初中八年级的数学下册的分式学习知识点总结计划.docx

合集下载

初二数学下册分式知识点

初二数学下册分式知识点

初二数学下册分式知识点(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)?(a+b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

八年级数学下册 分式知识点总结

八年级数学下册   分式知识点总结

八年级数学下册 分式知识点总结1.分式的定义:如果A 、B 表示两个整式;并且B 中含有字母;那么式子BA 叫做分式。

分式有意义的条件是分母不为零;分式值为零的条件分子为零且分母不为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式;分式的值不变。

(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式;用分子的积作为积的分子;分母的积作为分母。

分式除法法则:分式除以分式;把除式的分子、分母颠倒位置后;与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减;分母不变;把分子相加减。

异分母的分式相加减;先通分;变为同分母分式;然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1; 即)0(10≠=a a ;当n 为正整数时;n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m ;n 是整数)(1)同底数的幂的乘法:m n m n a a a+•=; (2)幂的乘方:()m n mn a a=;(3)积的乘方:()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式;并且分母中含未知数的方程——分式方程。

解分式方程的过程;实质上是将方程两边同乘以一个整式(最简公分母);把分式方程转化为整式方程。

解分式方程时;方程两边同乘以最简公分母时;最简公分母有可能为0;这样就产生了增根;因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母;化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0;二是其值应是去分母后所的整式方程的根。

八年级数学下册___分式知识点总结

八年级数学下册___分式知识点总结

第十六章 分式1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+•=; (2)幂的乘方:()m nmn a a =; (3)积的乘方:()n n nab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

;a c ac a c a d ad b d bd b d b c bc •=÷=•=()n n n a a b b =A A C B B C •=•A A C B B C ÷=÷解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

数学八年级下册分式知识点总结2篇

数学八年级下册分式知识点总结2篇

数学八年级下册分式知识点总结数学八年级下册分式知识点总结精选2篇(一)数学八年级下册分式的知识点总结包括:1. 分式的定义:分式是由分子和分母组成的有理数表达式,分子和分母都是整数。

2. 分数的运算:加减乘除四则运算的规则同整数的运算规则。

3. 分式化简:将分子和分母的公因式约去,将分数化简为最简形式。

4. 分数的乘除法:乘法时,分子乘以分子,分母乘以分母。

除法时,乘以倒数,即分子乘以分母的倒数。

5. 分式的加减法:分式加减法也要找到分母的最小公倍数,然后分子相加减,分母不变。

6. 分式的混合运算:先进行分数的乘除法运算,再进行分数的加减法运算。

7. 分式方程的解:分式方程的解与分式的定义域有关,需要注意排除分母为零的情况。

8. 分式不等式的解:将分数不等式转化为分母为正数的不等式,根据分母正负的不同确定解的范围。

9. 分式的应用:分式在实际问题中的应用包括比例、速度、利润等方面。

数学八年级下册分式知识点总结精选2篇(二)第一章的主要知识点如下:1.数的性质:正数、负数、零,以及它们在数轴上的表示和比较大小;绝对值的概念和计算方法。

2.整数的四则运算:加法、减法、乘法和除法的进一步应用和拓展,包括负数的运算规律。

3.乘方:乘方的定义和表示方法;乘方的运算法则,如乘方的乘法法则、乘方的除法法则等。

4.科学记数法:科学记数法的概念和表示方法;科学记数法的运算、比较大小等基本操作。

5.约数和倍数:约数的概念和判断方法;最大公约数和最小公倍数的求解方法。

6.有理数的概念和表示:有理数的基本性质,如有理数的加法、减法、乘法和除法规律。

这些知识点涵盖了数轴、计算方法、运算法则和数的运算特性等方面,是数学八年级上册的基础知识点。

数学八下分式

数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。

以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。

2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。

3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。

4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。

5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。

八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。

建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。

(word完整版)新人教版八年级数学下册第十六章分式知识点总结,文档

(word完整版)新人教版八年级数学下册第十六章分式知识点总结,文档

一、分式的定义: 若是 A 、 B 表示两个整式,并且B 中含有字母,那么式子A叫做分式。

B例 1. 以下各式 a ,1, 1x+y ,a 2b 2 ,-3x 2,0?中,是分式的有〔 〕个。

x 15ab二、 分式有意义的条件是分母不为零; 【B ≠0】分式没有意义的条件是分母等于零; 【B=0】分式值为零的条件分子为零且分母不为零。

【B ≠0 且 A=0 即子零母不零】例 2. 以下分式,当 x 取何值时有意义。

〔 1〕2x1 ;〔 2〕 3 x2。

3x 22x 3例 3. 以下各式中,无论 x 取何值,分式都有意义的是〔 〕。

A .1 B . xC .3x 1D .x 212x 12x 1x 22x 2例 4.当 x______时,分式2x1没心义。

当 x_______时,分式x 21 的值为零。

3x 4x 2x 2例 5. 1 - 1 =3,求5x3xy 5 y的值。

x y x2xyy三、分式的根本性质: 分式的分子与分母同乘或除以一个不等于0 的整式,分式的值不变。

〔 CA A C A A C0 〕B C B B CB四、分式的通分和约分:要点先是分解因式。

1 x 1 y例 6. 不改变分式的值,使分式510的各项系数化为整数,分子、分母应乘以〔 ? 〕。

1 x 1 y3 9例 7. 不改变分式2 3x 2 x 的值,使分子、分母最高次项的系数为正数,那么是〔 ?〕。

5x 3 2x 3分式 4 y 3x , x2 1 , x2xy y 2, a22ab2中是最简分式的有〔例 8. 4x 〕。

4ax1 y ab 2b例 9. 约分:〔1〕x 26x9 ; 〔2〕 m 23m 2x29m2m例 10. 通分:〔 1〕x ,y;〔2〕a 1,66ab 29a 2bc22a 2a 1 a 1例 11. x 2 +3x+1=0,求 x 2+12 的值. x例 12. x+ 1=3,求x 4x 2 2 的值. xx 1五、分式的运算:分式乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

初二数学分式知识点总结(精选20篇)

初二数学分式知识点总结(精选20篇)

初二数学分式知识点总结(精选20篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、条据书信、规章制度、礼仪常识、自我介绍、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, contract agreements, personal experiences, normative letters, rules and regulations, etiquette knowledge, self introduction, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初二数学分式知识点总结(精选20篇)初二数学分式知识点总结(精选20篇)初二数学分式知识点总结篇11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学分式知识点总结篇2第一章一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2 会用各种统计图表示出一些实际的问题第三章全等三角形1 全等三角形的性质:全等三角形的对应边、对应角相等2 全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3 角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.第四章轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称点(X,y)关于X轴对称的点的坐标是(X,-y),关于y轴对称的点的坐标是(-X,y),关于原点对称的点的坐标是(-X,-y).4 等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等.(等角对等边)5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.在三角形中,大角对大边,大边对大角.第五章整式1 整式定义、同类项及其合并2 整式的加减3 整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4 乘法公式(1)平方差公式(2)完全平方公式5 整式的除法(1)同底数幂的除法(2)整式的除法6 因式分解(1)提共因式法(2)公式法(3)十字相乘法初二下册知识点第一章分式1 分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2 分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3 整数指数幂的加减乘除法4 分式方程及其解法第二章反比例函数1 反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/X(k不为0)性质:两支的增减性相同;2 反比例函数在实际问题中的应用第三章勾股定理1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.第四章四边形1 平行四边形性质:对边相等;对角相等;对角线互相平分.判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形.推论:三角形的中位线平行第三边,并且等于第三边的一半.2 特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半.(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.3 梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形.第五章数据的分析加权平均数、中位数、众数、极差、方差初二数学分式知识点总结篇3轴对称1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

初中八年级的分式学习知识点总结计划及总结复习

初中八年级的分式学习知识点总结计划及总结复习

分式知识点总结及章末复习知识点一:分式的定义一般地,如果 A , B 表示两个整数,并且B 中含有字母,那么式子A叫做分式, A 为分子, B 为分母。

B知识点二:与分式有关的条件①分式有意义:分母不为 0〔 B0〕②分式无意义:分母为 0〔 B0 〕③分式值为 0:分子为0 且分母不为 0〔A 0B 〕0 ④分式值为正或大于0:分子分母同号〔A 0 A 0 〕B 0 或B⑤分式值为负或小于0:分子分母异号〔A 0 A 0 〕B或B⑥分式值为 1:分子分母值相等〔 A=B 〕⑦分式值为 -1 :分子分母值互为相反数〔 A+B=0〕经典例题1、代数式 41 〕 A. 单项式B.多项式C.分式D.整式是〔x2、在 2, 1( x y) ,3,a 5 , 2xy中,分式的个数为〔〕x 3x43、总价 9 元的甲种糖果和总价是 9 元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果廉价 1 元,比乙种糖果贵 0.5 元,设乙种糖果每千克x 元,因此,甲种糖果每千克元,总价9 元的甲种糖果的质量为千克 .4、当 a 是任何有理数时,以下式子中一定有意义的是〔〕a 1B.a 1C.a 1 D.a1 A.aa 2a21a 215、当 x1 时,分式① x 1 ,②x1,③ x 1,④1 中,有意义的是〔〕 A. ①③④ B.x 12x 2C. x 2 1x 3 1 D.③④②④ ④6、当 a1 时,分式a1 〔〕 A. 等于 0B.等于 1a 2 17、使分式8x4的值为 0,那么 x 等于〔〕 A. 3B.8x 388、假设分式x 2 1 的值为 0,那么 x 的值是〔〕或- 1x2x 2C.等于- 1D. 无意义18 D.1 2C.23C.-1 D.- 29、当 x时,分式x1的值为正数 .10、当 x时,分式x1的值为负数 .x 1x 111、当 x时,分式x 1的值为 1.3x212、分式1有意义的条件是〔 〕 A. x0 B.x1 且 x0 C. x2 且 x 0D.x1 且 x 21 11 x13、如果分式x 3〕 A. xB.x3 C.x 0 且 x 3D.x3x的值为 1,那么 x 的值为〔314、以下命题中,正确的有〔 〕① A 、 B 为两个整式,那么式子A叫分式;② m 为任何实数时,分式m 1有意义;Bm 3③分式 1 有意义的条件是x 4 ;④整式和分式统称为有理数. w ww.x kb1.2 16xA.1 个B .2 个个个15、在分式 x 2ax 中 a 为常数,当 x 为何值时,该分式有意义?当 x 为何值时,该分式的值为 0?x 2x 2知识点三:分式的根本性质分式的分子和分母同乘〔或除以〕一个不等于0 的整式,分式的值不变。

八年级数学下册《分式》知识点归纳北师大版

八年级数学下册《分式》知识点归纳北师大版

八年级数学下册《分式》知识点归纳北师大版第三章分式一、分式1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.2、整式和分式统称为有理式,即有:3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以同一个不等于零的整式,分式的值不变.4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.二、分式的乘除法1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.2、分式乘方,把分子、分母分别乘方.逆向运用,当n为整数时,仍然有成立.3、分子与分母没有公因式的分式,叫做最简分式.三、分式的加减法1、分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解.四、分式方程1、解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.2、列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出方程;④解方程,并验根;⑤写出答案.。

分式知识点总结初二

分式知识点总结初二

分式知识点总结初二1. 分式的定义分式是用分数形式表示的代数式,它是一个分子和一个分母组成的表达式。

分数的分母不能为0。

2. 分式的简化对于分式进行简化是分式运算中的一项基本操作。

分式简化就是使分子和分母的公约数尽可能地消去,使分子和分母没有公因数。

分式简化的方法,就是找到分子与分母的最大公约数,并将分子与分母同时除以最大公约数。

3. 分式的乘法分式的乘法是指将一个分式乘以另一个分式的运算。

对于分式的乘法,它的运算规则是将两个分式的分子相乘,分母相乘,然后进行约分。

即(a/b)×(c/d)=(a×c)/(b×d)4. 分式的除法分式的除法是指将一个分式除以另一个分式的运算。

对于分式的除法,它的运算规则是将两个分式的乘数作为除数,然后再将第一个分式的分子与第二个分式的分母相乘,分母与分子相乘,得到的新分式即为所求结果。

即(a/b)÷(c/d) = (a×d)/(b×c)5. 分式的加法和减法分式的加法和减法是分式运算中的两个基本操作。

分式的加法和减法需要先将两个分式的分母化为相同数,然后再将分子相加或相减,得到新的分式。

这两种运算较为复杂,需要学生灵活掌握。

6. 分式的运算法则a. 分式乘除法的规则是:分式的乘法就是把分子相乘作为新分子,分母相乘作为新分母;分式的除法就是把除数倒过来,再进行乘法运算。

b. 分式的加减法的规则是:分式的加减法要先把两个分式化为公分母的分式,然后再将分子相加或相减作为新的分子。

7. 分式的乘方与除方分式的乘方与除方是分式运算的两种特殊形式。

对于分式的乘方,即是将分子和分母分别进行乘方运算;对于分式的除方,即是将分子和分母分别进行除法运算。

8. 分式的应用分式在代数中有广泛的应用,特别是在方程式的求解、数学建模等方面的应用比较多。

在日常生活中,也有很多实际问题都可以用分式来进行表达和解决,比如分配问题、比值问题等。

八年级数学下册分式知识点总结

八年级数学下册分式知识点总结
例9.约分:(1)
6x9
x29
10.通分:(1)命,点;
221
11.已知x +3x+1=0,求x +飞的值.
x
1
12.已知x+^=3,
x
2
笃的值.
x1
a21
五、分式的运算
分式乘法法则:分式乘分式,
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则:
用分子的积作为积的分子,分母的积作为分母。
2x 1;
3x 2;
(2)」°
2x3
例3.下列各式中,无论x取何值,
分式都有意义的是(
A.
2x1
x
2x1
3x1
2~x
2
x
2x21
例4.当x
.时,分式
2x
-无意义。
3x 4
时,
分式
土的值为零。
例5.已知1-1=3,求空
x yx 2xy y
三、
变。
分式的基本性质:分式的分子与分母同乘或除以一个不等于

BBC
第十六章
分式知识点及典型例子
、分式的定义:
B表示两个整式,并且B中含有字母,那么式子A叫做分式。
B
a11
例1.下列各式-,厂,5x+y,
a2b2
a b '
-3x2,0?中,是分式的有(
)个。

【BM0】
分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
即子零母不零】
例2.下列分式,当x取何值时有意义。(1)
A
BBC
0的整式,分式的值不

分式八年级下册数学知识点归纳总结

分式八年级下册数学知识点归纳总结

分式八年级下册数学知识点归纳总结
分式八年级下册数学知识点归纳总结
1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简
2、分式的基本性质
(M为不等于零的.整式)
3.分式的运算(分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);
4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、n可以是O或负整数.
6、解分式方程的一般步骤:
在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.
7、列分式方程解应用题的一般步骤:
(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。

八年级数学下册知识点总结-分式精华版

八年级数学下册知识点总结-分式精华版

分式专项训练1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,nn a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+∙=; (2)幂的乘方:()m n mn a a=; (3)积的乘方:()n n n ab a b =;(4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方;a c ac a c a d ad b d bd b d b c bc ∙=÷=∙=()nn n a a b b =A A C B B C ∙=∙A A C B B C ÷=÷程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 分式1. 分式的定义:如果 A 、 B 表示两个整式,并且 B 中含有字母,那么式子A叫做分式。

B分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。

2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。

AA ?C A A CB B ?CBB C( C 0)3. 分式的通分和约分:关键先是分解因式4. 分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

ac aca c ad ad ( a )na nb ?;?d bd b d bc bcbb n分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减a b a b , a c adbc ad bccc c bd bdbdbd混合运算 : 运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即 a1(a0) ;当 n 为正整数时, a n1a n( a 0)6. 正整数指数幂运算性质也可以推广到整数指数幂 . (m,n 是整数 )( 1)同底数的幂的乘法: a m ?a n a m n ;( 2)幂的乘方: ( a m )n a mn ;( 3)积的乘方: ( ab) n a n b n ;( 4)同底数的幂的除法: a m a na m n ( a ≠ 0) ;( 5)商的乘方: ( a)nnan ; (b ≠ 0)b b7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时, 方程两边同乘以最简公分母时, 最简公分母有可能为0, 这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1) 能化简的先化简 (2) 方程两边同乘以最简公分母,化为整式方程; (3) 解整式方程; (4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么 (1) 审; (2) 设; (3) 列; (4) 解; (5) 答.应用题有几种类型;基本公式是什么基本上有五种: (1) 行程问题:基本公式:路程 =速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数 的 表 示 法 .(3) 工 程问 题 基 本 公 式 : 工 作量 =工 时 × 工 效 . (4) 顺 水 逆 水 问 题v 顺水 = v 静水 + v 水流 、 v 顺水= v 静水 - v 水流8. 科学记数法:把一个数表示成 a 10 n 的形式(其中 1 a 10 , n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于 10 的 n 位整数时,其中10 的指数是 n 1用科学记数法表示绝对值小于 1 的正小数时 , 其中 10 的指数是第一个非0 数字前面 0 的个数( 包括小数点前面的一个 0)一、选择题1.下列式子是分式的是()A .xB.2C .xD. x y2x22.下列各式计算正确的是( )a a 1 B .b b 2 n na n n aA .1 aabC ., a 0 D .m ab bmmam3.下列各分式中,最简分式是( )A . 3 x yB . m 2n 2C .a 2b 2 D .x 2 y 27 x ym na 2b ab 2x 2 2 xy y 24.化简 m23m的结果是()9 m 2m B. m C.mD.mA.m 3m 33 mm 35.若把分式xy中的 x 和 y 都扩大 2 倍,那么分式的值()xyA .扩大 2 倍B .不变C .缩小 2 倍D .缩小 4 倍6.若分式方程1 3 ax有增根,则 a 的值是( )x2a xA . 1 B. 0C.— 1 D .— 27.已知abc,则a b的值是()234cA .4B.7 D.5 5448.一艘轮船在静水中的最大航速为 30 千米 / 时,它沿江以最大航速顺流航行 100 千米所用时间,与以最大航速逆流航行60 千米所用时间相等,江水的流速为多少设江水的流速为 x千米 / 时,则可列方程()A . 10060 B. 100x 60 x 3030 xx 3030 C . 10060 D. 100x 60 30x30 xx 30309.某学校学生进行急行军训练, 预计行 60 千米的路程在下午 5 时到达, 后来由于把速度加快 20% ,结果于下午 4 时到达,求原计划行军的速度。

设原计划行军的速度为xkm/h ,,则可列方程()A .60x 60 1 B.60 x 60 1x 20%x 20%60601D.60 60 1 C.x (1 20%)xx (120%)x10. 已知a b c k ,则直线 y kx2k 一定经过()ca ca bbA. 第一、二象限B. 第二、三象限C.第三、四象限 D. 第一、四象限二、填空题11.计算 a 2b 3(a 2 b) 3 =.12.用科学记数法表示— 000 0314= .13. 算2 a1.24 a2a14.方程370 4x 的解是.x9 , 16 , 25 , 36 ,L15.瑞士中学教 巴 末成功地从光 数据L 中得到巴 末公式,从5 12 21 32而打开了光 奥秘的大 。

你 用含你n 的式子表示巴 末公式.16.如果yx 2 =f(x) ,并且 f(1) 表示当 x=1y 的 ,即f(1)=121 ;1 x 21 1221) 表 示 当 x=1y1( 1 ) 21f(的, 即 f()=2 ; ⋯ ⋯ 那 么22211 ) 25(2f(1)+f(2)+f(1)+f(3)+f(1)+ ⋯ +f(n)+f(1)=( 果用含n的代数式表23 n示). 三、解答17. 算:(1)3b 2bc( 2a )a 2 6a 9 3 a a 2.16 a 2a 2 b; ( 2)4 b 22 b 3a 9 18.解方程求 x :( 1)x 14 1 ;( 2)mn 0( m ,0) .x 1x 2 1xx 1n mn19.( 7 分)有一道 :“先化 ,再求 :(x2 4x ) 1 其中, x=— 3”. x 2 x 2 4 x 2 4小玲做 把“ x= — 3” 抄成了“ x=3”,但她的 算 果也是正确的, 你解 是怎么回事20.( 8 分)今年我市遇到百年一遇的大旱,全市人民 心 力 极抗旱。

某校 生也活起来捐款打井抗旱, 已知第一天捐款 4800 元,第二天捐款 6000 元,第二天捐款人数比第一天捐款人数多 50 人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少21.( 8 分)一 汽 开往距离出 地180 千米的目的地,出 后第一小 内按原 划的速度匀速行 , 一小 后以原来的倍匀速行 ,并比原 划提前 40 分 到达目的地. 求前一小的行 速度.22.(9 分)某市从今年1 月 1 日起 整居民用天燃气价格,每立方米天燃气价格上25%.小颖家去年 12 月份的燃气费是 96 元.今年小颖家将天燃气热水器换成了太阳能热水器, 5 月份的用气量比去年12 月份少 10m3 ,5 月份的燃气费是90 元.求该市今年居民用气的价格.参考答案一、选择题 BCABC DDADB 二、填空题11、 a 4 b 6 12 、 3.14 10 8 13 、114 、a 230 15 、( n 2)216、 n 12)22(n 4三、解答题17、(1)3a 2 a 2.;( 2)3(2 b)4c18、( 1) x1 为增根,此题无解; ( 2) xm . 19、解:原式计算的结果等于 x 2 4 ,n m所以不论 x 的值是 +3 还是— 3 结果都为 1320、解:设第一天参加捐款的人数为 x 人,第二天参加捐款的人数为( x+6)人,则根据题意可得:48006000解得: x 20 , 经检验, x20 是所列方程的根,所以第一天参加xx 5捐款的有 20 人,第二天有 26 人,两天合计 46 人.21 、解:设前一小时的速度为xkm/ 小时,则一小时后的速度为小时,由题意得:180 (1 180 x ) 2 ,解这个方程为 x 182 ,经检验, x=182 是所列方程的根,即前前x 1.5x 3一小时的速度为182.22、解:设该市去年居民用气的价格为 x 元 / m 3 ,则今年的价格为 (1+25%) x 元 / m 3 根据题意,得96(19010 解这个方程, 得 x =.经检验, x =是所列方程的根. ×(1+25%)x25%) x=3 ( 元 ) 。

所以,该市今年居民用气的价格为 3 元 / m 3 .。

相关文档
最新文档