2021届河南省天一大联考高三阶段性测试数学(文)试题Word版含答案
2021届河南省天一大联考“顶尖计划”高三第一联考数学(文)试题Word版含解析
2021届河南省天一大联考“顶尖计划”高三第一联考数学(文)试题一、单选题1.已知全集{}4,3,2,1,0,1,2,3U =----,集合{}0,1,3M =,{}4,2,0,2N =--,则()UM N =( )A .{}3B .{}0,1,3C .{}4,2,0,2--D .{}1,3【答案】D 【解析】求出UN 继而可求()UMN .【详解】 依题意,得{}3,1,1,3U N =--,故(){}1,3UMN =.故选:D. 【点睛】本题考查了集合的补集,考查了集合的交集运算.2.若在复平面内,复数z 所对应的点为(3,2)-,则(13)z i ⋅-=( ) A .311i -- B .311i -C .311i -+D .311i +【答案】A【解析】由点的坐标写出32z i =-,从而可求出(13)z i ⋅-. 【详解】依题意,得32z i =-,则(13)(32)(13)3926311z i i i i i i ⋅-=-⋅-=---=--. 故选:A. 【点睛】本题考查了复数的坐标互化,考查了复数的乘法.易错点是把2i 的值误当做1进行运算.3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为( )A.B.C.D.【答案】B【解析】根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,∴用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为B中的.56846故选:B.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.4.某公司有3000名员工,将这些员工编号为1,2,3,…,3000,从这些员工中使用系统抽样的方法抽取200人进行“学习强国”的问卷调查,若84号被抽到则下面被抽到的是()A.44号B.294号C.1196号D.2984号【答案】B÷=人.故抽得的号码为以15【解析】使用系统抽样的方法抽取200人则一共分200组,每组有300020015为公差的等差数列.再由84号被抽到,则可知被抽得的号码与84的差为15的整数倍.再逐个判断即可. 【详解】由题得,抽出的号码为以15为公差的等差数列,再由84号被抽到,则可知被抽得的号码与84的差为15的整-==⨯.其他选项均不满足.数倍.又294842101514故选:B【点睛】本题主要考查了系统抽样的性质与运用,属于简单题型.5.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥【答案】C【解析】模拟执行程序框图,即可容易求得结果. 【详解】 运行该程序:第一次,1i =,lg 2S =;第二次,2i =,3lg 2lg lg32S =+=; 第三次,3i =,4lg3lg lg 43S =+=,…;第九十八次,98i =,99lg98lg lg9998S =+=; 第九十九次,99i =,100lg99lg lg100299S =+==, 此时要输出i 的值为99. 此时299S lg =>. 故选:C. 【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.6.已知幂函数()f x x α=的图象过点(3,5),且1a e α⎛⎫= ⎪⎝⎭,3b α=,1log 4c α=,则a ,b ,c 的大小关系为( ) A .c a b << B .a c b <<C .a b c <<D .c b a <<【答案】A【解析】根据题意求得参数α,根据对数的运算性质,以及对数函数的单调性即可判断. 【详解】依题意,得35α=,故3log 5(1,2)α=∈,故3log 5101e a ⎛⎫<=< ⎪⎝⎭,1b =>,3log 51log 04c =<, 则c a b <<. 故选:A. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题. 7.已知非零向量,a b 满足a b λ=,若,a b 夹角的余弦值为1930,且()()23a b a b -⊥+,则实数λ的值为( ) A .49-B .23C .32或49-D .32【答案】D【解析】根据向量垂直则数量积为零,结合a b λ=以及夹角的余弦值,即可求得参数值. 【详解】依题意,得()()230a b a b -⋅+=,即223520a a b b -⋅-=.将a b λ=代入可得,21819120λλ--=, 解得32λ=(49λ=-舍去).故选:D. 【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.8.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .2nn a =C .21nn S =- D .121n n S -=-【答案】C【解析】先利用等比数列的性质得到3a 的值,再根据24,a a 的方程组可得24,a a 的值,从而得到数列的公比,进而得到数列的通项和前n 项和,根据后两个公式可得正确的选项. 【详解】因为{}n a 为等比数列,所以2324a a a =,故3364a =即34a =,由24241016a a a a +=⎧⎨=⎩可得2428a a =⎧⎨=⎩或2482a a =⎧⎨=⎩,因为{}n a 为递增数列,故2428a a =⎧⎨=⎩符合.此时24q =,所以2q或2q =-(舍,因为{}n a 为递增数列).故3313422n n n n a a q ---==⨯=,()1122112n n nS ⨯-==--.故选C. 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S -- 为等比数列(0n S ≠ )且公比为nq .9.函数2|sin |2()61x f x x=-+的图象大致为( )A .B .C .D .【答案】A【解析】用偶函数的图象关于y 轴对称排除C ,用()0f π<排除B ,用()42f π>排除D .故只能选A .【详解】因为22|sin()||sin |()66()x x f x f x --=== ,所以函数()f x 为偶函数,图象关于y 轴对称,故可以排除C ;因为2|sin |()61f ππ==1110<-=-=,故排除B ,因为2|sin |2()()62f πππ=-=66>-4666242=>-=-=由图象知,排除D . 故选:A 【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题. 10.当0,2x π⎡⎤∈⎢⎥⎣⎦时,不等式sin (cos )22m x x x m <+<+恒成立,则实数m 的取值范围为( )A .11,24⎛⎫-- ⎪⎝⎭B.1,⎡⎤-⎢⎥⎣⎦C.12⎛⎫- ⎪ ⎪⎝⎭D.1,⎛- ⎝⎭【答案】D【解析】运用辅助角公式、二倍角公式等对sin (cos )x x x +整理,得sin 23x π⎛⎫+ ⎪⎝⎭.求出sin 23x π⎛⎫+ ⎪⎝⎭在02x π≤≤上的最值,令m 小于最小值,2m + 大于最大值即可求出m 的取值范围.【详解】依题意,得sin (cos )sin 223x x x x π⎛⎫+=+ ⎪⎝⎭.因为02x π≤≤所以42333x πππ≤+≤,所以sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭.因为sin(cos)2m x x x m<<+恒成立,得21mm⎧<⎪⎨⎪+>⎩解得12m-<<-.故实数m的取值范围为1,⎛-⎝⎭.故选:D.【点睛】本题考查了辅助角公式,考查了二倍角公式,考查了三角函数的最值问题,考查了不等式恒成立问题.对于求()siny Aωxφ=+在某区间上的最值问题时,先算出xωϕ+的范围,再结合正弦函数的图像,即可求出.11.已知点()00,M x y()00x y≠是椭圆C:2214xy+=上的一点,1F,2F是椭圆C的左、右焦点,MA 是12F MF∠的平分线.若1F B MA⊥,垂足为B,则点B到坐标原点O的距离d的取值范围为()A.(0,1)B.30,2⎛⎫⎪⎝⎭C.D.(0,2)【答案】C【解析】延长2MF,1F B相交于点N,将所求||OB转化为121||2MF MF-,结合三角形边的关系,可知d的取值范围.【详解】解:延长2MF,1F B相交于点N,连接OB.由题意知MA平分12F MF∠.又因为1F B MA⊥,所以1||MN MF=,所以B为1F N的中点.因为O为12F F的中点所以2211||||||||22OB F N MN MF==-121211||22MF MF F F=-<=所以d的取值范围为.故选:C.【点睛】本题考查了椭圆的几何意义,考查了中位线定理.针对此类问题,根据经验采用临界条件可以起到事半功倍的效果.12.已知球O 的体积为36π,圆柱AA '内接于球O ,其中A ,A '分别是圆柱上、下底面的圆心,则圆柱AA '的表面积的最大值为( ) A .185π B.9(15)π+C .18(51)π-D .9(51)π-【答案】B【解析】先求出球的半径,作出图形,利用三角函数表示出圆柱的表面积,结合函数的性质即可求最值. 【详解】解:设球O 的半径为R ,依题意,得34363R ππ=,解得3R =.根据题意画出图形,如下图所示.设MOA α'∠=,则圆柱底面半径为3sin α, 则圆柱的高为6cos α.因此圆柱AA '的表面积22(3sin )23sin 6cos S παπαα=⋅+⋅⋅9(1cos 22sin 2)παα=-+9[15sin(2)]9(15)παϕπ=+-≤+,其中1tan 2ϕ=.故圆柱AA '的表面积的最大值为9(15)π+. 故选:B.【点睛】本题考查了球的体积,考查了圆柱的表面积,考查了辅助角公式,考查了三角函数的最值.几何问题中,关于最值的问题,一般由两种解题思路:一是找到临界点进行求解;二是结合函数的思想,利用函数的图像、导数、函数的单调性等求函数的最值.二、填空题13.若变量x ,y 满足约束条件21,24,20,y x x y y ≤+⎧⎪+≤⎨⎪+≥⎩则2z x y =-的最大值为________.【答案】7【解析】画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值. 【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线2z x y =-过点(3,2)C -时,z 有最大值,max 7z =. 故答案为:7. 【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题. 14.函数()ln f x x x =的极小值为________. 【答案】1e-【解析】求出()ln 1f x x '=+,令导数为0,解出方程,从而可以看出()(),'f x f x 随x 的变化情况,继而可求极小值. 【详解】解:依题意,得()ln 1f x x '=+,(0,)x ∈+∞.令()0f x '=,解得1x e=. 所以当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<;当1,e ⎛⎫∈+∞ ⎪⎝⎭x 时,()0f x '>.所以当1x e =时,函数()f x 有极小值1e -. 故答案为: 1e-.【点睛】本题考查了极值的求法.求函数极值时,一般先求出函数的定义域,接着求出导数,令导数为0解方程,探究函数、导数随自变量的变化.注意,导数为0的点不一定是极值点.极值点的不仅要满足导数为0,还要满足左右两侧函数单调性相反.15.已知双曲线C :22221x y a b-=(0a >,0b >),直线l :4x a =与双曲线C 的两条渐近线分别交于A ,B 两点.若OAB ∆(点O 为坐标原点)的面积为32,且双曲线C的焦距为C 的离心率为________.【解析】用,a b 表示出OAB 的面积,求得,a b 等量关系,联立焦距的大小,以及222a b c +=,即可容易求得,a b ,则离心率得解. 【详解】联立4,x a b y x a =⎧⎪⎨=⎪⎩解得4y b =.所以OAB ∆的面积14816322S a b ab =⋅⋅==,所以2ab =. 而由双曲线C的焦距为c =225a b +=.联立解得1,2a b =⎧⎨=⎩或2,1,a b =⎧⎨=⎩故双曲线C.. 【点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题. 16.记数列{}n a 的前n 项和为n S ,已知1(1)10n n na n a +-++=,且25a =.若2nn S m >,则实数m 的取值范围为________. 【答案】(2,)+∞【解析】由1(1)10n n na n a +-++=得21(1)(2)10n n n a n a +++-++=,两式相减可证明数列{}n a 为等差数列,继而可求出21n a n =+,令2n n n S b =,通过21132n n n n b b ++--=可知,当2n ≥时,数列{}n b 单调递减,故可求出{}n b 最大值,进而可求m 的取值范围.【详解】解:由1(1)10n n na n a +-++=,可得21(1)(2)10n n n a n a +++-++=. 两式相减,可得2120n n n a a a ++-+=,所以数列{}n a 为等差数列.当1n =时 由1(1)10n n na n a +-++=,得21210a a -+=,又25a =,解得13a =.所以21n a n =+,则2222n n nS n n +=.令2n n n S b =,则21132n n n n b b ++--=. 当2n ≥时,10nnb b ,数列{}n b 单调递减,而132b =,22b =,3158b =故2m >,即实数m 的取值范围为(2,)+∞. 故答案为: (2,)+∞. 【点睛】本题考查了等差数列的定义,考查了等差数列的前n 项和,考查了数列的增减性.已知1,n n a a + 的递推关系时,求通项公式常采用累加法、累乘法、构造新数列,或者令1=+n n 将得到的式子与原式相减.三、解答题17.2019年篮球世界杯在中国举行,中国男篮由于主场作战而备受观众瞩目.为了调查国人对中国男篮能否进入十六强持有的态度,调查人员随机抽取了男性观众与女性观众各100名进行调查,所得情况如下表所示:若在被抽查的200名观众中随机抽取1人,抽到认为中国男篮不能进入十六强的女性观众的概率为14. (1)完善上述表格;(2)是否有99%的把握认为性别与对中国男篮能否进入十六强持有的态度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)表格见解析;(2)没有【解析】(1)由概率可求出认为中国男篮不能进入十六强的女性观众的人数,结合男女各100人,即可求出表中所有数据.(2)代入求出2K 的观测值,进而可判断. 【详解】(1)依题意,得认为中国男篮不能进入十六强的女性观众人数为1200504⨯=. 完善表格如下表所示:(2)本次试验中,2K的观测值20(60504050)200 2.02 6.63510010011090k ⨯-⨯⨯=≈<⨯⨯⨯.所以没有99%的把握认为性别与对中国男篮能否进入十六强持有的态度有关. 【点睛】本题考查了独立性检验,考查了概率.易错点是计算观测值.18.ABC ∆的内角A ,B ,C 的对边分别是a ,b ,c ,已知()22a b c ab -=-. (1)求角C ; (2)若4cos sin 02c A b C π⎛⎫++= ⎪⎝⎭,1a =,求ABC ∆的面积. 【答案】(1)3π(2【解析】(1)利用余弦定理可求cos C ,从而得到C 的值.(2)利用诱导公式和正弦定理化简题设中的边角关系可得4b a =,得到b 值后利用面积公式可求ABC S ∆. 【详解】(1)由()22a b c ab -=-,得222a b c ab +-=.所以由余弦定理,得222cos 122a b c C ab +-==.又因为()0,C π∈,所以3C π=.(2)由4cos sin 02c A b C π⎛⎫++= ⎪⎝⎭,得4sin sin 0c A b C -+=.由正弦定理,得4ca bc =,因为0c ≠,所以4b a =. 又因1a =,所以4b =. 所以ABC ∆的面积113sin 143222S ab C ==⨯⨯⨯=. 【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.19.如图,四棱锥S ABCD -的底面ABCD 是菱形,120ADC =∠︒,平面SAD ⊥平面ABCD ,SAD ∆是等边三角形.(1)求证:AD SB ⊥;(2)若SAD ∆的面积为3C 到平面SAB 的距离.【答案】(1)证明见解析;(2)4155【解析】(1)取AD 的中点O ,连接SO ,BO ,结合等边三角形和菱形可证明SO AD ⊥,BO AD ⊥,从而可证明AD ⊥平面SOB ,进而可证AD SB ⊥.(2)由SAD ∆的面积为43SAD ∆的边长为4,由平面SAD ⊥平面ABCD 可知,SO ⊥平面ABCD ,则分别求出,ABC SAB ∆∆的面积以及SO 的长,利用S ABC C SAB V V --=可求出点C 到平面SAB 的距离. 【详解】(1)证明:取AD 的中点O ,连接SO ,BO ,BD . 因为SAD ∆是等边三角形,O 是AD 的中点,所以SO AD ⊥.因为四边形ABCD 是菱形,120ADC =∠︒,所以ABD ∆是等边三角形,所以BO AD ⊥. 因为SO BO O ⋂=,且SO ⊂平面SOB ,BO ⊂平面SOB ,所以AD ⊥平面SOB . 又因SB ⊂平面SOB ,所以AD SB ⊥.(2)解:设AD a =2343=4a =. 因为平面SAD ⊥平面ABCD ,SO AD ⊥,所以SO ⊥平面ABCD . 记点C 到平面SAB 的距离为h ,则1133S ABC C SAB ABC SAB V V S SO S h --∆∆=⇔⋅⋅=⋅⋅. 易知3SO =3OB =在Rt SOB ∆中,由23OS OB ==,得2226SB SO OB +=SAB ∆边SB 22166102SB SA ⎛⎫-=-= ⎪⎝⎭所以126102152SAB S ∆=⨯=而13444322∆=⨯⨯⨯=ABC S , 所以11432321533h ⨯=⨯.解得4155h =.即点C 到平面SAB 的距离为155. 【点睛】本题考查了线线垂直的证明,考查了棱锥体积的求解.证明线线垂直,可利用矩形的临边垂直、等腰三角形三线合一、勾股定理证明,也可先证明线面垂直,进而可证线线垂直.在求点到平面的距离时,常用的思路有两个:一是建立空间直角坐标系,结合空间向量进行求解;二是结合几何体的体积进行求. 20.已知函数21()ln 2f x mx x ⎛⎫=+⎪⎝⎭. (Ⅰ)若1m =,求曲线()y f x =在(1,(1))f 处的切线方程;(Ⅱ)当1m 时,要使()ln f x x x >恒成立,求实数m 的取值范围.【答案】(Ⅰ)322y x =-(Ⅱ)⎤⎥⎦【解析】(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数()y f x xlnx =-,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围. 【详解】(Ⅰ)当1m =时,21()ln 2f x x x ⎛⎫=+ ⎪⎝⎭,则1()2ln 2f x x x x ⎛⎫'=++ ⎪⎝⎭. 所以(1)2f '=. 又1(1)2f =,故所求切线方程为12(1)2y x -=-,即322y x =-.(Ⅱ)依题意,得21ln ln 2mx x x x ⎛⎫+> ⎪⎝⎭, 即21ln ln 02mx x x x ⎛⎫+-> ⎪⎝⎭恒成立. 令21()ln ln 2g x mx x x x ⎛⎫=+- ⎪⎝⎭, 则()(21)(ln 1)g x mx x '=-+. ①当0m ≤时,因为1(1)02g m =≤,不合题意. ②当01m <≤时,令()0g x '=,得112x m =,21e x =,显然112em >. 令()0g x '>,得10x e <<或12x m>;令()0g x '<,得112x e m <<.所以函数()g x 的单调递增区间是10,e ⎛⎫ ⎪⎝⎭,1,2m ⎛⎫+∞⎪⎝⎭,单调递减区间是11,2e m ⎛⎫⎪⎝⎭.当10,e ⎛⎫∈ ⎪⎝⎭x 时,20mx x -<,ln 0x <,所以21()ln ln 2g x mx x x x ⎛⎫=+- ⎪⎝⎭()221ln 02mx x x mx =-+>, 只需1111ln 02428g m m m m ⎛⎫=-+>⎪⎝⎭,所以m >, 所以实数m的取值范围为⎤⎥⎦. 【点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.21.已知抛物线C :22y px =(0p >).(1)若抛物线C 的焦点到准线的距离为4,点A ,B 在抛物线C 上,线段AB 的中点为(3,2)D ,求直线AB 的方程;(2)若圆C '以原点O 为圆心,1为半径,直线l 与C ,C '分别相切,切点分别为E ,F ,求||EF 的最小值.【答案】(1)240x y --=;(2)【解析】(1)由距离为4可求出4p =进而可求出抛物线C 的方程.设()11,A x y ,()22,B x y ,代入到抛物线方程中,两式相减,结合中点坐标,即可求出AB 的斜率,结合直线的点斜式,可求出直线的方程.(2)设直线l 的方程为x my t =+(0m ≠),与抛物线、圆的方程联立,结合相切,可求22pmt =-,221m t +=.设()00,E x y ,通过切点既在直线上又在抛物线上,可求出0y pm =,2002pmx my t =+=,从而2222220024||||||14EF OE OF x y m m =-=+-=++,结合基本不等式,可求出EF 有最小值. 【详解】解:(1)由抛物线C 的焦点到准线的距离为4,得4p =.所以抛物线C 的方程为28y x =.设()11,A x y ,()22,B x y ,则2112228,8.y x y x ⎧=⎨=⎩,所以()2212128y y x x -=-,即()()()1212128y y y y x x -+=-.因为线段AB 的中点D 的坐标为(3,2),所以124y y +=且12x x ≠.所以12121282y y x x y y -==-+.故直线AB 的方程为22(3)y x -=-,即直线AB 的方程为240x y --= 经检验240x y --=符合题意.(2)设直线l 的方程为x my t =+(0m ≠).代入22y px =,得2220y pmy pt --=.()由直线l 与抛物线相切可知,22480p m pt ∆=+=,故22pm t =-.①又直线l 与圆221x y +=1=,即221m t +=.②联立①②,得24214p m m =+,故()22441m p m+=. 设()00,E x y ,解()式可得,0y pm =,从而2002pmx my t =+=.故222220||||||1EF OE OF x y =-=+-24222241484p m p m m m=+-=++≥,当且仅当||m =EF有最小值,为【点睛】本题考查了抛物线的定义,考查了中点弦问题,考查了直线与圆锥曲线相切,考查了基本不等式.本题的难点在于计算量较大.对于中点弦问题,一般设出弦端点的坐标,带回方程,两式相减,通过整理,可得到弦的斜率和中点坐标的关系.22.在平面直角坐标系xOy 中,曲线C 的参数方程为126126x m my m m ⎧=+⎪⎪⎨⎪=-⎪⎩(m 为参数),以坐标点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ+3π)=1. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)已知点M (2,0),若直线l 与曲线C 相交于P 、Q 两点,求11||||MP MQ +的值.【答案】(1)l :20x =,C 方程为 2233144x y -=;(2)11|||||MP M Q +【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用一元二次方程根和系数关系式的应用求出结果. 【详解】(1)曲线C 的参数方程为126126x m my m m ⎧=+⎪⎪⎨⎪=-⎪⎩(m 为参数),两式相加得到4m x y =+,进一步转换为2233144x y -=. 直线l 的极坐标方程为ρcos (θ+3π)=1,则(cos cos sin sin )133ππρθθ-=转换为直角坐标方程为20x =.(2)将直线的方程转换为参数方程为2212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入2233144x y -=得到23160t ++=(t 1和t 2为P 、Q 对应的参数),所以12t t +=-12163t t ⋅=,所以11|||||MP M Q +=1212||||||||t t MP MQ MP MQ t t ++==. 【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 23.已知x ,y ,z 均为正数.(1)若xy <1,证明:|x +z |⋅|y +z |>4xyz ; (2)若xyz x y z ++=13,求2xy ⋅2yz ⋅2xz 的最小值.【答案】(1)证明见解析;(2)最小值为8【解析】(1)利用基本不等式可得|x |||4z y z z +⋅+≥=再根据0<xy <1时, 即可证明|x+z|⋅|y+z|>4xyz.(2)由xyzx y z++=13, 得1113yz xz xy++=,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥4当且仅当x=y=z时取等号.又∵0<xy<1,∴44xyz>,∴|x+z|⋅|y+z|>4xyz;(2)∵xyzx y z++=13,即1113yz xz xy++=.∵1122 yz yzyz yz+⋅=,1122xz xzxz xz+⋅=,1122xy xyxy xy+⋅=,当且仅当x=y=z=1时取等号,∴1116 xy yz xzxy yz xz+++++,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥8,∴2xy⋅2yz⋅2xz的最小值为8.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.。
2021届河南省天一大联考高三阶段性测试(六) 数学(文)Word版
2021届河南省天一大联考高三阶段性测试(六)数学(文)Word版天一大联考 2021-2021学年高中毕业班阶段性测试(六)数学(文科)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集 U= {x?Z|0<x<6},B={3,4,5},则CUA? A. {1,2,3} B. {1,2} C.{0,1,2} D. {0,1,2,3} 2.设复数z?(3?2i)(2?5i),若z的虚部为A.-11B.11C.-16D.163.某公司将20名员工工作五年以来的迟到次数统计后得到如下的茎叶图,则从中任取1名员工,迟到次数在[20,30)的概率为 A.7331B.C.D. 2021524.记等差数列{an}的前n项和为Sn,若a6?16,S5?35= 272,则{an}的公差为 A. -3 B.-2C. 3D. 25.《九章算术》卷第七――盈不足中有如下问题;“今有垣高九尺.瓜生其上,蔓日长七寸.瓤生其下,蔓日长一尺.问几何日相逢.”翻译为“今有墙高9尺。
瓜生在墙的上方,瓜蔓每天向下长7寸.葫芦生在墙的下方,葫芦蔓每天向上长1尺。
问需要多少日两蔓相遇。
”其中1尺=10寸。
为了解决这一问题,设计程序框图如右所示,则输出的A的值为A. 5B. 6C.7D.8x2y2??1的左、右焦点分别为,过F1的直线与双曲线C交于M,N两点,其中M在左支6.设双曲线C:8m上,N在右支上。
若?F2MN??F2NM乙,则|MN|? A. 8B. 4C. 82D. 427.为了得到函数g(x)?2cos(x?A.横坐标压缩为原来的?3)的图象,只需将函数f(x)?3sin4x?cos4x的图象1?,再向右平移个单位 421B.横坐标压缩为原来的,再向左平移?个单位4?C.横坐标拉伸为原来的4倍,再向右平移个单位2D.横坐标拉伸为原来的4倍,再向左平移?个单位8.如图,小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A. 68 B.72C. 84D. 1069.若函数f(x)?sinx?ln(ax?1?4x2)的图象关于y轴对称,则实函数a的值为 A.±2B. ±4C.2D.410.已知抛物线C: y?2px (p >0)的焦点为F,准线为l,l与x轴的交点为P,点A在抛物线C上,过点A作AA'�Al,垂足为A',若四边形的面积为14,且cos?FAA'?程为2A. y?x B. y?2x C. y?4x D. y?8x22223,则抛物线C的方511.如图所示,体积为8的正方体中ABCD-A1B1C1D1,分别过点A1,C1,B作A1M1C1N垂直于平面ACD,垂足分别为M,N,P,则六边形D1MAPCN的面积为 A. 122B. 12C. 46D. 4312.已知函数f(x)?e,若函数g(x)?f(x)?a无零点,则实数a的取值范围为 lnxxee2eA. (?,0] B. (?,0]22C. (?2e,0] D. (?e,0]二、填空题:本题共4小题,每小题5分,共20分。
2021年5月28日河南省●天一大联考2021届高三毕业班高考考前模拟(河南版)数学(文)试题及答案
绝密★启用前河南省●天一大联考2021届高三毕业班下学期高考考前模拟卷(河南版)数学(文)试题考试时间:2021年5月28日考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|2x 2-13x>0},B ={y|y>2},则(∁R A)∩B = A.(2,132) B.(0,2) C.[0,2] D.(2,132]2.在复平面内,复数z 所对应的向量OZ 如图所示,则35z i =-A.1213434i -+B.1213434i --C.9193434i -+D.9193434i -- 3.“王莽方斗”铸造于王莽始建国元年(公元9年),有短柄,上下边缘刻有篆书铭文,外壁漆画黍、麦、豆、禾和麻纹,如图1所示。
因其少见,故为研究西汉量器的重要物证图2是“王莽方斗”模型的三视图,则该模型的容积为A.213B.162C.178D.1934.若双曲线C 1与双曲线C 2:22146x y -=有共同的渐近线,且C 过点(2,3),则双曲线C 1的方程为 A.22123y x -= B.22123x y -= C.22123x y -= D.22132y x -= 5.记等差数列{a n }的前n 项和为S n ,且a 3=5,42S S =4,则a 10= A.9 B.11 C.19 D.21 6.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象。
在政府部门的牵头下,甲工厂率先转业生产口置。
2021届河南省(天一)大联考高三上学期期末考试数学(文)试题(解析版)
2021届河南省(天一)大联考高三上学期期末考试数学(文)试题一、单选题1.已知集合{}250,A xx x B =-<=Z ∣,则A B 中元素的个数为( )A .3B .4C .5D .6【答案】B【分析】化简集合A ,根据交集运算即可求解. 【详解】{}250(0,5),Z A x x x B =-<==∣,{1,2,3,4}A B ∴=∴A B 中元素的个数为4个,故选:B2.若23z z i +=-,则||z =( )A .1BCD .2【答案】B【分析】设(,)z a bi a b R =+∈,代入已知等式求得,a b 后再由得数的模的定义计算. 【详解】设(,)z a bi a b R =+∈,则22()33z z a bi a bi a bi i +=++-=-=-,∴以331a b =⎧⎨-=-⎩,解得11a b =⎧⎨=⎩,∴==z .故选:B .3.在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,若袋中有2个红球,且从袋中任取一球,取到红球的概率为15,则袋中球的总个数为( ) A .5 B .8C .10D .12【答案】C【分析】设袋中球的总个数为n ,根据已知条件可得出关于n 的等式,由此可求得n 的值.【详解】设袋中球的总个数为n ,由题意可得215n =,解得10n =. 故选:C.4.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45︒,则该正四棱锥的一个侧面与底面的面积之比为()A.3B.2C.3D.3【答案】D【分析】由正四棱锥侧棱,高,侧棱在底面上的射影构成的直角三角形求出侧棱与底面边长的关系,从而得面积比值.【详解】塔顶是正四棱锥P ABCD-,如图,PO是正四棱锥的高,设底面边长为a,底面积为21S a=,22AO a=,45PAO∠=︒,∴222PA a a=⨯=,PAB△是正三角形,面积为223S a=,所以213SS=.故选:D.5.执行如图所示的程序框图,则输出的结果是()A .15B .29C .72D .185【答案】C【分析】根据程序框图依次执行循环即可.【详解】第一次执行循环,2113,3112a b =⨯==⨯-=+,不满足3i ≥,则011i =+=,第二次执行循环,2317,3215a b =⨯==⨯-=+,不满足3i ≥,则112i =+=, 第三次执行循环,27115,35114a b =⨯==⨯-=+,不满足3i ≥,则213i =+=, 第四次执行循环,215131,314141a b =⨯==⨯-=+,满足3i ≥,输出314172a b +=+=.故选:C.6.已知110a b >>,则下列不等式①1b a >;②a b >;③33a b >;④1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.其中正确的是( ) A .①②B .③④C .②③D .①④【答案】D【分析】由已知条件可得出0b a >>,利用不等式的基本性质可判断①②的正误,利用函数的单调性可判断③④的正误.【详解】110a b >>,则0a >,0b >,0ab ab a b∴>>,即0b a >>. 对于①,由不等式的性质可得1b aa a>=,①正确;对于②,0b a >>,则b a >,②错误;对于③,由于函数3y x =在R 上为增函数,所以,33b a >,③错误;对于④,由于函数12xy ⎛⎫= ⎪⎝⎭在R 上为减函数,所以,1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,④正确. 故选:D.7.已知函数()2sin()(0)f x x ωϕω=+>,点,A B 是曲线()y f x =相邻的两个对称中心,点C 是()f x 的一个最值点,若ABC 的面积为1,则ω=( ) A .1 B .2πC .2D .π【答案】D【分析】利用正弦函数性质及ABC 的面积,可得周期,然后求得ω. 【详解】由题意112122ABC C S AB y AB AB =⨯=⨯==△,所以12T=,即周期为2T =,所以22πωπ==. 故选:D .8.已知函数2()-=+-x x f x e e x ,则不等式(2)(2)f m f m >-的解集为( ) A .2(,2),3⎛⎫-∞-⋃+∞⎪⎝⎭B .2,(2,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,23⎛⎫-⎪⎝⎭【答案】A【分析】先判断函数的奇偶性与单调性,然后结合奇偶性和单调性解不等式. 【详解】2()xx f x ee x --=+-()f x =,()f x 是偶函数,()2-=--'x x f x e e x ,设()2x x g x e e x -=--,则()220x x g x e e -'=+-≥=,所以()g x 是增函数,0x ≥时,()(0)0g x g ≥=,即0x ≥时,()0f x '≥, 所以在[0,)+∞上,()f x 是增函数.又()f x 是偶函数,所以不等式(2)(2)f m f m >-化为(2)(2)f m f m >-,所以22m m >-,解得2m <-或23m >.故选:A .【点睛】关键点点睛:本题考查利用函数的奇偶性与单调性解不等式.在确定单调性需利用导数的知识,为了确定()'f x 的正负,还需进行二次求导.9.在ABC 中,内角,,A B C 的对边分别为,,a b c ,若,,A B C 的大小成等差数列,且7,13b a c =+=,则ABC 的面积为( )A .B .C .D .【答案】C【分析】由等差数列得3B π=,再由余弦定理结合已知求得ac ,从而可得三角形面积.【详解】∵,,A B C 等差数列,又A B C π++=,∴3B π=,所以2222222cos ()3b a c ac B a c ac a c ac =+-=+-=+-,即227133ac =-,40ac =,∴11sin 40sin 223ABC S ac B π==⨯⨯=△ 故选:C .10.已知球O 的半径为5,球面上有,,A B C 三点,满足AB AC BC ===,则三棱锥O ABC -的体积为( )A .B .C .D .【答案】A【分析】利用正弦定理求出ABC 的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.【详解】设ABC 的外接圆的圆心为D ,半径为r ,在ABC 中,cos4ABC ∠==,sin 4ABC ∴∠=,由正弦定理可得28sin ACr ABC==∠,即4r =,则22543OD =-=,1111421427377332O ABC ABCV SOD -∴=⨯⨯=⨯⨯⨯⨯⨯=.故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.11.已知定义在R 上的奇函数()f x 满足(3)(1)f x f x +=+,当01x <<时,()2-=x f x ,则21log 257f ⎛⎫= ⎪⎝⎭( )A .8-B .1256-C .256257D .256257-【答案】D【分析】由周期性和奇偶性进行计算.【详解】∵(3)(1)f x f x +=+,∴()f x 是周期函数,周期为2T =, 又()f x 是奇函数,221log log 257(9,8)257=-∈--, ∴2257log 2562222211256256257256log log 8log log log 2257257257257256257f f f ff-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==--=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:D .12.已知点A 在直线360x y +-=上运动,点B 在直线380x y -+=上运动,以线段AB 为直径的圆C 与x 轴相切,则圆C 面积的最小值为( )A .4π B .32π C .94π D .52π【答案】C【分析】已知两直线垂直,设其交点为M ,则M 在以AB 为直径的圆上,过M 作x 轴垂线MD ,D 为垂足,D 为切点时圆心半径最小,此时MD 即为圆直径.由此易得面积最小值.【详解】设已知两直线交点为M ,由于两直线的斜率分别为3-和13,因此它们垂直,则以AB 为直径的圆过点M ,由360380x y x y +-=⎧⎨-+=⎩,解得13x y =⎧⎨=⎩,即(1,3)M , 过M 作x 轴垂线MD ,D 为垂足,D 为圆与x 轴切点时圆半径最小,此时MD 即为圆直径.所以圆半径为322MD r ==,面积为23924S ππ⎛⎫=⨯= ⎪⎝⎭. 故选:C .二、填空题13.平面向量(2,2),(1,3)a b ==-,若()()a b a b λ-⊥+,则λ=_____________.【答案】32【分析】首先分别求向量a b -和a b λ+的坐标,再利用向量数量积的坐标表示求参数λ的值.【详解】()2,2a =,()1,3b =-,()3,1a b ∴-=-,()21,23a b λλλ+=-+,()()a b a b λ-⊥+,()()321230λλ∴⨯--+=,解得:32λ=. 故答案为:3214.若实数x 、y 满足约束条件23023030x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则x y -的取值范围是_____________.【答案】[]1,1-【分析】作出不等式组所表示的可行域,平移直线z x y =-,找到使得直线z x y =-在x 轴上的截距最大和最小时对应的最优解,求出目标函数z x y =-的最大值和最小值,由此可得出结果.【详解】令z x y =-,作出不等式组23023030x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩所表示的可行域如下图所示:联立23030x y x y -+=⎧⎨+-=⎩,解得12x y =⎧⎨=⎩,即点()1,2A ;联立23030x y x y --=⎧⎨+-=⎩,解得21x y =⎧⎨=⎩,即点()2,1C .平移直线z x y =-,当直线z x y =-经过可行域的顶点A 时,该直线在x 轴上的截距最大,此时z 取最小值,即min 121z =-=-;当直线z x y =-经过可行域的顶点C 时,该直线在x 轴上的截距最小,此时z 取最大值,即max 211z =-=.综上所述,x y -的取值范围是[]1,1-. 故答案为:[]1,1-.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的值域,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解); (3)将最优解坐标代入目标函数求出最值.15.若函数()1xf x e a =--有两个零点,则实数a 的取值范围是___________. 【答案】(1,)+∞【分析】由题可得10xe a --=有两个解,即1x e a =+或1x e a =-都有解,即可求出. 【详解】函数()1xf x e a =--有两个零点,10x e a -∴-=有两个解,则1x e a =+或1x e a =-都有解,1010a a +>⎧∴⎨->⎩,解得1a >,故a 的取值范围是()1,+∞. 故答案为:()1,+∞.【点睛】本题考查根据函数零点求参数范围,解题的关键是得出1x e a =+或1x e a =-都有解.16.设双曲线22221(0,0)x y a b a b-=>>的左焦点是F ,左、右顶点分别是,A B ,过F 且与x 轴垂直的直线与双曲线交于,P Q 两点,若AP BQ ⊥,则双曲线的离心率为______________.【分析】求出,P Q 坐标,由AP BQ ⊥可得1AP BQ k k ⋅=-,可得4224320c a c a -+=,即42320e e -+=,即可求出.【详解】PQ x ⊥轴,将x c =-代入双曲线可得2by a=±,不妨令22,,b b P c Q c a a ---⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,()(),0,,0A a B a -AP BQ ⊥,1AP BQk k ∴⋅=-,即221b b a a c a c a-⋅=--+--, 即4224b a c a =-,即4224320c a c a -+=,42320e e ∴-+=,解得21e =(舍去)或22e =,e ∴=..三、解答题17.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =;(Ⅱ)22n nT n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式; (Ⅱ)用裂项相消法求和n T . 【详解】解:(Ⅰ)因为n nS a 和2n a 的等差中项为1, 所以22n n nS a a +=,即22n n S a =-,当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=. 在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n nn a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-=⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 18.某企业招聘,一共有200名应聘者参加笔试他们的笔试成绩都在[40,100]内,按照[40,50),[50,60),,[90,100]分组,得到如下频率分布直方图:(Ⅰ)求图中a 的值;(Ⅱ)求全体应聘者笔试成绩的平均数;(每组数据以区间中点值为代表)(Ⅲ)该企业根据笔试成绩从高到低进行录取,若计划录取150人,估计应该把录取的分数线定为多少.【答案】(Ⅰ)0.020a =;(Ⅱ)74.5;(Ⅲ)65分.【分析】(1)根据频率和为1,即小矩形面积和为1,求a ;(Ⅱ)利用每组数据中点值乘以本组的频率和,计算平均数;(Ⅲ)首先计算录取比例,根据录取比例求分数线. 【详解】(Ⅰ)由题意(0.0050.0100.0300.015)101a a +++++⨯=, 解得0.020a =.(Ⅱ)这些应聘者笔试成绩的平均数为450.05550.1650.2750.3850.2950.1574.5⨯+⨯+⨯+⨯+⨯+⨯=.(Ⅲ)根据题意,录取的比例为0.75,设分数线定为x ,根据频率分布直方图可知[60,70)x ∈, 且(70)0.020.30.20.150.75x -⨯+++=, 解得65x =.故估计应该把录取的分数线定为65分.19.如图,直四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,133,5,cos ,,5AD AB BAD BD DD E ==∠==是1CC 的中点.(Ⅰ)求证:平面DBE ⊥平面1ADD ; (Ⅱ)求点1C 到平面BDE 的距离. 【答案】(Ⅰ)证明见解析;(Ⅱ)1313. 【分析】(Ⅰ)由余弦定理求出BD ,可得AD BD ⊥,再由1DD BD ⊥可得BD ⊥平面1ADD ,即得证;(Ⅱ)在平面1BCC 内作1C F BE ⊥,可得1C F ⊥平面BDE ,则1C F 的长就是点1C 到平面BDE 的距离,求出即可.【详解】解析:(Ⅰ)由题意可得2222cos 16BD AD AB AB AD BAD =+-⨯∠=, 所以222AD BD AB +=,因此AD BD ⊥,在直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,所以1DD BD ⊥, 又因为1ADDD D =,所以BD ⊥平面1ADD ,因为BD ⊂平面DBE ,所以平面DBE ⊥平面1ADD .(Ⅱ)如图,在平面1BCC 内作1C F BE ⊥,垂足为F . 由(Ⅰ)知BD ⊥平面1ADD ,因为平面1//ADD 平面1BCC , 所以BD ⊥平面1BCC ,所以1BD C F ⊥, 又因为BD BE B ⋂=,所以1C F ⊥平面BDE .所以线段1C F 的长就是点1C 到平面BDE 的距离.因为114,3CC DD BD BC ====,所以12,13CE C E BE ==.在平面1BCC 内,可知1BCE C FE ∽, 所以1113C FBC C E BE ==,得161313C F =, 所以点1C 到平面BDE 的距离为61313.【点睛】本题考查面面垂直的证明,考查点面距离的求解,解题的关键是在平面1BCC 内作1C F BE ⊥,判断出线段1C F 的长就是点1C 到平面BDE 的距离. 20.已知椭圆1C 6,一个焦点坐标为(0,2),曲线2C 上任一点到点9,04⎛⎫⎪⎝⎭和到直线94x =-的距离相等.(Ⅰ)求椭圆1C 和曲线2C 的标准方程;(Ⅱ)点P 为1C 和2C 的一个交点,过P 作直线l 交2C 于点Q ,交1C 于点R ,且,,Q R P 互不重合,若PQ RP =,求直线l 与x 轴的交点坐标.【答案】(Ⅰ)221412x y +=;29y x =;(Ⅱ)(2,0)-. 【分析】(Ⅰ)根据离心率和焦点求出,a b 可得椭圆方程,可判断曲线2C 为抛物线,即可得出方程;(Ⅱ)联立椭圆与抛物线求出点P 坐标,可得直线l 斜率存在,设:(1)3l y k x =-+,联立直线与抛物线可得93Q k y k -=,联立直线与椭圆可得229363R k k y k--=+,由PQ RP =可得32Q Ry y +=,即可解出k ,得出所求.【详解】(Ⅰ)设22122:1(0)x y C a b b a+=>>,==2212,4a b ==, 所以1C 的标准方程为221412x y +=,曲线2C 是以9,04⎛⎫⎪⎝⎭为焦点,94x =-为准线的抛物线,故2C 的标准方程为29y x =.(Ⅱ)联立2223129x y y x⎧+=⎨=⎩,解得13x y =⎧⎨=±⎩,不妨取(1,3)P ,若直线l 的斜率不存在,Q 和R 重合,不符合条件. 故可设直线:(1)3l y k x =-+,由题意可知0k ≠.联立239y kx k y x =+-⎧⎨=⎩,可得93Q ky k -=.联立223312y kx k x y =+-⎧⎨+=⎩,可得229363R k k y k --=+. 因为PQ RP =,所以P 是QR 的中点,所以32Q Ry y +=,即229393663k k kk k ---+=+.解得1k =.所以直线l 的方程为2y x =+,其与x 轴的交点坐标为(2,0)-.【点睛】本题考查椭圆和抛物线中的直线方程的求解,解题的关键是联立直线与曲线求出,Q R 坐标,利用P 是QR 的中点求解. 21.已知函数()ln 1ln f x x x x x =+--.(Ⅰ)设函数()y f x =在1x =和x e =处的切线交直线1y =于,M N 两点,求||MN ; (Ⅱ)设()0f x 为函数()y f x =的最小值,求证:()0102f x -<<.【答案】(Ⅰ)2||1e MN e =-;(Ⅱ)证明见解析.【分析】(Ⅰ)求出导函数,得切线方程,然后求得交点,M N 坐标后可得线段长MN ;(Ⅱ)由零点存在定理得()'f x 存在一个零点0(1,2)x ∈,并求出最小值0()f x ,利用0()0f x '=化简0()f x 后根据0(1,2)x ∈可证上得结论.【详解】解:(Ⅰ)函数()f x 的导函数为11()1ln 1ln f x x x x x'=+--=-. 所以1(1)1,()1f f e e''=-=-.又因为(1)0,()0f f e ==, 因此()y f x =在1x =和x e =处的切线方程分别为1y x =-+和1()e y x e e-=-. 令1y =,可得M 和N 的坐标分别为(0,1)和2,11e e ⎛⎫ ⎪-⎝⎭,故2||1e MN e =-.(Ⅱ)因为1()ln f x x x '=-在(0,)+∞上单调递增,而1(1)10,(2)ln 202f f ''=-<=->,所以必然存在0(1,2)x ∈,满足()00f x '=,且当()00,x x ∈)时()0f x '<,当()0,x x ∈+∞时()0f x '>. 即()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,当0x x =时,()f x 取得最小值()00000ln 1ln f x x x x x =+--. 由()00f x '=可得001ln x x =,所以()00012f x x x ⎛⎫=-+ ⎪⎝⎭. 当0(1,2)x ∈时,00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()0102f x -<<. 【点睛】关键点点睛:本题考查导数的几何意义,考查用导数求函数的最值.求最值时在极值点0x 不能直接求出时,对极值点(最值点)0x 进行定性分析:确定其取值范围,利用注意0()0f x '=得出0x 满足的性质,代入0()f x 化简表达式后再求解.22.在平面直角坐标系xOy 中,直线1l 的参数方程为435335x t y t⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),直线2l的参数方程为33x y s ⎧=--⎪⎪⎨⎪=+⎪⎩(s 为参数).(1)设1l 与2l 的夹角为α,求tan α;(2)设1l 与x 轴的交点为A ,2l 与x 轴的交点为B ,以A 为圆心,AB 为半径作圆,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆A 的极坐标方程. 【答案】(1)913;(2)22cos 8ρρθ-=. 【分析】(1)设直线1l 和2l 的倾斜角分别为β和γ,求出tan β、tan γ的值,利用两角差的正切公式可求得tan α的值;(2)求出点A 、B 的坐标,可求得AB ,进而可求得圆A 的方程,再利用直角坐标方程与极坐标方程之间的转换关系可求得圆A 的极坐标方程. 【详解】(1)设直线1l 和2l 的倾斜角分别为β和γ, 由参数方程知3tan 4β=-,tan 3γ=-,所以,β和γ均为钝角,且βγ>, 则()tan tan 9tan tan 1tan tan 13βγαβγβγ-=-==+;(2)令3305t +=,解得5t =-,所以,4315t --=,所以1,0A ,令3010s +=,解得s =,所以,3210s --=-,所以()2,0B -,123AB ∴=+=,所以圆A 的直角坐标方程为()2219x y -+=,即2228x y x +-=,所以圆A 的极坐标方程为22cos 8ρρθ-=. 23.已知函数()|1||1|f x x ax =-++. (Ⅰ)当2a =时,解不等式()5f x ;(Ⅱ)当1a =时,若存在实数x ,使得21()m f x ->成立,求实数m 的取值范围.【答案】(Ⅰ)5533xx ⎧⎫-⎨⎬⎩⎭∣;(Ⅱ)3,2⎛⎫+∞ ⎪⎝⎭. 【分析】(Ⅰ)由绝对值定义去掉绝对值符号化为分段函数形式3,1,1()2,1213,,2x x f x x x x x ⎧⎪≥⎪⎪=+-<<⎨⎪⎪-≤-⎪⎩,然后再分段求解即可.(Ⅱ)若存在x 使不等式21()m f x ->恒成立,即21m -大于等于()f x 的最小值,由绝对值的三角形不等式可得()f x 的最小值为2,从而可得答案.【详解】解:(Ⅰ)当2a =时,3,1,1()1212,1,213,,2x x f x x x x x x x ⎧⎪≥⎪⎪=-++=+-<<⎨⎪⎪-≤-⎪⎩当1≥x 时,由35x ≤得513x ≤≤; 当112x -<<时,由25x +≤得112x -<<;当12x ≤-时,由35x -≤得5132x -≤≤-.综上所述,不等式()5f x ≤的解集为5533xx ⎧⎫-≤≤⎨⎬⎩⎭∣. (Ⅱ)当1a =时,()|1||1||11|2f x x x x x =-++≥++-=, 当且仅当11x -≤≤时,等号成立,即()f x 的最小值为2. 因为存在实数x ,使得21()m f x ->成立,所以212m ->. 解得32m >,因此m 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭. 【点睛】关键点睛:本题考查解绝对值不等式和含绝对值不等式有解问题,解答本题的关键是根据题意将问题转化为21m -大于等于()f x 的最小值,由()|1||1||11|2f x x x x x =-++≥++-=得出最小值,属于中档题.。
河南省天一大联考2021届高三上学期阶段性测试(三)数学(文) (含答案)
绝密★启用前天一大联考2020-2021学年高中毕业班阶段性测试(三)文科数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡.上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x2-5x+4<0},B={x|-1<x<3},则A∩B=A.{x|1<x<3}B.{x|-1<x<4}C.{x|-1<x<1}D.{x|3<x<4}2.已知zi=3+i5,则z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某超市今年1月至10月各月的收入、支出(单位:万元)情况的统计如图所示,下列说法中错误的是A.收入和支出最低的都是4月B.利润(收入-支出)最高为40万元C.前5个月的平均支出为50万元D.收入频数最高的是70万元4.三国时期的吴国数学家赵爽根据一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,他所绘制的勾股圆方图被后世称为“赵爽弦图”。
如图所示的图形就是根据赵爽弦图绘制而成的,图中的四边形都是正方形,三角形都是相似的直角三角形,且两条直角边长之比均为2。
现从整个图形内随机取一点,则该点取自小正方形(阴影部分)内的概率为A.19 B.125 C.116 D.1365.已知函数f(x)=2sin(ωx +φ)的部分图象如图,则其解析式可以是A.f(x)=2sin(2x -6π) B.f(x)=2sin(-2x +56π)C.f(x)=2sin(x -3π) D.f(x)=2sin(-x +23π)6.已知各项均为正数的等比数列{a n }满足a 1a 3=14,a 2a 4=1,则a 11= A.64 B.128 C.256 D.5127.已知变量y 关于变量x 的回归方程为bx 0.5y e -=,其一组数据如下表所示:若9.1y e =,则x =A.5B.6C.7D.88.已知直线l :3x -4y +m =0与圆C :x 2+y 2-6x +4y -3=0有公共点,则实数m 的取值范围为A.(3,37)B.[-37,3]C.[3,4]D.[-4,4]9.执行如图所示的程序框图,输出S的值为A.42B.-42C.-170D.-68210.已知双曲线C:22221(0,0)x ya ba b-=>>的离心率为2,左、右焦点分别为F1,F2,A在C的左支上,AF1⊥x轴,A,B关于原点对称,四边形AF1BF2的面积为48,则| F1F2|=A.8 B-4 3311.若实数a,b满足2a=2-a,log2(b-1)=3-b,则a+b=A.3B.103C.72D.412.某圆锥的侧面展开图是一个圆心角为23π,面积为3π的扇形,则该圆锥的外接球的表面积为A.264πB.2716πC.98πD.32π二、填空题:本题共4小题,每小题5分,共20分。
2021-2022学年河南省大联考高三(上)段考数学试卷(文科)(一)(附详解)
2021-2022学年河南省大联考高三(上)段考数学试卷(文科)(一)一、单选题(本大题共12小题,共60.0分)1.已知集合A={x|x2−x−6>0},B={x|x>1},则(∁R A)∩B=()A. [−2,3]B. (1,3]C. (1,3)D. (1,2]2.已知a,b都是实数,那么“3a>3b”是“a3>b3”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知命题p:“关于x的方程x2−4x+a=0无实根”,若p为真命题的充分不必要条件为a>3m+1,则实数m的取值范围是()A. [1,+∞)B. (1,+∞)C. (−∞,1)D. (−∞,1]4.已知f(x)是定义在R上的奇函数,满足f(2−x)+f(x)=0,且当x∈[0,1)时,f(x)=xx−1,则函数g(x)=f(x)+2sinπx在区间(−3,5)上的所有零点之和为()A. 12B. 13C. 14D. 155.若函数f(x)={2−x−2,x<0g(x),x>0为奇函数,则f(g(2))=()A. −2B. −1C. 0D. 26.函数y=x2+ln|x|的图象大致为()A. B.C. D.7.已知函数g(x)=f(x)+x2是奇函数,当x>0时,函数f(x)的图象与函数y=log2x的图象关于y=x对称,则g(−1)+g(−2)=()A. −7B. −9C. −11D. −138.将函数f(x)=√3sin x2−cos x2的图象向左平移m(m>0)的单位后,所得图象对应的函数为偶函数,则m的最小值是()A. π3B. 2π3C. 4π3D. 7π39.若sin(π6−x)=45,则sin(π6+2x)的值为()A. 2425B. −2425C. 725D. −72510.如果函数f(x)=cos(ωx+π4)(ω>0)的相邻两个零点之间的距离为π6,则ω=()A. 3B. 6C. 12D. 2411.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A. 5.45B. 4.55C. 4.2D. 5.812.关于函数y=2sin(3x+π4)+1,下列叙述有误的是()A. 其图象关于直线x=−π4对称B. 其图象关于点(π12,1)对称C. 其值域是[−1,3]D. 其图象可由y=2sin(x+π4)+1图象上所有点的横坐标变为原来的13得到二、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=lnx−ax+a在[1,e]上有两个零点,则a的取值范围是______14. 在平面直角坐标系中,若角α的始边是x 轴非负半轴,终边经过点P(sin2π3,cos2π3),则cos(π+α)=______15. 设a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,已知(b +c)sin(A +C)=(a +c)(sinA −sinC),设D 是BC 边的中点,且△ABC 的面积为√3,则AB ⃗⃗⃗⃗⃗ ⋅(DA ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ )等于______.16. 若函数f(x)=x 3−3x 在区间(a 2−5,a)上有最大值,则实数a 的取值范围是______.三、解答题(本大题共6小题,共70.0分) 17. 已知数列{b n }满足b 1=1,b n+1=12b n .(Ⅰ)求{b n }的通项公式; (Ⅱ)求b 2+b 4+b 6+⋯+b 2n 值.18. 已知函数f(x)=2sinxcos(x −π3),x ∈R ,(Ⅰ)求函数f(x)的对称中心; (Ⅱ)若存在x 0∈[π4,3π4],使不等式f(x 0)<m 成立,求实数m 的取值范围.19. 在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,√3a =csinB +√3bcosC ,(Ⅰ)求角B 的大小;(Ⅱ)若b =4,且△ABC 的面积等于4√3,求a ,c 的值.20.已知函数f(x)=13ax3+2a+12x2+3x,(Ⅰ)当a=2时,求函数f(x)的单调区间与极值;(Ⅱ)是否存在正实数a,使得函数f(x)在区间[−1,1]上为减函数?若存在,请求a的取值范围;若不存在,请说明理由.21.已知数列{a n}的首项a1=3,且满足a n+1=2a n+2n+1−1.(Ⅰ)设b n=a n−12n,证明{b n}是等差数列;(Ⅱ)求数列{a n−1}的前n项和S n.22.设函数f(x)=mlnx−2x.(Ⅰ)当m=2时,求函数f(x)在点(1,f(1))处的切线;(Ⅱ)当m=1时,曲线y=f(x)上的点(x0,y0)(x0>0)处的切线与y=x2相切,求满足条件的x0的个数.答案和解析1.【答案】B【解析】解:由集合A={x|x2−x−6>0}={x|x<−2或x>3},B={x|x>1},∴∁R A={x|−2≤x≤3}.则(∁R A)∩B={x|−2≤x≤3}∩{x|x>1}={x|1<x≤3}.故选:B.解一元二次不等式化简集合A,然后求出∁R A,则∁R A交B的答案可求.本题考查了集合的混合运算,考查了一元二次不等式的解法,属于基础题.2.【答案】C【解析】解:因为函数y=3x在R上为增函数,所以3a>3b等价于a>b,由于y=x3在R上是增函数,所以由a>b得到a3>b3;由a3>b3也能得到a>b,因此“3a>3b”是“a3>b3”的充分必要条件.故选:C.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.3.【答案】B【解析】解:命题p:“方程x2−4x+a=0无实根”则△=16−4a<0,解得:a>4,且p为真命题的充分不必要条件为a>3m+1,∴3m+1>4,解得:m>1,则实数m的取值范围是(1,+∞),故选:B.求出p,根据充分必要条件的定义得到关于m的不等式,解出即可.本题考查了充分必要条件,考查二次函数的性质,是一道基础题.4.【答案】D【解析】解:f(x)是定义在R上的奇函数,满足f(2−x)+f(x)=0,即有f(2−x)=−f(x)=f(−x),即f(x+2)=f(x),可得f(x)的周期为2,由x∈[0,1)时,f(x)=xx−1,可得x∈(−1,0]时,−x∈[0,1),f(−x)=−x−x−1=xx+1=−f(x),可得f(x)=−xx+1(−1<x≤0),又f(1)+f(1)=0,即f(1)=0,f(−1)=0,f(3)=0,作出y=f(x)在(−3,5)的图象,由函数g(x)=f(x)+2sinπx在区间(−3,5)上的零点即为g(x)=0,即f(x)=−2sinπx在区间(−3,5)上的交点的横坐标,y=−2sinπx的周期为2,对称轴为x=k+12,k∈Z,作出函数y=−2sinπx在区间(−3,5)上的图象,可得两函数的图象共有15个交点,即有8+4+0+(−4)+(−2)+(−1)+0+1+2+3+4=15,故选:D.求出函数的对称中心以及函数的周期,利用数形结合判断函数的图象的交点个数,运用对称性计算可得所求和.本题考查函数的零点问题解法,考查数形结合以及计算能力,属于中档题.5.【答案】D【解析】解:设x>0,则−x<0,故f(−x)=2x−2=−f(x),故x>0时,f(x)=2−2x,由g(2)=f(2)=2−4=−2,故f(g(2))=f(−2)=−f(2)=2,故选:D.求出g(2)的值,从而求出f(g(2))的值即可.本题考查了函数求值问题,考查函数的奇偶性问题,是一道基础题.6.【答案】A【解析】解:函数的定义域为{x|x≠0},f(−x)=(−x)2+ln|−x|=x2+ln|x|=f(x),则f(x)是偶函数,图象关于y轴对称,排除B,C,当x>0且x趋向0时,f(x)<0,排除D,故选:A.判断函数的奇偶性和对称性,利用极限思想进行排除即可.本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性以及极限思想是解决本题的关键,是基础题.7.【答案】C【解析】【分析】本题考查奇函数的定义,以及互为反函数的两函数图象关于直线y=x对称,指数函数和对数函数互为反函数,属于中档题.由x>0时,函数f(x)的图象与函数y=log2x的图象关于y=x对称,可得出,x>0时,f(x)=2x,g(x)=2x+x2,再根据g(x)是奇函数即可求出g(−1)+g(−2)的值.【解答】解:∵x>0时,f(x)的图象与函数y=log2x的图象关于y=x对称;∴x>0时,f(x)=2x;∴x>0时,g(x)=2x+x2,又g(x)是奇函数;∴g(−1)+g(−2)=−[g(1)+g(2)]=−(2+1+4+4)=−11.故选:C.8.【答案】C【解析】解:将函数f(x)=√3sin x2−cos x2=2(√32sin x2−12cos x2)=2sin(x2−π6)的图象向左平移m(m>0)的单位后,可得y=2sin(x2+m2−π6)的图象.由于所得图象对应的函数为偶函数,∴m2−π6=kπ+π2,k∈Z,即m=2kπ+4π3,故当k=0是,m取得最小值为4π3,故选:C.利用三角恒等变换化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的奇偶性,求得m的最小值.本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的奇偶性,属于基础题.9.【答案】D【解析】解:sin(π6−x)=−sin(x−π6)=45,sin(x−π6)=−45,sin(2x+π6),=sin(2x−π3+π2)=cos(2x−π3 )=cos[2(x−π6 )]=1−2sin2(x−π6 )=1−2×(−4 5 )2=−725.故选:D.利用诱导公式求得sin(x−π6)=−45,将sin(π6+2x)转化为1−2sin2(x−π6)的形式,代入求值即可.本题考查的知识点是两角和与差的正弦公式,诱导公式,难度不大,属于基础题.10.【答案】B【解析】解:函数f(x)=cos(ωx +π4)(ω>0)的相邻两个零点之间的距离为π6, ∴T =2×π6=π3, 又2πω=π3, 解得ω=6. 故选:B .根据余弦函数的相邻两个零点之间的距离恰好等于半个周期,即可求得ω的值. 本题主要考查余弦函数的图象和性质的应用问题,是基础题目.11.【答案】B【解析】解:如图,已知AC +AB =10(尺),BC =3(尺),AB 2−AC 2=BC 2=9,所以(AB +AC)(AB −AC)=9,解得AB −AC =0.9, 因此{AB +AC =10AB −AC =0.9,解得{AB =5.45AC =4.55,故折断后的竹干高为4.55尺, 故选:B .由题意可得AC +AB =10(尺),BC =3(尺),运用勾股定理和解方程可得AB ,AC ,即可得到所求值.本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题.12.【答案】B【解析】解:函数y =f(x)=2sin(3x +π4)+1, 由f(−π4)=2sin(−3π4+π4)+1=−1,为最小值,可得其图象关于直线x =−π4对称;由f(π12)=2sin(π4+π4)+1=3,可得其图象不关于(π12,1)对称;由sin(3x +π4)=−1,可得函数的最小值为−1;sin(3x +π4)=1,可得函数的最大值为3, 可得函数的值域为[−1,3];由y =2sin(x +π4)+1图象上所有点的横坐标变为原来的13得到y =2sin(3x +π4)+1的图象,故A ,C ,D 正确;B 错误. 故选:B .由正弦函数的对称轴特点,计算可判断A ;由正弦函数的对称中心特点计算可判断B ;由正弦函数的值域计算可判断C ;由正弦函数的周期变换特点计算可判断D . 本题考查正弦函数的图象和性质,考查对称性和值域的求法,以及图象的周期变换,考查化简变形能力,属于中档题.13.【答案】[e1−e ,−1)【解析】解:f′(x)=x+a x 2,当a ≥0时,f(x)在[1,e]上为增函数,不满足在[1,e]上有两个零点; 所以a <0.令f′(x)=0,解得x =−a ,则x =−a 是极值点, 所以{1<−a <ef(−a)=ln(−a)+a −1>0,f(e)=1−ae+a ≤0,解之得e1−e ≤a <−1,故答案为:[e1−e ,−1).先用导数研究f(x)的单调性,再结合零点个数建立不等式求解.本题题主要考查用函数的单调性研究函数的变化趋势问题,属于中档题目.14.【答案】−√32【解析】解:∵平面直角坐标系中,若角α的始边是x 轴非负半轴,终边经过点P(sin2π3,cos2π3), ∴OP =√sin 22π3+cos 22π3=1,则cos(π+α)=−cosα=−sin 2π3=−√32, 故答案为:−√32.由题意利用任意角的三角函数的定义,特殊角的三角函数值,求得结果.本题主要考查任意角的三角函数的定义,特殊角的三角函数值,属于基础题.15.【答案】2【解析】解:∵(b +c)sin(A +C)=(a +c)(sinA −sinC), ∴(b +c)sinB =(a +c)(sinA −sinC), ∴(b +c)b =(a +c)(a −c), b 2+c 2−a 2=−bc , ∴cosA =b 2+c 2−a 22bc =−12,∴A =2π3,∴S △ABC =12bcsinA ,√3=12bc ×√32,∴bc =4,∴AB ⃗⃗⃗⃗⃗ ⋅(DA ⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ⋅[−12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )+12CB ⃗⃗⃗⃗⃗ ]=AB ⃗⃗⃗⃗⃗ ⋅[−12(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )+12(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )]=−AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =−bccosA =−4×(−12)=2. 故答案为:2.先根据正余弦定理求出A =2π3,bc =4,再将DA ⃗⃗⃗⃗⃗ ,DB ⃗⃗⃗⃗⃗⃗ 化为AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ 后用数量积可得. 本题考查了平面向量数量积的性质及其运算,属于中档题.16.【答案】(−1,2)【解析】 【分析】求函数f(x)=x 3−3x 导数,研究其最大值取到的位置,由于函数在区间(a 2−5,a)上有最大值,故最大值点的横坐标在区间(a 2−5,a)内,由此可以得到关于参数a 的不等式,解之求得实数a 的取值范围.本题考查用导数研究函数的最值,利用导数研究函数的最值是导数作为数学中工具的一个重要运用,要注意把握其做题步骤,求导,确定单调性,得出最值. 【解答】解:由题 f′(x)=3x 2−3,令f′(x)<0解得−1<x <1;令f′(x)>0解得x <−1或x >1,由此得函数在(−∞,−1)上是增函数,在(−1,1)上是减函数,在(1,+∞)上是增函数, 故函数在x =−1处取到极大值2,判断知此极大值必是区间(a 2−5,a)上的最大值,∴a 2−5<−1<a ,解得−1<a <2. 又当x =2时,f(2)=2,故有a ≤2. 综上知a ∈(−1,2). 故答案为:(−1,2).17.【答案】解:(Ⅰ)由b n+1=12b n 得b n+1b n=12, 所以{b n }为等比数列,且首项b 1=1公比q =12, 所以{b n }的通项公式为b n =(12)n−1. (Ⅱ)设a n =b 2n ,则a n+1a n=b 2n+2b 2n =(12)2n+1(12)2n−1=(12)2=14,所以{b 2n }是首项为12,公比14的等比数列, 所以b 2+b 4+b 6+⋯+b 2n =12[1−(14)n ]1−14=23[1−(14)n ].【解析】(Ⅰ)由b 1=1,b n+1=12b n ,可得{b n }为等比数列,且首项b 1=1公比q =12,可得通项公式,(Ⅱ)由(Ⅰ)可得{b 2n }是首项为12,公比14的等比数列,结合等比数列的求和公式可求. 本题主要考查了等比数列的通项公式及求和公式,等比数列的性质的应用,数列的递推公式的应用是解答本题的关键.18.【答案】解:(Ⅰ)由题得f(x)=sinxcosx +√3sin 2x =12sin2x +√32(1−cos2x)=12sin2x −√32cos2x +√32=sin(2x −π3)+√32, 令2x −π3=kπ(k ∈Z),得x =kπ2+π6(k ∈Z), 所以,函数f(x)的对称中心为(kπ2+π6,√32)(k ∈Z),(Ⅱ)因为存在x 0∈[π4,3π4],使不等式f(x 0)<m 成立,所以m 大于f(x)的最小值,由π4≤x ≤3π4,得π6≤2x −π3≤7π6,当2x −π3=7π6,即x =3π4时,f(x)取最小值√3−12,所以m >√3−12,则m 的取值范围为(√3−12,+∞).【解析】(Ⅰ)利用三角函数的恒等变换化简函数函数f(x)=sin(2x−π3)+√32,从而求出它的对称中心.(Ⅱ)根据存在x0∈[π4,3π4],使不等式f(x0)<m成立,m需大于f(x0)的最小值.本题主要考查复合三角函数的单调性,正弦函数的定义域和值域,属于中档题.19.【答案】解:(1)由正弦定理得:√3sinA=sinC⋅sinB+√3sinB⋅cosC,因为A+B+C=π,所以√3sin(B+C)=sinC⋅sinB+√3sinB⋅cosC,即√3(sinBcosC+cosBsinC)=sinCsinB+√3sinBcosC,化简,得√3cosB=sinB,因为B∈(0,π),所以B=π3.(2)由(1)知B=π3,因为b=4,所以由余弦定理,得b2=a2+c2−2accosB,即42=a2+c2−2accosπ3,化简,得a2+c2−ac=16①,因为该三角形面积为4√3所以12acsinB=4√3,即ac=16②,联立①②,解得a=c=4.【解析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得√3cosB=sinB,结合范围B∈(0,π),可求B=π3.(2)由(1)利用余弦定理可得a2+c2−ac=16,利用三角形的面积公式可求ac=16,联立即可解得a,c的值.本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20.【答案】解:(Ⅰ)当a=2时,f′(x)=2x2+5x+3=(x+1)(2x+3),…(1分)令f′(x)=0,解得x=−1或−32,…(2分)…(3分)所以,f(x)的增区间为(−∞,−32),(−1,+∞),…(4分) f(x)的减区间为(−32,−1),…(5分) f(x)的极大值为f(−32)=−98,…(6分) f(x)的极小值为f(−1)=−76.…(7分)(2)依题意:f′(x)=ax 2+(2a +1)x +3≤0在[−1,1]上恒成立…(9分) 又因为a >0,所以,{a >0f′(−1)≤0f′(1)≤0,…(10分)不等式组无解,故不存在正实数a ,使得函数f(x)在区间[−1,1]上为减函数.【解析】(Ⅰ)将a =2代入f(x),求出f(x)的导函数,令f′(x)=0,求出x 的值,可得f′(x),f(x)随x 的变化情况,即可得单调区间与极值;(Ⅱ)求出导函数,令导函数小于等于0在[−1,1]上恒成立,结合二次函数的图象写出限制条件,即可得解.本题主要考查利用导数求函数的单调区间和极值,知道单调区间求参数的取值范围,考查结合二次函数的图象解决二次不等式恒成立问题.属于中档题.21.【答案】解:(1)法一:将等式a n+1=2a n +2n+1−1两边都减去1得a n+1−1=2(a n −1)+2n+1, 再除以2n+1得a n+1−12n+1=a n −12n+1,即b n+1=b n +1. 即b n+1−b n =1.且b 1=a 1−12=1,所以{b n }是首项为1,公差为1的等差数列. 法二:由b n =a n −12n得b n+1=a n+1−12n+1,将 a n+1=2a n +2n+1−1代入上式得b n+1=2a n +2n+1−22n+1=a n +2n −12n=a n −12n+1,因此b n+1−b n =1.且b 1=a 1−12=1,所以{b n }是首项为1,公差为1的等差数列. (2)由(1)知b n =n ,所以b n =a n −12n=n,a n =n ⋅2n +1,所以a n −1=n ⋅2n ,则S n =1⋅2+2⋅22+3⋅23+⋯+n ⋅2n …①,2S n =1⋅22+2⋅23+3⋅24+⋯+n ⋅2n+1…②①−②得:−S n =2+22+23+⋯+2n −n ⋅2n+1,−S n =2(2n −1)−n ⋅2n+1=(1−n)2n+1−2所以S n =(n −1)2n+1+2.【解析】(Ⅰ)直接利用关系式的变换和构造函数的应用求出数列为等差数列; (Ⅱ)利用(Ⅰ)的结论,进一步利用乘公比错位性减法求出数列的和.本题考查的知识要点:数列的通项公式的求法,定义法的应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.22.【答案】解:(Ⅰ)当m =2时,f′(x)=2x −2,k =f′(1)=0,又f(1)=−2,∴函数f(x)在点(1,f(1))处的切线方程为y =−2; (Ⅱ)当m =1时,f′(x)=1x −2=1−2x x.则曲线y =f(x)上的点(x 0,y 0)(x 0>0)处的切线方程为y −(lnx 0−2x 0)=1−2x 0x 0(x −x 0), 即y =1−2x 0x 0x +lnx 0−1,设直线l 与y =x 2相切于点(x 1,x 12),即切线方程为y =2x 1x −x 12, 即{1−2x 0x 0=2x 1lnx 0−1=−x 12,则1−lnx 0=(1−2x 02x 0)2,∴4x 02lnx 0−4x 0+1=0,令g(x)=4x 2lnx −4x +1,则g′(x)=8xlnx +4x −4,g′′(x)=8lnx +12, 令g″(x)=0,得x =e −32,可得g′(x)在(0,e −32)上单调递减,在(e −32,+∞)上单调递增, 即g′(x)min =−8e −32−4<0,当x ∈(0,e −32)时,8lnx +12<0,即g′(x)<x(8lnx +12)−4<−4,当x =1时,g′(x)=0,∴当x ∈(0,1)时,g′(x)<0,当x ∈(1,+∞)时,g′(x)>0,即g(x)在(0,1)单调递减,在(1,+∞)单调递减增, 即g(x)min =g(1)=−3<0. 又∵g(1e2)=−8e 4−4e 2+1=e 4−4e 2−8e 4=e 2(e 2−4)−8e 4>0,且g(e)=4e 2−4e +1>0,∴g(x)=0在(1e 2,1)和(1,e)上各有1个零点,即g(x)=0在(0,1)和(1,+∞)上各有1个零点,则满足条件的x 0的个数是2个.【解析】(Ⅰ)当m =2时,f′(x)=2x −2,求得f′(1)与f(1),再由直线方程的斜截式得答案;(Ⅱ)当m =1时,f′(x)=1x −2=1−2x x ,利用导数求出曲线y =f(x)在点(x 0,y 0)(x 0>0)处的切线方程,设直线l 与y =x 2相切于点(x 1,x 12),即切线方程为y =2x 1x −x 12,由题意可得{1−2x 0x 0=2x 1lnx 0−1=−x 12,则4x 02lnx 0−4x 0+1=0,令g(x)=4x 2lnx −4x +1,利用导数研究其单调性与最值,结合函数零点的判定即可得到满足条件的x 0的个数. 本题考查利用导数研究过曲线上某点处的切线方程,考查函数零点的判定,训练了利用导数求最值,考查化归与转化思想,考查逻辑思维能力与推理论证能力,属难题.。
河南省天一大联考2021届高三上学期阶段性测试(三)(12月)数学(文) Word版含答案bybao
天一大联考2022——2021学年毕业班阶段性测试(三)数学(文科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}2|230,|03A x x xB x x=+-<=<<,则A B =A. ()0,1B.()0,3C.()1,1-D.()1,3-2.定义()0a bdcadbcbc=≠.已知复数1017100032i iii-,则在复平面内,复数z所对应的点位于A.第一象限B.其次象限C.第三象限D.第四象限3. 在长方形ABCD中,E,F分别是AB边上靠近A,B的四等分点,G是CD的中点,若4,3AB AD==2AB=,则EG FG⋅=A.3-32- D.24.已知()3sin5f x ax b x=++,若()39f=,则()3f-=A. 0B. 1C. 9D. -95.已知正六边形中,P,Q,R分别是边AB,EF,CD的中点,则向正六边形ABCDEF内投掷一点,该点落在PQR∆内的概率为A. 13 B.38 C.23 D.36.已知,2πβπ⎛⎫∈ ⎪⎝⎭,1cos3β=-,则tan2β=23 C. 2 D.37.割圆术是公元三世纪我国古代数学家刘徽制造的一种求圆的周长和面积的方法:随着圆内正多边形边数的增加,它的周长和面积越来越接近圆的周长和面积.“割之弥细,所失弥少,割之又割,以至于不行割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了直代曲,无限趋近的思想方法求出了圆周率.某同学利用刘徽的“割圆术”思想设计的一个计算圆周率的近似值的程序图如图所示,则输出的S的值为(参考数据:sin150.2588,sin7.50.1305==) A.2.598 B. 3.1063 C. 3.132 D.3.1428.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为A.()22196π+B.()22296π+C.)2296π+53 D.)2196π+9. 已知函数()()sin0,0,2f x M x Mπωϕϕϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,其中13,4,,0312A Cππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,点A是最高点,则下列说法错误的是A.6πϕ=-B.若点B的横坐标为23π,则其纵坐标为2-C.函数()f x在1023,36ππ⎛⎫⎪⎝⎭上单调递增D.将函数()f x的图象向左平移12π个单位得到函数4sin2y x=的图象.10. 已知数列{}na的前n项和为nS,且nS是12,n nS S++的等差中项,且143,3a S==-,则8S的值为 A.129 B.129- C.83 D.83-11.已知函数()22x xf x -=-,函数()g x 为偶函数,且0x ≤时,()()g x f x =-.现有如下命题:①()()(),,,m n R m n f m f n ∃∈≠=;②()()(),,,m n R m n f m g n ∃∈<->()()f n g n --.则上述两个命题:A. ①真②假B. ①假②真C. ①②都假D. ①②都真12.已知函数()()()323211169,1323a f x x x x g x x x a +=-+=-->,若对任意的[]10,4x ∈,总存在[]20,4x ∈,使得()()12f x g x =,则实数a 的取值范围为A.91,4⎛⎤⎥⎝⎦ B. [)9,+∞C. [)91,9,4⎛⎤+∞ ⎥⎝⎦ D. [)39,9,24⎡⎤+∞⎢⎥⎣⎦二、填空题:本大题共4小题,每小题5分,共20分.13. 已知实数,x y 满足250,0,26,x y x y x y --≤⎧⎪+≥⎨⎪+≤⎩,则3z x y =+的取值范围为 .14.已知抛物线()220y px p =>上的第四象限的点()02,M y 到焦点F 的距离为0y ,则点M 到直线10x y --=的距离为 .15. 已知圆C (圆心C 在第一象限内)过点(1,0),(7,0),直线1y x =-截圆C 的弦长为42,则圆C 的标准方程为 .16. 如图,在四周体P ABC -中,4PA PB PC ===点O 是点P 在平面ABC上的投影,且2tan 2APO ∠=,则四周体P ABC -的外接球的体积为 .明或推理、三、解答题:本大题共6小题,共70分.解答应写出必要的文字说验算过程.17.(本题满分10分)已知等差数列{}n a 的公差为d ,若11a =,且1342,1,1a a a -+成等比数列.(1)求数列{}n a 的通项公式; (2)若0d >,数列{}n b 的通项公式为()22n n n b a n =++⋅,求数列{}n b 的前n 项和n T . 18.(本题满分12分) 如图所示,在ADE ∆中,B,C 分别为AD,AE 上的点,若,4,16.3A AB AC π===, (1)求sin ABC ∠的值; 2S ,若 (2)记ABC ∆的面积为1S ,四边形BCED 的面积为121633S S =,求BD CE ⋅的最大值. 19.(本题满分12分) 为了了解“喝茶”对“患癌症”是否有影响,现对300名不同地区的居民进行身体状况的调查,得到如图所示的列联表: (1) 完成上述列联表,并推断是否有99.9%的把握认为“喝茶”对“患癌症”有影响; (2) 在上述患癌症的人群中依据喝茶状况进行分层抽样,抽取8名进行基本状况登记,再从中随机选取2人进行调查,求至少有1人每日喝茶超过60ml 的概率.20. (本题满分12分)已知三棱柱111ABC A B C -中,底面三角形ABC 时直角三角形,四边形11ACC A 和四边形11ABB A 均为正方形,,,D E F 分别是111,,A B C C BC 的中点, 1.AB =(1)证明:DF ⊥平面ABE ;(2)求三棱锥1A ABE -的体积.21.(本题满分12分)如图,O 为坐标原点,椭圆()2222:10x y C a b a b +=>>的离心率为32,以椭圆C 的长轴长、短轴长分别为邻边的矩形的面积为8.(1)求椭圆C 的标准方程;(2)若,P Q 是椭圆上的两个动点,且14OP OQ kk ⋅=-,试问:OPQ S ∆是否是定值?若是,求出定值,若不是,请说明理由.22.(本题满分12分) 已知函数()2ln 2.f x x x x =-+ (1)求曲线()y f x =在()()1,1f 处的切线方程; (2)若关于x 的方程()()2f x k x =+在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不同的实数根,求k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届河南省天一大联考高三阶段性测试数学(文)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集*U N =,集合{}{}1,2,3,5,2,4,6A B ==,则图中的阴影部分表示的集合为( )A .{}2B .{}2,4,6C .{}4,6D .{}1,3,5 2.已知i 是虚数单位,复数z 满足()1i z i -=,则z 的虚部是( ) A .12-B .12C .12iD .12i - 3.若2cos 2πα⎛⎫-=⎪⎝⎭,则()cos 2πα-= ( ) A .59 B .59- C .29 D . 29- 4.“113x⎛⎫< ⎪⎝⎭”是“11x >”的( )A .充分且不必要条件B .既非充分也非必要条件 C. 充要条件 D .必要且不充分条件 5.在区间[]0,1上任选两个数x 和y ,则21y x ≥- )A .16π-B .6πC. 14π-D .4π6. 将函数cos 26y x π⎛⎫=+⎪⎝⎭图象上的点,4P t π⎛⎫⎪⎝⎭向右平移()0m m >个单位长度得到点P ',若P '位于函数cos 2y x =的图象上,则( )A .3t m =的最小值为6πB .3t m =的最小值为12π C. 1,2t m =-的最小值为6π D .1,2t m =-的最小值为12π7.执行如图所示的程序框图,若输入4,3m t ==,则输出y = ( )A .184B .183 C. 62 D .61 8.函数()2af x x x =+(其中a R ∈)的图象不可能是( ) A . B .C. D .9.已知M 是抛物线()2:20C y px p =>上一点,F 是抛物线C 的焦点.若,MF p K =是抛物线C 的准线与x 轴的交点,则MKF ∠=( )A .60°B .45° C. 30° D .15°10.已知P 为矩形ABCD 所在平面内一点,4,3,5,25AB AD PA PC ====,则PB PD = ( ) A .0 B .-5或0 C. 5 D .-511.某棱锥的三视图如图所示,则该棱锥的外接球的表面积为( )A .4πB .3π C. 2π D .π12.已知函数()2,01,0x e x f x x ax x ⎧≤=⎨++>⎩,()()1F x f x x =--,且函数()F x 有2个零点,则实数a 的取值范围为( )A .(],0-∞B . [)1,+∞ C. ()0,+∞ D .(),1-∞第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.双曲线()222210,0x y a b a b-=>>的一条渐近线与直线30x y -+=平行,则此双曲线的离心率为 .14.若实数,x y 满足1002x y x y --≤⎧⎪>⎨⎪≤⎩,则221y x +的最小值是 .15.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米 斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率3π≈) 16.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且,a b a c >>.ABC ∆的外接圆半径为1,3a =若边BC 上一点D 满足2BD DC =,且090BAD ∠=,则ABC ∆的面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 的前n 项和为n S ,且满足()*21n n a S n N =+∈. (1)求数列{}n a 的通项公式;(2)若()21n n b n a =-,求数列{}n b 的前n 项和n T .18.某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照[)[)[)[)[)[)0,100,100,200,200,300,300,400,400,500,500,600,[)[)[]600,700,700,800,800,900分成9组,制成了如图所示的频率直方图.(1)求直方图中m 的值并估计居民月均用电量的中位数;(2)现从第8组和第9组的居民中任选取2户居民进行访问,则两组中各有一户被选中的概率. 19. 如图,在四棱锥A BCDE -中,CD ⊥平面,//,,,ABC BE CD AB BC CD AB BC M ==⊥为AD 上一点,EM ⊥平面ACD . (1)求证://EM 平面ABC ;(2)若2CD =,求四棱锥A BCDE -的体积.20.已知圆22:1O x y +=过椭圆()2222:10y x C a b a b+=>>的短轴端点,,P Q 分别是圆O 与椭圆C 上任意两点,且线段PQ 长度的最大值为3. (1)求椭圆C 的方程;(2)过点()0,t 作圆O 的一条切线交椭圆C 于,M N 两点,求OMN ∆的面积的最大值.21.已知函数()2ln 2af x x x =-的图象在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为0. (1)讨论函数()f x 的单调性; (2)若()()12g x f x mx =+,在区间()1,+∞上没有零点,求实数m 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为2sin ρθ=. (1)判断直线l 与圆C 的交点个数;(2)若圆C 与直线l 交于,A B 两点,求线段AB 的长度. 23.选修4-5:不等式选讲已知函数()()22f x x x m m R =+--+∈. (1)若1m =,求不等式()0f x ≥的解集;(2)若方程()f x x =有三个实根,求实数m 的取值范围.2021届河南省天一大联考高三阶段性测试数学(文)试题参考答案一、选择题1-5: CABDC 6-10: DBCBA 11、12:BD二、填空题14.43三、解答题17.解析:(1)当1n =时,1112121a S a =+=+,解得11a =-. 当2n ≥时,1121,21n n n n a S a S --=+=+,两式相减得12n n n a a a --=,化简得1n n a a -=-,所以数列{}n a 是首项为-1,公比为-1的等比数列,可得()1nn a =-.(2)由(1)得()()211nn b n =--, 下面提供三种求和方法供参考:(错位相减法)()()()()()123113151211nn T n =-+-+-++--,()()()()()()2311131231211nn n T n n +-=-+-++--+--,两式相减得()()()()()23121212121211nn n T n +=-+-+-++----()()()()()()211111122112111n n n n n -+⎡⎤-⨯--⎣⎦=-+⨯---=---,所以数列{}n b 的前n 项和()1nn T n =-.(并项求和法)当n 为偶数时,12n n b b -+=,22n nT n =⨯=; 当n 为奇数时,1n +为偶数,()()11121n n n T T b n n n ++=-=+-+=-. 综上,数列{}n b 的前n 项和,,n n n T n n ⎧=⎨-⎩为偶数为奇数.(裂项相消法)因为()()()()()1211111nnn n b n n n +=--=----,所以()()()()()()()1223101111121111nn n T n n +⎡⎤⎡⎤⎡⎤=---+---++----⎣⎦⎣⎦⎣⎦()()()110111n nn n +=---=-,所以数列{}n b 的前n 项和()1nn T n =-.18.【解析】(1)()11000.00040.00080.00210.00250.00060.00040.00022100m -⨯++++++=⨯, ∴0.0015m =.设中位数是x 度,前5组的频率之和为0.040.080.150.210.250.730.5++++=>, 而前4组的频率之和为0.040.080.150.210.480.5+++=<,所以400500x <<,0.50.484001000.25x --=⨯,故408x =,即居民月均用电量的中位数为408度.(2)第8组的户数为0.00041001004⨯⨯=,分别设为1234,,,A A A A ,第9组的户数为0.00021001002⨯⨯=,分别设为12,B B ,则从中任选出2户的基本事件为()()1213,,A A A A ,,()()1411,,A A A B ,,()12,A B ,()23,A A ,()24,A A ,()21,A B ,()22,A B ,()34,A A ,()31,A B , ()32,A B ,()41,A B ,()42,A B ,()12,B B ,共15种.其中两组中各有一户被选中的基本事件为()()()()11122122,,,,,,A B A B A B A B ,()()3132,,,A B A B ,()()4142,,,A B A B ,共8种.所以第8,9组各有一户被选中的概率815P =. 19.【解析】(1)取AC 的中点F ,连接BF ,因为AB BC =,所以BF AC ⊥, 因为CD ⊥平面ABC ,所以CD BF ⊥,又ACCD C =,所以BF ⊥平面ACD ,因为EM ⊥平面ACD ,所以//EM BF ,又EM ⊄平面,ABC BF ⊂平面ABC ,所以//EM 平面ABC .(2)连接MF ,因为//,BE CD BE ⊄平面,ACD CD ⊂平面ACD ,所以//BE 平面ACD , 又平面BEMF ⋂平面ACD MF =,所以//BE MF ,由(1)知//EM BF ,所以四边形BEMF 为平行四边形,所以BE MF =.因为F 是AC 的中点,所以M 是AD 的中点, 所以112BE MF CD ===. 因为CD ⊥平面ABC ,所以CD AB ⊥, 又BC AB ⊥,所以AB ⊥平面BCDE . 所以四棱锥A BCDE -的体积()11112222332A BCDE BCDE V S AB -=⨯=⨯⨯+⨯⨯=. 20.【解析】(1)∵圆O 过椭圆C 的短轴端点,∴1b =,又∵线段PQ 长度的最大值为3, ∴13a +=,即2a =,∴椭圆C 的方程为2214y x +=.(2)由题意可设切线MN 的方程为y kx t =+,即0kx y t -+=1=,得221k t =- ①联立得方程组2214y kx t y x =+⎧⎪⎨+=⎪⎩,消去y 整理得()2224240k x ktx t +++-=. 其中()()()222222444161664480kt k t t k ∆=-+-=-++=>,设()()1122,,,M x y N x y ,则12224kt x x k -+=+,212244t x x k -=+,则21616t MN -+=②将①代入②得MN =112OMN S MN ∆=⨯⨯=1,等号成立当且仅当3t t =,即t =.综上可知:()max 1OMN S ∆=. 21.【解析】(1)()2ln 2a f x x x =-的定义域为()0,+∞,()22af x x x'=-, 因为1102f a ⎛⎫'=-=⎪⎝⎭,所以()()()()22121111,ln ,2222x x a f x x x f x x x x -+'==-=-=. 令()0f x '>,得12x >,令()0f x '<,得102x <<, 故函数()f x 的单调递增区间是1,2⎛⎫+∞⎪⎝⎭,单调递减区间是10,2⎛⎫⎪⎝⎭.(2)()211ln 22g x x x mx =-+,由()214120222m x mx g x x x x +-'=-+==,得x =,设0x =,所以()g x 在(]00,x 上是减函数,在[)0,x +∞上为增函数.因为()g x 在区间()1,+∞上没有零点,所以()0g x >在()1,+∞上恒成立,由()0g x >,得1ln 22x m x x >-,令ln 2xy x x=-,则22222ln 22ln 4144x x x y x x ---'=-=, 当1x >时,0y '<,所以ln 2xy x x =-在()1,+∞上单调递减, 所以当1x =时,max1y =-,故112m ≥-,即[)2,m ∈-+∞.22.【解析】(1)消去参数得直线l10y +-=, 由2sin ρθ=得圆C 的直角坐标方程为2220x y y +-=. 因为圆心()0,1在直线l 上,所以直线l 与圆C 的交点个数为2.(2)由(1)知AB 为圆C 的直径,而圆C 的直径可求得为2,所以2AB =. 23.【解析】(1)∵1m =时,()221f x x x =+--+. ∴当2x ≤-时,()3f x =-,不可能非负,当22x -<<时,()21f x x =+,由()0f x ≥可解得12x ≥-,于是122x -≤<. 当2x ≥时,()50f x =>恒成立. ∴不等式()0f x ≥的解集为1,2⎡⎫-+∞⎪⎢⎣⎭. (2)由方程()f x x =可变形为22m x x x =+--+.令()4,222,224,2x x h x x x x x x x x +<-⎧⎪=+--+=--≤≤⎨⎪->⎩,作出图象如图所示于是由题意可得22m -<<.。