人教版九年级数学上册二次函数练习题
人教版九年级数学上册第二十二章 二次函数 章节测试题
第二十二章二次函数章节测试题一.选择题1.已知点(﹣1,2)在二次函数y=ax2的图象上,那么a的值是()A.1 B.﹣1 C.2 D.﹣22.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是23.已知点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x上的三点,则a,b,c 的大小关系为()A.b>c>a B.b>a>c C.c>a>b D.a>c>b4.若点A(﹣2,m),B(3,n)都在二次函数y=ax2﹣2ax+5(a为常数,且a>0)的图象上,则m和n的大小关系是()A.m>n B.m=nC.m<n D.以上答案都不对5.圆环的内圆半径是x,外圆半径是R,圆环的面积是y,则y与x之间的函数关系式是()A.y=π(R2﹣x2)B.y=π(R﹣x)2C.y=πR2﹣x2D.y=π(2πR﹣2πx)26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.47.二次函数y =ax 2﹣8ax (a 为常数)的图象不经过第三象限,在自变量x 的值满足2≤x ≤3时,其对应的函数值y 的最大值为﹣3,则a 的值是( ) A .B .﹣C .2D .﹣28.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =,且经过点(2,0).下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若(﹣,y 1),(,y 2)是抛物线上的两点,则y 1<y 2;⑤b >m (am +b )(其中m ≠). 其中说法正确的是( )A .①②④⑤B .①②④C .①④⑤D .③④⑤9.A (﹣,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =﹣(x ﹣2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 110.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是( )A .B .C .D .11.对于二次函数y =2(x ﹣1)2﹣8,下列说法正确的是( ) A .图象开口向下B .当x >1时,y 随x 的增大而减小C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x =﹣112.已知二次函数y =x 2﹣2ax +a 2﹣2a ﹣4(a 为常数)的图象与x 轴有交点,且当x >3时,y 随x 的增大而增大,则a 的取值范围是( )A .a ≥﹣2B .a <3C .﹣2≤a <3D .﹣2≤a ≤3二.填空题13.请写出一个函数表达式,使其图象的对称轴为y轴:.14.抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(﹣1,0).若关于x的一元二次方程x2+bx+c﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.15.已知A(﹣1,6),B(4,1),抛物线y=x2+b与线段AB只有唯一公共点时,则b的取值范围是.16.若关于x的函数y=(a﹣3)x2﹣(4a﹣1)x+4a的图象与坐标轴只有两个交点,则a 的值为.17.已知实数a,b,c满足a≠0,且a﹣b+c=0,9a+3b+c=0,则抛物线y=ax2+bx+c图象上的一点(﹣2,4)关于抛物线对称轴对称的点为.三.解答题18.已知一个二次函数有最大值4.且x>5时,y随x的增大而减小,当x<5时,y随x 的增大而增大,且该函数图象经过点(2,1),求该函数的解析式.19.如图,在平面直角坐标系中,抛物线y=ax2﹣3x+c交x轴于点A、点B,交y轴于点C,直线BC的解析式为y=x﹣4.(1)求抛物线的解析式;(2)点E为x轴下方抛物线上一点,连接BE、CE,设点E的横坐标为t,△BEC的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围.(3)在(2)的条件下,当点E在第四象限抛物线上时,且△BEC的面积为6,在抛物线上取一点Q,连接BQ,若∠EBQ=45°,求点Q的坐标.20.金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.21.有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.22.如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y 轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C.已知A(﹣3,0),该抛物线的对称轴为直线x=﹣.(1)求该抛物线的函数表达式;(2)求点B、C的坐标;(3)假设将线段BC平移,使得平移后线段的一个端点在这条抛物线上,另一个端点在x 轴上,若将点B、C平移后的对应点分别记为点D、E,求以B、C、D、E为顶点的四边形面积的最大值.参考答案一.选择题1.解:∵点(﹣1,2)在二次函数y=ax2的图象上,∴2=a×(﹣1)2,解得a=2,故选:C.2.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.3.解:∵抛物线y=x2﹣4x=(x﹣2)2﹣4,∴该抛物线的对称轴是直线x=2,当x>2时,y随x的增大而增大,当x<2时,y随x 的增大而减小,∵点A(﹣2,a),B(2,b),C(4,c)是抛物线y=x2﹣4x的三点,∵2﹣(﹣2)=4,2﹣2=0,4﹣2=2,∴a>c>b,故选:D.4.解:二次函数y=ax2﹣2ax+5(a为常数,且a>0)可知,抛物线开口向上,抛物线的对称轴为直线x=1,∵1+2>3﹣1∴m>n.故选:A.5.解:外圆的面积为πR2,内圆的面积为πx2,故y=πR2﹣πx2=π(R2﹣x2),故选:A.6.解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.7.解:∵二次函数y=ax2﹣8ax=a(x﹣4)2﹣16a,∴该函数的对称轴是直线x=4,又∵二次函数y=ax2﹣8ax(a为常数)的图象不经过第三象限,∴a>0,∵在自变量x的值满足2≤x≤3时,其对应的函数值y的最大值为﹣3,∴当x=2时,a×22﹣8a×2=﹣3,解得,a=,故选:A.8.解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x =,且经过点(2,0), ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴=﹣1×2=﹣2, ∴c =﹣2a , ∴﹣2b +c =2a ﹣2a =0 所以②正确;③∵抛物线经过(2,0), ∴当x =2时,y =0, ∴4a +2b +c =0, 所以③错误;④∵点(﹣,y 1)离对称轴要比点(,y 2)离对称轴远, ∴y 1<y 2, 所以④正确;⑤∵抛物线的对称轴x =, ∴当x =时,y 有最大值,∴a +b +c >am 2+bm +c (其中m ≠). ∵a =﹣b ,∴b >m (am +b )(其中m ≠), 所以⑤正确.所以其中说法正确的是①②④⑤. 故选:A .9.解:二次函数y =﹣(x ﹣2)2+k 的图象开口向下,对称轴为x =2,点A (﹣,y 1),B (1,y 2)在对称轴的左侧,由y 随x 的增大而增大,有y 1<y 2,由x =﹣,x =1,x =4离对称轴x =2的远近可得,y 1<y 3,y 3<y 2,因此有y 1<y 3<y 2, 故选:B .10.解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=﹣(x+1)2﹣1.故选:B.11.解:A、y=2(x﹣1)2﹣8,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x>1时,y随x的增大而增大;故本选项错误;C、当x<1时,y随x的增大而减小,故本选项正确;D、图象的对称轴是直线x=1,故本选项错误.故选:C.12.解:∵二次函数y=x2﹣2ax+a2﹣2a﹣4(a为常数)的图象与x轴有交点,∴△=(﹣2a)2﹣4×1×(a2﹣2a﹣4)≥0解得:a≥﹣2;∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,且当x>3时,y随x的增大而增大,∴a≤3,∴实数a的取值范围是﹣2≤a≤3.故选:D.二.填空题(共5小题)13.解:∵图象的对称轴是y轴,∴函数表达式y=x2(答案不唯一),故答案为:y=x2(答案不唯一).14.解:∵抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(﹣1,0).∴,得即抛物线解析式为y=x2﹣2x﹣3,当y=t时,t=x2﹣2x﹣3,即x2﹣2x﹣3﹣t=0,∵关于x的一元二次方程x2+bx+c﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,∴t=x2﹣2x﹣3有实数根,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴当﹣1<x≤4时,x=1时,y有最小值﹣4,当x=4时,y取得最大值5,∴t的取值范围是﹣4≤t<5,故答案为:﹣4≤t<5.15.解:设直线AB的解析式为y=mx+n,把A(﹣1,6),B(4,1)代入得,解得,∴直线AB为y=﹣x+5,抛物线y=x2+b的开口向上,与线段AB:y=﹣x+5只有唯一公共点,需要x2+b=﹣x+5 △=12﹣4×1×(b﹣5)=0,∴b=,抛物线y=x2+b过A点,得b=5,抛物线y=x2+b过B点,得b=﹣15,∴﹣15≤b<5或b=16.解:①当a﹣3≠0时,图象与坐标轴只有两个交点,则与x轴只有一个交点,则△=(4a﹣1)2﹣4(a﹣3)×4a=0,解得:a=﹣,当抛物线过原点时,图象与坐标轴也只有两个交点,故a=0;②当a=3时,y=﹣11x+12,与坐标轴只有两个交点,故答案为:﹣或3或0.17.解:∵a﹣b+c=0和9a+3b+c=0,∴c=﹣3a,b=﹣2a,∴抛物线解析式为y=ax2﹣2ax﹣3a,∴对称轴为x=﹣=1,∴(﹣2,4)关于抛物线对称轴对称的点为(4,4).故答案是:(4,4).三.解答题(共6小题)18.解:由题意得,二次函数的顶点坐标为(5,4),设关系式为y=a(x﹣5)2+4,把(2,1)代入得,1=9a+4,解得,a=﹣,∴二次函数的关系式为y=﹣(x﹣5)2+4.19.解:(1)∵直线BC的解析式为y=x﹣4,∴当x=0时,y=﹣4;当y=0时,x=4,∴C(0,﹣4),B(4,0),将C(0,﹣4),B(4,0)代入抛物线y=ax2﹣3x+c,得,,解得,a=1,c=﹣4,∴抛物解析式为y=x2﹣3x﹣4;(2)当点E在直线BC下方时,如图1,过点E作EF∥y轴交直线BC于点F,设E(t,t2﹣3t﹣4),则F(t,t﹣4),∴EF =t ﹣4﹣(t 2﹣3t ﹣4)=﹣t 2+4t , ∴==﹣2t 2+8t ,自变量t 的取值范围是0<t <4, 当点E 在直线BC 上方时,如图2,过点E 作ED ∥y 轴交直线BC 于点D ,设E (t ,t 2﹣3t ﹣4),则D (t ,t ﹣4),∴ED =t 2﹣3t ﹣4﹣(t ﹣4)=t 2﹣4t ,∴=2t 2﹣8t ,自变量t 的取值范围是﹣1<t <0,∴S 与t 之间的函数关系式为.(3)∵点E 在第四象限抛物线上,∴0<t <4,∴S =﹣2t 2+8t =6,解得t 1=1,t 2=3,∴E (3,﹣4)或E (1,﹣6),①当E点坐标为(3,﹣4)时,如图3,连接CE,过点E作EN⊥BC,作∠EBQ=45°,∵OB=OC,∴∠OBC=45°,∴∠OBM=∠CBE,∵E(3,﹣4),C(0,﹣4),B(4,0),∴BC=4,CE=3,CE∥OB,∴∠BCE=∠OBC=45°,∴CN=EN=,BN=,∴tan∠NBE=,∴,∴OM=,∴M(0,﹣),设直线BQ的解析式为y=kx+b,∴,解得,∴直线BQ的解析式为y=x﹣,联立直线和抛物线解析式得,整理得5x2﹣18x﹣8=0,=4(舍去),解得,x2∴Q(﹣);②当E点坐标为(1,﹣6)时,如图4,作∠EBQ=45°,过点E作EG⊥BC于点G,连接CE,∵E(1,﹣6),C(0,﹣4),B(4,0),∴CE=,BC=4,BE=3,设CG=a,∴5﹣,解得a=,∴,BG=,∴tan,∴tan∠OBH=tan∠GBE=,∴OH=,∴H(0,﹣),同理求得直线BQ的解析式为y=x﹣,∴,解得,x2=4(舍去),∴Q(﹣,﹣).综合以上可得点Q的坐标为()或(﹣,﹣).20.解:(1)①当12≤x≤20时,设y=kx+b.代(12,2000),(20,400),得解得∴y=﹣200x+4400②当20<x≤24时,y=400.综上,y=(2)①当12≤x≤20时,W=(x﹣12)y=(x﹣12)(﹣200x+4400)=﹣200(x﹣17)2+5000当x=17时,W的最大值为5000;②当20<x≤24时,W=(x﹣12)y=400x﹣4800.当x=24时,W的最大值为4800.∴最大利润为5000元.(3)①当12≤x≤20时,W=(x﹣12﹣1)y=(x﹣13)(﹣2000x+4400)=﹣200(x﹣17.5)2+4050令﹣200(x﹣17.5)2+4050=3600x 1=16,x2=19∴定价为16≤x≤19②当20<x≤24时,W=400(x﹣13)=400x﹣5200≥3600∴22≤x≤24.综上,销售价格确定为16≤x≤19或22≤x≤24.21.解:(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×(EH+AD)×20x+2×(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF=(20﹣2x)米,EH=(30﹣2x)米,参考(1),由题意得:y=(30+30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);=2×(EH+AD)×x=(30﹣2x+30)x=﹣2x2+60x,(3)S甲=﹣2x2+40x,同理S乙∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x2+60x﹣(﹣2x2+40x)≤120,解得:x≤6,故0<x≤6,而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,即三种花卉的最低种植总成本为21600元.22.解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍去),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∴点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置前,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2(不合题意舍去),当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.23.解:(1)所求抛物线的对称轴为直线x =﹣,且过点A (﹣3,0),∴,解得,,∴该抛物线的函数表达式为y =x 2+x ﹣6;(2)令x =0,得y =﹣6,∴C (0,﹣6),令y =0,得x 2+x ﹣6=0,解得x 1=2,x 2=﹣3(舍去),∴B (2,0);(3)由平移的性质可知,BC ∥DE 且BC =DE ,∴四边形BCED 为平行四边形, 如图,符合条件的四边形有三个,▱BCE 1D 1,▱BCE 2D 2,▱BCE 3D 3.∴=OC •BD 1,=OC •BE 2,=OC•BE 3,∵BE 3>BD 1,BE 2>BE 3,∴▱BCE 2D 2的面积最大,令y =6,得x 2+x ﹣6=6,解得x 1=3,x 2=﹣4,∴D 2(﹣4,6),E 2(﹣6,0), ∴BE 2=2﹣(﹣6)=8,∴=OC ×BE 2=48. ∴四边形BCED 面积的最大值为48.。
人教版九年级数学上册第22章《二次函数》单元测试题含答案
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
人教版数学九年级上册二次函数专题训练
二次函数专题训练1.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.4. 如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD 重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.5.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根.(1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD .①当△OPC 为等腰三角形时,求点P 的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标.6. 如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由; (3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.7. 如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.8. 如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1,0),C (3,0),D (3,4).以A 为顶点的抛物线y=ax 2+bx+c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动.同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P ,Q 的运动速度均为每秒1个单位.运动时间为t 秒.过点P 作PE⊥AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.9.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.10.如图,在平面直角坐标系中,直线3342y x=-与抛物线214y x bx c=-++交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方..的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.11.已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(﹣1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.12.如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A 的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.13. 为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元?14 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?15. 某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q = W + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.(1)用含x和n的式子表示Q;(2)当x = 70,Q = 450时,求n的值;(3)若n = 3,要使Q最大,确定x的值;(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)16. 如图,抛物线y=x 2+bx+c 与x 轴交于点A (2,0),交y 轴于点B (0,25).直线y=kx 过点A 与y 轴交于点C ,与抛物线的另一个交点是D . (1)求抛物线y=x 2+bx+c与直线y=kx 的解析式;(2)设点P 是直线AD 上方的抛物线上一动点(不与点A 、D 重合),过点P 作 y 轴的平行线,交直线AD 于点M ,作DE ⊥y 轴于点E .探究:是否存在这样的点P ,使四边形PMEC 是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由; (3)在(2)的条件下,作PN ⊥AD 于点N ,设⊥PMN 的周长为L ,点P 的横坐标为x ,求l 与x 的函数关系式,并求出L 的最大值.17. 某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y 1(元)与国内销售数量x (千件)的关系为:()()1159002513026x x y x x ⎧+⎪=⎨-+⎪⎩<≤≤< 若在国外销售,平均每件产品的利润y 2(元)与国外的销售数量t (千件)的关系为:()()210002511026t y t t ⎧⎪=⎨-+⎪⎩<≤≤< (1) 用x 的代数式表示t 为:t= ;当0<x≤4时,y 2与x 的函数关系为y 2= ;当≤x< 时,y 2=100;(2)求每年该公司销售这种健身产品的总利润w (千元)与国内的销售数量x (千件)的函数关系式,并指出x 的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?822--=x x y 交y 轴于点A ,交x 轴正18. 如图,抛物线半轴于点B.(1)求直线AB 对应的函数关系式;(2)有一宽度为1的直尺平行于y 轴;在点A 、B 之间平行移动;直尺两边长所在直线被直线AB 和抛物线截得两线段MN 、PQ.设M 点的横坐标为m ;且30<<m .试比较线段MN 与PQ 的大小.线经过A(-1,0),B(5,0),C(0,-52)三19. 如图,抛物点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.20. 如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使⊥AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使⊥POB=90°?若存在,求出点P的坐标,并求出⊥POB的面积;若不存在,请说明理由.21. 如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与⊥BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式23.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,⊥PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)24.如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O 点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPQ为矩形;②⊥AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.。
人教版九年级数学上册第22章二次函数训练题(一)(含答案)
人教版九年级数学上册第22章二次函数训练题(一)(含答案)一.选择题1.下列函数中属于二次函数的是()A.y=x B.y=2x2﹣1C.y=D.y=x2++12.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则()A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<05.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c <0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y =x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是()A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y110.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=.12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有.14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC恰好是等边三角形,则代数式b2﹣2(2a﹣5)=.三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式:;(2)它的顶点坐标是;当x时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x……y……(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是.18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么(填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y(3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为.20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.参考答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax ﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教版九年级数学上册《第二十二章二次函数 》测试卷-带参考答案
人教版九年级数学上册《第二十二章二次函数》测试卷-带参考答案一、单选题1.将二次函数化为顶点式正确的是()A.B.C.D.2.若将抛物线先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.B.C.D.3.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.B.C.D.4.如图,小强在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮筐底的距离l是()A.3m B.3.5m C.4m D.4.5m5.函数,当时,此函数的最小值为,最大值为1,则m的取值范围是()A.B.C.D.6.二次函数与x轴的两个交点的横坐标分别为m和n,且,则下列结论正确的是()A.B.C.D.7.如图,抛物线与轴交于点,点的坐标为,在第四象限抛物线上有一点,若是以为底边的等腰三角形,则点的横坐标为()A.B.C.D.或8.已知二次函数的部分图象如图所示,图象经过点,其对称轴为直线.下列结论:①;②若点,均在二次函数图象上,则;③关于x的一元二次方程有两个相等的实数根;④满足的x的取值范围为.其中正确结论的个数为().A.1个B.2个C.3个D.4个二、填空题9.抛物线的顶点在轴上,则.10.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.11.函数是描述现实世界中变化规律的数学模型,运用函数知识可以解决实际问题,如飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式形,则飞机着陆后滑行的最大距离是m.12.已知点、和都在函数的图象上,则、和的大小关系为(用“”连接).13.如图,抛物线与x轴相交于点、点,与y轴相交于点C,点D 在抛物线上,当轴时,.三、解答题14.如图,一辆宽为米的货车要通过跨度为米,拱高为米的单行抛物线隧道从正中通过,抛物线满足表达式保证安全,车顶离隧道的顶部至少要有米的距离,求货车的限高应是多少.15.电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中,且x为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?16.教科书中例1:有一个窗户形状如图①所示,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这道例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形(如图②),材料总长仍为6 m,利用图②,解答下列问题:(1)若AB为1m,求此时窗户的透光面积.(2)与教科书中例1比较,改变窗户形状后,窗户的透光面积的最大值有没有变大?请通过计算说明.17.某杂技团进行杂技表演,演员从跷跷板的右端处弹跳起经过最高点后下落到右端的椅子处,其身体看成一点运动的路线是一条抛物线的一部分,如图,已知,演员起跳点的高度,演员离开地面的最大高度是,此时,演员到起跳点的水平距离为.(1)求该抛物线的解析式;(2)已知人梯高,为了成功完成此次表演,那么人梯到起跳点的水平距离应为多少18.如图,抛物线与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)若点P是抛物线段上的一点,当的面积最大时求出点P的坐标,并求出面积的最大值.(3)点F是抛物线上的动点,作交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案:1.B2.A3.A4.D5.C6.C7.A8.B9.2510.2 ﹣411.60012.13.414.解:当时米.答:货车的限高应是米.15.(1)解:设y与x之间的函数关系式为由已知得解得因此y与x之间的函数关系式为(其中,且x为整数);(2)解:设每周销售这款玩具所获的利润为W由题意得W关于x的二次函数图象开口向上,且x为整数当时,W取最大值,最大值为1800即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.16.(1)解:由已知可得:AD==则S=1×=;(2)解:设AB= xm,则AD=(3-x)m,AF=(3-x)m∵AB>0,AD>0,AF>0∴0<x<设窗户的面积为S由已知可得:S= AB×AD= x(3-x)=-x2+3x=-(x-)2+当x=时,S有最大值,为∵>1.05∴现在窗户透光的最大值变大.17.(1)解:根据题意可知,抛物线的顶点坐标为设抛物线的解析式为把代入得:解得:抛物线的解析式为(2)解:当时解得:不符合题意,舍去答:人梯到起跳点的水平距离应为.18.(1),和(2)解:如图,连接设点当时,即点P的坐标为时,有最大值;(3)解:存在.①如图,当四边形为时抛物线对称轴为直线的坐标为②如图,当四边形为时,作于点G和和综上所述,点F的坐标为或或。
人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)
人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)人教版九年级上册数学第二十二章二次函数综合训练题一、单选题1.在下列表达式中,x是自变量,是二次函数的是()A.B.C.D.2.下列二次函数的图象与x轴没有交点的是()A.B.C.D.3.对于二次函数,当时,y随x的增大而增大,则满足条件的m的取值范围是()A.B.C.D.4.已知二次函数的图像上有三点,则的大小关系为()A.B.C.D.5.将抛物线向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.B.C.D.6.抛物线的部分图象如图所示,则一元二次方程的根为()A.B.,C.,D.,7.根据下列表格的对应值,判断方程(,、、为常数)一个解的范围是()A.B.C.D.8.如图,抛物线的对称轴为直线,与x轴的一个交点坐标为,如图所示,下列结论:①;②方程的两个根是;③;④当时,x的取值范围是;⑤当时,y随x增大而增大,其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题9.抛物线与y轴的交点坐标为.10.已知二次函数的图象经过点,且顶点坐标为,则二次函数的解析式为.11.抛物线向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线顶点坐标是.12.抛物线的二次项系数是;一次项系数是.13.已知函数的图象过原点,则a的值为14.若抛物线的图象与坐标轴只有两个公共点,则m的值为.15.一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则该学生推铅球的水平距离为.16.如图,抛物线与x轴交于两点,与y轴交于C点,在该抛物线的对称轴上存在点Q使得的周长最小,则的周长的最小值为.三、解答题17.抛物线经过点.(1)求这个二次函数的关系式;(2)为何值时,的值随着的增大而增大?18.抛物线的对称轴是直线,且过点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.如图,抛物线与x轴交于A、B两点,与y轴交于C点.(1)求A点和点B的坐标;(2)判断的形状,证明你的结论;(3)直接写出当时,自变量x的取值范围.20.如图,抛物线与x轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上运动到什么位置时,满足,并求出此时P点的坐标;(3)点Q是直线下方抛物线上一点,当Q运动到什么位置,的面积最大,求出面积的最大值和此时点Q的坐标.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:… 0 1 2 …… 0 5 …(1)直接写出表格当中的m值:_________;(2)直接写出这个二次函数的表达式_________;(3)在图中画出这个二次函数的图象.(4)直接写出当时,y的取值范围是_________.(5)直接写出当时,x的取值范围是_________.22.有一长为的篱笆,一面利用墙(墙的最大可用长度a为),围成中间隔着一道篱笆的长方形花圃,花圃的宽为,面积为.(1)求S关于x的函数解析式;(2)如果要围成面积为的花圃,的长是多少m?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?24.如图是二次函数的图象,其顶点坐标为.(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由.(3)在y轴上存在一点Q,使得周长最小,求此时构成的的面积.参考答案:1.D2.B3.D4.B5.D6.D7.C8.D9.10.11.12. 1 413.214.15.16./17.(1)(2)18.(1);(2);19.(1)A、B的坐标分别为:,,(2)是直角三角形,(3)有图像可得:时,或.20.(1)(2)或(3)当轴时,的面积最大,最大值为1,此时点Q的坐标为21.(1)0(2)(4)(5)22.(1)(2)花圃的长为(3)能;围法:花圃的长为,宽为,这时有最大面积23.(1)(2)当售价为65元时,每月销售该商品的利润最大,最大利润为6250元.24.(1),(2)存在,或(3)3。
人教版九年级数学上册二次函数测试题
1、下列词语中书写完全正确的一项是:A. 狼籍斑斓屏息敛声B. 诘责侏儒粗制烂造C. 迁徙禁锢油光可鉴D. 虐待黝黑正经危坐(答案)C2、下列句子中加点词语使用不恰当的一项是:A. 他在演讲时慷慨激昂,赢得了观众的阵阵掌声。
B. 这部小说情节跌宕起伏,扣人心弦,让人欲罢不能。
C. 他对待工作一丝不苟,深受同事们的尊敬。
D. 他在比赛中表现出色,锋芒毕露,最终夺得了冠军。
(注:此题假设“锋芒毕露”在此处使用不恰当,通常用于贬义,指人好表现自己。
但根据语境,若需选出不恰当的一项,且其他选项均无明显错误,则可勉强视为不恰当使用,尽管在某些情境下该词也可中性或褒义使用。
)(答案)D3、下列句子没有语病的一项是:A. 通过这次活动,使我认识到了团结的重要性。
B. 我们应该防止类似事故不再发生。
C. 他的学习成绩不仅在班里名列前茅,而且在全校也是佼佼者。
D. 能否坚持体育锻炼,是身体健康的保证。
(答案)C4、下列文学常识表述错误的一项是:A. 《藤野先生》是鲁迅回忆性散文集《朝花夕拾》中的一篇。
B. 《记承天寺夜游》的作者是宋代文学家苏轼,字子瞻,号东坡居士。
C. 《背影》是现代作家朱自清于1925年所创作的一篇回忆性散文。
D. 《中国石拱桥》的作者是茅以升,他是我国著名的文学家。
(答案)D(茅以升是著名的桥梁专家,非文学家)5、下列句子中标点符号使用正确的一项是:A. “你为什么不说话呢?是不是有什么心事?”妈妈关切地问。
B. 他喜欢的书有:《红楼梦》、《西游记》、《三国演义》等。
C. “快点,”他着急地说:“我们马上就要迟到了!”D. 这个地方,既美丽、又富饶,真是个好地方!(答案)A6、下列对课文理解有误的一项是:A. 《新闻两则》通过报道人民解放军的渡江战役,展现了革命军队的英勇无畏。
B. 《芦花荡》通过描写一个老英雄的故事,表现了抗日战争时期人民的英勇斗争精神。
C. 《阿长与<山海经>》通过回忆阿长的点滴事迹,表达了对她的怀念和感激之情。
人教版 九年级数学(上)二次函数 专项练习1 【含答案】
人教版 九年级数学(上)二次函数 专项练习1一、选择题(本大题共10道小题)1. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是()A.没有交点B.只有一个交点C.有且只有两个交点D.有且只有三个交点2. 关于抛物线y =x 2﹣(a+1)x+a﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧3. 二次函数y =x 2-2x +4化为y =a(x -h)2+k 的形式,下列正确的是( )A. y =(x -1)2+2B. y =(x -1)2+3C. y =(x -2)2+2D. y =(x -2)2+44. 对称轴是直线的抛物线是( )2-=x A. B. C. D. 22+-=x y 22+=x y 2)2(21+=x y 2)2(3-=x y 5.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2-4ac>0,其中正确的个数是( )A. 1 B. 2 C. 3 D. 46.函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根7. 若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为( )A. x 1=-3,x 2=-1B. x 1=1,x 2=3C. x 1=-1,x 2=3D. x 1=-3,x 2=18.已知二次函数y =ax 2﹣2ax+3(a >0),当0≤x≤m时,3﹣a≤y≤3,则m 的取值范围为( )A .0≤m≤1B .0≤m≤2C .1≤m≤2D .m≥29.已知二次函数y =(x -h)2+1(h 为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或310. 如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t(s),△OEF的面积S(cm 2),则S(cm 2)与t(s)的函数关系可用图象表示为( )二、填空题(本大题共10道小题)11. 二次函数的图象关于原点O (0,322--=x x y 0)对称的图象的解析式是_________________。
人教版初中九年级数学上册第二十二章《二次函数》经典题(含答案解析)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法:①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2;④9a +3b +c =0,其中正确的是( )A .①②④B .①④C .①②③D .③④ 2.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( ) A . B . C . D . 3.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<- 4.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D . 5.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D . 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x = 7.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)8.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n9.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤ 11.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 12.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-13.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+ 14.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( )A .x =-3B .x =-1C .x =-2D .x =4 15.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( )A .6米B .8米C .10米D .12米 二、填空题16.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).17.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.18.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.19.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M 平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.20.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________21.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.22.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)23.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.24.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.25.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.28.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.29.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式及自变量x 的取值范围;(2)若墙的最大可用长度为9米,求此时当AB 为多少米时长方形花圃的面积最大,最大面积是多少?30.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小;④函数图象与x 轴有2个公共点.所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k的取值范围是____.。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。
人教版九年级数学上学期 第22章 :二次函数 单元练习 (含答案解析)
第22章二次函数一.选择题(共12小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个2.若y=(m﹣2)x2﹣x+1是二次函数,则()A.m≠0 B.m>2 C.m<2 D.m≠23.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=5005.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或66.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确7.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A.B.C.D.8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.209.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x =﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.410.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x 的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a11.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b <0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5二.填空题(共6小题)13.二次函数y=a(x+1)(x﹣4)的对称轴是.14.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是.15.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.17.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.三.解答题(共4小题)19.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用描点法画出此抛物线(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是.20.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.21.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.22.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.参考答案与试题解析一.选择题(共12小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个【分析】整理一般形式后,根据二次函数的定义判定即可.【解答】解:①y2=2x2﹣4x+3,不符合二次函数的定义,不是二次函数;②y=4﹣3x+7x2,是二次函数;③y=﹣3x+5,分母中含有自变量,不是二次函数;④y=(2x﹣3)(3x﹣2)=6x2﹣13x+6,是二次函数;⑤y=ax2+bx+c,含有四个自变量,不是二次函数;⑥y=(n2+1)x2﹣2x﹣3,含有两个自变量,不是二次函数;⑦y=m2x2+4x﹣3,含有两个自变量,不一定是二次函数.∴只有②④一定是二次函数.故选:B.2.若y=(m﹣2)x2﹣x+1是二次函数,则()A.m≠0 B.m>2 C.m<2 D.m≠2【分析】根据二次函数的定义进行计算即可.【解答】解:∵函数y=(m﹣2)x2+2x﹣1是二次函数,∴m﹣2≠0,∴m≠2.故选:D.3.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)【分析】由于抛物线y=a(x+b)2+c的顶点坐标为(﹣b,c),若a>0,抛物线开口向上;若a<0,抛物线开口向下,利用这些知识即可确定选择项.【解答】解:∵抛物线y=﹣2(x+5)2+4,∴抛物线的开口方向向下,顶点坐标为(﹣5,4).故选:C.4.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=500【分析】利用抛物线经过点(0,2)得到c=2,根据抛物线的对称性得到抛物线的对称轴为直线x=200,抛物线经过点(300,﹣2),由于方程ax2+bx+4=0变形为ax2+bx+2=﹣2,则方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.【解答】解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.5.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或6【分析】根据题意的函数解析式,利用分类讨论的方法可以求得当y=5时,x的值.【解答】解:∵函数y=,∴当x≤2时,x2﹣1=5,得x1=﹣,x2=(舍去),当x>2时,x﹣1=5,得x=6,故当y=5时,x的值是或6,故选:C.6.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分两种情况进行讨论,①当抛物线与直线相切,△=0求得c=1,②当抛物线与直线不相切,但在0≤x≤3上只有一个交点时,找到两个临界值点,可得c=3,4,5,故c=3,4,5【解答】解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式得x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选:D.7.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A.B.C.D.【分析】根据二次函数的图象可以判断a、b、c的正负,从而可以得到一次函数y=ax ﹣bc的图象经过哪几个象限,本题得以解决.【解答】解:由二次函数y=ax2+bx+c的图象可得,a<0,b>0,c>0,∴bc>0,∴一次函数y=ax﹣bc的图象经过第二、三、四象限,故选:D.8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c =0的一个解的范围是()A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.20【分析】观察表格可知,y随x的值逐渐增大,ax2+bx+c的值在6.18~6.19之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在6.18~6.19之间.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.9.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x =﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.4【分析】根据一元二次方程的一个近似根,得到抛物线与x轴的一个交点,根据抛物线的对称轴,求出另一个交点坐标,得到方程的另一个近似根.【解答】解:∵抛物线与x轴的一个交点为(﹣3.4,0),又抛物线的对称轴为:x=﹣1,∴另一个交点坐标为:(1.4,0),则方程的另一个近似根为1.4,故选:D.10.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x 的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x,然后根据已知条件可得出方程.【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.11.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b <0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个【分析】(1)当x=﹣2时,y=4a﹣2b+c<0,即可求解;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,即可求解;(3)ab同号,c>0,即可求解;(4)顶点纵坐标大于2,故>2,即可求解.【解答】解:(1)当x=﹣2时,y=4a﹣2b+c<0,故①符合题意;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,故②符合题意;(3)ab同号,c>0,故③不符合题意;(4)顶点纵坐标大于2,故>2,故④符合题意;故选:C.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数y的最小值为5,则h的值是()A.﹣1 B.﹣1或5 C.5 D.﹣5【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.二.填空题(共6小题)13.二次函数y=a(x+1)(x﹣4)的对称轴是x=.【分析】首先求得方程与x轴的两个交点坐标,然后根据交点坐标求得对称轴方程即可.【解答】解:令y=a(x+1)(x﹣4)=0,解得:x=﹣1或x=4,∴y=a(x+1)(x﹣4)与x轴交与点(﹣1,0),(4,0)∴对称轴为:x==.故答案为:x=.14.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是y=x2﹣2x﹣3 .【分析】求得A、B的坐标,然后根据待定系数法即可求得.【解答】解:直线y=x﹣3中,令y=0,求得x=3;令x=0,则y=﹣3,∴A(3,0),B(0,﹣3),设二次函数的解析式为y=ax2+bx+c,∵二次函数的图象经过A、B两点,且对称轴方程为x=1,∴,解得,∴这个二次函数的解析式是y=x2﹣2x﹣3,故答案为y=x2﹣2x﹣3.15.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是②.【分析】①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,即可求解;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,即可求解;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,即可求解;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:0<m<1,即可求解.【解答】解:①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,故不符合题意;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,符合题意;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,故不符合题意;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:﹣1<m<0,故m<1,不符合题意;故答案为:②16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.17.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3 .【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x 的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是y=10(x+1)2.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)2三.解答题(共4小题)19.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用描点法画出此抛物线(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围﹣5<y≤2 .(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是﹣3<b<1或b=.【分析】(1)用配方法把二次函数一般式写成顶点式.(2)由顶点式得对称轴为直线x=1,列表描点画图象.(3)观察图象,在﹣3<x<1时,y随x的增大而增大,随后y减小,结合计算可得x =﹣3时y的值,即求出y的范围.(4)利用抛物线方程和直线方程联立求出两函数图象只有一个交点时b的值.由于抛物线只取x轴上方的部分,故需求直线经过抛物线与x轴的交点时b的值,再根据直线的平移得到相应b的范围.【解答】解:(1)y=﹣x2+x+=(x2﹣2x)+=(x2﹣2x+1﹣1)+=(x ﹣1)2+=(x﹣1)2+2(2)列表得:用描点画图象得:(3)x=﹣3时,y=﹣5,x=3时,y=0当﹣3<x<1时,y随x的增大而增大,且x=1时,y=2故答案为:﹣5<y≤2(4)整理得:x2=3﹣2b当方程只有一个解时,即对应的两函数图象只有一个交点∴3﹣2b=0,解得:b=把x=﹣1,y=0代入y=x+b,得b=1把x=3,y=0代入y=x+b,得b=﹣3∴b≤﹣3时,直线y=x+b与G没有交点;﹣3<b<1时,直线y=x+b与G有一个交点;1≤b<时,直线y=x+b与G有两个交点;b=时,直线y=x+b与G有一个交点,b >,直线y=x+b与G无交点.故答案为:﹣3<b<1或b=20.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.【分析】(1)利用抛物线与x轴的交点问题得到A(﹣3,0),B(1,0),再利用△OAC 为等腰直角三角形得到C(0,﹣3),然后把C点坐标代入y=a(x﹣1)(x+3)中求出a 得到抛物线解析式,(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图.设D(0,t),利用三角形面积公式求出t得到E(0,﹣1),利用直线AC的解析式为y=﹣x﹣3得到直线DE的解析式为y=﹣x﹣5,然后解方程组得D点坐标.【解答】解:(1)当y=0时,a(x﹣1)(x+3)=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∵∠BAC=45°,∴△OAC为等腰直角三角形,∴OC=OA=3,∴C(0,﹣3),把C(0,﹣3)代入y=a(x﹣1)(x+3)得﹣3=a(0﹣1)(0+3),解得a=1,∴抛物线解析式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图,设E(0,t),∵×(﹣3﹣t)×3=3,解得t=﹣5,∴E(0,﹣5),易得直线AC的解析式为y=﹣x﹣3,∴直线DE的解析式为y=﹣x﹣5,解方程组得或,∴D点坐标为(﹣1,﹣4),(﹣2,﹣3).21.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x<140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,【解答】解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则,(2)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x2+300x﹣10400(50≤x≤80)w=﹣3x2+540x﹣16800(80<x<140).22.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.【分析】(1)把B、C两点的坐标代入求出a和b的值即可求出抛物线的解析式;(2)把抛物线解析式化成顶点式求出顶点坐标,运用割补法求出△BCD的面积即可;(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)把B(﹣2,6),C(2,2)两点坐标代入得:,解这个方程组,得,∴抛物线的解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴顶点D(1,),∴△BCD的面积=4×﹣×3×﹣×1×﹣×4×4=3.(3)由消去y得到x2+x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=5,当直线y=﹣x+b经过点B时,b=3,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3。
九年级数学上册《二次函数实际问题》练习题带答案(人教版)
九年级数学上册《二次函数实际问题》练习题带答案(人教版)一、选择题1.华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得( )A.(40﹣x)(20+2x)=1200B.(40﹣x)(20+x)=1200C.(50﹣x)(20+2x)=1200D.(90﹣x)(20+2x)=12002.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y元与销售单价x元满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为( )A.30元B.35元C.40元D.45元3.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为( )A.150B.160C.170D.1804.某商店销售某件商品所获得的利润y(元)与所卖的件数x之间的关系满足y=﹣x2+1000x﹣200000,则当0<x≤450时的最大利润为( )A.2500元B.47500元C.50000元D.250000元5.运动员推出铅球后铅球在空中的飞行路线可以看作是抛物线的一部分,铅球在空中飞行的竖直高度y(单位:m)与水平距离x(单位:m)近似地满足函数关系y=ax2+bx+c(a≠0).下图记录了铅球飞行中的x与y的三组数据,根据上述函数模型和数据,可推断出该铅球飞行到最高点时,水平距离最接近的是( )A.2.6 mB.3 mC.3.5 mD.4.8 m6.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t/s 0 1 2 3 4 5 6 7 …h/m 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=9 2;③足球被踢出9 s时落地;④足球被踢出1.5 s时,距离地面的高度是11 m.其中正确结论的个数是()A.1B.2C.3D.4二、填空题7.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________(不要求写自变量的取值范围),所以每件降价________元时,每日获得的最大利润为________元.8.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=﹣116x2,当水面离桥拱顶的高度OC是4m时,水面的宽度AB为______m.9.公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行米才能停下来. 10.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=﹣29x2+89x+109,则羽毛球飞出的水平距离为米.11.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向点B以2 cm/s 的速度运动,点Q从点B开始沿BC向点C以1 cm/s的速度运动,如果点P,Q分别从点A,B 同时出发,当△PBQ的面积最大时,运动时间为________s.12.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度沿各边向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________s时,四边形EFGH的面积最小,其最小值是________ cm2.三、解答题13.某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?14.某宾馆重新装修后,有50间房可供游客居住,经市场调查发现,每间房每天的定价为140元,房间会全部住满,当每间房每天的定价每增加10元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出40元的各项费用.设每间房每天的定价增加x元,宾馆获利为y元.(1)求y与x的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的2倍,此时每间房价为多少元时宾馆可获利8000元?15.如图,在足够大的空地上有一段长为a m的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN.已知矩形菜园的一边靠墙,另三边一共用了100 m木栏.(1)若a=20,所围成的矩形菜园的面积为450 m2,求所用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.16.如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2 cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t s时,四边形APQC的面积是S cm2,写出S与t之间的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?17.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?18.有一座抛物线形状的拱桥,正常水位时桥下水面宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h m时,桥下水面的宽度为d m,求出用h表示d的函数解析式;(3)设正常水位时桥下的水深为2 m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18 m,求水深超过多少时就会影响过往船只在桥下顺利航行.19.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求出当长方体底面面积为12 dm2时,裁掉的正方形的边长.(2)若要求制作的长方体的底面长不大于底面宽的5倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元.当裁掉的正方形的边长多大时,总费用最低?最低为多少?20.某游乐园有一个直径为16 m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3 m处达到最高,高度为5 m,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1) (2)(1)求水柱所在抛物线(第一象限部分)的函数解析式.(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 m的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32 m,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合.请探究扩建改造后水柱的最大高度.参考答案1.A2.B3.A.4.B.5.C.6.B.7.答案为:(30﹣x) (20+x) ﹣x2+10x+600 5 6258.答案为:16.9.答案为:20.10.答案为:5;11.答案为:2.12.答案为:3,18.13.解:(1)设y与x的函数关系式为:y=kx+b(k≠0)由题意得: ,解得:k=﹣2,b=160所以y 与x 之间的函数关系式是y=﹣2x +160(40≤x ≤80);(2)由题意得,w 与x 的函数关系式为:w=(x ﹣40)(﹣2x +160)=﹣2x 2+240x ﹣6400=﹣2(x ﹣60)2+800当x=60元时,w 最大利润是800元所以当销售单价x 为60元时,日销售利润w 最大,最大日销售利润是800元.14.解:(1)由题意得(14040)(50)10x y x =+--2140500010x x =-++ 答:y 与x 的函数关系式为 2140500010y x x =-++; (2)由(1)可得:2211405000(200)90001010y x x x =-++=--+ 令8000y =,即218000(200)900010x =--+,解得:300x =或100x = 1401402x +⨯,解得:140x ,100x ∴=此时每间房价为:140100240+=(元)答:每间房价为240元时,宾馆可获利8000元.15.解:(1)设AD =x m ,则AB =100-x 2 m. 依题意,得100-x 2·x =450. 解得x 1=10,x 2=90. ∵a =20且x ≤a∴x 2=90不合题意,应舍去.故所利用旧墙AD 的长为10 m.(2)设AD =x m ,矩形ABCD 的面积为S m 2则0<x ≤a ,S =100-x 2·x =﹣12()x 2-100x =﹣12()x -502+1 250. ①若50≤a ,则当x =50时,S 最大值=1 250;②若0<a<50,则当0<x ≤a 时,S 随x 的增大而增大故当x =a 时,S 最大值=50a ﹣12a 2. 综上:当a ≥50时,矩形菜园ABCD 的面积最大为1 250 m 2;当0<a<50时,矩形菜园ABCD 的面积最大为(50a ﹣12a 2)m 2. 16.解:(1)∵AB =6,BC =12,∠B =90°∴BP =6﹣t ,BQ =2t∴S 四边形APQC =S △ABC ﹣S △PBQ =12×6×12﹣12×(6﹣t)×2t 即S =t 2﹣6t +36(0<t<6).(2)∵S =t 2﹣6t +36=(t ﹣3)2+27∴当t =3时,S 最小,最小值是27.17.解:(1)根据题意,得S =x(24﹣3x),即所求的函数解析式为:S =﹣3x 2+24x 又∵0<24﹣3x ≤10∴143≤x<8;(2)根据题意,设花圃宽AB 为xm ,则长为(24﹣3x)∴﹣3x 2+24x =45.整理得x 2﹣8x +15=0,解得x =3或5当x =3时,长=24﹣9=15>10不成立当x =5时,长=24﹣15=9<10成立∴AB 长为5m ;(3)S =24x ﹣3x 2=﹣3(x ﹣4)2+48∵墙的最大可用长度为10m ,0≤24﹣3x ≤10∴143≤x<8∵对称轴x =4,开口向下∴当x =143m ,有最大面积的花圃.18.解:(1)设抛物线的解析式为y =ax 2.∵在正常水位时,点B 的坐标为(10,﹣4)∴﹣4=a ×102,∴a =﹣125. ∴(2)当水位上升h m 时,点D 的纵坐标为﹣(4﹣h).设点D的横坐标为x(x>0),则有﹣(4﹣h)=﹣1 25x2∴x1=54-h,x2=﹣54-h(舍去)∴d=2x=104-h.该抛物线的解析式为y=﹣125x2.(3)当桥下水面宽为18 m时,18=104-h∴h=0.76.又∵2+0.76=2.76(m)∴桥下水深超过2.76 m时就会影响过往船只在桥下顺利航行.19.解:(1)如图所示:设裁掉的正方形的边长为x cm,由题意可得(10﹣2x)(6﹣2x)=12即x2﹣8x+12=0,解得x1=2,x2=6(舍去).所以裁掉的正方形的边长为2 dm.(2)因为长不大于宽的5倍所以10﹣2x≤5(6﹣2x)所以0<x≤2.5.设总费用为w元,由题意可知:w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24. 因为抛物线的对称轴为直线x=6,且开口向上所以当0<x≤2.5时,w随x的增大而减小所以当x=2.5时,w最小值=25.所以当裁掉的正方形的边长为2.5 dm时,总费用最低,最低为25元. 20.解:(1)∵抛物线的顶点坐标为(3,5)∴设其函数解析式为y=a(x﹣3)2+5.将(8,0)代入解析式,解得a=﹣1 5 .∴抛物线的函数解析式为y=﹣15(x﹣3)2+5第 11 页 共 11 页 即y =﹣15x 2+65x +165(0<x<8). (2)当y =1.8时,1.8=﹣15x 2+65x +165,解得x 1=7,x 2=﹣1(舍去). 答:王师傅必须站在离水池中心7 m 以内.(3)由y =﹣15x 2+65x +165可得原抛物线与y 轴的交点为(0,165). ∵装饰物的高度不变∴新抛物线也经过点(0,165). ∵喷水柱的形状不变,∴a =﹣15. ∵直径扩大到32 m∴新抛物线也过点(16,0).设新抛物线为y 新=﹣15x 2+bx +c(0<x<16). 将点(0,165)和(16,0)代入,解得b =3,c =165. ∴y 新=﹣15x 2+3x +165.∴y 新=﹣15(x ﹣ 152)2+28920,当x =152时,y 新=28920. 答:扩建改造后水柱的最大高度为28920 m.。
人教版初中九年级数学上册第二十二章《二次函数》经典习题(含答案解析)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<;④当2x ≥时,y 随x 的增大而增大,则102a <≤A .①②B .②③C .①④D .③④ 2.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .4.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D . 5.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A .26B .23C .6D .42 7.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ). A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 8.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 9.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .4 10.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 11.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .12.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-13.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a b x a+=-其中正确的有( )A .1个B .2个C .3个D .4个14.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.抛物线y =ax 2+bx +c 经过点A (﹣3,0)、B (4,0)两点,则关于x 的一元二次方程()2220a x bx b c -+-+=的解是________________.18.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.19.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.20.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.21.已知点()12,A y -,()23,B y -在二次函数22y x x c =--+的图象上,则1y 与2y 的大小关系为1y ______2y .(填“>”“<”或“=”)22.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.23.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.24.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.25.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.温州某大超市计划销售一种水果,已知水果的进价为每盒9元,并且水果的销售量由售价决定.经市场调查表明,当售价在10到15元之间(含10元,15元)波动时,每盒水果的销售价格每减少1元则日销售量增加80盒,当水果售价为每盒15元时,日销售量为160盒,现设每盒水果的销售价为x 元.(每盒毛利润=每盒售价-每盒进价) (1)当每盒销售价为13元时,超市的当日销售量为______盒.(2)如果规定该种水果的日均销售量不低于400盒时,设销售这种水果所获得的日毛利润为y (元),求y 关于x 的函数解析式,并求出日毛利润y 的最大值.(3)为了提高水果的知名度,超市给当天售出的每盒苹果进行精包装,包装费每盒1元,另外从该种水果的日毛利润中提取50元作为销售员当天的额外奖励,且保证提取后日毛利润不低于750元,同时又要使顾客得到实惠,则当日水果的销售量至少是______盒.(直接写出答案)28.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?29.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.30.已知二次函数的图象经过点(0,3),(3,0),(1,0)-,求此二次函数的解析式,并判断点(2,3)P -是否在这个二次函数图象上.。
人教版九年级数学上册《二次函数》测试题
(2)一辆货运卡车高 ,宽2.4m,它能通过该隧道吗?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设
有0.4m的隔离带,则该辆货运卡车还能通过隧道吗?
六(第24小题9分,第25小题10分,共19分)
24.如图,抛物线 与 轴相交于 、 两点(点 在点 的左侧),与 轴相交于点 ,顶点为 .
(1)求该二次函数的解析式;
(2)若设点 的横坐标为 用含 的代数式表示线段 的长.
(3)求 面积的最大值,并求此时点 的坐标.
(2)写出该抛物线的对称轴及顶点坐标;
(3)点 ( , )与点D均在该函数图像上(其中 >0),且这两点关于抛物线的对称轴对称,求 的值及点D到 轴的距离.
23.如图,隧道的截面由抛物线 和矩形 构成,矩形的长 为 ,宽 为 ,以 所在的直线为 轴,线段 的中垂线为 轴,建立平面直角坐标系, 轴是抛物线的对称轴,顶点 到坐标原点 的距离为 .
(A) (B) (C) (D)
4.二次函数 的图象与 轴有交点,则 的取值范围是( )
(A) (B) (Cபைடு நூலகம் (D)
5.抛物线 向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )
(A) (B)
(C) (D)
6.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度 与飞行时间 的关系式是 ,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )
(A) (B) (C) (D)
7.如图所示是二次函数 的图象在 轴上方的一部分,对于这段图象与 轴所围成的阴影部分的面积,你认为与其最接近的值是( )
(A)4(B)
(C) (D)
人教版初三上册数学二次函数练习题
二次函数练习题2一.填空题(共8小题)1.函数的图象是抛物线,则m=.2.二次函数y=x2的图象开口向,对称轴是,顶点坐标是,它的图象有最点,当x=2时,y=;当y=1时,x=.3.二次函数y=﹣3(x﹣4)2+2的图象是由抛物线y=﹣3x2先向平移个单位,再向平移个单位得到的;开口,对称轴是,顶点坐标是,说明当x=时,y有最值是.4.抛物线y=﹣2(x+1)2﹣3 开口向,顶点坐标是,对称轴是,当x=时,y有最值为.当x时,y随x的增大而增大.5.二次函数y=(x﹣4)2+5的图象开口方向,对称轴顶点坐标;当x时,y随x的增大而减小;当x=时,函数y有最值为.6.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.7.二次函数y=x2+2x的顶点坐标为,对称轴是直线.8.对于二次函数y=a(x﹣h)2+k,对称轴是,顶点坐标是.(1)当a>0时,图象开口,在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而,当x=时,y有最值,是;(2)当a<0时,图象开口,在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而,当x=时,y有最值,是.二.解答题(共5小题)9.将抛物线y=﹣2x2的图象左右平移,使得它与x轴交于点A,与y轴交于点B,若△ABO 的面积为27,求平移后的抛物线的解析式.10.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?11.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.12.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴交于点B,对称轴是直线x=2.(1)求抛物线的解析式;(2)若在抛物线上存在一点D,使△ACD的面积为8,请求出点D的坐标.(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.13.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B 时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.二次函数练习题2参考答案与试题解析一.填空题(共8小题)1.函数的图象是抛物线,则m=﹣1.【分析】根据二次函数的定义列式求解即可.【解答】解:根据二次函数的定义,m2+1=2且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故答案为:﹣1.【点评】本题考查二次函数的定义,要注意二次项的系数不等于0.2.二次函数y=x2的图象开口向上,对称轴是y轴,顶点坐标是(0,0),它的图象有最低点,当x=2时,y=;当y=1时,x=±.【分析】牢记二次函数y=ax2的图象的性质即可得到答案.【解答】解:∵二次函数y=x2的a=>0,∴图象开口向上,对称轴是y轴,顶点坐标是(0,0),图象有最低点,x=2时,y=×22=,当y=1时,则1=x2,解得x=±.故答案为:上,y轴,(0,0),低,,±.【点评】本题考查了二次函数y=ax2的性质,解题的关键是牢记其性质,其性质与a的符号有关.3.二次函数y=﹣3(x﹣4)2+2的图象是由抛物线y=﹣3x2先向右平移4个单位,再向上平移2个单位得到的;开口向下,对称轴是直线x=4,顶点坐标是(4,2),说明当x=,4时,y有最最大值是2.【分析】确定出y=﹣3(x﹣4)2+2的顶点坐标,再根据顶点的变化确定出平移方法,然后根据二次函数的性质分别写出开口方向,对称轴,顶点坐标和最值即可.【解答】解:∵y=﹣3(x﹣4)2+2的顶点坐标为(4,2),y=﹣3x2的顶点坐标为(0,0),∴二次函数y=﹣3(x﹣4)2+2的图象是由抛物线y=﹣3x2向右平移4个单位,再向上平移2个单位得到的;开口向下,对称轴是直线x=4,顶点坐标为(4,2),当x=4时,y有最大值,是2.故答案为:右,4,上,2,向下,直线x=4,(4,2),4,大,2.【点评】本题考查了二次函数的图象与几何变换,二次函数的性质,根据两个函数图象的顶点坐标确定平移方法更简便.4.抛物线y=﹣2(x+1)2﹣3 开口向向下,顶点坐标是(﹣1,﹣3),对称轴是x=﹣1,当x=﹣1时,y有最最大值为﹣3.当x<﹣1时,y随x的增大而增大.【分析】根据a的值,可得函数图象的开口方向,根据顶点式函数解析式,可得顶点坐标,对称轴,函数的增减性.【解答】解:抛物线y=﹣2(x+1)2﹣3 开口向向下,顶点坐标是(﹣1,﹣3),对称轴是x=﹣1,当x=﹣1时,y有最最大值为﹣3.当x<﹣1时,y随x的增大而增大.故答案为:向下,(﹣1,﹣3),x=﹣1,﹣1,最大,﹣3,<﹣1.【点评】本题考查了二次函数的性质,a>0时,图象开口向上,函数有最小值,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大.5.二次函数y=(x﹣4)2+5的图象开口方向向上,对称轴x=4顶点坐标(4,5);当x<4时,y随x的增大而减小;当x=4时,函数y有最小值为5.【分析】由于是二次函数,由此可以确定函数的图象的形状,根据二次项系数可以确定开口方向,根据抛物线的顶点式解析式可以确定其顶点的坐标,对称轴及增减性.【解答】解:∵二次函数y=(x﹣4)2+5,∴图象是抛物线,开口方向上,对称轴为x=4,顶点坐标为(4,5),当x<4时,函数y随着x的增大而减小,当x=4时,函数y有最小值是5.故答案为:向上,x=4;(4,5);<4;4;小;5.【点评】此题主要考查了二次函数的性质,解题的关键是熟练掌握二次函数的所有的图象和性质才能比较熟练解决问题.6.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式y=(x﹣6)2﹣36.【分析】由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣12x=(x2﹣12x+36)﹣36=(x﹣6)2﹣36,即y=(x﹣6)2﹣36.故答案为y=(x﹣6)2﹣36.【点评】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).7.二次函数y=x2+2x的顶点坐标为(﹣1,﹣1),对称轴是直线x=﹣1.【分析】先把该二次函数化为顶点式的形式,再根据其顶点式进行解答即可.【解答】解:∵y=x2+2x=(x+1)2﹣1,∴二次函数y=x2+4x的顶点坐标是:(﹣1,﹣1),对称轴是直线x=﹣1.故答案为:(﹣1,﹣1),x=﹣1.【点评】此题主要考查了二次函数的性质和求抛物线的顶点坐标、对称轴的方法,熟练配方是解题关键.8.对于二次函数y=a(x﹣h)2+k,对称轴是x=h,顶点坐标是(h,k).(1)当a>0时,图象开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,当x=h时,y有最大值,是k;(2)当a<0时,图象开口向下,在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减小,当x=时,y有最小值,是k.【分析】根据二次函数的性质写出对称轴和顶点坐标即可.【解答】解:对于二次函数y=a(x﹣h)2+k,对称轴是x=h,顶点坐标是(h,k);(1)当a>0时,图象开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y 随x的增大而增大,当x=h时,y有最大值,是k;(2)当a<0时,图象开口向下,在对称轴左侧,y随x的增大而增大;在对称轴右侧,y 随x的增大而减小,当x=h时,y有最小值,是k.故答案为:x=h,(h,k),向上,减小,增大,h,大,k,向下,增大,减小,h,小,k.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点坐标、二次函数平移的性质等知识是解答此题的关键.二.解答题(共5小题)9.将抛物线y=﹣2x2的图象左右平移,使得它与x轴交于点A,与y轴交于点B,若△ABO 的面积为27,求平移后的抛物线的解析式.【分析】设平移后抛物线的解析式为y=﹣2(x+h)2,再利用h分别表示A点和B点坐标,然后根据三角形面积公式得到|h|•2h2=27,解得h=±3,所以平移后抛物线的解析式为y=﹣2(x+3)2,或平y=﹣2(x﹣3)2;【解答】解:设平移后抛物线的解析式为y=﹣2(x+h)2,则A点坐标为(h,0),B点坐标为(0,﹣2h2),∵△AOB的面积为8,∴|h|•2h2=27,解得h=±3,∴平移后抛物线的解析式为y=﹣2(x+3)2,或平y=﹣2(x﹣3)2;【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?【分析】(1)根据“每天利润=每天销售质量×每千克的利润”即可得出y关于x的函数关系式;(2)将y=960代入(1)中函数关系式中,得出关于x的一元二次方程,解方程即可得出结论.【解答】解:(1)根据题意得:y=(200+20x)×(6﹣x)=﹣20x2﹣80x+1200.(2)令y=﹣20x2﹣80x+1200中y=960,则有960=﹣20x2﹣80x+1200,即x2+4x﹣12=0,解得:x=﹣6(舍去),或x=2.答:若要平均每天盈利960元,则每千克应降价2元.【点评】本题考查了二次函数的应用,解题的关键是:(1)根据数量关系找出函数关系式;(2)将y=960代入函数关系式得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时结合数量关系找出函数关系式是关键.11.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点坐标;(2)结合函数图象以及A、B点的坐标即可得出结论;(3)设P(x,y),根据三角形的面积公式以及S△PAB=10,即可算出y的值,代入抛物线解析式即可得出点P的坐标.【解答】解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).【点评】本题考查了待定系数法求函数解析式、三角形的面积公式以及二次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据函数图象解不等式;(3)找出关于y的方程.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.12.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴交于点B,对称轴是直线x=2.(1)求抛物线的解析式;(2)若在抛物线上存在一点D,使△ACD的面积为8,请求出点D的坐标.(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据抛物线经过点A(1,0),对称轴是x=2列出方程组,解方程组求出b、c 的值即可;(2)设D(m,n),列出方程即可解决问题;(3)因为点A与点C关于x=2对称,根据轴对称的性质,连接BC与x=2交于点P,则点P 即为所求,求出直线BC与x=2的交点即可.【解答】解:(1)由题意得,,解得,∴抛物线的解析式为.y=x2﹣4x+3;(2)设D(m,n),由题意•2×|n|=8,∴n=±8当n=8时,x2﹣4x+3=8,解得x=5或﹣1,∴D(5,8)或(﹣1,8),当n=﹣8时,x2﹣4x+3=﹣8,方程无解,综上所述,D(5,8)或(﹣1,8).(3)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).【点评】本题考查二次函数的应用、待定系数法、一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题.13.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B 时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.【点评】本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.。
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
人教版 九年级数学上册 22章 二次函数 综合训练(含答案)
人教版九年级数学上册22章二次函数综合训练一、选择题(本大题共8道小题)1. 二次函数y=(x-1)2+3的图象的顶点坐标是()A.(1,3) B.(1,-3)C.(-1,3) D.(-1,-3)2. 二次函数y=x2-2x-2的图象与坐标轴的交点个数是()A.0 B.1 C.2 D.33. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个4. 抛物线y=-3x2+6x+2的对称轴是()A.直线x=2 B.直线x=-2C.直线x=1 D.直线x=-15. 已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-26. 若A(-1,0)为抛物线y=-3(x-1)2+c上一点,则当y≥0时,x的取值范围是()A .-1<x <3B .x <-1或x >3C .-1≤x ≤3D .x ≤-1或x ≥37. 2019·资阳如图是函数y =x 2-2x -3(0≤x ≤4)的图象,直线l ∥x 轴且过点(0,m ),将该函数在直线l 上方的图象沿直线l 向下翻折,在直线l 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m ≥1B .m ≤0C .0≤m ≤1D .m ≥1或m ≤08. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题(本大题共8道小题)9. 已知函数y =-x 2-2x ,当________时,函数值y 随x 的增大而增大.10. 若函数y =x 2+2x -m 的图象与x 轴有且只有一个交点,则m 的值为________.11. 如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a -2b +c 的值为________.12. 抛物线y=3x2-8x+4与x轴的两个交点坐标分别为______________.13. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是____________.14. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)15. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.16. 2018·湖州如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题(本大题共6道小题)17. 判断下列二次函数的图象与x轴的公共点的个数及公共点的坐标.(1)y=12x2+x+1;(2)y=-3x2-6x-3;(3)y=-3x2-x+4.18. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.19. 如图,正方形ABCD的顶点A在抛物线y=x2上,点B,C在x轴的正半轴上,且点B的坐标为(1,0).(1)求点D的坐标;(2)将抛物线y=x2适当平移,使得平移后的抛物线同时经过点B与点D,求平移后抛物线的解析式,并说明你是如何平移的.20. 已知一条双向公路隧道,其横断面由抛物线和矩形ABCD的三边组成,隧道的最大高度为4.9米,AB=10米,BC=2.4米,现把隧道横断面放在如图所示的平面直角坐标系中,有一辆高为4米,宽为2米的装有集装箱的汽车要通过该隧道,如果不考虑其他因素,汽车的右侧至少离开隧道石壁多少米才不至于碰到隧道顶部?21. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg.经销一段时间后得到如下数据:销售单价x(元/kg)120130 (180)每天销量y(kg)10095 (70)设y与x(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?22. 如图,抛物线y=ax2+2x+c(a≠0)经过点A(0,3),B(-1,0).请回答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长;(3)在抛物线的对称轴上是否存在点M,使得△MBC的面积是4?若存在,请求出点M的坐标;若不存在,请说明理由.人教版九年级数学上册22章二次函数综合训练-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】D3. 【答案】B[解析] 设利润为y 元,涨价x 元,则有y =(100+x -90)(500-10x)=-10(x -20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.4. 【答案】C5. 【答案】A[解析] ∵抛物线与x 轴的一个交点的坐标是(1,0),对称轴是直线x =-1,∴抛物线与x 轴的另一个交点的坐标是(-3,0).故一元二次方程ax 2+bx +c =0的解是x 1=-3,x 2=1.故选A.6. 【答案】C7. 【答案】C8. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y=12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.二、填空题(本大题共8道小题)9. 【答案】x ≤-1【解析】∵函数y =-x 2-2x ,其图象的对称轴为x =-b2a =-1,且a =-1<0,∴在对称轴的左边y 随x 的增大而增大,∴x ≤-1.10. 【答案】-1[解析] 依题意可知Δ=0,即b 2-4ac =22-4×1×(-m)=0,解得m =-1.11. 【答案】0【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.12. 【答案】⎝⎛⎭⎪⎫23,0,(2,0) [解析] 令y =0,则3x 2-8x +4=0,解方程得x 1=23,x 2=2,∴抛物线y =3x 2-8x +4与x 轴的两个交点坐标分别为⎝ ⎛⎭⎪⎫23,0,(2,0).13. 【答案】x 1=-2,x 2=1[解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.14. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.15. 【答案】1.6秒 【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t =1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒, 所以此时第一个小球抛出后t =1.1+0.5=1.6秒时与第二个小球的离地高度相同.16. 【答案】-2[解析] ∵四边形ABOC 是正方形,∴点B 的坐标为(-b 2a ,-b2a ). ∵抛物线y =ax 2过点B ,∴-b 2a =a (-b2a )2,解得b 1=0(舍去),b 2=-2.三、解答题(本大题共6道小题)17. 【答案】解:(1)y =12x 2+x +1, ∵Δ=1-4×12×1=-1<0,∴抛物线与x 轴没有公共点. (2)y =-3x 2-6x -3,∵Δ=(-6)2-4×(-3)×(-3)=0, ∴抛物线与x 轴有一个公共点, 坐标为(-1,0). (3)y =-3x 2-x +4,∵Δ=(-1)2-4×(-3)×4=49>0,∴抛物线与x 轴有两个公共点,坐标分别为(1,0),(-43,0).18. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).19. 【答案】解:(1)∵B (1,0),点A 在抛物线y =x 2上, ∴A (1,1).又∵在正方形ABCD 中,AD =AB =1, ∴D (2,1).(2)设平移后抛物线的解析式为y =(x -h )2+k .把(1,0),(2,1)代入,得⎩⎨⎧0=(1-h )2+k ,1=(2-h )2+k , 解得⎩⎨⎧h =1,k =0,∴平移后抛物线的解析式为y =(x -1)2,该抛物线可由原抛物线向右平移1个单位长度得到.20. 【答案】解:由题意,知AB =10米,BC =2.4米, ∴C(10,0),B(10,-2.4),A(0,-2.4). 由题意,知抛物线的顶点坐标为(5,2.5). 设抛物线的解析式为y =a(x -5)2+2.5. 将(10,0)代入解析式, 得0=a(10-5)2+2.5, 解得a =-110,∴y =-110(x -5)2+2.5=-110x 2+x.此公路为双向公路,当汽车高为4米时,在抛物线隧道中对应的纵坐标y =4-2.4=1.6,由1.6=-110x 2+x ,解得x 1=2,x 2=8.故汽车要通过隧道,其右侧至少要离开隧道石壁2米才不至于碰到隧道顶部.21. 【答案】解:(1)y =-12x +160,120≤x ≤180.(3分)(2)设销售利润为W 元,则W =y(x -80)=(-12x +160)(x -80),(4分)即W =-12x 2+200x -12800=-12(x -200)2+7200.(5分)∵-12<0,∴当x <200时,W 随x 的增大而增大, 又120≤x ≤180,∴当x =180时,W 取最大值,此时,W =-12(180-200)2+7200=7000.答:当销售单价为180元时,销售利润最大,最大利润是7000元.(8分)22. 【答案】(1)∵抛物线y =ax 2+2x +c 经过点A (0,3),B (-1,0), ∴⎩⎨⎧c =3a +2×(-1)+c =0 解得⎩⎨⎧a =-1c =3∴抛物线的解析式为y =-x 2+2x +3;(2)∵y =-x 2+2x +3=-(x -1)2+4,B (-1,0), ∴点D 的坐标是(1,4),点E 的坐标是(1,0), ∴DE =4,BE =2,∴BD =DE 2+BE 2=42+22=25, 即BD 的长是25;(3)假设在抛物线的对称轴上存在点M ,使得△MBC 的面积是4, 设点M 的坐标为(1,m ), ∵B (-1,0),E (1,0), ∴点C 的坐标为(3,0), ∴BC =4,∵△MBC 的面积是4,∴S △MBC =BC ×|m |2=4×|m |2=4,解得m =±2,即点M 的坐标为(1,2)或(1,-2).。
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一、单选题(共48分)1.(本题4分)抛物线23y x =-与y 轴的交点坐标为( )A .(-3,0)B .(0,-3)C .(3,0)-D .(3,0) 2.(本题4分)已知:抛物线y =a (x +1)2的顶点为A ,图象与y 轴负半轴交点为B ,且OB =OA ,若点C (-3,b )在抛物线上,则△ABC 的面积为( )A .3B .3.5C .4D .4.53.(本题4分)二次函数y =﹣x 2﹣4的图象经过的象限为( )A .第一象限、第四象限B .第二象限、第四象限C .第三象限、第四象限D .第一象限、第三象限、第四象限4.(本题4分)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =-- 5.(本题4分)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.则下列结论不正确的是( )A .小球在空中经过的路程是40mB .小球运动的时间为6sC .小球抛出3s 时,速度为0D .当 1.5t =s 时,小球的高度30h =m 6.(本题4分)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1B .2C .3D .27.(本题4分)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D . 8.(本题4分)已知二次函数()222y x =--,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A .有最大值-1,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 9.(本题4分)记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( )A .y =﹣(x ﹣60)2+1825B .y =﹣2(x ﹣60)2+1850C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+200010.(本题4分)已知二次函数2202020212022y x x =++的图象上有两点A (x 1,2023)和B (x 2,2023),则当12x x x =+时,二次函数的值是( )A .2020B .2021C .2022D .2023 11.(本题4分)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD 2+PC 的最小值是( )A .4B .2+22C .22D .32223+ 12.(本题4分)抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是( ) A .1m <-或0m > B .1122m -<< C .02m ≤< D .11m -<<二、填空题(共20分)13.(本题5分)若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________. 14.(本题5分)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).15.(本题5分)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD 的长)为______.16.(本题5分)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).三、解答题(共52分)17.(本题6分)二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求二次函数的解析式;(2)不等式ax 2+bx +c >0的解集为 ;(3)方程ax 2+bx +c =m 有两个实数根,m 的取值范围为 .18.(本题6分)已知抛物线经过点(0,-2),(3,0),(-1,0),求抛物线的解析式.19.(本题6分)已知:二次函数2142y x x =-++. (1)通过配方,将其写成()2y a x h k =-+的形式;(2)求出函数图象与x y 、轴的交点、、A B C 的坐标;(3)当0y >时,直接写出x 的取值范围;(4)当x ________时,y 随x 的增大而减少.20.(本题6分)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.21.(本题6分)一隧道内设双行公路,隧道的高MN 为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF 的三条边围成的,矩形的长DE 是8米,宽CD 是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少?22.(本题6分)如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式; (2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 23.(本题8分)如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ面积的最大值,并求此时P点坐标.24.(本题8分)已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A(1)若a>0①当a=1,c=-1,求该抛物线与x轴交点坐标;②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.参考答案1.B2.A3.C4.B5.A6.D7.A8.D9.D10.C11.A12.D13.214.<15.40米16.②③17.(1)y =x 2﹣2x ﹣3;(2)x <﹣1或x >3;(3)m ≥﹣4.18.224233y x x =-- 19.(1)()219122x --+ (2)A (-2,0),B (4,0),C (0,4)(3)-2<x <4(4)>120.(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元21.(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14 22.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 23.(1)223y x x =+-(2)2;P (-1,0)24.(1)①,0),0)②m>0或m<-3 (2)-9(3)49a=或12a≥或14a-≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
灿若寒星整理制作
《二次函数》
一、选择题
1.下列函数不属于二次函数的是( D )
A.y=(x-1)(x+2)
B.y= (x+1)2
C. y=1- x2
D. y=2(x+3)2-2x2
2. 函数y=-x2-4x+3图象顶点坐标是( A )
A.(2,-1)
B.(-2,1)
C.(-2,-1)
D.(2, 1)
3. 抛物线的顶点坐标是( B )
A.(2,1) B.(-2,1) C.(2,-1)D.(-2,-1)
4. y=(x-1)2+2的对称轴是直线( B )
A.x=-1 B.x=1 C.y=-1 D.y=1
5.已知二次函数的图象经过原点,则的值为( C )A. 0或
2 B. 0 C. 2 D.无法确定
6. 二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是( D )
A. y=x2+3
B. y=x2-3
C. y=(x+3)2
D. y =(x-3)2
7.函数y=2x2-3x+4经过的象限是( B )
A.一、二、三象限
B.一、二象
限
C.三、四象限
D.一、二、四象限
8.下列说法错误的是( C )
A.二次函数y=3x2中,当x>0时,y随x的增大而增大
B.二次函数y=-6x2中,当x=0时,y有最大值0
C.a越大图象开口越小,a越小图象开口越大
D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点
9.如图,小芳在某次投篮中,球的运动路线是抛物线y=-15x2+3.5的一部分,若命中篮圈中心,则他与篮底的距离是( B )A.3.5m B.4m C.4.5m
D.4.6m
10.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是( B )
A.a>0. B.b>0. C.c<0.D.abc>0.
二、填空题
11.一个正方形的面积为16cm2,当把边长增加x cm时,正方形面积为y cm2,则y关于x的函数为 y= (x+4)2 。
12.若抛物线y=x2-bx+9的顶点在x轴上,则b的值为±
6 。
13.抛物线y=x2-2x-3关于x轴对称的抛物线的解析式
为 y=-x2+2x+3 。
14.如图所示,在同一坐标系中,作出①②③的图象,则图象从里到外的三条抛物线对应的函数依次是①③② (填序号) 15.一个二次函数,它的对称轴是y轴,顶点是原点,且经过点(1,-3)。
(1)写出这个二次函数的解析式;
(2)图象在对称轴右侧部分,y随x的增大怎样变化?
(3)指出这个函数有最大值还是最小值,并求出这个值。
15.解:(1) y=-3x2 ;
(2) y随x的增大而减小;
(3)∵a=-3<0,∴函数有最大值。
当x=0时,函数最大值为0。
16.拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为 m时,水面的宽度为多少米?
17.已知二次函数的顶点坐标为(4,-2),且其图象经过点(5,1),求此二次函数的解析式。
18.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2。
(1)求出y与x的函数关系式。
(2)当边长x为多少时,矩形的面积最大,最大面积是多少?
18.(1);(2),所以当x=5时,矩形的面积最大,最大为25cm2。
19.在平面直角坐标系中,△AOB的位置如图5所示.已知∠AOB =90°,AO=BO,点A的坐标为(-3,1)。
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为Bl,求△AB1 B 的面积。
19.(1)如图,作AC⊥x轴,BD⊥x轴,垂足分别为C,D,则∠ACO=∠ODB=90°.所以
∠AOC+∠OAC=90°.又∠AOB=90°,
所以∠AOC+∠BOD=90°。
所以∠OAC=∠BOD.又AO=BO,
所以△ACO≌△ODB.所以OD=AC=1,DB=OC=3。
所以点B的坐标为(1,3)。
(2)抛物线过原点,可设所求抛物线的
解析式为y=ax2+bx.将A(-3,1),B(1,3)代入,得,解得故所求抛物线的解析式为y= x2+ x。
20.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数。
有研究表明,晴天在某段公路上行驶时,速度v(km/h)的汽车的刹车距离s(m)可以由公式s=0.01v2确定;雨天行驶时,
这一公式为s=0.02v2。
(1)如果汽车行驶速度是70 km/h,那么在雨天行驶和在晴天行驶相比,刹车距离相差多少米?
(2)如果汽车行驶速度分别是60 km/h与80 km/h,那么同在雨天行驶(相同的路面)相比,刹车距离相差多少?
(3)根据上述两点分析,你想对司机师傅说些什么?
20.(1)v=70 km/h,
s晴=0.01v2=0.01×702=49(m), s雨=0.02v2=0.02×
702=98(m),
s雨-s晴=98-49=49(m)。
(2)v1=80 km/h,v2=60 km/h。
s1=0.02v12=0.02×802=128(m),s2=0.02v22=0.02×602=72(m)。
刹车距离相差:s1-s2=128-72=56(m)。
(3)在汽车速度相同的情况下,雨天的刹车距离要大于晴大的刹车距离。
在同是雨天的情况下,汽车速度越大,刹车距离也就越大。
请司机师傅一定要注意天气情况与车速。
六、(本大题满分8分)
21.已知二次函数y=(m2-2)x2-4mx+n的图象的对称轴是x =2,且最高点在直线
y= x+1上,求这个二次函数的解析式。
21. 当x=2时, y= x+1=2,抛物线的顶点坐标为(2,2),
这个二次函数的解析式为
22.已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m)。
(1)求抛物线的解析式;
(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?
22.解:(1)∵点A(1,m)在直线y=-3x上,∴m=-3×1=-3。
把x=1,y=-3代入y=ax2+6x-8,求得a=-1。
∴抛物线的解析式是y=-x2+6x-8。
(2)y=-x2+6x-8=-(x-3)2+1.∴顶点坐标为(3,1)。
∴把抛物线y=-x2+6x-8向左平移3个单位长度得到y=-x2+1的图象,再把y=-x2+1的图象向下平移1个单位长度(或向下平移1个单位再向左平移3个单位)得到y=-x2的图象。
23.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线
路径落下,且在过OA的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x2+2x+ ,请你寻求:
(1)柱子OA的高度为多少米?
(2)喷出的水流距水平面的最大高度是多少?
(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。
23.(1)当x=0时,y=,故OA的高度为1.25米。
(2)∵y=-x2+2x+ =-(x-1)2+2.25,
∴顶点是(1,2.25),故喷出的水流距水面的最大高度是2.25米。
(3)解方程-x2+2x+ =0,得 .∴B点坐标为。
∴OB=。
故不计其他因素,水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外。