那么______.【答案】3【分析】把看成一个整体设为x,再解一元二次方程舍去负值即可.【解答】设,则原方程化为:,,,,,故答案为:3.14.【题文】(1)(x+5)2+16=80;(2)(x-1)2-9=0【答案】(1)x1=-13,x2=3;(2)x1=4,x2=-2.【分析】根据直接开平方法解答即可.【解答】(1)(x+5)2+16=80,移项,得(x+5)2=64,∴x+5=±8,∴x=-5±8,∴x1=-13,x2=3;(2)(x-1)2-9=0,(x-1)2=9,x-1=3或x-1=-3∴x1=4,x2=-2.15.【题文】解方程:【答案】当时,原方程的解是,当时,原方程无实数解【分析】先移项,再合并同类项可得,根据求出,再讨论时,,分别计算出方程的解.【解答】解:移项得:,化简得:,,,当时,,原方程无实数解,当时,,,当时,原方程的解是当时,原方程无实数解.16.【题文】解方程:;【答案】,【分析】移项后利用直接开平方法解方程即可.【解答】.得.即,或.解得,.17.【题文】(1)解方程:(x+1)2=64;(2)计算:【答案】(1)x1=7,x2=-8;(2)-36【分析】(1)原式利用平方根计算即可得到结果;(2)根据实数的运算法则进行计算即可得解.【解答】(1)∵(x+1)2=64,∴x+1=±8当x+1=8时,x=7;当x+1=-8时,x=-8.(2)原式=(-8)×4+(-4)×-3=-3618.【题文】解方程与计算(1)利用平方根解方程:2(x﹣1)2﹣6=0(2)计算:【答案】(1);;(2)-2【分析】(1)根据等式的性质,先将方程整理成(x﹣1)2=3的形式,再直接开平方即可;(2)根据实数的运算顺序先开平方和乘方,再加减即可;【解答】(1)方程整理得:(x﹣1)2=3,开方得:x﹣1=±,.解得:x1=1+,x2=1﹣;(2)原式=10×﹣5+2=1﹣5+2=﹣2.19.【题文】解方程:(1)(x+1)2=9;(2)x2-4x+2=0.【答案】(1)x1=2,x2=-4;(2)x1=2+,x2=2-.【分析】(1)直接开平方;(2)先变形,再开平方;【解答】(1)(x+1)2=9x+1=3或x+1=-312(2)x2-4x+2=0x2-4x+2+2=2(x-2)2=2或∴x1=2+,x2=2﹣20.【题文】解方程:(x+1)2-1=8.【答案】x1=2,x2=-4.【分析】移项后,直接开平方即可.【解答】(1)去分母得:x(x+2)-(x-1)(x+2)=3,去括号得:2x-2x+x+2=3,解得:x=1,经检验x=1时,分母为0,方程无解.(2)(x+1)2-1=8(x+1)2=9,∴x+1=3或x+1=-3,12。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x 32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程()+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______. 10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数)18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD 二、9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k =四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。

配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。

(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。

函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。

2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。

当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。

2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。

2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
第二章一元二次方程单元测验
一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( )
(A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352
=-x
x
2. 方程1)14(2
=-x 的根为( )
(A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2
1
1-=x 02=x
3. 解方程 7(8x +
3)=6(8x +
3)2
的最佳方法应选择( )
(A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( )
(A )x 2
–3x + 4=0
(B )x 2–x –3=0 (C )x 2–12x +
36=0
(D )x 2–2x +
3=0
5、已知m是方程012
=--x x 的一个根,则代数m2
-m的值等于 ( )
A 、1
B 、-1
C 、0
D 、2
6、若方程0152
=--x x 的两根为的值为则
、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5
1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2
–14x +
48=0的解, 则这个三角形
的周长是( )(A )11
(B )17
(C )17或19 (D )19
8. 下列说法中正确的是 ( )(A )方程2
80x -=有两个相等的实数根;
(B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0∆=; (D )如果a c 、异号,那么方程2
0ax bx c ++=有两个不相等的实数根.
9. 若一元二次方程(1–2k)x 2 +
12x –10=0有实数根, 则K 的最大整数值为( )
(A )1
(B )2
(C )–1 (D )0
10.把方程2x 2
-3x+1=0化为(x+a)2
=b 的形式,正确的是( ) A. 23162x ⎛⎫-
= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 2
31416x ⎛
⎫-= ⎪
⎝⎭
; D.以上都不对 11、 若方程02
=++q px x 的两个实根中只有一个根为0,那么 ( )
(A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p .
12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1
C .若x 2
+2x +k =0有一根为2,则8=-k D .若分式1
2
32-+-x x x 值为零,则x =1,2
二、填空题:(每小题3分,共30分)
1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。

2. 当x =________时,分式1
4
32+--x x x 的值为零。

3. 若关于x 的方程02)1(2
=+--m mx x m 有实数根,则m 的取值范围是______
4.若方程042
2
=++m x x ,则m= .
5.已知0822
=--x x , 那么=--7632
x x _______________.
6. 若关于x 的一元二次方程02
=++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______.
7. 若2
2
2
(3)25a b +-=,则22
a b +=____
8.若一元二次方程02
=++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。

10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为
11. 如果x x 12、是方程x x 2
720-+=的两个根,那么x x 12+=____________。

13. 已知一元二次方程x x 2
350--=的两根分别为x x 12、,那么x x 12
22
+的值是____。

14. 若方程x x k 2
20-+=的两根的倒数和是
8
3
,则k =____________。

15.已知关于x 的方程(2k+1)x 2
-kx+3=0,当k______时,•方程为一元二次方程,• 当k______时,方程为一元一次方程,其根为______.
.
16.关于x 方程(m+3)x
27
m -+(m -3)x+2=0是一元二次方程,则m 的值为________.
17.方程x 2
=0的两根为x 1=______,x 2=______. 18. 如果x x 12、是方程x x 2310-+=的两个根,那么
11
12
x x +的值等于________ 19.若方程(x -2)2
=a -4有实数根,则a 的取值范围是________ 三、解答题(54分)
1.用适当的方法解下列一元二次方程.(每小题5分,共30分)
(1)3962
=+-x x (2)2(2x -3)-3x (2x -3)=0
(3)04
1
32
=-
-x x (4)22320x x --=
(5) 9(x –2)2
=2
)32(+x (6)(31)(2)114x x x -+=-
1
2
212121221)3(;2);2)(2(101438(2x x x x x x x x x x x x +---=--)()(值:
的两根,求下列各式的是方程、分)若、
22320x x k k ++-+=、判断关于的方程的根的情况。

4. (8分).0)32(2
2
βα、有两个不相等的实数根的方程关于=+++k x k x x
的取值范围)求(k 1
的值求)(53)(,622-+-=++αββααββα
5. 已知关于x 的方程x k x k 2
2
114
10-+++=(),k 取什么值时,方程有两个实数根?
6. 已知关于x 的一元二次方程ax x a a 2
00+-=≠()求证:对于任意非零实数a ,该方程恒有两个异号的实数根;
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档