化工热力学答案2

合集下载

【精品】化工热力学第二章习题解答

【精品】化工热力学第二章习题解答

【精品】化工热力学第二章习题解答化工热力学第二章习题解答1.一个理想气体在恒定温度下,其压强与体积的关系如下所示:P = A / V^2其中P是压强,V是体积,A是常数。

求该气体的热力学过程方程。

解答:根据热力学第一定律,对于恒温过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。

由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。

将上式代入热力学第一定律中,得到Cdt = dq - PdV。

根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。

将P = A / V^2代入上式,得到Cdt = dq - (A / V^2)dV。

对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A / V^2)dV。

即Ct = q - A / V + B,其中B为常数。

综上所述,该气体的热力学过程方程为Ct = q - A / V + B。

2.一个气体在等体过程中,其压强与温度的关系如下所示:P = A * T^2其中P是压强,T是温度,A是常数。

求该气体的热力学过程方程。

解答:根据热力学第一定律,对于等体过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。

由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。

将上式代入热力学第一定律中,得到Cdt = dq - PdV。

根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。

将P = A * T^2代入上式,得到Cdt = dq - (A * T^2)dV。

对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A * T^2)dV。

即Ct = q - (A / 3)T^3 + B,其中B为常数。

综上所述,该气体的热力学过程方程为Ct = q - (A / 3)T^3 + B。

化工热力学课后答案

化工热力学课后答案

第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。

(1)流体的PVT 关系可以直接用于设计。

(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。

只要有了p-V-T 关系加上理想气体的idp C ,可以解决化工热力学的大多数问题。

2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。

【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。

2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。

2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。

2-5偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?()()()()点在点在C VP C VPTT22==∂∂∂∂【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。

为了提高计算复杂分子压缩因子的准确度。

化工热力学第二章习题答案

化工热力学第二章习题答案

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

化工热力学课后答案完整版朱自强

化工热力学课后答案完整版朱自强

第二章 流体压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下摩尔体积id V 为33168.314(400273.15) 1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+(E1)其中从附表1查得甲烷临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学答案_冯新_宣爱国_课后总习题答案详解

化工热力学答案_冯新_宣爱国_课后总习题答案详解

第二章习题解答一、问答题:2-1为什么要研究流体的pVT 关系?【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。

(1)流体的PVT 关系可以直接用于设计。

(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。

只要有了p-V-T 关系加上理想气体的idp C ,可以解决化工热力学的大多数问题。

2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。

【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。

2)临界点C 的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3 要满足什么条件,气体才能液化?【参考答案】:气体只有在低于T c 条件下才能被液化。

2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。

2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?()()()()点在点在C V PC V PT T 0022==∂∂∂∂【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。

为了提高计算复杂分子压缩因子的准确度。

(完整word版)化工热力学答案解析

(完整word版)化工热力学答案解析

化工热力学第二章作业解答2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式解 (1)用理想气体方程(2-4) V =RT P =68.3146734.05310⨯⨯=1.381×10-3m 3·mol -1(2)用R-K 方程(2-6)从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b )2 2.50.42748c cR T a p ==2 2.560.42748(8.314)(190.6)4.610⨯⨯⨯=3.224Pa ·m 6·K 0.5·mol -20.0867c c RT b p ==60.08678.314190.64.610⨯⨯⨯=2.987×10-5 m 3·mol -1将有关的已知值代入式(2-6) 4.053×106=58.3146732.98710V -⨯-⨯-0.553.224(673)( 2.98710)V V -+⨯ 迭代解得V =1.390×10-3 m 3·mol -1(注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式6733.53190.6r T T Tc === 664.053100.8814.610r P P Pc ⨯===⨯ 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。

由式(2-44a )、式(2-44b )求出B 0和B 1B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43)010.02690.0080.1380.0281BPcB B RTcω=+=+⨯= 由式(2-42)得Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ⎛⎫⎛⎫=+=+⨯= ⎪⎪⎝⎭⎝⎭V =1.390×10-3m 3·mol -12.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算273.15K 时将CO 2压缩到比体积为550.1cm 3·mol -1所需要的压力。

化工热力学习题及答案 第二章 流体的PVT关系

化工热力学习题及答案 第二章 流体的PVT关系

第二章 流体的PVT 性质2-1使用下述三种方法计算1kmol 的甲烷储存在容积为0.1246m3、温度为50℃的容器中所产生的压力是多少? (1) 理想气体状态方程; (2) Redlich -Kwong 方程; (3) 普遍化关系式。

解:查附录表可知:KTc6.190=,MPap c6.4=,1399-⋅=molcmVc,008.0=ω(1)理想气体状态方程:MPaPa VnRT p 56.2110156.21246.015.323214.810173=⨯=⨯⨯⨯==(2)R -K 方程:15.0365.225.22225.3106.46.190314.84278.04278.0-⋅⋅⋅=⨯⨯⨯==molKm Pa p TcR a c135610987.2106.46.190314.80867.00867.0--⋅⨯=⨯⨯⨯==molm p RTc b c545.055.010)987.246.12(10246.115.323225.310)987.246.12(15.323314.8)(---⨯+⨯⨯⨯-⨯-⨯=+--=a V V TabV RT p M P a Pa 04.1910904.17=⨯=(3) 遍化关系式法226.1109.910246.154=⨯⨯==--VcV Vr 应该用铺片化压缩因子法Pr 未知,需采用迭代法。

ZZ Vp ZRT p c r 688.410246.1106.415.323314.846=⨯⨯⨯⨯==-令875.0=Z得:10.4=rp查表2-8(b )和2-7(b )得:24.01=Z ,87.00=Z872.024.0008.087.01=⨯+=+=ZZZ ωZ 值和假设值一致,故为计算真值。

MPaPa VZRT p 87.1810877.110246.115.323314.8875.074=⨯=⨯⨯⨯==-2-2 欲将25Kg 、298K 的乙烯装入0.1m 3的刚性容器中,试问需多大压力: 解:乙烯的摩尔数:mol n 857.8922825000==乙烯的摩尔体积:)(1012.1857.8921.0134--⋅⨯==molm V查表得:KTc4.282=,)(10129136--⋅⨯=mol m Vc,MPap c036.5=,085.0=ω28682.01029.11012.144 =⨯⨯=--r V 可见由普遍化压缩因子法计算0552.14.282298==TrZZ VZRT p r 7410212.21012.1298314.8⨯=⨯⨯⨯==- (A )有由rr c p p p p610036.5⨯==1ZZZ ω+= (B )设Z 值代入A 式求p ,由Pr 、Tr 查图得Z0和Z1,代入B 式迭代求解Z 结果为:45.1=r p ,33.0=ZM P a Z p 677103.733.010212.210212.2⨯=⨯⨯=⨯=2-3 分别用理想气体方程和Pitzer 普遍化方法,计算510K 、2。

化工热力学答案2

化工热力学答案2

一、填空题(每题2分,共20分)1. 正丁烷的偏心因子ω=0.193,临界压力为p c =3.797MPa ,则在Tr =0.7时的蒸汽压为( 0.2435 )MPa 。

2. 封闭系统中,温度为25℃的1mol 理想气体从10MPa ,0.3m3等温可逆膨胀到0.1MPa ,30 m3,则所做的功为(-11.4kJ,RTln (p 2/p 1))。

3. 节流膨胀的Joule-Thomson 效应系数的定义式为(HJ P T ⎥⎦⎤⎢⎣⎡∂∂=μ) 4. 等熵效率的定义是对膨胀做功过程,(不可逆绝热过程的做功量)与(可逆绝热过程的做功量)之比5. 温度为T 的恒温热源的热量Q ,其E xQ 的计算式为(E xQ =(1-T 0/T )Q )。

6. 对于理想气体,节流膨胀后温度( 不变 ),作外功的绝热膨胀时,温度(下降)。

7. 液态水常压下从25℃加热至50℃,其等压平均热容为75.31J/mol,则此过程的焓变为(1882.75)J/mol 。

8. 二元非理想溶液在极小浓度的条件下,其溶质组分遵守(Henry )规则,溶剂组分遵守( Lewis-Randll )规则。

9. 纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可表示为( 0)/(=∂∂T V p )和( 0)/(22=∂∂T V p )。

10. 对于孤立体系,熵增原理可采用( 0dS ≥ )表达式表示。

二、简答题:(每题5分,共20分)1.分析改变蒸汽的参数如何改变Rankine 循环的效率。

2.写出稳流体系的熵平衡方程,并指出各项的含义。

答:0i i j j Qm S m S S Tδ-++∆=∑∑⎰产生入出3.写出维里方程中维里系数B 、C 的物理意义,并写出舍项维里方程的混合规则。

答:第二维里系数B 代表两分子间的相互作用,第三维里系数C 代表三分子间相互作用,B 和C 的数值都仅仅与温度T 有关;舍项维里方程的混合规则为:∑∑===n i nj ijj i M B y y B 11,()10ijij ij cijcij ij B Bp RT B ω+=,6.10422.0083.0prij T B -=,2.41172.0139.0prij T B -=,cij pr T T T =,()()5.01cj ci ij cij T T k T ⋅-=,cij cij cij cij V RT Z p =,()[]331315.0Cjci cij V V V +=,()cj ci cijZ Z Z+=5.0,()j i ij ωωω+=5.04.写出理想溶液组分的偏摩尔性质(焓、熵、自由焓、体积、内能)与纯物质性质间的关系表达式。

化工热力学课后部分习题答案

化工热力学课后部分习题答案

2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,c s s r p p p =对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。

2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。

气他的热力学性质均不同。

3-1 思考下列说法是否正确① 当系统压力趋于零时,()()0,,≡-p T Mp T M ig(M 为广延热力学性质)。

(F ) ② 理想气体的H 、S 、G 仅是温度的函数。

(F ) ③ 若()⎪⎪⎭⎫⎝⎛+-=00ln p p R S S A ig,则A 的值与参考态压力0p 无关。

(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。

(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。

(T ) 3-2 推导下列关系式:V T T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T p T V U VT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂()2RT H T RT G p ∆∆-=⎥⎦⎤⎢⎣⎡∂∂ ()RTV p RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 证明:(1)根据热力学基本方程 V p T S A d d d --= (a)因为A 是状态函数,所以有全微分:V V A T T A A TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (b) 比较(a)和(b)得: p V A S T A TV -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂, 由全微分性质得:V V T T p T T p p A T T A p V S ⎪⎭⎫ ⎝⎛∂∂-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂-即 VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂(2)由热力学基本方程 V p S T U d d d -= 将上式两边在恒定的温度T 下同除以的d V 得:p V S T V U TT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂由(1)已经证明VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 则 p T p T V U VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂(3)由热力学基本方程 p V T S G d d d +-= 当压力恒定时 SdT dG -=由Gibbs 自由能定义式得 S T H G ∆∆∆-=()()()222T H T S T H S T T GT GTT T G p∆∆∆∆∆∆∆-=---⋅=-∂∂=⎥⎦⎤⎢⎣⎡∂∂等式两边同乘以R 得()2RT H T RT G p∆∆-=⎥⎦⎤⎢⎣⎡∂∂(4)当温度恒定时Vdp dG =()T V p T G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 所以 ()RTVp RT G T ∆∆=⎥⎦⎤⎢⎣⎡∂∂ 3-4 计算氯气从状态1(300K 、1.013×105Pa )到状态2( 500K 、1.013×107Pa )变化过程的摩尔焓变。

《化工热力学》(第二、三版_陈新志)课后习题答案

《化工热力学》(第二、三版_陈新志)课后习题答案

第1章绪言一、是否题3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)第2章P-V-T关系和状态方程一、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)3. 当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。

(错。

如温度大于Boyle温度时,Z>1。

)7. 纯物质的三相点随着所处的压力或温度的不同而改变。

(错。

纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。

)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。

(错。

它们相差一个汽化热力学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。

(对。

这是纯物质的汽液平衡准则。

)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。

(错。

)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。

(错。

只有吉氏函数的变化是零。

)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。

(对。

)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。

(错。

三对数对应态原理不能适用于任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。

(错。

简单流体系指一类非极性的球形流,如A r等,与所处的状态无关。

)二、选择题1. 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。

化工热力学答案第二

化工热力学答案第二

化工热力学答案第二公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f )以V 表示)或以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C ig P ⎪⎪⎭⎫⎝⎛--,∆H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig PC RigPP P R V P R C ,∆H =1121T P P C ig P C R ig P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。

化工热力学答案

化工热力学答案

第二章1. 在常压和0℃下,冰的熔化热是334.4Jg -1,水和冰的质量体积分别是1.000和1.091cm 3 g -1,且0℃时水的饱和蒸汽压和汽化潜热分别为610.62Pa 和2508Jg -1,请由此估计水的三相点数据。

解:在温度范围不大的区域内,汽化曲线和熔化曲线均可以作为直线处理。

对于熔化曲线,已知曲线上的一点是273.15K ,101325Pa ;并能计算其斜率是 7103453.1⨯-=∆∆=fusm fus m V T H dT dP PaK -1 熔化曲线方程是()15.273103453.11013257-⨯-=T P m对于汽化曲线,也已知曲线上的一点是273.15K ,610.62Pa ;也能计算其斜率是4688.262.61015.273314.815.2732508=⨯⨯=∆≈∆∆=svb vapvap b vap s V T H V T H dT dPPaK -1汽化曲线方程是()15.2734688.262.610-+=T P s解两直线的交点,得三相点的数据是:09.615=tP Pa ,1575.273=t T K第三章试由饱和液体水的性质估算(a)100℃,2.5MPa 和(b)100℃,20MPa 下水啊101325.0=s P MPa ,04.419=sl H Jg-1,3069.1=slS J g-1K -1,0435.1=sl V cm 3 g -1,0008.0=⎪⎪⎭⎫ ⎝⎛≈⎪⎭⎫ ⎝⎛dT dV T V sl P ∂∂cm 3 g -1 K -1 解:体系有关状态点如图所示所要计算的点与已知的饱和点是在同一条等温线上,由0008.0-=⎪⎪⎭⎫ ⎝⎛-≈⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂dT dV T V P S sl p T cm 3 g -1 K -1得()()101325.00008.03069.10008.00008.0--=-≈-≈-⎰P S P P dP S S PP ssl s或又 745.00008.015.3730435.1=⨯-=⎪⎪⎭⎫ ⎝⎛-≈⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂dT dV T V T V T V P H sl sl P T cm 3 g -1得()()101325.0745.004.419745.0745.0-+=-=≈-⎰P H P P dP H H PP ssl s或 当P =2.5MPa 时,S =1.305 Jg -1 K -1;H = 420.83J g -1; 当P =20MPa 时,S = 1.291Jg -1 K -1;H =433.86J g -1。

(整理)化工热力学答案

(整理)化工热力学答案

第二章 均相反应动力学习题1. 【动力学方程形式】有一气相反应,经实验测定在400℃下的速率方程式为:23.66A A dP P dt= 若转化为2(/.)A kC A r mol hl =形式,求相应的速率常数值及其单位。

2. [恒温恒容变压定级数]在恒容等温下,用等摩尔H 2和NO 进行实验,测得如下数据: 总压(MPa )0.0272 0.0326 0.038 0.0435 0.0543 半衰期(s ) 256 186 135 104 67 求此反应级数3.[二级反应恒容定时间]4.醋酸和乙醇的反应为二级反应,在间歇反应反应器中,5min 转化率可达50%,问转化率为75%时需增加多少时间?4、【二级恒容非等摩尔加料】溴代异丁烷与乙醇钠在乙醇溶液中发生如下反应: i-C 4H 9Br+C 2H 5Na →Na Br+i-C 4H 9 OC 2H 5(A)(B) (C) (D)溴代异丁烷的初始浓度为C A0=0.050mol/l 乙醇钠的初始浓度为C B0=0.0762mol/l,在368.15K 测得不同时间的乙醇钠的浓度为:t(min) 0 5 10 20 30 50 C B (mol/l) 0.0762 0.0703 0.0655 0.0580 0.0532 0.0451已知反应为二级,试求:(1)反应速率常数;(2)反应一小时后溶液中溴代异丁烷的浓度;(3)溴代异丁烷消耗一半所用的时间。

5. [恒温恒容变压定级数]二甲醚的气相分解反应CH 3OCH 3 → CH 4 +H 2 +CO 在恒温恒容下进行,在504℃获得如下数据:t (s ) 0 390 777 1195 3155 ∞Pt ×103(Pa ) 41.6 54.4 65.1 74.9 103.9 124.1试确定反应速率常数和反应级数6.[恒温恒压变容定常数]气体反应2A→B,经测定该反应为一级,压力保持不变,组分A为80%,惰性物为20%,三分钟后体积减小了20%,求反应速率常数。

化工热力学第二章作业参考答案

化工热力学第二章作业参考答案

1、 针对以下体系写出能量平衡方程式的简化形式:(这是修改后的正确答案)QU QW U U H U H Z g U QQU =∆+=∆=∆+∆=∆+∆=∆+∆=∆=∆)7()6(021)5(021)4(021)3(H )2()1(222 2、实验室有一瓶氢气为60atm ,0.100m 3,由于阀门的原因缓慢漏气。

试问到漏完时:(1)该气体作了多少功?吸收了多少热?(2)该气体在此条件下最大可以作多少功?吸收多少热量?(3)该气体焓的变化为多少?瓶中气体焓的变化为多少?已知室温为20℃,气体可以认为是理想气体。

解:(1)id.g ,T 恒定⇒0=∆U ;J V P P V P V P V P V P V V P dV P W sur V V sur 5112111222122110*5.978)()(21-=-=-=-=-=-=⎰ J W Q 510*978.5=-=(2)等温可逆过程做功最大J P P V P V V nRT PdV W V V 612111210*489.2ln ln 21==-=-=⎰ J W Q 610*489.2=-=(3)id.g, T 恒定⇒0=∆H ,故总气体的焓变为0。

设起初瓶中气体的焓为1H ,则终态总气体的焓仍1H ,终态气瓶中气体的焓为111212111601H H P P H V V H n n ===瓶⇒11126059)1(H H P P H =-=∆瓶 4. 一台透平机每小时消耗水蒸气4540kg 。

水蒸气在4.482MPa 、728K 下以61m/s 的速度进入机内,出口管道比进口管道低3m ,排气速度366m/s 。

透平机产生的轴功为703.2kW ,热损失为1.055×105kJ/h ,乏气中的一小部分经节流阀降压至大气压,节流阀前后的流速变化可以忽略不计。

试求经节流阀后水蒸气的温度及其过热度。

解:取透平机为体系,则能量方程为:s W Q u z g H +=∆+∆+∆2/2其中:Q = -4540/10055.15⨯= - 23.238 kJ·kg -1s W = =⨯-4540/36002.703- 557.604 kJ·kg -1=∆z g - 9.81⨯3 = - 0.0294 kJ·kg -1 2/2u ∆= (3662-612) / 2 = 65.118 kJ·kg -1则:2/2u z g W Q H s ∆-∆-+=∆= - 23.238 - 557.604 + 0.0294 - 65.118 = - 645.930 kJ/kg 采用内插法查表得4.482 MPa, 728 K 时的蒸汽焓为 3334.78 kJ·kg -1。

化工热力学课后答案完整版_朱自强

化工热力学课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为(2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+(E1)其中从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入a, b 表达式得以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

故用RK 方程求得的摩尔体积近似为(3)用PR 方程求摩尔体积将PR 方程稍加变形,可写为()()()RT a V b V b p pV V b pb V b -=+-++- (E2)式中 220.45724c c R T a p α=从附表1查得甲烷的ω=。

将c T 与ω代入上式 用c p 、c T 和α求a 和b ,以RK 方程求得的V 值代入式(E2),同时将a 和b 的值也代入该式的右边,藉此求式(E2)左边的V 值,得563563355353558.314673.152.68012104.053100.10864(1.39010 2.6801210)4.05310[1.39010(1.39010 2.6801210) 2.6801210(1.39010 2.6801210)]1.381102.6801210 1.8217101.3896V ------------⨯=+⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯+⨯+⨯⨯⨯-⨯=⨯+⨯-⨯=33110m mol --⨯⋅ 再按上法迭代一次,V 值仍为3311.389610m mol --⨯⋅,故最后求得甲烷的摩尔体积近似为3311.39010m mol --⨯⋅。

化工热力学通用型第二三章答案

化工热力学通用型第二三章答案

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:RT pV =2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r sr Tp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=sr p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的sr p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即)7.0(00.1log =--=r s r T p ω任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

化工热力学答案(第三版)

化工热力学答案(第三版)

化工热力学课后答案(第三版)陈钟秀编著2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+ ()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴ c r PVZ P RT=654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯ 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每题2分,共20分)
1. 正丁烷的偏心因子ω=0.193,临界压力为p c =3.797MPa ,则在Tr =0.7时的蒸汽压为
( 0.2435 )MPa 。

2. 封闭系统中,温度为25℃的1mol 理想气体从10MPa ,0.3m3等温可逆膨胀到0.1MPa ,
30 m3,则所做的功为(-11.4kJ,RTln (p 2/p 1))。

3. 节流膨胀的Joule-Thomson 效应系数的定义式为(H
J P T ⎥⎦⎤
⎢⎣⎡∂∂=μ) 4. 等熵效率的定义是对膨胀做功过程,(不可逆绝热过程的做功量)与(可逆绝热过程的做功量)之比
5. 温度为T 的恒温热源的热量Q ,其E xQ 的计算式为(E xQ =(1-T 0/T )Q )。

6. 对于理想气体,节流膨胀后温度( 不变 ),作外功的绝热膨胀时,温度(下降)。

7. 液态水常压下从25℃加热至50℃,其等压平均热容为75.31J/mol,则此过程的焓变为
(1882.75)J/mol 。

8. 二元非理想溶液在极小浓度的条件下,其溶质组分遵守(Henry )规则,溶剂组分遵守
( Lewis-Randll )规则。

9. 纯物质的临界等温线在临界点的斜率和曲率均为零,数学上可表示为( 0)/(=∂∂T V p )和( 0)/(22=∂∂T V p )。

10. 对于孤立体系,熵增原理可采用( 0dS ≥ )表达式表示。

二、简答题:(每题5分,共20分)
1.分析改变蒸汽的参数如何改变Rankine 循环的效率。

2.写出稳流体系的熵平衡方程,并指出各项的含义。

答:
0i i j j Q
m S m S S T
δ-++∆=∑∑⎰
产生入

3.写出维里方程中维里系数B 、C 的物理意义,并写出舍项维里方程的混合规则。

答:第二维里系数B 代表两分子间的相互作用,第三维里系数C 代表三分子间
相互作用,B 和C 的数值都仅仅与温度T 有关;舍项维里方程的混合规则为:
∑∑===n i n
j ij
j i M B y y B 11

()
1
0ij
ij ij cij
cij ij B B
p RT B ω+=

6.10422
.0083.0pr
ij T B -
=,
2
.41172.0139.0pr
ij T B -
=,cij pr T T T =,()()5
.01cj ci ij cij T T k T ⋅-=,cij cij cij cij V RT Z p =,()[]3
3
1315.0Cj
ci cij V V V +=,()cj ci cij
Z Z Z
+=5.0,()j i ij ωωω+=5.0
4.写出理想溶液组分的偏摩尔性质(焓、熵、自由焓、体积、内能)与纯物质性质间的关系表达式。

答:
ln ln i i i i i i
i i i i i i
V V U U H H S S R x G G RT x ====-=+
三、苯(1)和环己烷(2)的二元液体混合物的超额自由焓与组成的关系可用如下式表示:
21x x RT
G E
β= β与温度和压力有关,与组成无关,在0.101MPa 时,β与温度的关系为:
T 004.071127.1-=β
计算在40℃、0.101MPa 下,H E
/RT 、 S E
/R 、活度系数与组成的关系。

(15分)
解:1.j
n P T i E i n RT G n ,,ln ⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎣⎡∂⎪⎪⎭⎫ ⎝⎛∂=γ得: 2122
21ln ,ln x x βγβγ==
40℃、0.101Mpa 时,2
12221458.0ln ,458.0ln x x ==γγ
2.由2,ln RT H T E i x
p i -=⎪⎭⎫
⎝⎛∂∂γ

∑⎪⎭⎫
⎝⎛∂∂-=x
p i i E T x RT H ,2
ln γ
21,222,1004.0ln ,004.0ln x T x T x
p x p -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂γγ,故得: 212122
21253.115.313*004.015.313*004.0x x x x x x RT
H E =+= 由RT
G RT H R S E
E E -=得: =R
S E
1.25321x x -045821x x =0.79521x x 四、某朗肯循环以水为工质,运行于14MPa 和0.007MPa 之间,循环最高温度为540℃,求: (1) 水泵消耗的理论功; (2) 汽轮机作出的理论功; (3) 循环的热效率。

3解:(1)Wp=v △P =0.001*(14000-7)=14kJ/kg 对水泵能量衡算:H 4-H 3=Wp H 4=168.79+14=182.79 kJ/kg
Q 1=H 1-H 4=3448-182.79=3265.21 kJ/kg (2)求干度:S 2=S 1=S 3(1-x )+ S 4*x 6.5199=0.5764(1-x )+8.2515x 得:x =0.774
H 2=H 3(1-x )+ H 4*x
=168.79(1-0.774)+2574.8*0.774=2032 kJ/kg 对汽轮机能量衡算:
Ws =H 2-H 1=2032-3448=-1416 kJ/kg (3)1
141614
0.4293265.21
s p
T W W Q η---=
=
=
五、某换热器完全保温,热流体流量为0.042kg/s ,进、出换热器的温度分别为150℃、35℃,等压热容为 4.36kJ/kgK 。

冷流体进、出换热器的温度分别为25℃、110℃,等压热容为4.69kJ/kgK 。

计算冷热流体的有效能的变化、损失功和目的有效能效率。

环境温度为293k ,压力0.101MPa 。

(15分) 解:(1)计算冷流体的流量
0.042 4.36(15035)
0.0528/4.69(11025)p p
c h c c h h
c Q m C T m C T m kg S
=∆=∆⨯⨯-==⨯- (2)求有效能的变化
,02,01,ln 110273
0.0528 4.6911025293ln 25273
2.853/p p
x c c c
c c c
c c c c
E H T S T m C T T m C T kJ S
∆=∆-∆=∆-+=⨯--⨯+()

同理可得热流体的有效能的变化:
, 4.036/x h E kJ S ∆=-
(3) 损失功和目的有效能效率
2,2,001,1,ln
ln
)
2930.004 1.172/p p c c
c
h
l c h c
c T T W T S T m C m C T T kJ S
=∆+=⨯=总=(
,( 2.853
0.707( 4.036
x Ex x E E η∆=
∆获得)==失去)
六、使用R-K 状态方程计算从p 1=0.1013MPa ,t 1=0℃压缩到p 2=20.26MPa ,t 2=200℃时1mol 甲烷的焓变。

已知甲烷的*
18.110.0602(/)p C T J mol K =+∙。

R-K 方程为:(15分)。

1.52
2.51(),/,/,110.42748,0.0864, 4.6,190.6C C
C C C C A h A B
Z a bRT B bp RT h h B h B Z
R T R T a b p MPa T K
p p =
-===-+====
解:设计状态变化为:
△H
P 1,T 1(真实) P 2,T 2(真实)
1R H - 2R H
△H*
P 1,T 1(理想) P 2,T 2(理想) (1)求V1,V2
得到a =3.222(Pam 6K 0.5mol -2),b=2.985*10-5(m 3/mol) B=1.332*10-3,A/B=2.876
得叠代式:3
1 1.332102.876(),11h Z h h h Z
-⨯=-=-+ 叠代得Z1=0.9975,V1=0.0224(m 3/mol)
对于V2,同理得:B=0.1537,A/B=1.261,Z2=1.013,V1=1.97*10-4(m 3/mol)
(2)求1R H ,2R
H
31ln(1)2R H A
Z h RT B
=--+ 得:1R H =-17.58J/mol, 2R H =-999.8 J/mol
2
1
*
**128114.7/7133/T p T R R H C dT J mol
H H H H J mol
∆==∆=∆-+=⎰。

相关文档
最新文档