焊接结构设计

合集下载

焊接结构设计..

焊接结构设计..
A.手工电弧焊时,要考虑焊条有足够的操作空间。 B.埋弧自动焊要有利于存放焊剂。 C.点悍、缝焊时,要求电极能方便地伸入待焊位置。
不合理 A.手工电弧焊
合理
不合理
B.埋弧焊
合理
>75°
不合理
C.点焊或缝焊
合理
图8-1 焊缝位置与操作空间的关系
(2).焊缝布置应有利于减少焊接应力和变形。
①焊缝焊缝应避开最大应力和应力集中的部位。
对接
搭接
角接
T形接头
★焊接接头形式的选择:
选用何种接头主要依据焊接方法、焊件结构特点和使用 要求等因素。 (1)焊接方法: 1)熔焊适用于各类接头形式; 2)电阻点焊和缝焊须采用搭接接头; 3)对焊和摩擦焊须采用对接接头; 4)钎焊多采用搭接接头。 (2)焊件结构特点和使用要求: 1)承载较大的接头宜采用对接,以减少应力集中; 2)承载较小可采用搭接、角接、T形接。
焊接工艺设计示例 实例 结构名称 :中压容器(见下图) 材料 :16MnR(钢板尺寸1200 5000) 料厚 :筒身12mm,封头14mm, 人孔圈20mm,管接头7mm 。 生产数量 :小批生产。试制定焊接工艺方案。
筒身 封头 管接头
人孔 3000
解: (1)焊缝布置、焊接次序 根据板料尺寸,筒身应分为三节,分别 冷卷成形,为避免焊缝密集,三段筒身上的纵 焊缝可相互错开180°;封头应采用热压成型, 与筒身连接处应有30 ~ 50 mm的直段,使焊 缝躲开转角应力集中处。人孔圈因其板厚较大, 一般加热卷制。
不合理
合理 图8-4 焊缝位置与应力和变形的关系
(3)焊缝应避开加工表面,尤其是已加工表面, 以免影响加工表面的精度。
不合理 合理
不合理

焊接结构课程设计_压力容器

焊接结构课程设计_压力容器

前言1第1局部储罐设计阐发2第1章储罐总体阐发21.1 储罐底子设计要求21.2 储罐材料21.3储罐用钢板31.4 配用锻件51.5 配用螺栓、螺母5第2章储罐罐底设计62.1 储罐罐底板尺寸62.2 罐底布局7第3章罐壁布局设计103.1 罐壁的排板与连接103.2 罐壁厚度113.3 罐壁加强圈12第4章罐顶布局设计13第2局部储罐的焊接工艺阐发14第5章压力容器的焊接接头145.1 压力容器焊接接头的分类145.2 圆筒形容器焊接接头的设计15第6章压力容器的焊接方法176.1 熔化极氩弧焊17CO气体庇护焊186.22埋弧焊19第7章压力容器的焊接工艺21第3局部储罐的组装与查验22第8章储罐的安装施工挨次22储罐底板的焊接挨次22储罐壁板的焊接挨次22储罐固定顶的焊接挨次23第9章储罐焊缝的查验与修补24焊缝检测24焊缝修补25设计体会26参考文献27前言大型油气储罐是油气产物储存运输最便利、廉价的方式之一。

储罐的形式可跟据盖顶的样式不同分为浮顶式储罐〔包罗气柜〕和固定顶式储罐〔包罗内浮顶式储罐〕,而固定顶式储罐又包罗锥顶式储罐和拱顶式储罐两种。

目前原油的储罐使用中浮顶式储罐在不竭减少,液化气储运主要是球罐和立式筒形低压储罐。

常用的几种灌顶形式为双子午线网客机构拱顶、辐射网壳布局拱顶、短程线网壳布局拱顶和梁柱支撑布局拱顶,见图1。

本次课程设计主要讨论立式固定顶筒形钢制焊接储罐的施工工艺。

此中包罗储罐的材料选择、加工工艺路线选择、相关组件形式选择、机械加工装配、施焊成型、焊后检测调试等相关出产内容。

第1局部储罐设计阐发第1章储罐总体阐发1.1 储罐底子设计要求由石油化工立式筒形钢制焊接储罐设计尺度SH 3046-1992,储罐的设计条件不得少于以下内容:(一)地动设防烈度、风载、雪载等气候条件及地质条件;(二)储罐的操作温度及操作压力〔正负压〕;(三)介质的种类及密度;(四)腐蚀裕量;(五)储罐的容积;(六)灌顶形式;(七)开口接管尺寸、形式、数量及法兰规格;(八)附件的安装位置。

焊接结构件设计原则

焊接结构件设计原则

焊接结构件设计原则焊接件结构设计概括起来讲就是要保证产品的制造合理性、经济合理性、使用安全性。

1.制造合理性1)焊接件应具有好的定位基准——保证组装的可操作性。

2)考虑焊接时操作方便,结构特殊更应考虑焊缝的布置,在设计图1 结构中应保证焊接作业时的最小间距L;在图2中(a)结构设计不合理,(b)结构设计合理。

3)毛坯上与其他件连接的部分应离开焊缝至少3mm4)焊缝的位置应使焊接设备的调整次数和工件的翻转次数为最少。

2.经济合理性方面1)考虑最有效的焊接位置,以最小量焊接达到最大量效果。

2)在不影响产品性能的前提下,长焊缝尽量采用间断焊缝。

3)根据产品机构特点,尽量设计为平焊、横焊,避免立焊、仰焊。

4)正确选用角焊缝的计算厚度。

角焊缝在较小的负载下,不必计算强度,可按经验确定焊角高度尺寸K,即按连接钢板中较薄的板厚考虑。

5)一般情况下尽量不要把焊缝布置在加工面上。

6)根据不同的焊接方法和板厚确定合理的坡口形式:如V型坡口焊缝制备简单,但焊接工作量大,使焊接成本提高;X型坡口焊缝,但制备较复杂,焊接工作量小,在对接焊缝中可适当选用,在角缝中双面角焊缝填充金属小,并能承受较高负载,变形也小,应优先采用。

3.使用安全性方面1)避免将焊缝设计在应力容易集中的地方,特别是重要部件或承受反复载荷的焊接件,更应注意这一点。

合理布置构件的相互位置,以保证焊接件的刚性。

2)焊缝的根部在避免处于受拉应力的状态3)直接传递负载的焊接件,采用整体嵌接为好,将工作焊缝转为联系焊缝。

4)箱形焊接结构件应设计为折弯件的拼焊。

5)避免焊缝过分集中,以防止裂纹、减少变形;同时,焊缝间应保持足够的距离。

6)焊接端部产生锐角的地方,应尽量使角度变缓;薄板筋的锐角必须去掉,因为尖角处融化。

焊接结构设计实例。

焊接结构课程设计

焊接结构课程设计

焊接结构课程设计一、教学目标本课程的教学目标是使学生掌握焊接结构的基本理论、方法和相关技术,培养学生具备焊接结构的设计、制造和检验能力。

具体目标如下:1.知识目标:(1)了解焊接结构的定义、分类和应用领域;(2)掌握焊接原理、焊接工艺和焊接方法;(3)熟悉焊接结构的应力分析、变形控制和质量检验。

2.技能目标:(1)能够根据工程需求选择合适的焊接工艺和方法;(2)具备焊接结构设计和制造的基本能力;(3)掌握焊接质量检验的方法和技巧。

3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对焊接技术的兴趣和热情;(3)培养学生对工程安全和质量的重视。

二、教学内容本课程的教学内容主要包括以下几个方面:1.焊接结构的基本概念和分类;2.焊接原理和焊接工艺;3.焊接方法及其应用;4.焊接结构的应力分析与变形控制;5.焊接质量检验与评估。

具体安排如下:第1周:焊接结构的基本概念和分类;第2周:焊接原理和焊接工艺;第3周:焊接方法及其应用;第4周:焊接结构的应力分析与变形控制;第5周:焊接质量检验与评估。

三、教学方法为了实现课程目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握焊接结构的基本理论和方法;2.案例分析法:通过分析实际案例,使学生了解焊接结构的实际应用和问题解决;3.实验法:通过实验操作,使学生掌握焊接工艺和质量检验方法;4.讨论法:通过小组讨论,培养学生的团队合作精神和创新意识。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的焊接结构教材;2.参考书:提供相关的焊接技术书籍,供学生拓展阅读;3.多媒体资料:制作课件、视频等多媒体资料,丰富教学手段;4.实验设备:准备齐全的焊接设备和材料,为学生提供实践操作的机会。

五、教学评估本课程的评估方式包括以下几个方面:1.平时表现:通过课堂参与、提问和讨论等方式,评估学生的学习态度和积极性;2.作业:布置适量的作业,评估学生的理解和应用能力;3.考试:进行期中和期末考试,评估学生对课程知识的掌握程度。

结构设计知识:焊接结构设计的基本原理与方法

结构设计知识:焊接结构设计的基本原理与方法

结构设计知识:焊接结构设计的基本原理与方法焊接结构设计的基本原理与方法焊接结构设计是现代工程技术的重要组成部分。

在工程领域中,焊接结构的设计、制作和使用都占据着重要的地位。

这些焊接结构不仅需要满足其在使用过程中的性能要求,还需要考虑其与其他零部件的协调性、较高的安全性以及较低的维护成本等因素。

在这篇文章中,我们将介绍焊接结构设计的基本原理和方法,以帮助读者更好地理解和应用这一领域的知识。

焊接结构的基本原理焊接结构的基本原理是在设计阶段考虑到产生热量的曲线和同时产生的剪切力。

基于这个原理,焊接结构必须考虑以下因素:1.结构的荷载焊接结构的设计必须满足其所在环境的荷载要求,例如建筑物、桥梁、机器设备等。

这些荷载分为静荷载和动荷载两种类型。

静荷载指工作过程中不会发生变化的荷载,如桥梁自重;动荷载指工作过程中会有变化的荷载,如汽车行驶在桥梁上产生的振动荷载。

焊接结构必须考虑并满足所承受的荷载要求。

2.材料的性质焊接结构必须采用与应用相适应的合适材料,其中材料的性质包括机械和物理性质,如韧性、强度、刚度等等。

根据结构设计和制造需要,不同材料的组合可以产生不同的焊接结构。

3.结构的几何形状焊接结构的几何形状对其性能影响很大。

在设计焊接结构时,必须考虑其内部形状、材料的厚度、焊缝和角度等因素。

在选定设计方案时,必须对这些因素进行分析和计算。

4.焊接方法焊接方法也是设计焊接结构时需要考虑的重要因素。

设计人员必须了解不同的焊接方法及其适用范围。

不同的焊接方法将对结构的强度、精度、形状和寿命等方面产生不同的影响。

焊接结构的设计方法针对上述基本原理,下面介绍一些常用的焊接结构设计方法。

1.分析需求在设计焊接结构之前,需要进行一些分析工作。

首先,需要明确焊接结构的设计需求和目标,例如所需要承载的荷载、使用环境等。

设计人员需要充分了解这些相关因素,以便能够根据实际要求进行设计。

2.选择材料正确选材是生产焊接结构的关键,以获得最佳性能和经济性。

焊接件的结构设计

焊接件的结构设计

d)
L>4t
塞焊
L
c)
0~1
2~5 55°
2
t 4~30
60° 2
12~30 55°
2 20~40
2
2
b) 2
R8
2
2~30
<6 12~60 0~2
55°
2
4~30 2
2
a)
2
R5 2
2
40~60
2
20°
55°
10~40 2
40~60
2
R5 6~25
2
2
12~60
60° 2
60°
2 20°
1.熔焊接头设计
尽量选用镇静钢。镇静钢含气量低,特别是含H2和O2量低, 可防止气孔和裂纹等缺陷。 异种金属焊接时焊缝应与低强度金属等强度,而工艺应按高 强度金属设计。 尽量采用工字钢、槽钢、角钢和钢管等型材,以简化工艺过 程。
4 焊接接头的工艺设计
焊缝的布置
1.焊缝应尽可能分散 以便减小焊接热影响区,
4
3000
9
4
5
67
8
10
中压容器焊号 1
2 3 4 5
焊缝名称
筒身纵缝 1、2、3
筒身环缝 4、5、6、7
管接头焊接 9
入孔圈纵缝 10
入孔圈环缝 8
焊接方法与焊接工艺
焊接材料
因容器质量要求高,又小批 生产,采用埋弧焊双面焊, 先内后外,不开坡口。材料 为16MnR应在室内焊接。
2 焊接方法的选择
生产单件钢结构件
1.板厚在3~10 mm,强度较低,且焊缝较短应选用手弧焊。 2.板厚在10 mm以上,焊缝为长直焊缝或环焊缝应选用埋弧焊。 3.板厚小于3 mm,焊缝较短应选用CO2焊。

焊接结构设计与制造作业指导书

焊接结构设计与制造作业指导书

焊接结构设计与制造作业指导书第1章焊接结构设计基础 (4)1.1 焊接工艺概述 (4)1.1.1 焊接基本概念 (4)1.1.2 焊接分类 (4)1.1.3 焊接工艺流程 (4)1.2 焊接材料与设备选择 (4)1.2.1 焊接材料 (4)1.2.2 焊接设备 (4)1.3 焊接接头设计 (4)1.3.1 焊接接头类型 (5)1.3.2 焊接接头设计原则 (5)1.3.3 焊接接头设计要点 (5)第2章焊接结构材料 (5)2.1 常用焊接材料功能及选用 (5)2.1.1 焊条 (5)2.1.2 焊丝 (5)2.1.3 焊剂 (5)2.2 焊接材料的热处理 (6)2.2.1 焊后热处理 (6)2.2.2 预热处理 (6)2.2.3 焊接过程中的热处理 (6)2.3 焊接材料的储存与保管 (6)2.3.1 焊接材料的储存 (6)2.3.2 焊接材料的保管 (6)2.3.3 焊接材料的有效期 (6)第3章焊接接头设计要求 (6)3.1 焊接接头类型及特点 (6)3.1.1 对接接头 (6)3.1.2 角接接头 (7)3.1.3 搭接接头 (7)3.1.4 T型接头 (7)3.2 焊接接头设计原则 (7)3.2.1 保证焊接接头强度 (7)3.2.2 减小应力集中 (7)3.2.3 便于施焊和检验 (7)3.2.4 符合经济性原则 (7)3.3 焊接接头应力集中分析 (7)3.3.1 焊接接头应力集中的原因 (7)3.3.2 焊接接头应力集中的影响 (7)3.3.3 焊接接头应力集中控制措施 (7)第4章焊接工艺参数选择 (8)4.1.1 焊接方法选择 (8)4.1.2 焊接工艺参数 (8)4.2 焊接工艺评定 (8)4.2.1 焊接工艺评定目的 (8)4.2.2 焊接工艺评定内容 (8)4.2.3 焊接工艺评定方法 (8)4.3 焊接工艺规程制定 (9)4.3.1 焊接工艺规程内容 (9)4.3.2 焊接工艺规程制定原则 (9)4.3.3 焊接工艺规程的实施与监督 (9)第5章焊接结构制造工艺 (9)5.1 焊前准备 (9)5.1.1 材料检验 (9)5.1.2 材料预处理 (9)5.1.3 焊接工艺评定 (9)5.1.4 焊接工装及设备准备 (10)5.2 焊接过程控制 (10)5.2.1 焊接方法选择 (10)5.2.2 焊接参数控制 (10)5.2.3 焊接操作规范 (10)5.2.4 焊接质量检验 (10)5.3 焊后处理 (10)5.3.1 焊接应力消除 (10)5.3.2 焊缝清理 (10)5.3.3 尺寸检查 (10)5.3.4 表面处理 (11)第6章焊接应力与变形控制 (11)6.1 焊接应力与变形的产生 (11)6.1.1 焊接过程中的热输入 (11)6.1.2 材料性质的影响 (11)6.1.3 焊接顺序和焊接方法 (11)6.2 焊接应力与变形的控制方法 (11)6.2.1 焊接工艺参数的选择 (11)6.2.2 焊接顺序的优化 (11)6.2.3 预热和后处理 (11)6.2.4 焊接支撑和夹具的使用 (11)6.3 焊接残余应力消除与调整 (11)6.3.1 焊后热处理 (11)6.3.2 机械消除应力 (11)6.3.3 激光消除应力 (12)6.3.4 焊接残余应力的检测与评估 (12)第7章焊接结构检验 (12)7.1 焊接缺陷及成因 (12)7.1.2 成因分析 (12)7.2 焊接检验方法 (12)7.2.1 外观检验 (12)7.2.2 无损检测 (12)7.2.3 力学功能检测 (12)7.2.4 金相检验 (12)7.3 焊接检验程序及标准 (12)7.3.1 检验程序 (12)7.3.2 检验标准 (13)7.3.3 检验记录与报告 (13)第8章焊接结构疲劳设计 (13)8.1 焊接结构疲劳概述 (13)8.2 焊接结构疲劳设计方法 (13)8.2.1 疲劳设计原则 (13)8.2.2 疲劳设计方法 (13)8.3 焊接结构疲劳寿命评估 (13)8.3.1 疲劳寿命评估方法 (14)8.3.2 疲劳寿命评估步骤 (14)第9章焊接结构断裂控制 (14)9.1 焊接结构的断裂模式 (14)9.1.1 脆性断裂 (14)9.1.2 韧性断裂 (14)9.1.3 疲劳断裂 (14)9.1.4 气孔和夹杂物导致的断裂 (15)9.2 断裂控制方法 (15)9.2.1 材料选择 (15)9.2.2 焊接工艺优化 (15)9.2.3 焊接结构设计改进 (15)9.2.4 预防措施 (15)9.3 焊接结构安全评定 (15)9.3.1 安全评定方法 (15)9.3.2 安全评定标准 (15)9.3.3 安全评定程序 (15)9.3.4 案例分析 (15)第10章焊接结构典型应用案例 (15)10.1 桥梁焊接结构设计与制造 (15)10.1.1 案例概述 (16)10.1.2 结构设计 (16)10.1.3 制造过程 (16)10.2 船舶焊接结构设计与制造 (16)10.2.1 案例概述 (16)10.2.2 结构设计 (16)10.2.3 制造过程 (16)10.3 压力容器焊接结构设计与制造 (17)10.3.1 案例概述 (17)10.3.2 结构设计 (17)10.3.3 制造过程 (17)10.4 电站焊接结构设计与制造 (17)10.4.1 案例概述 (17)10.4.2 结构设计 (17)10.4.3 制造过程 (17)第1章焊接结构设计基础1.1 焊接工艺概述1.1.1 焊接基本概念焊接作为一种永久性连接金属的方法,是通过加热或加热与压力相结合的方式,使金属材料局部熔化并形成连接的过程。

焊接结构设计的基本要求和基本原则

焊接结构设计的基本要求和基本原则

焊接结构设计的基本要求和基本原则1.强度要求:焊缝必须能够承受设计荷载,在额定载荷下不应产生变形、塑性破坏或断裂。

2.刚度要求:焊接结构的变形应受到控制,以确保结构的稳定性和使用性能。

3.耐久性要求:焊接结构应能够耐受外界环境的侵蚀、震动、振动等因素,保持设计寿命。

4.适应性要求:焊接结构要能够适应不同的工艺要求和施工条件,满足安装、运输和维护的需求。

5.安全性要求:焊接结构应符合安全设计规范,减少事故和潜在风险。

1.材料选择:应选用适用于具体焊接结构的材料,具备良好的焊接性能、力学性能和耐久性。

2.焊缝设计:焊缝的选择和设计应符合强度和刚度要求,考虑接触应力、应力集中和蠕变等因素。

3.焊接工艺:应根据焊接结构的要求选择合适的焊接工艺,确保焊缝质量,并避免热影响带的形成。

4.结构布局:焊接结构的布局应合理、紧凑,减少焊接长度和次数,提高生产效率。

5.质量控制:应对焊接结构进行质量控制,包括焊接材料的选择、预处理和检测,以及焊接工艺参数的调整和监测。

6.工作环境:焊接结构的设计应考虑到工作环境的特殊要求,如高温、低温、腐蚀等,选择合适的材料和相应的保护措施。

在具体的焊接结构设计中,还需要考虑以下因素:1.加工性:焊接结构的形状和尺寸应符合加工要求,便于操作和施工。

2.外观效果:焊接结构应具备良好的外观效果,减少焊接缺陷和瑕疵。

3.经济性:焊接结构的设计应尽可能减少材料的消耗和加工成本,提高生产效率和经济效益。

综上所述,焊接结构设计的基本要求和基本原则旨在确保焊接结构的安全、稳定和耐久,以及提高生产效率和经济效益。

设计师应考虑材料选择、焊缝设计、焊接工艺等因素,并根据工作环境和特殊要求进行合理布局和质量控制。

通过严格遵循这些原则和要求,能够使焊接结构具备合适的强度、刚度和耐久性,满足实际工程应用的需求。

焊接件的结构设计

焊接件的结构设计

焊接件的结构设计焊接件是指由焊接工艺连接的构件或零件。

在整个焊接工艺中,焊接件的结构设计起到了至关重要的作用。

良好的结构设计可以保证焊接件的质量和性能,并确保焊接工艺顺利进行。

下面将从焊接件的结构设计中的要点、步骤、注意事项等方面进行详细介绍。

一、结构设计要点1.材料选择:焊接件的材料选择应根据使用环境和工作条件进行合理选择。

常见的焊接材料有低碳钢、不锈钢、铝合金等。

选择合适的材料可以提高焊接件的强度和耐腐蚀性。

2.结构形式选择:结构形式是指焊接件在装配时的形状和结构布局。

应根据焊接件的功能和使用要求进行选择。

常见的结构形式有角焊缝、对接焊缝、搭接焊缝等。

3.强度设计:焊接件的强度设计应满足预期的载荷和使用要求。

根据焊接件的受力分析,确定焊缝的尺寸和焊接参数,以保证焊接件具有足够的强度。

4.焊接缺陷控制:焊接件的结构设计应注意控制焊接缺陷,常见的焊接缺陷有气孔、夹渣、裂纹等。

通过合理设计焊缝形状、采用适当的焊接工艺参数和设备,可以有效地减少焊接缺陷的产生。

5.板材厚度选择:焊接件的板材厚度选择应根据受力情况和结构要求进行合理选择。

过薄的板材容易导致焊接变形和断裂,而过厚的板材则会增加焊接工艺的难度。

二、结构设计步骤1.确定焊接件的功能和使用要求:根据焊接件的使用要求,确定焊接结构的形式和尺寸。

2.进行焊接件的受力分析:通过力学分析,确定焊接件在使用过程中的受力情况和受力方向。

3.设计焊缝形状和尺寸:根据受力分析结果,确定焊缝的形状和尺寸,以保证焊接件具有足够的强度。

4.选择合适的焊接材料:根据焊接件的使用环境和工作条件,选择合适的焊接材料,以确保焊接件的耐腐蚀性和强度。

5.设计焊接工艺参数:根据焊接材料和焊接件的要求,确定合适的焊接工艺参数,包括焊接电流、焊接时间、预热温度等。

三、结构设计注意事项1.焊接件的结构设计应考虑焊后的应力和变形问题,采取合适的预应力设计和变形控制措施。

2.在进行焊接件的结构设计时,应充分考虑焊接设备和工艺的条件,确保焊接过程的可实施性。

焊接结构设计-001

焊接结构设计-001

εT是自由变形率: εT= ΔLT / L0=α(T-T0) 外观变形率εe= Δ Le / L0 内部变形率ε = Δ L / L0
返回
钢板条中心加热和冷却时的应力与变形 a)原始状态 b)、c)加热过程 d)、e)冷却过程
a)
d) b)
c)
e)
钢板边缘一侧加热和冷却时的应力与变形 a)原始状态 b)假设各板条的伸长 c)加热后的变形
焊缝在x-x轴一侧,焊后最容易产生弯曲 变形
焊缝的位置应尽可能对称布置
如图a、b所示的焊件,焊缝位置偏离截面中心,并在同一 侧。由于焊缝的收缩,会造成较大的弯曲变形。图中 c、d、 e所示的焊缝位置对称,焊后不会发生明显的变形。
焊缝位置对称于x-x轴和y-y轴,焊后变形较 小,容易防止。
图1-44
1.筒体、封头及其相互间连接的焊接结构 纵、环焊缝必须采用对接接头。 对接接头的坡口形式可分为不开坡口(又称齐边坡口)、V 形坡口、X形坡口、单U形坡口和双U形坡口等数种,应根 据筒体或封头厚度、压力高低、介质特性及操作工况选择 合适的坡口形式。
2. 接管与壳体及补强圈间的焊接结构 一般只能采用角接焊和搭接焊,具体的焊接结构还与容器 的强度和安全性要求有关。有多种接头形式,涉及是否开 坡口、单面焊与双面焊、熔透与不熔透等问题。设计时, 应根据压力高低、介质特性、是否低温、是否需要考虑交 变载荷与疲劳问题等来选择合理的焊接结构。下面介绍常 用的几种结构。
图14-3 双V形坡口 双V形坡口由两个V形坡口和一个I形坡口组合而成
三、压力容器焊接接头分类
目的:
为对口错边量、热处理、无损检测、焊缝尺寸等方面
有针对性地提出不同的要求,GB150根据位置,根据 该接头所连接两元件的结构类型 以及应力水平,把接

焊接结构设计的基本要求和基本原则

焊接结构设计的基本要求和基本原则

焊接结构设计的基本要求和基本原则1.设计的基本要求设计任何焊接结构都应满足下列基本要求1实用性结构必须达到所要求的使用功能和预期效果2可靠性结构在使用期内必须安全可靠,应能满足强度、刚度、稳定、抗振、耐蚀等方面的要求;3工艺性应该是能焊接施工的结构;所选的金属材料既有良好的焊接性能,又具有良好的焊前预加工性能和焊后热处理性能;所设计的结构应具有焊接和检验的可达性,并易于实现机械化和自动化焊接;4经济性制造该结构时所消耗的原材料、能源和工时应最少,其综合成本低;此外,还要适当注意结构的造型美观;上述要求是设计者追求的目标,设计时要统筹兼顾,应以可靠性为前提,实用性为核心,工艺性和经济性为制约条件;2.设计的基本原则为了使设计能达到上述的基本要求,设计焊接结构时,应遵循下列的设计原则;1合理选择和利用材料所选用的金属材料必须同时满足使用性能和加工性能的要求,前者包括强度、韧度、耐磨、耐蚀、抗蠕变等性能;后者主要是焊接性能,其次是其他冷、热加工性能,如热切割、冷弯、热弯、金属切削及热处理等性能;在结构上有特殊性能要求的部位,可采用特种金属材料,其余采用能满足一般要求的廉价材料;如有防腐蚀要求的结构,可采用以普通碳钢为基体;以不锈钢为工作面的复合钢板或者在基体上堆焊抗腐蚀层;又如有耐磨要求的构件,仅在工作面上堆焊耐磨合金或热喷涂耐磨层等;充分发挥异种金属材料能进行焊接的特点;尽可能选用扎制的标准型材料和异型材;通常轧制型材表面光洁平整、质量均匀可靠;使用时不仅减少许多备料工作量,还可减少焊缝数量;由于焊接量减少,焊接变形易于控制;在划分结构的零部件时,要考虑到备料过程中合理排料的可能性,以减少余料,提高材料利用率;(2)合理设计结构形式能满足上述基本要求的结构形式都被认为是合理的结构设计,也就是可从实用、可靠、可加工和经济等方面对结构设计的合理性进行综合评价;设计时,一般应注意以下几点;1)根据强度、刚度和稳定的要求,以最理想的受力状态去确定结构的几何形状和尺寸;切忌仿效铆接、铸造、锻造结构的构造形式;2)既要重视结构的整体设计,也要重视结构的细部处理;这是因为焊接结构属刚性连接的结构,结构的整体性意味着任何部位的构造都同等重要,许多焊接结构的破坏事故起源于局部构造设计不合理处;对于应力复杂或应力集中部位更要慎重处理,如结构中的结点、断面变化部位、焊接接头的焊趾处等;3)要有利于实现机械化和自动化焊接;为此,应尽量采用简单、平直的结构形式;减少短而不规则的焊缝;一条焊缝上其截面应相同;要避免采用难以弯制或冲压的具有复杂空间曲面的结构;尽量减少施焊时的翻身次数;组装时,定位和夹紧应方便;(3)减少焊接量除了前述尽量多选用轧制型材减少焊缝处,还可以利用冲压件代替部分焊件;结构形状复杂,角焊缝多且密集的部位,可用铸钢件代替;肋板的焊缝数量多工作量大,必要时可以适当增加基体壁厚,以减少或不用肋板;对于角焊缝,在保证强度要求的前提下,尽可能用最小的焊脚尺寸,因为焊缝面积与焊角高的平方成正比;对于坡口焊缝,在保证焊透的前提下应选用填充金属量最小的坡口形式;(4)合理布置焊缝有对称轴的焊接结构,焊缝宜对称的布置,或接近对称轴处,这有利于控制焊接变形;要避免焊缝汇交和密集;在结构上有焊缝汇交时,使重要焊缝连续,让次要焊缝中断,这有利于重要焊缝实现自动焊,保证其质量;尽可能使焊缝避开高工作应力部位、应力集中处、机械加工面和需变质处理的表面等;(5)施工方便必须使结构上每条焊缝都能方便施焊和质量检验;如,焊缝周围要留有足够焊接和质量检验的操作空间;尽量使焊缝都能在工厂中焊接,减少在工地的焊接量;减少手工焊接量,增大自动焊接量;对双面焊缝,操作方面的一面用大坡口,施焊条件差的一面用小坡口,必要时,改用单面焊双面成形的接头坡口形式和焊接工艺;尽量减少仰焊或立焊的焊缝,仰焊或立焊的焊接劳动条件差,不易保证质量,且生产率低;(6)有利于生产组织与管理经验证明,大型焊接结构采用部件组装的生产方式有利于工厂的组织管理;因此,设计大型焊接结构时,要进行合理分段;分段时,一般要综合考虑起重运输条件、焊接变形控制、焊后热处理、机械加工、质量检验和总装配等因素;。

焊接结构设计

焊接结构设计

焊接结构设计
翼板, (1) 翼板,腹板的拼接焊缝位置
图16-10 焊接梁 16-
翼板, 图16-11 翼板,腹板拼接焊缝的位置 16-
图16-10所示的梁在承受载荷时,上翼板内受压 16-10所示的梁在承受载荷时, 所示的梁在承受载荷时 应力作用,下翼板内受拉应力作用,中部拉应力最大, 应力作用,下翼板内受拉应力作用,中部拉应力最大, 腹板受力较小.对上翼板和腹板,从使用要求看, 腹板受力较小.对上翼板和腹板,从使用要求看,焊 缝的位置可以任意安排. 缝的位置可以任意安排.为充分利用材料原长和减少 焊缝数量,上翼板和腹板都采用两块2500mm 2500mm的钢板拼 焊缝数量,上翼板和腹板都采用两块2500mm的钢板拼 接,即焊缝在梁的中部.对下翼板,为使焊缝避开最 即焊缝在梁的中部.对下翼板,
焊接结构设计
表16-3 焊接梁各焊缝焊接方法及接头形式的选择 16焊缝名称 拼板焊缝 翼板-腹板焊 翼板 腹板焊 缝 筋板焊缝 焊接方法 手弧焊或CO2焊 手弧焊或 1.埋弧自动焊 . 2.手弧焊或 .手弧焊或CO2焊 手弧焊或CO2焊 手弧焊或 接头形式
焊接结构设计
图16-16 瓶体装配焊接简图
焊接结构设计 2,焊接工字梁
结构名称:焊接梁(图16-10); 结构名称:焊接梁( 16-10); 主要组成:上,下翼板,腹板,肋板; 主要组成: 下翼板,腹板,肋板; 材 料:20钢; 20钢 钢板最大长度2500mm 板厚分别选用6 2500mm, 尺 寸:钢板最大长度2500mm,板厚分别选用6,8和 10mm; 10mm; 生产类型:大批生产 生产类型: 设计要点:该结构用低碳钢板(20钢 下料拼焊, 设计要点:该结构用低碳钢板(20钢)下料拼焊,材 料可焊性好. 料可焊性好.焊接工艺设计中需要集中考虑的是梁柱 的受力状况和防止应力与变形,切实保证焊接质量. 的受力状况和防止应力与变形,切实保证焊接质量.

焊接结构的设计原则

焊接结构的设计原则

焊接结构的设计原则焊接结构的设计原则是指在进行焊接工艺和焊接接头设计过程中,需要遵循的一些准则和原则。

这些原则能够确保焊接结构具有合适的强度、稳定性和可靠性。

下面将介绍一些重要的焊接结构设计原则,以便于更好地指导实际的设计工作。

1. 合理选择焊接方法:焊接结构的设计要根据实际情况合理选择焊接方法,常用的有手工电弧焊、气体保护焊、等离子焊等。

不同的焊接方法适用于不同的材料和接头形式,需要根据具体的要求和工艺条件来综合考虑。

2. 选择合适的焊接材料:焊接结构的设计还需要根据焊接接头的工作条件选择合适的焊接材料。

焊接材料的选择要考虑到材料的强度、韧性、耐腐蚀性等要求,并且要进行合理的材料配比和焊接试验,以确保焊接接头的性能满足设计要求。

3. 确保焊接接头的足够强度:焊接结构的设计中,要确保焊接接头具有足够的强度来承受外部载荷和环境条件的影响。

因此,在设计中需要考虑焊缝的尺寸、形状和焊接角度等因素,以提高焊接接头的强度和稳定性。

4. 避免应力集中:焊接结构在焊接过程中会产生应力,并且焊接接头处会出现应力集中的现象。

为了避免应力集中导致的裂纹和破坏,设计时需要合理设置过渡段,减少焊接接头的应力集中程度。

此外,还可以通过焊缝预热、热处理等方法来减少焊接接头的应力。

5. 控制焊接变形:焊接结构在焊接过程中会发生变形,影响接头的质量和稳定性。

为了控制焊接变形,可以采取适当的焊接顺序、合理设置支撑件和采用余弦指数曲线的焊接方法等。

此外,还可以通过预热和焊后热处理等措施来减少焊接变形。

综上所述,焊接结构的设计原则包括合理选择焊接方法、选择合适的焊接材料、确保焊接接头的足够强度、避免应力集中以及控制焊接变形等。

在实际的设计过程中,必须根据具体情况综合考虑各种因素,并结合实践经验和相关标准进行设计,以确保焊接结构具有良好的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊接结构设计
一、焊接接头形式
焊接接头形式:对接接头、角接接头及T字形接头、搭接接头。

(a)对接接头;(b)角接接头;(c)搭接接头
图4-44 焊接接头的三种形式1.对接接头
结构:两个相互连接零件在接头处的中面处于同一平面或同一弧面内进行焊接的接头。

特点:受热均匀,受力对称,便于无损检测,焊接质量容易得到保证。

应用:最常用的焊接结构形式。

2.角接接头和T型接头
结构:两个相互连接零件在接头处的中面相互垂直或相交成某一角度进行焊接的
接头。

两构件成T字形焊接在一起的接头,叫T型接头。

角接接头和T字接头都形成角焊缝。

特点:结构不连续,承载后受力状态不如对接接头,应力集中比较严重,且焊接质量也不易得到保证。

应用:某些特殊部位:接管、法兰、夹套、管板和凸缘的焊接等。

3.搭接接头
结构:两个相互连接零件在接头处有部分重合在一起,中面相互平行,进行焊接的接头。

特点:属于角焊缝,与角接接头一样,在接头处结构明显不连续,承载后接头部位受力情况较差。

应用:主要用于加强圈与壳体、支座垫板与器壁以及凸缘与容器的焊接。

二、坡口形式
焊接坡口——为保证全熔透和焊接质量,减少焊接变形,施焊前,一般将焊件连接处预先加工成各种形状。

不同的焊接坡口,适用于不同的焊接方法和焊件厚度。

坡口形状
基本坡口形状:Ⅰ形、V形、单边V形、 U形、J形。

组合形状
特例:一般接头应开设坡口,而搭接接头无需开坡口即可焊接。

双V形坡口由两个V形坡口和一个I形坡口组合而成
图4-45 坡口的基本形式
图4-46 双V形坡口
三、压力容器焊接接头分类
目的:为对口错边量、热处理、无损检测、焊缝尺寸等方面有针对性地提出不同的要求,GB150根据位置,根据该接头所连接两元件的结构类型以及应力水平,把接头分成A、B、C、D四类,如图4-47。

图4-47 压力容器焊接接头分类
A类:圆筒部分的纵向接头(多层包扎容器层板层纵向接头除外)、球形封头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头。

B类:壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头。

但已规定为A、C、D类的焊接接头除外。

C类:平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头以及多层包扎容器层板层纵向接头。

D类:接管、人孔、凸缘、补强圈等与壳体连接的接头。

但已规定为A、B类的焊接接头除外。

注意:焊接接头分类的原则仅根据焊接接头在容器所处的位置而不是按焊接接头
的结构形式分类,所以,在设计焊接接头形式时,应由容器的重要性、设计条件以及施焊条件等确定焊接结构。

这样,同一类别的焊接接头在不同的容器条件下,就可能有不同的焊接接头形式。

四、压力容器焊接结构设计的基本原则
1.尽量采用对接接头,易于保证焊接质量,所有的纵向及环向焊接接头、凸形封头上的拼接焊接接头,必须采用对接接头外,其它位置的焊接结构也应尽量采用对接接头。

举例:角焊缝,改用对接焊缝[图48(a)改为8(b)和(c)]。

减小了应力集中,方便了无损检测,有利于保证接头的内部质量。

图4-48 容器接管的角接和对接
2.尽量采用全熔透的结构,不允许产生未熔透缺陷
未熔透:指基体金属和焊缝金属局部未完全熔合而留下空隙的现象。

未熔透导致脆性破坏的起裂点,在交变载荷作用下,它也可能诱发疲劳破坏。

改进:选择合适的坡口形式,如双面焊;当容器直径较小,且无法从容器内部清根时,应选用单面焊双面成型的对接接头,如用氩弧焊打底,或采用带垫板的坡口等。

3.尽量减少焊缝处的应力集中
接头常常是脆性破坏和疲劳破坏的起源处,因此,在设计焊接结构时必须尽量减少应力集中。

措施:尽可能采用等厚度焊接,对于不等厚钢板的对接,应将较厚板按一定斜度削薄过渡,然后再进行焊接,以避免形状突变,减缓应力集中程度。

一般当薄板厚度δ2不大于10mm,两板厚度差超过3mm;或当薄板厚度δ2大于10mm,两板厚度差超过薄板的30%,或超过5mm时,均需按图4-49的要求削薄厚板边缘。

图4-49 板厚不等时的
对接接头
五、压力容器常用焊接结构设计
主要内容:选择合适的焊缝坡口,方便焊材(焊条或焊丝)伸入坡口根部,以保证全熔透。

坡口选择因素:①尽量减少填充金属量;②保证熔透,避免产生各种焊接缺陷;
③便于施焊,改善劳动条件;④减少焊接变形和残余变形量,对较厚元件焊接应尽量选用沿厚度对称的坡口形式,如X形坡口等。

1.筒体、封头及其相互间连接的焊接结构纵、环焊缝必须采用对接接头。

对接接头的坡口形式可分为不开坡口(又称齐边坡口)、V形坡口、X形坡口、单U形坡口和双U形坡口等数种,应根据筒体或封头厚度、压力高低、介质特性及操作工况选择合适的坡口形式。

2. 接管与壳体及补强圈间的焊接结构
一般只能采用角接焊和搭接焊,具体的焊接结构还与容器的强度和安全性要求有关。

有多种接头形式,涉及是否开坡口、单面焊与双面焊、熔透与不熔透等问题。

设计时,应根据压力高低、介质特性、是否低温、是否需要考虑交变载荷与疲劳问题等来选择合理的焊接结构。

下面介绍常用的几种结构。

(1)不带补强圈的插入式接管焊接结构
中低压容器不需另作补强的小直径接管用得最多的焊接结构,接管与壳体间隙应小于3mm,否则易产生裂纹或其它焊接缺陷。

(a)图:单面焊接结构,适用于内径小于600mm、盛装无腐蚀性介质的接管与壳体之间的焊接,接管厚度应小6mm;
(b)图:最常用的插入式接管焊接结构之一,为全熔透结构。

适用于具备从内部清根及施焊条件、壳体厚度在4~25mm、接管厚度大于等于0.5倍壳体厚度的情况;
(c)图:在(b)的基础上,将接管内径边角处倒圆,可用于疲劳、低温及有较大温度梯度的操作工况。

(2)带补强圈的接管焊接结构
要求:尽量与补强处的壳体贴合紧密,焊接结构力求完善合理。

但只能采用塔接和角接,难于保证全熔透,也无法进行无损检测,因而焊接质量不易保证。

坡口:大间隙小角度,利于焊条伸入到底,减少焊接工作量。

图(a):一般要求的容器,即非低温、无交变载荷的容器
图(b):承受低温、疲劳及温度梯度较大工况的容器,保证接管根部及补强圈内侧焊缝熔透。

(3)安放式接管的焊接结构
优点:结构拘束度低、焊缝截面小、较易进行射线检测等。

图(a):适用于接管内径小于或等于100mm的场合;
图(b)和(c):适用于壳体厚度δn≤16mm的碳素钢和碳锰钢,或δn≤25mm 的奥氏体不锈钢容器,其中图(b)的接管内径应小于或等于 50mm,厚度
δnt≤6mm,图(c)的接管内径应大于50mm,且小于或等于150mm,厚度δnt >6mm。

(4)嵌入式接管的焊接结构
属于整体补强结构中的一种,适用于承受交变载荷、低温和大温度梯度等较苛刻的工况。

(a)图:适用于球形封头或椭圆形封头中心部位的接管与封头的连接,且封头厚度δn≤50mm。

(5)凸缘与壳体的焊接结构
1)角焊连接:连接不承受脉动载荷的容器凸缘与壳体,如图4-54所示。

2)对接连接:连接压力较高或要求全熔透的容器凸缘与壳体,如图4-55。

相关文档
最新文档