高中物理精典例题解析专题(运动学专题)
高考物理经典题(运动学)
高考物理经典题汇编--运动学(一)一、选择题1.(全国卷Ⅱ·15)两物体甲和乙在同一直线上运动,它们在0~0.4s时间内的v-t图象如图所示。
若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t1分别为( B )A.和0.30s B.3和0.30sC.和0.28s D.3和0.28s2.(江苏物理·7)如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18m。
该车加速时最大加速度大小为,减速时最大加速度大小为。
此路段允许行驶的最大速度为,下列说法中正确的有( AC )A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D.如果距停车线处减速,汽车能停在停车线处3.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑。
弹簧开始时处于原长,运动过程中始终处在弹性限度内。
在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( BCD )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B的速度相等时,A的速度达到最大D.当A、B的速度相等时,弹簧的弹性势能最大4.(广东物理·3)某物体运动的速度图像如图,根据图像可知( AC )A.0-2s内的加速度为1m/s2B.0-5s内的位移为10mC.第1s末与第3s末的速度方向相同D.第1s末与第4.5s末加速度方向相同5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示。
设该物体在和时刻相对于出发点的位移分别是和,速度分别是和,合外力从开始至时刻做的功是,从至时刻做的功是,则( AC )A.B.C.D.6.(海南物理·8)甲乙两车在一平直道路上同向运动,其图像如图所示,图中和的面积分别为和.初始时,甲车在乙车前方处。
(物理)物理直线运动题20套(带答案)及解析
(物理)物理直线运动题20套(带答案)及解析一、高中物理精讲专题测试直线运动1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m .(1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间.(2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222m/s 0.67m/s 3B a =≈ 【解析】 【详解】(1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at联立可得:t =10 s A 车的位移为:x A =v A t= 200 mB 车的位移为: x B =212at =100 m 因为x B +x 0=175 m<x A所以两车会相撞,设经过时间t 相撞,有:v A t = x o 十212at 代入数据解得:t 1=5 s ,t 2=15 s(舍去).(2)已知A 车的加速度大小a A =2 m/s 2,初速度v 0=20 m/s ,设B 车的加速度为a B ,B 车运动经过时间t ,两车相遇时,两车速度相等, 则有:v A =v 0-a A t v B = a B t 且v A = v B在时间t 内A 车的位移为: x A =v 0t-212A a tB 车的位移为:x B =212B a t 又x B +x 0= x A 联立可得:222m/s 0.67m/s 3B a =≈2.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。
高中物理 匀变速直线运动 典型例题(含答案)【经典】
第一章 运动的描述 匀变速直线运动的研究 第1讲 加速度和速度的关系(a=Δv/t )1.(单选)对于质点的运动,下列说法中正确的是( )【答案】BA .质点运动的加速度为零,则速度为零,速度变化也为零B .质点速度变化率越大,则加速度越大C .质点某时刻的加速度不为零,则该时刻的速度也不为零D .质点运动的加速度越大,它的速度变化越大 2、(单选)关于物体的运动,下列说法不可能的是( ).答案 BA .加速度在减小,速度在增大B .加速度方向始终改变而速度不变C .加速度和速度大小都在变化,加速度最大时速度最小,速度最大时加速度最小D .加速度方向不变而速度方向变化3.(多选)沿一条直线运动的物体,当物体的加速度逐渐减小时,下列说法正确的是( ).答案 BD A .物体运动的速度一定增大 B .物体运动的速度可能减小 C .物体运动的速度的变化量一定减少 D .物体运动的路程一定增大 4.(多选)根据给出的速度和加速度的正负,对下列运动性质的判断正确的是( ).答案 CD A .v 0>0,a <0,物体做加速运动 B .v 0<0,a <0,物体做减速运动 C .v 0<0,a >0,物体做减速运动 D .v 0>0,a >0,物体做加速运动5.(单选)关于速度、速度的变化量、加速度,下列说法正确的是( ).答案 BA .物体运动时,速度的变化量越大,它的加速度一定越大B .速度很大的物体,其加速度可能为零C .某时刻物体的速度为零,其加速度不可能很大D .加速度很大时,运动物体的速度一定很快变大 6.(单选)一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小逐渐减小为零,则在此过程中( ).答案 BA .速度逐渐减小,当加速度减小到零时,速度达到最小值B .速度逐渐增大,当加速度减小到零时,速度达到最大值C .位移逐渐增大,当加速度减小到零时,位移将不再增大D .位移逐渐减小,当加速度减小到零时,位移达到最小值7.(单选)甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a 乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( ).答案 BA .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相等8. (单选)如图所示,小球以v 1=3 m/s 的速度水平向右运动,碰一墙壁经Δt =0.01 s 后以v 2=2 m/s 的速度沿同一直线反向弹回,小球在这0.01 s 内的平均加速度是( )答案:CA .100 m/s 2,方向向右B .100 m/s 2,方向向左C .500 m/s 2,方向向左D .500 m/s 2,方向向右 9.(多选)物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度大小变为10m/s ,关于该物体在这1s 内的加速度大小下列说法中正确的是( )A .加速度的大小可能是14m/s 2B .加速度的大小可能是8m/s 2C .加速度的大小可能是4m/s 2D .加速度的大小可能是6m/s 2【答案】AD10、为了测定气垫导轨上滑块的加速度,滑块上安装了宽度为3.0 cm 的遮光板,如图所示,滑块在牵引力作用下先后匀加速通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为Δt 1=0.30 s ,通过第二个光电门的时间为Δt 2=0.10 s ,遮光板从开始遮住第一个光电门到开始遮住第二个光电门的时间为Δt =3.0 s .试估算: (1)滑块的加速度多大?(2)两个光电门之间的距离是多少?解析 v 1=L Δt 1=0.10 m/s v 2=L Δt 2=0.30 m/s a =v 2-v 1Δt ≈0.067 m /s 2. (2) x =v 1+v 22Δt =0.6 m.第二讲:匀变速直线运动规律的应用基本规律(1)三个基本公式①v =v 0+at . ②x =v 0t +12at 2. ③v 2-v 20=2ax(2)两个重要推论 ①平均速度公式:v =v t 2=v 0+v 2= s t .中间位置速度v s 2=√v12+v222.②任意两个连续相等的时间间隔T 内的位移之差为一恒量,即Δx =aT 2.(3).初速度为零的匀变速直线运动的四个推论(1)1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1). (4)从静止开始通过连续相等的位移所用时间的比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…. 1.(单选)一物体从静止开始做匀加速直线运动,测得它在第n 秒内的位移为s ,则物体的加速度为( ) A .B .C .D .【答案】A2.(单选)做匀加速沿直线运动的质点在第一个3s 内的平均速度比它在第一个5s 内的平均速度小3m/s ,则质点的加速度大小为( )A .1 m/s 2B .2 m/s 2C .3 m/s 2D .4 m/s 2【答案】C 7.(单选)一个物体从某一高度做自由落体运动,已知它第1s 内的位移为它最后1s 内位移的一半,g 取10m/s 2,则它开始下落时距地面的高度为( )A . 5 mB . 11.25 mC . 20 mD . 31.25 m 【答案】B 3.(多选)一小球从静止开始做匀加速直线运动,在第15s 内的位移比第14s 内的位移多0.2m ,则下列说法正确的是()A . 小球加速度为0.2m/s 2B . 小球前15s 内的平均速度为1.5m/sC . 小球第14s 的初速度为2.8m/sD . 第15s 内的平均速度为0.2m/s 【答案】AB4.(单选)如图是哈尔滨西客站D502次列车首次发车,标志着世界首条高寒区高速铁路哈大高铁正式开通运营.哈大高铁运营里程921公里,设计时速350公里.D502次列车到达大连北站时做匀减速直线运动,开始刹车后第5 s 内的位移是57.5 m ,第10 s 内的位移是32.5 m ,则下列说法正确的有( ).答案 D A .在研究列车从哈尔滨到大连所用时间时不能把列车看成质点 B .时速350公里是指平均速度,921公里是指位移C .列车做匀减速运动时的加速度大小为6.25 m/s 2D .列车在开始减速时的速度为80 m/s5.一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1s 内和第2s 内位移大小依次为9m 和7m .求:(1)刹车后汽车的加速度大小. (2)汽车在刹车后6s 内的位移.解答:解:设汽车的初速度为v 0,加速度为a .则第1s 内位移为:x 1=代入数据,得:9=v 0+ 第2s 内的位移为:x 2=v 0t 2+﹣x 1, 代入数据得:7= 解得:a=﹣2m/s 2,v 0=10m/s汽车刹车到停止所需时间为:t==则汽车刹车后6s 内位移等于5s 内的位移,所以有:==25m 故答案为:2,256.质点做匀减速直线运动,在第1 s 内位移为6 m ,停止运动前的最后1 s 内位移为2 m ,求: (1)在整个减速运动过程中质点的位移大小; (2)整个减速过程共用的时间。
高中物理知识点汇总(带经典例题)
高中物理必修1运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。
近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。
第一章运动的描述专题一:描述物体运动的几个基本本概念◎知识梳理1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。
2.参考系:被假定为不动的物体系。
对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。
3.质点:用来代替物体的有质量的点。
它是在研究物体的运动时,为使问题简化,而引入的理想模型。
仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。
’物体可视为质点主要是以下三种情形:(1)物体平动时;(2)物体的位移远远大于物体本身的限度时;(3)只研究物体的平动,而不考虑其转动效果时。
4.时刻和时间(1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。
(2)时间是两时刻的间隔,是时间轴上的一段。
对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。
5.位移和路程(1)位移表示质点在空间的位置的变化,是矢量。
位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。
当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。
(2)路程是质点在空间运动轨迹的长度,是标量。
在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。
(3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。
高中物理强基习题专题一:运动学(Word版含详解)
高中物理强基习题专题一:运动学一.选择题1.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v =( D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =答案:C2.如上题图1-5,此时小船加速度为( )A.0B.θθcos )tan (20l vC.lv 20)tan (θ D.θcos 0v 答案:B3.地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小为( )A.s m /1094.13-⨯B.s m /1094.14-⨯C.0D.s m /100.35-⨯答案:A解析:设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =htg ωt,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v二.计算题4.质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1 ,求质点的运动方程.解析: 由分析知,应有⎰⎰=t t a 0d d 0vv v 得 03314v v +-=t t (1)由 ⎰⎰=t xx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v0=-1 m ·s-1,x0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 5.一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -Bv,式中A 、B 为正恒量,求石子下落的速度和运动方程.解析:本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式dv =a(v)dt 分离变量为t a d )(d =v v 后再两边积分. 解:选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y tBt yd )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y6.质点在Oxy 平面内运动,其运动方程为r =2.0ti +(19.0 -2.0t2 )j,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2 =2.0s 时间内的平均速度;(3) t1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.解析:根据运动方程可直接写出其分量式x =x(t)和y =y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和an ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t, y =19.0-2.0t2消去t 得质点的轨迹方程:y =19.0 -0.50x2(2) 在t1 =1.00s 到t2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t1 =1.00s时的速度v(t)|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 8.已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元ds,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为 2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元ds,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入ds,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s QP9.一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a)图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t)和y ′=y ′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x ′和y =y0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2 ,则质点P 的参数方程为t T R x π2sin =', t T R y π2cos -=' 坐标变换后,在Oxy 坐标系中有 t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t10.如图所示,半径为R 的半圆凸轮以等速v0沿水平面 向右运动,带动从动杆AB 沿竖直方向上升,O 为凸轮圆心,P 为其顶点.求:当∠AOP=α时,AB 杆的速度和加速度.根据解析:速度的合成,运用平行四边形定则,得:v 杆=v0tan α。
高中物理运动学练习题及讲解
高中物理运动学练习题及讲解一、选择题1. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s²。
若物体在第3秒内通过的位移为9m,求物体在第2秒末的速度是多少?A. 2m/sB. 3m/sC. 4m/sD. 5m/s2. 一辆汽车以10m/s的速度行驶,突然刹车,产生一个-5m/s²的加速度。
求汽车在刹车后5秒内的位移。
A. 25mB. 31.25mC. 40mD. 50m二、填空题3. 某物体做自由落体运动,下落时间为3秒,忽略空气阻力,求物体下落的高度。
公式为:\[ h = \frac{1}{2} g t^2 \],其中\( g \)为重力加速度,\( t \)为时间。
假设\( g = 9.8 m/s^2 \)。
三、计算题4. 一个物体从高度为10米的平台上自由落下,求物体落地时的速度。
四、解答题5. 一辆汽车从静止开始加速,加速度为4m/s²,行驶了10秒后,汽车的速度和位移分别是多少?五、实验题6. 实验中,我们用打点计时器记录了小车的运动。
已知打点计时器的周期为0.02秒,记录了小车在第1、3、5、7、9点的位置。
位置数据如下(单位:米):1点:0.00,3点:0.20,5点:0.56,7点:1.08,9点:1.76。
请根据这些数据计算小车的加速度,并判断小车的运动类型。
六、论述题7. 论述在斜面上的物体受到的力有哪些,以及这些力如何影响物体的运动。
参考答案:1. B2. B3. 14.7m4. 根据公式\( v = \sqrt{2gh} \),落地速度为\( \sqrt{2 \times 9.8 \times 10} \) m/s。
5. 速度为40m/s,位移为200m。
6. 根据两点间的平均速度公式,可以求出加速度为0.8m/s²,小车做匀加速直线运动。
7. 斜面上的物体受到重力、支持力和摩擦力的作用。
重力使物体有向下运动的趋势,支持力和摩擦力则与重力的垂直和水平分量相平衡,影响物体的加速度和运动状态。
高中物理-动量守恒定律经典例题详解
高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
高中物理力学经典例题解析
高中物理力学经典例题解析1.在光滑的水平桌面上有一长L=2米的木板C,它的两端各有一块档板,C的质量m C=5千克,在C的正中央并排放着两个可视为质点的滑块A和B,质量分别为m A=1千克,m B=4千克。
开始时,A、B、C都处于静止,并且A、B间夹有少量塑胶炸药,如图15-1所示。
炸药爆炸使滑块A以6米/秒的速度水平向左滑动,如果A、B与C间的摩擦可忽略,两滑块中任一块与档板碰撞后都与挡板结合成一体,爆炸和碰撞所需时间都可忽略。
问:(1)当两滑块都与档板相碰撞后,板C的速度多大?(2)到两个滑块都与档板碰撞为止,板的位移大小和方向如何?分析与解:(1)设向左的方向为正方向。
炸药爆炸前后A和B组成的系统水平方向动量守恒。
设B获得的速度为m A,则m A V A+m B V B=0,所以:V B=-m A V A/m B=-1.5米/秒对A、B、C 组成的系统,开始时都静止,所以系统的初动量为零,因此当A和B都与档板相撞并结合成一体时,它们必静止,所以C板的速度为零。
(2)以炸药爆炸到A与C相碰撞经历的时间:t1=(L/2)/V A=1/6秒,在这段时间里B的位移为:S B=V B t1=1.5×1/6=0.25米,设A与C相撞后C的速度为V C,A和C组成的系统水平方向动量守恒:m A V A=(m A+m C)V C,所以V C=m A V A/(m A+m C)=1×6/(1+5)=1米/秒B相对于C的速度为:V BC=V B-V C=(-1.5)-(+1)=-2.5米/秒因此B还要经历时间t2才与C相撞:t2==(1-0.25)/2.5=0.3秒,故C的位移为:S C=V C t2=1×0.3=0.3米,方向向左,如图15-2所示。
2.如图16-1所示,一个连同装备总质量为M=100千克的宇航员,在距离飞船为S=45米与飞船处于相地静止状态。
宇航员背着装有质量为m0=0.5千克氧气的贮氧筒,可以将氧气以V=50米/秒的速度从喷咀喷出。
高中物理难题解析(运动学)
运动学基本概念 变速直线运动(P .21)***12.甲、乙、丙三辆汽车以相同的速度经过某一路标,以后甲车一直做匀速直线运动,乙车先加速后减速运动,丙车先减速后加速运动,它们经过下一路标时的速度又相同,则( )。
[2 ](A)甲车先通过下一个路标 (B)乙车先通过下一个路标 (C)丙车先通过下一个路标 (D)三车同时到达下一个路标解答 由题知,三车经过二路标过程中,位移相同,又由题分析知,三车的平均速度之间存在:乙v > 甲v > 丙v ,所以三车经过二路标过程中,乙车所需时间最短。
本题的正确选项为(B )。
(P .21)***14.质点沿半径为R 的圆周做匀速圆周运动,其间最大位移等于_______,最小位移等于________,经过94周期的位移等于_________.[2 ] 解答 位移大小为连接初末位置的线段长,质点做半径为R 的匀速圆周运动,质点的最大位移等于2R ,最小位移等于0,又因为经过T 49周期的位移与经过T 41周期的位移相同,故经过T 49周期的位移的大小等于R 2。
本题的正确答案为“2R ;0;R 2”(P .22)***16.一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的____________倍.(2000年,上海卷)[5]解答 飞机发动机的声音是从头顶向下传来的,飞机水平作匀速直线运动,设飞机在人头顶正上方时到地面的距离为Y ,发动机声音从头顶正上方传到地面的时间为t ,声音的速度为v 0,于是声音传播的距离、飞机飞行的距离和飞机与该同学的距离组成了一直角三角形,由图2-1可见:X =v t , ①Y =v 0t , ②=YXtan300 , ③ 图2-1由①式、②式和③式得:58.0330==v v , 本题的正确答案为“0.58”。
高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析
高考物理直线运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试直线运动1.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,当两车快要到十字路口时,甲车司机看到绿灯开始闪烁,已知绿灯闪烁3秒后将转为红灯.请问:(1)若甲车在绿灯开始闪烁时刹车,要使车在绿灯闪烁的3秒时间内停下来且刹车距离不得大于18m,则甲车刹车前的行驶速度不能超过多少?(2)若甲、乙车均以v0=15m/s的速度驶向路口,乙车司机看到甲车刹车后也紧急刹车(乙车司机的反应时间△t2=0.4s,反应时间内视为匀速运动).已知甲车、乙车紧急刹车时的加速度大小分别为a1=5m/s2、a2=6m/s2 .若甲车司机看到绿灯开始闪烁时车头距停车线L=30m,要避免闯红灯,他的反应时间△t1不能超过多少?为保证两车在紧急刹车过程中不相撞,甲、乙两车刹车前之间的距离s0至少多大?【答案】(1)(2)【解析】(1)设在满足条件的情况下,甲车的最大行驶速度为v1根据平均速度与位移关系得:所以有:v1=12m/s(2)对甲车有v0△t1+=L代入数据得:△t1=0.5s当甲、乙两车速度相等时,设乙车减速运动的时间为t,即:v0-a2t=v0-a1(t+△t2)解得:t=2s则v=v0-a2t=3m/s此时,甲车的位移为:乙车的位移为:s2=v0△t2+=24m故刹车前甲、乙两车之间的距离至少为:s0=s2-s1=2.4m.点睛:解决追及相遇问题关键在于明确两个物体的相互关系;重点在于分析两物体在相等时间内能否到达相同的空间位置及临界条件的分析;必要时可先画出速度-时间图象进行分析.2.如图甲所示,质量m=8kg的物体在水平面上向右做直线运动。
过a点时给物体作用一个水平向右的恒力F并开始计时,在4s末撤去水平力F.选水平向右为速度的正方向,通过速度传感器测出物体的瞬时速度,所得v﹣t图象如图乙所示。
(取重力加速度为10m/s2)求:(1)8s 末物体离a 点的距离 (2)撤去F 后物体的加速度(3)力F 的大小和物体与水平面间的动摩擦因数μ。
高中物理运动学题分析
高中物理运动学题分析一、匀速直线运动题匀速直线运动是高中物理中最基础的运动形式之一,也是考试中经常出现的题型。
这类题目通常给出物体的速度、时间和位移等信息,要求我们计算其他相关的物理量。
例如,一辆汽车以每小时60公里的速度行驶了2小时,求汽车行驶的距离。
解析:根据题目中给出的速度和时间,我们可以直接使用公式:位移=速度×时间,代入数值进行计算。
所以,汽车行驶的距离为60公里/小时 × 2小时 = 120公里。
这类题目的考点主要是对匀速直线运动的基本概念和公式的掌握,以及对速度、时间和位移之间的关系的理解。
在解题时,要注意单位的转换,确保计算结果的准确性。
二、自由落体运动题自由落体运动是指物体在重力作用下,沿竖直方向做自由下落的运动。
在高中物理中,自由落体运动也是一个重要的考点。
例如,一个物体从静止开始自由下落,经过3秒后,求物体下落的距离。
解析:根据自由落体运动的特点,我们可以利用公式:位移=初速度×时间+1/2×加速度×时间的平方,其中初速度为0,加速度为重力加速度g≈9.8米/秒²。
代入数值进行计算,得到位移为0×3+1/2×9.8×3²=44.1米。
这类题目的考点主要是对自由落体运动的基本概念和公式的掌握,以及对加速度、时间和位移之间的关系的理解。
在解题时,要注意单位的转换,确保计算结果的准确性。
三、斜抛运动题斜抛运动是指物体在斜向上抛的过程中,同时具有初速度和竖直向下的重力加速度的运动。
在高中物理中,斜抛运动也是一个常见的考点。
例如,一个物体以初速度10米/秒的速度,以30°的角度斜向上抛,求物体达到最高点的时间。
解析:根据斜抛运动的特点,我们可以利用公式:最高点的时间=初速度的竖直分量/竖直上抛的加速度,其中初速度的竖直分量为初速度×sinθ,竖直上抛的加速度为重力加速度g。
高中物理人教版必修一运动学例题及解析
运动学【1】物体沿直线向同一方向运动,通过两个连续相等的位移的平均速度分别为v 1=10m/s 和v 2=15m/s ,则物体在这整个运动过程中的平均速度是多少? 【分析与解答】设每段位移为s ,由平均速度的定义有v =212121212//22v v v v v s v s st t s +=+=+=12m/s [点评]一个过程的平均速度与它在这个过程中各阶段的平均速度没有直接的关系,因此要根据平均速度的定义计算,不能用公式v =(v 0+v t )/2,因它仅适用于匀变速直线运动。
【2】一质点沿直线ox 方向作加速运动,它离开o 点的距离x 随时间变化的关系为x=5+2t 3(m),它的速度随时间变化的关系为v=6t 2(m/s),求该质点在t=0到t=2s 间的平均速度大小和t=2s 到t=3s 间的平均速度的大小。
【分析与解答】当t=0时,对应x 0=5m ,当t=2s 时,对应x 2=21m ,当t=3s 时,对应x 3=59m ,则:t=0到t=2s 间的平均速度大小为2021x x v -==8m/st=2s 到t=3s 间的平均速度大小为1232x x v -==38m/s [点评]只有区分了求的是平均速度还是瞬时速度,才能正确地选择公式。
【3】一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声音从头顶正上方传来时,发现飞机在他前上方与地面成600角的方向上,据此可估算出此飞机的速度约为声速的多少倍?【分析与解答】设飞机在头顶上方时距人h ,则人听到声音时飞机走的距离为:3h/3 对声音:h=v 声t 对飞机:3h/3=v 飞t 解得:v 飞=3v 声/3≈0.58v 声[点评]此类题和实际相联系,要画图才能清晰地展示物体的运动过程,挖掘出题中的隐含条件,如本题中声音从正上方传到人处的这段时间内飞机前进的距离,就能很容易地列出方程求解。
【4】如图所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为v S 和v A .空气中声音传播的速率为v p .设v S <v p ,v A <v p ,空气相对于地面没有流动.(1)若声源相继发出两个声信号,时间间隔为△t ,.请根据发出的这两个声信号从声源传播到观察者的过程,确定观察者接收到这两个声信号的时间间隔△t '.(2)请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波频率间的关系式.【分析与解答】: (1)如图所示,设为声源S 发出两个信号的时刻,为观察者接收到两个信号的时刻.则第一个信号经过时间被观察者A 接收到,第二个信号经过时间被观察者A 接收到.且设声源发出第一个信号时,S 、A 两点间的距离为L ,两个声信号从声源传播到观察者的过程中,它们运动的距离关系如图所示.可得由以上各式,得(2)设声源发出声波的振动周期为T ,这样,由以上结论,观察者接收到的声波振动 的周期T'为 。
高中物理 运动学典型例题解析2
积盾市安家阳光实验学校运动学典型例题解析1.竖直上抛运动对称分析:例:一个从地面竖直上抛的物体,它两次经过一个较低点A 的时间间隔为t A ,两次经过一个较高点B 的时间间隔为t B ,则A 、B 之间的距离是( )A .g(t A 2−tB 2)/2 B. g(t A 2−t B 2)/4 C. g(t A 2−t B 2)/8 D. g(t B 2−t A 2)/2解析:由竖直上抛运动的时间对称性可知,从A 点到最高点的时间是t A /2,从B 点到最高点的时间是t B /2,所以从A 点到最高点的距离是:h A =1/2*g (t A /2)2从B 点到最高点的距离是:h B =1/2*g (t B /2)2所以:A 、B 之间的距离是:g(t A 2−t B 2)/82.平抛运动规律的理解和用:例:以10m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,则物体完成这段飞行的时间是( )A. √3/3 sB. 2√3/3 sC. √3 sD. 2 s解析:物体做平抛运动,可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,当物体撞到斜面时,竖直分速度v t =gt ,水平分速度是v 0,合速度与斜面垂直,可知:gt=v 0cot θ,解得t=√3 s例:水平屋顶高H=5m ,墙高h=3.2m ,墙到房子的水平距离L=3m ,墙外马路宽s=10m ,欲使小球从房顶水平飞出落在墙外的马路上,问:小球离开房顶时的速度满足什么条件。
解析:设小球刚好越过墙时,水平初速度是v 1 则:H-h=1/2*gt 12,解得v 1=5m/s ;又设小球越过墙后,刚好落在马路右边,此时球的水平速度是v 2,则:H=1/2*gt 22,解得v 2=13m/s ;由此可知,小球的速度为:5m/s ≤v ≤13m/s 3.自由落体运动和竖直上抛运动的相遇问题:例:在高h 处,小球A 由静止开始自由落下,与此同时在A 正下方地面上以初速度v 0竖直向上抛出另一个小球B 。
高中物理动量定理解题技巧讲解及练习题(含答案)及解析(1)
高中物理动量定理解题技巧讲解及练习题(含答案)及解析(1)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图,一轻质弹簧两端连着物体A 和B ,放在光滑的水平面上,某时刻物体A 获得一大小为的水平初速度开始向右运动。
已知物体A 的质量为m ,物体B 的质量为2m ,求:(1)弹簧压缩到最短时物体B 的速度大小; (2)弹簧压缩到最短时的弹性势能;(3)从A 开始运动到弹簧压缩到最短的过程中,弹簧对A 的冲量大小。
【答案】(1)(2)(3)【解析】 【详解】(1)弹簧压缩到最短时,A 和B 共速,设速度大小为v ,由动量守恒定律有①得②(2)对A 、B 和弹簧组成的系统,由功能关系有③得④(3)对A 由动量定理得⑤得⑥3.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以10m/s 运动的乙运动员从后去推甲运动员,甲运动员以6m/s 向前滑行,已知甲、乙运动员相互作用时间为1s ,甲运动员质量m 1=70kg 、乙运动员质量m 2=60kg ,求:⑴乙运动员的速度大小;⑵甲、乙运动员间平均作用力的大小。
(完整版)高中物理经典例题分析
第一部分高中物理活题巧解方法总论一、整体法例1:在水平滑桌面上放置两个物体A 、B 如图1-1所示,m A =1kg ,m B =2kg ,它们之间用不可伸长的细线相连,细线质量忽略不计,A 、B 分别受到水平间向左拉力F 1=10N 和水平向右拉力F 2=40N 的作用,求A 、B 间细线的拉力。
【巧解】由于细线不可伸长,A 、B 有共同的加速度,则共同加速度221401010/12A B F F a m s m m --===++对于A 物体:受到细线向右拉力F 和F 1拉力作用,则1A F F m a -=,即11011020A F F m a N =+=+⨯=∴F=20N【答案】=20N例2:如图1-2所示,上下两带电小球,a 、b 质量均为m ,所带电量分别为q 和-q ,两球间用一绝缘细线连接,上球又用绝缘细线悬挂在开花板上,在两球所在空间有水平方向的匀强电场,场强为E ,平衡细线都被拉紧,右边四图中,表示平衡状态的可能是:【巧解】对于a 、b 构成的整体,总电量Q=q-q=0,总质量M=2m ,在电场中静止时,ab 整体受到拉力和总重力作用,二力平衡,故拉力与重力在同一条竖直线上。
【答案】A说明:此答案只局限于a 、b 带等量正负电荷,若a 、b 带不等量异种电荷,则a 与天花板间细线将偏离竖直线。
例3:如图1-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即12a g =,则小球在下滑的过程中,木箱对地面的压力为多少?【巧解】对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:()N mg Mg F ma M +-=+⨯0故木箱所受支持力:22N M mF g +=,由牛顿第三定律知:木箱对地面压力2'2N N M mF F g +==。
【答案】木箱对地面的压力22N M mF g +=例4:如图1-4,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力f 的大小等于( )A 、0B 、kxC 、()mkx MD 、()mkx M m+【巧解】对于A 、B 构成的整体,当系统离开平衡位置的位移为x 时,系统所受的合力为F=kx ,系统的加速度为kxa m M=+,而对于A 物体有摩擦力f F ma ==合,故正确答案为D 。
高中物理运动学题解析
高中物理运动学题解析一、匀速直线运动题匀速直线运动是物理学中最基本的运动形式之一,也是高中物理中最常见的题型之一。
考察学生对匀速直线运动的基本概念和公式的掌握程度。
例题:小明以10m/s的速度沿直线向前奔跑,经过5秒后停下来。
求小明的位移和所走的距离。
解析:根据匀速直线运动的定义,速度恒定,所以小明的位移可以用公式s=v*t来计算,其中v为速度,t为时间。
代入数据,s=10m/s*5s=50m。
所以小明的位移为50m。
所走的距离可以用公式d=v*t来计算,其中v为速度,t为时间。
代入数据,d=10m/s*5s=50m。
所以小明所走的距离也为50m。
这类题目的考点主要是对匀速直线运动的基本概念和公式的理解和应用。
解题时要注意区分位移和距离的概念,位移是指物体从起点到终点的位置变化,而距离是指物体在运动过程中所走过的路径长度。
在计算时要根据题目给出的数据选择合适的公式进行计算。
二、自由落体题自由落体是指物体只受重力作用下的自由运动。
在高中物理中,自由落体是一个重要的概念,也是常见的考点之一。
例题:一个物体从10米高的地方自由落下,求物体落地时的速度和下落时间。
解析:根据自由落体的定义,物体在自由落体运动中,只受到重力的作用,速度随时间的增加而增加。
在不考虑空气阻力的情况下,自由落体的速度可以用公式v=g*t来计算,其中g为重力加速度,t为时间。
代入数据,v=9.8m/s^2*根号2≈13.86m/s。
所以物体落地时的速度约为13.86m/s。
下落时间可以用公式t=根号(2h/g)来计算,其中h为高度,g为重力加速度。
代入数据,t=根号(2*10m/9.8m/s^2)≈1.43s。
所以物体落地时的下落时间约为 1.43秒。
这类题目的考点主要是对自由落体运动的基本概念和公式的理解和应用。
解题时要注意选择合适的公式进行计算,并注意单位的换算。
三、斜抛运动题斜抛运动是指物体在水平方向上具有初速度的抛体运动。
高中物理期末复习专题:力学问题经典例题解析
高中物理期末复习专题:力学问题经典例题解析引言力学是物理学中的一个重要分支,涉及到物体的运动和力的相互作用。
在高中物理课程中,力学问题常常出现,因此复力学问题经典例题对于期末考试非常重要。
本文将对一些常见的力学问题进行解析,帮助学生更好地理解和掌握力学知识。
例题解析1. 平抛运动问题题目:一个小球以水平初速度$v_0$平抛,求小球在飞行过程中的最大高度和飞行的时间。
解析:在平抛运动中,小球在水平方向上的速度恒定不变,而在竖直方向上受重力的作用逐渐减速,直至达到最高点后再加速下落。
因此,通过分析水平和竖直方向上的运动,可以得出以下结论:- 最大高度:在最高点时,小球的竖直速度为零,利用运动学公式$v^2 = u^2 + 2as$可以求得最大高度。
- 飞行时间:利用运动学公式$s = ut + \frac{1}{2}at^2$可以求得飞行时间。
2. 牛顿第二定律问题题目:一个质量为$m$的物体受到作用力$F$,求物体的加速度。
解析:根据牛顿第二定律$F = ma$,可以得出加速度$a =\frac{F}{m}$。
根据题目给出的质量和作用力,带入公式即可求得加速度。
3. 弹簧振子问题题目:一个质点挂在一个劲度系数为$k$的弹簧上,求其振动周期。
解析:弹簧振子的振动周期可通过劲度系数和质量来表示。
振动周期$T$满足公式$T = 2\pi\sqrt{\frac{m}{k}}$,其中$m$为质点的质量,$k$为弹簧的劲度系数。
带入题目给出的数值即可计算出振动周期。
结论本文对高中物理力学问题中的几类经典例题进行了解析,包括平抛运动问题、牛顿第二定律问题和弹簧振子问题。
通过对这些例题的分析和求解,可帮助学生加深对力学知识的理解,并在期末复习中提升解题能力。
希望本文对学生们的高中物理期末复习有所帮助。
高中物理力学经典例题解析
高中物理力学经典例题解析1.在光滑的水平桌面上有一长L=2米的木板C,它的两端各有一块档板,C的质量m C=5千克,在C的正中央并排放着两个可视为质点的滑块A和B,质量分别为m A=1千克,m B=4千克。
开始时,A、B、C都处于静止,并且A、B间夹有少量塑胶炸药,如图15-1所示。
炸药爆炸使滑块A以6米/秒的速度水平向左滑动,如果A、B与C间的摩擦可忽略,两滑块中任一块与档板碰撞后都与挡板结合成一体,爆炸和碰撞所需时间都可忽略。
问:(1)当两滑块都与档板相碰撞后,板C的速度多大?(2)到两个滑块都与档板碰撞为止,板的位移大小和方向如何?分析与解:(1)设向左的方向为正方向。
炸药爆炸前后A和B组成的系统水平方向动量守恒。
设B获得的速度为m A,则m A V A+m B V B=0,所以:V B=-m A V A/m B=-1.5米/秒对A、B、C 组成的系统,开始时都静止,所以系统的初动量为零,因此当A和B都与档板相撞并结合成一体时,它们必静止,所以C板的速度为零。
(2)以炸药爆炸到A与C相碰撞经历的时间:t1=(L/2)/V A=1/6秒,在这段时间里B的位移为:S B=V B t1=1.5×1/6=0.25米,设A与C相撞后C的速度为V C,A和C组成的系统水平方向动量守恒:m A V A=(m A+m C)V C,所以V C=m A V A/(m A+m C)=1×6/(1+5)=1米/秒B相对于C的速度为:V BC=V B-V C=(-1.5)-(+1)=-2.5米/秒因此B还要经历时间t2才与C相撞:t2==(1-0.25)/2.5=0.3秒,故C的位移为:S C=V C t2=1×0.3=0.3米,方向向左,如图15-2所示。
2.如图16-1所示,一个连同装备总质量为M=100千克的宇航员,在距离飞船为S=45米与飞船处于相地静止状态。
宇航员背着装有质量为m0=0.5千克氧气的贮氧筒,可以将氧气以V=50米/秒的速度从喷咀喷出。
高中物理运动学自由落体问题解析
高中物理运动学自由落体问题解析自由落体问题是高中物理中的重要内容,也是学生们常常遇到的难题之一。
本文将通过具体的例题,分析解题思路和方法,帮助高中学生和他们的父母更好地理解和解决自由落体问题。
一、问题分析自由落体问题是指在只受重力作用下的物体运动问题。
常见的自由落体问题一般涉及物体的下落时间、下落距离、速度等。
解决自由落体问题的关键是确定问题所给条件,找出合适的物理公式,进行数值计算。
二、时间问题例题:一个物体从静止开始下落,经过2秒钟后下落了多少米?解析:根据题目所给条件,物体的初始速度为0,加速度为重力加速度g。
根据运动学公式s = ut + 1/2at^2,代入初始速度和加速度的数值,得到下落距离s = 0 + 1/2 × g × (2^2) = 2g。
因此,经过2秒钟后物体下落了2g米。
思考:如果物体下落的时间变为3秒钟,下落距离会发生怎样的变化?解答:根据同样的运动学公式,代入时间t = 3秒,得到下落距离s = 0 + 1/2 ×g × (3^2) = 4.5g。
因此,下落距离增加到4.5g米。
三、速度问题例题:一个物体从高度为10米的位置自由落体,经过多长时间速度会达到20 m/s?解析:根据题目所给条件,物体的初始速度为0,加速度为重力加速度g。
根据运动学公式v = u + at,代入初始速度、加速度和最终速度的数值,得到20 = 0 + g × t。
解方程可得t = 20 / g。
因此,物体下落约2秒钟后速度会达到20 m/s。
思考:如果物体从高度为20米的位置自由落体,经过多长时间速度会达到20m/s?解答:根据同样的运动学公式,代入初始速度、加速度和最终速度的数值,得到20 = 0 + g × t。
解方程可得t = 20 / g。
由于物体下落的高度增加了一倍,所以时间也会增加一倍,即约4秒钟。
四、距离问题例题:一个物体从高度为5米的位置自由落体,下落多长时间后,下落距离为25米?解析:根据题目所给条件,物体的初始速度为0,加速度为重力加速度g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理精典例题解析专题(运动学专题)直线运动规律及追及问题一 、 例题例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 () ( )A.位移的大小可能小于4mB.位移的大小可能大于10mC.加速度的大小可能小于4m/sD.加速度的大小可能大于10m/s析:同向时2201/6/1410s m s m t v v a t =-=-=m m t v v s t 712104201=⋅+=⋅+=反向时2202/14/1410s m s m t v v a t -=--=-=m m t v v s t 312104202-=⋅-=⋅+=式中负号表示方向跟规定正方向相反答案:A 、D例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( )A 在时刻t 2以及时刻t 5两木块速度相同B 在时刻t1两木块速度相同C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。
由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间答案:C例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2结果保留两位数字)t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运动,因此运动员做的是竖直上抛运动,由gvh 220=可求出刚离开台面时的速度s m gh v /320==,由题意知整个过程运动员的位移为-10m (以向上为正方向),由2021at t v s +=得: -10=3t -5t 2解得:t ≈1.7s思考:把整个过程分为上升阶段和下降阶段来解,可以吗?例题 4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm ,BC=20cm ,试求:(1) 拍照时B 球的速度;(2) A 球上面还有几颗正在滚动的钢球 解析:拍摄得到的小球的照片中,A 、B 、C 、D …各小球的位置,正是首先释放的某球每隔0.1s 所在的位置.这样就把本题转换成一个物体在斜面上做初速度为零的匀加速运动的问题了。
求拍摄时B 球的速度就是求首先释放的那个球运动到B 处的速度;求A 球上面还有几个正在滚动的小球变换为首先释放的那个小球运动到A 处经过了几个时间间隔(0.1s )(1)A 、B 、C 、D 四个小球的运动时间相差△T=0.1s∴V B =Ts s AB BC ∆+2=2.035.0m/s=1.75m/s (2)由△s=a △T 2得: a=2T s ∆∆m/s 2=21.015.02.0-=5m/s 2例5:火车A 以速度v 1匀速行驶,司机发现正前方同一轨道上相距s 处有另一火车B 沿同方向以速度v 2(对地,且v 2〈v 1〉做匀速运动,A 车司机立即以加速度(绝对值)a 紧急刹车,为使两车不相撞,a 应满足什么条件?分析:后车刹车做匀减速运动,当后车运动到与前车车尾即将相遇时,如后车车速已降到等于甚至小于前车车速,则两车就不会相撞,故取s 后=s+s 前和v 后≤v 前求解解法一:取取上述分析过程的临界状态,则有v 1t -21a 0t 2=s +v 2t v 1-a 0t = v 2a 0 =sv v 2)(221-所以当a ≥sv v 2)(221- 时,两车便不会相撞。
法二:如果后车追上前车恰好发生相撞,则 v 1t -21at 2= s +v 2t 上式整理后可写成有关t 的一元二次方程,即21at 2+(v 2-v 1)t +s = 0 取判别式△〈0,则t 无实数解,即不存在发生两车相撞时间t 。
△≥0,则有 (v 2-v 1)2≥4(21a )s 得a ≤sv v 2)(212-为避免两车相撞,故a ≥sv v 2)(212-法三:运用v-t 图象进行分析,设从某时刻起后车开始以绝对值为a 的加速度开始刹车,取该时刻为t=0,则A 、B 两车的v-t 图线如图所示。
图中由v 1 、v 2、C 三点组成的三角形面积值即为A 、B 两车位移之差(s 后-s 前)=s ,tan θ即为后车A 减速的加速度绝对值a 0。
因此有 21(v 1-v 2)θtan )(21v v -=s 所以 tan θ=a 0=s v v 2)(221-若两车不相撞需a ≥a 0=sv v 2)(221-二、习题1、 下列关于所描述的运动中,可能的是 ( ) A 速度变化很大,加速度很小B 速度变化的方向为正,加速度方向为负C 速度变化越来越快,加速度越来越小D 速度越来越大,加速度越来越小解析:由a=△v/△t 知,即使△v 很大,如果△t 足够长,a 可以很小,故A 正确。
速v vv 0度变化的方向即△v 的方向,与a 方向一定相同,故B 错。
加速度是描述速度变化快慢的物理量,速度变化快,加速度一定大。
故C 错。
加速度的大小在数值上等于单位时间内速度的改变量,与速度大小无关,故D 正确。
答案:A 、D2、 一个物体在做初速度为零的匀加速直线运动,已知它在第一个△t 时间内的位移为s ,若 △t 未知,则可求出 ( )A . 第一个△t 时间内的平均速度B . 第n 个△t 时间内的位移C . n △t 时间的位移D . 物体的加速度 解析:因v =ts∆,而△t 未知,所以v 不能求出,故A 错.因),12(::5:3:1::::-=I∏∏I n s s s s n 有)12(:1:-=I n s s n ,=-=I s n s n )12((2n-1)s ,故B 正确;又s ∝t 2所以ss n =n 2,所以s n =n2s ,故C 正确;因a=2t s∆,尽管△s=s n -s n-1可求,但△t 未知,所以A 求不出,D 错.答案:B 、C3 、汽车原来以速度v 匀速行驶,刹车后加速度大小为a,做匀减速运动,则t 秒后其位移为( )A 221at vt -B av 22C 221at vt +-D 无法确定解析:汽车初速度为v ,以加速度a 作匀减速运动。
速度减到零后停止运动,设其运动的时间t ,=a v 。
当t ≤t ,时,汽车的位移为s=221at vt -;如果t >t ,,汽车在t ,时已停止运动,其位移只能用公式v 2=2as 计算,s=av 22答案:D4、汽车甲沿着平直的公路以速度v 0做匀速直线运动,当它路过某处的同时,该处有一辆汽车乙开始做初速度为零的匀加速运动去追赶甲车,根据上述的已知条件( )A. 可求出乙车追上甲车时乙车的速度B. 可求出乙车追上甲车时乙车所走的路程C. 可求出乙车从开始起动到追上甲车时所用的时间D. 不能求出上述三者中任何一个分析:题中涉及到2个相关物体运动问题,分析出2个物体各作什么运动,并尽力找到两者相关的物理条件是解决这类问题的关键,通常可以从位移关系、速度关系或者时间关系等方面去分析。
解析:根据题意,从汽车乙开始追赶汽车甲直到追上,两者运动距离相等,即s 甲==s 乙=s ,经历时间t 甲=t 乙=t.那么,根据匀速直线运动公式对甲应有:t v s 0=根据匀加速直线运动公式对乙有:221at s =,及at v t = 由前2式相除可得at=2v 0,代入后式得v t =2v 0,这就说明根据已知条件可求出乙车追上甲车时乙车的速度应为2v 0。
因a 不知,无法求出路程和时间,如果我们采取作v -t 图线的方法,则上述结论就比较容易通过图线看出。
图中当乙车追上甲车时,路程应相等,即从图中图线上看面积s 甲和s 乙,显然三角形高vt 等于长方形高v 0的2倍,由于加速度a 未知,乙图斜率不定,a 越小,t 越大,s 也越大,也就是追赶时间和路程就越大。
答案:A5 、在轻绳的两端各栓一个小球,一人用手拿者上端的小球站在3层楼阳台上,放手后让小球自由下落,两小球相继落地的时间差为T ,如果站在4层楼的阳台上,同样放手让小球自由下落,则两小球相继落地时间差将 ( )A 不变B 变大C 变小D 无法判断解析:两小球都是自由落体运动,可在一v-t 图象中作出速度随时间的关系曲线,如图所示,设人在3楼阳台上释放小球后,两球落地时间差为△t 1,图中阴影部分面积为△h ,若人在4楼阳台上释放小球后,两球落地时间差△t 2,要保证阴影部分面积也是△h ;从图中可以看出一定有△t 2〈△t 1答案:C 6、一物体在A 、B 两点的正中间由静止开始运动(设不会超越A 、B ),其加速度随时间变化如图所示。
设向A 的加速度为为正方向,若从出发开始计时,则物体的运动情况是( )A 先向A ,后向B ,再向A ,又向B ,4秒末静止在原处B 先向A ,后向B ,再向A ,又向B ,4秒末静止在偏向A 的某点C 先向A ,后向B ,再向A ,又向B ,4秒末静止在偏向B 的某点D 一直向A 运动,4秒末静止在偏向A 的某点v vv1 2 v v 1v 2-11-解析:根据a-t 图象作出其v-t 图象,如右图所示,由该图可以看出物体的速度时大时小,但方向始终不变,一直向A 运动,又因v-t 图象与t 轴所围“面积”数值上等于物体在t 时间内的位移大小,所以4秒末物体距A 点为2米 答案:D7、天文观测表明,几乎所有远处的恒星(或星系)都在以各自的速度背离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度)越大;也就是说,宇宙在膨胀,不同星体的退行速度v 和它们离我们的距离r 成正比,即v=Hr 。
式中H 为一常量,称为哈勃常数,已由天文观察测定,为解释上述现象,有人提供一种理论,认为宇宙是从一个大爆炸的火球开始形成的,假设大爆炸后各星体即以不同的速度向外匀速运动,并设想我们就位于其中心,则速度越大的星体现在离我们越远,这一结果与上述天文观测一致。
由上述理论和天文观测结果,可估算宇宙年龄T ,其计算式如何?根据近期观测,哈勃常数H=3×10-2m/(s 光年),其中光年是光在一年中行进的距离,由此估算宇宙的年龄约为多少年?解析:由题意可知,可以认为宇宙中的所有星系均从同一点同时向外做匀速直线运动,由于各自的速度不同,所以星系间的距离都在增大,以地球为参考系,所有星系以不同的速度均在匀速远离。