第5章振幅调制电路

合集下载

高频电路习题

高频电路习题

目录第1章绪论 (2)第2章小信号选频放大器 (3)第3章谐振功率放大器 (9)第4章正弦波振荡器 (17)第5章振幅调制、振幅解调与混频电路 (31)第6章角度调制与解调电路 (51)第1章绪论返回目录页一、填空1.1 用()信号传送信息的系统称为通信系统,发送设备对信号最主要的处理是()。

1.2 输入变换器的作用是将各种不同形式的信源转换成()信号;传输信号的信道也称为();传输媒介分为()两大类。

1.3 引起传输误差的因素是()。

1.4 在时间和幅度上连续变化的信号称为();在时间和幅度上离散取值的信号称为()。

1.5 用基带信号去改变高频载频的幅度称为()用符号()表示;用基带信号去改变高频载频的频率称为()用符号()表示;用基带信号去改变高频载频的相位称为()用符号()表示。

1.6 数字调制通常分为()、()、()三种。

1.7 无线电波的传播方式有()、依靠()和()三种;频率在()的信号主要是依靠电离层的反射传播;高于()的信号主要沿空间直线传播;长波与超长波信号主要(1.81.9 )与1.101.111.121.131.14 其信号主2.1 已知并联谐振回路L=1μH,C=20pF,Q=100,求该并联回路的谐振频率f0、谐振电阻R p及通频带BW0.7。

解:由公式(2.1.4)知MHzMHzQ f BW k C L Q R MHzHz LCf p 356.01006.354.22104.221020101100)7.1.2(6.351020101212107.031261260===Ω=Ω⨯=Ω⨯⨯===⨯⨯⨯==----式知由ππ2.2 并联谐振回路如图P2.2所示,已知C=300pF ,L=390μH ,Q=100,信号源内阻Rs=100k Ω,负载电阻R L =200KΩ,求该回路的谐振频率、谐振电阻、通频带。

KHzHz LC f 46510390103002121)4.1.2(6120≈⨯⨯⨯==--ππ由式解:371039010300104221124220011001114111111201211410300103901007126123126≈⨯⨯•⨯==Ω=Ω++=++==Ω=Ω⨯⨯•==----L C R Q )..(K K R R R R //R //R R )..(K C L Q R )..ee L S P L S P e P 式,有载品质因数由式知谐振电阻为所以由阻为知,回路的空载谐振电由式(所以BW 0.7=f 0/Q T =465KHz/37=12.6KHz2.3已知并联谐振回路的f 0=10MHz ,C=50pF ,BW 0.7=150KHz ,求回路的L 和Q 以及Δf=600KHz 时的电压衰减倍数。

【学习】第五章信号调理电路

【学习】第五章信号调理电路

一般采用音频交流电压(5~10kHZ)作为电桥电源。 这时,电桥输出将为调制波,外界工频干扰不易从线路 中引入,并且后接交流放大电路简单无零漂。
采用交流电桥时,必须注意影响测量误差的一些因素。
如:电桥中元件之间的互感影响;无感电阻的残余阻抗; 邻近交流电路对电桥的感应作用;泄漏电阻以及元件之间、 元件与地之间的分布电容等。
整理课件
33
整理课件
34
§2 调频与解调
(1)调频
调频(频率调制)是利用信号电 压的幅值控制一个振荡器,振荡 器输出的是等幅波,但其振荡频 率偏移量和信号电压成正比。
当信号电压为零时,调频波的频率等于中心频率(载波频 率);信号电压为正值时频率提高,负值时则降低。所以调 频波是随信号而变化的疏密不等的等幅波。
-fm
fm
-f0
f0
时域分析
频域分析
由脉冲函数的卷积性质知:一个函数与单位脉冲函数卷积的结
果,就是将其以坐标原点为中心的频谱平移到该脉冲函数处。
即调制后的结果就相当于把原信号的频谱图形由原点平移至
载波频率 f 0 处,幅值减半。
整理课件
24
从调幅原理看,载波频率 f 0 必须高于原 信号中的最高频率 f m 才能使已调波仍 保持原信号的频谱图形,不致重叠。
整理课件
27
g(t)1 2x(t)1 2x(t)co4sf0t
据傅里叶变换性质可得:
G (f) 1 2X (f) 1 4X (f 2 f0 ) 1 4X (f 2 f0 )
若用一个低通滤波器滤去中心
频率为 2 f 0 的高频成分,那
么将可以复现原信号的频谱 (幅值减小为一半),若用放 大处理来补偿幅值减小,可得 到原调制信号。

高频电子电路参考答案

高频电子电路参考答案

第1章 高频小信号谐振放大器给定串联谐振回路的0 1.5MHz f =,0100pF C =,谐振时电阻5R =Ω,试求0Q 和0L 。

又若信号源电压振幅1mV ms U =,求谐振时回路中的电流0I 以及回路上的电感电压振幅Lom U 和电容电压振幅Com U 。

解:(1)串联谐振回路的品质因数为061200112122 1.510100105Q C R ωπ-==≈⨯⨯⨯⨯⨯根据0f =40212221200111.125810(H)113μH (2)100104 1.510L C f ππ--==≈⨯=⨯⨯⨯⨯ (2)谐振时回路中的电流为010.2(mA)5ms U I R === 回路上的电感电压振幅为02121212(mV)Lom ms U Q U ==⨯=回路上的电容电压振幅为02121212(mV)Com ms U Q U =-=-⨯=-在图题所示电路中,信号源频率01MHz f =,信号源电压振幅0.1V ms U =,回路空载Q 值为100,r 是回路损耗电阻。

将1-1端短路,电容C 调至100pF 时回路谐振。

如将1-1端开路后再串接一阻抗x Z (由电阻x R 与电容x C 串联),则回路失谐;C 调至200pF 时重新谐振,这时回路有载Q 值为50。

试求电感L 、未知阻抗x Z 。

图题1.2xZ u解:(1)空载时的电路图如图(a)所示。

(a) 空载时的电路 (b)有载时的电路u u根据0f =42122120112.53310(H)253μH (2)10010410L C f ππ--==≈⨯=⨯⨯⨯ 根据00011L Q C r rωω==有: 6120101115.92()21010010100r C Q ωπ-==≈Ω⨯⨯⨯⨯(2)有载时的电路图如图(b)所示。

空载时,1100pF C C ==时回路谐振,则0f =00100LQ rω==;有载时,2200pF C C ==时回路谐振,则0f =050L xLQ r R ω==+。

AM调制的基本理论

AM调制的基本理论

实际调制信号的调幅波形
1) 表示方法
ii ) 数学表达式 v AM Vm ( t ) cosct Vcm ( 1 Ma cost ) cosct
KaVm Vm max Vm min Ma 1 Vcm Vm max Vm min
称振幅调制的调制度
v vc
t
t
2) 二极管调制器
i) 电路 ii) 工作原理
i iD 1 iD 2 2( v V0 ) K1 ( ct ) RD 2RL
i AM
2V0 2Vm cosct cost cosc t RL RL
vo i AM RL
iii) 讨论:其中LC带通滤波器,中 心频率为C , BW3dB 2
vAM(t)
t
vAM(t)
t
vAM(t)
t
1) 表示方法
v AM MaVcm MaVcm Vcm cos c t cos( c )t cos( c )t 2 2
i) 表示方法
iv) 矢量表示
2) 能量关系:
Pav音频信号一个周期内在负载RL上的平均功率
V ( 1 Ma cost ) (高频一周期的平均功率) PL 2RL 2 Ma 1 2 Pav PLdt P0 ( 1 ) P0 PSB 2 0 2
2 cm 2
2 2 Ma Vcm P0 称为上下边带总功率 其中 P0 称为载波功率,PSB 2 2RL

现象:
R 克服条件: M a RL
RΩ = RL ∥Ri2 称为检波 器的音频交流负载,RL 为直流负载。
克服措施:

RL =RL1+RL2, 若Rg大: RL1≈(0.1~0.2)RL2;

高频-包络检波ppt课件.pptx

高频-包络检波ppt课件.pptx

第十五讲 包络检波
9/29/2024 2:54 PM
1
第5章 振幅调制与解调
5.5.2 二极管峰值包络检波
旧版:第6章 6.2.2
包络检波器的工作原理 包络检波器的质量指标
第十五讲 包络检波
9/2第5章 振幅调制与解调
峰值包络检波器的工作原理
输入 AM信号
非线性 电路
-
-
等避U的于免DU直C载底经im流(波部R1电和电切压mR压 割a为L)振 失分:幅 真压RU的U后imRD条在CL=件RRK上d为U产i:m 生
ui Uim (1 ma cos Wt ) cos ct Uim (1 ma cos Wt )
Ui m
式端U中的由mR ,交于a流RURURΩR负RD=对RCLRR载L检LLR/电/波RR阻为二LR,/检极/ R而波管R器VRR为WD输来直出说
9/29/2024 2:54 PM
4
第5章 振幅调制与解调
uC U1
ui U2
U3 uC U4
UA
UB
0
t
通 断通 断
iD
(a)
0
t
(b)
uo
Uav
Uo
0
t
(c)
加入等幅波时检波器的工作过程
第十五讲 包络检波
iD gD
iD
iDmax
- Uo 0
uD
0
uD
t
(b)
t (a)
检波器稳态时的电流电压波形
峰值包络检波器的应用型输出电路
+ (a) u-i
VD
Cd
+
+UDC - +
C uo R
RL uΩ

现代通信原理指导书第五章幅度调制系统习题详解

现代通信原理指导书第五章幅度调制系统习题详解

5-1以占空比为1:1、峰 — 峰值为2m A 的方波为调制信号,对幅度为A 的正弦载波进行标准幅度调制,试① 写出已调波()AM S t 的表示式,并画出已调信号的波形图;② 求出已调波的频谱()AM S ω, 并画图说明。

解:① 令方波信号为2()(1)2m m T A nT t nT f t T A nT t n T⎧+ <<+⎪⎪=⎨⎪- +<<+⎪⎩ 0,1,2,...n = ± ± ,则000()cos 2()[()]cos ()cos (1)2m AM m T A A t nT t nT s t A f t t T A A t nT t n Tωωω⎧+ ≤<+⎪⎪=+=⎨⎪- +≤<+⎪⎩其中0,1,2,...n = ± ± 。

② 取方波信号一个周期的截断信号02()02m T m T A t f t T A t ⎧+ <<⎪⎪=⎨⎪- -<<⎪⎩,求得其傅里叶变换为()()sin()44T m TTF jA TSa ωωω=-则根据式()可以得到方波信号的傅里叶变换为1(1)2()2()n m n n F j A n T πωδω+∞=-∞--=--∑所以已调信号的傅里叶变换为00001()()[()()][()()]2(1)122[()()][()()]AM n m o o o o n F F A n n jA A n T T ωωπδωωδωωπδωωδωωπππδωωδωωπδωωδωω=*-+++-++-- =--++-+-++∑时域及频域图如下所示:A π2/m j A π-0w 0w Tπ+02w T π+w()AM S w ()AM s t t()f t tT2T mA5-2已知线性调制信号表示如下: ①10()cos cos S t t t ω=Ω ②20()(10.5sin )cos S t t t ω=+Ω设Ω=60ω,试分别画出S 1(t)和S 2(t)的波形图和频谱图。

(完整版)高频电子线路第5章习题答案

(完整版)高频电子线路第5章习题答案

第5章 振幅调制、振幅解调与混频电路5.1 已知调制信号()2cos(2π500)V,u t t Ω=⨯载波信号5()4cos(2π10)V,c u t t =⨯令比例常数1a k =,试写出调幅波表示式,求出调幅系数及频带宽度,画出调幅波波形及频谱图。

[解] 5()(42cos 2π500)cos(2π10)AM u t t t =+⨯⨯54(10.5cos 2π500)cos(2π10)V t t =+⨯⨯20.5,25001000Hz 4a m BW ===⨯= 调幅波波形和频谱图分别如图P5.1(s)(a)、(b)所示。

5.2 已知调幅波信号5[1cos(2π100)]cos(2π10)V o u t t =+⨯⨯,试画出它的波形和频谱图,求出频带宽度BW 。

[解] 2100200Hz BW =⨯=调幅波波形和频谱图如图P5.2(s)(a)、(b)所示。

5.3已知调制信号3[2cos(2π210)3cos(2π300)]Vu t t Ω=⨯⨯+⨯,载波信号55cos(2π510)V,1c a u t k =⨯⨯=,试写出调辐波的表示式,画出频谱图,求出频带宽度BW 。

[解] 35()(52cos2π2103cos2π300)cos2π510c u t t t t =+⨯⨯+⨯⨯⨯3555353555(10.4cos2π2100.6cos2π300)cos2π5105cos2π510cos2π(510210)cos2π(510210)1.5cos2π(510300) 1.5cos2π(510300)(V)t t tt t t t t t =+⨯⨯+⨯⨯⨯=⨯⨯+⨯+⨯+⨯-⨯+⨯++⨯- 3max 222104kHz BW F =⨯=⨯⨯=频谱图如图P5.3(s)所示。

5.4 已知调幅波表示式6()[2012cos(2π500)]cos(2π10)V u t t t =+⨯⨯,试求该调幅波的载波振幅cm U 、调频信号频率F 、调幅系数a m 和带宽BW 的值。

振幅调制原理

振幅调制原理

振幅调制原理
振幅调制(Amplitude Modulation,简称AM)是一种调制技术,它通过改变载波的振幅,来传输要调制的信号。

具体而言,振幅调制是将调制信号的幅度(即振幅)与高频载波信号相乘,得到一个新的带有调制信号特征的调制信号。

在振幅调制中,调制信号通常是音频信号,比如人声或者音乐。

而载波信号是具有固定频率和振幅的高频信号。

调制信号和载波信号相乘的结果,就是振幅调制信号。

振幅调制过程中,调制指数(也称调制深度)是一个关键参数。

调制指数是调制信号的幅度变化与载波幅度的比值。

调制指数的大小会影响到调制信号的功率和频谱分布。

振幅调制的原理可以用以下几个步骤来解释:
1. 调制信号:将要传输的音频信号作为调制信号。

2. 载波信号:选择一个高频信号作为载波信号。

3. 调制过程:将调制信号的幅度与载波信号相乘,得到一个新的调制信号。

4. 调制指数:调节调制指数,控制调制信号的幅度变化。

5. 传输信号:将调制后的信号传输到接收端。

在接收端,需要进行解调过程,将调制信号还原为原始的调制信号。

解调过程是振幅调制的逆过程,在解调过程中,通过将收到的调制信号与一个参考信号(通常是与发送端相同的载波信号)相乘,就可以获得原始的调制信号。

振幅调制在广播和电视等领域中得到了广泛应用。

它可以实现信号的远距离传输,同时具有一定的抗干扰能力。

然而,振幅调制也存在一些问题,比如在传输过程中容易受到噪声和干扰的影响,以及只能传输一个信号的限制。

因此,在一些特定的应用场景中,人们也使用其他调制技术,比如频率调制(FM)和相位调制(PM)。

高频电子线路复习提纲与习题答案(1)

高频电子线路复习提纲与习题答案(1)

《高频电子线路》课程考试大纲课程编号:课程名称:高频电子线路课程英文名:Electronic circuit of high frequency课程类型:本科专业必修课学时、学分:总学时54学时4学分(其中理论课44学时,实验课10学时)开课单位:信息学院开课学期:三年级第二学期考试对象:电子信息工程专业本科生考试形式:闭卷考试所用教材:1.《高频电子线路》(第二版),高吉祥主编,电子工业出版社;2.《高频电路原理与分析》(第三版)曾兴雯等编著西安电子科技大学出版社一、学习目的和任务《高频电子线路》课程是高等学校电子信息工程、通信工程等专业的必修专业基础课。

本课程以分立元件构成的基本非线性电路为基础,以集成电路为主体,通过课堂讲授使学生理解无线通信系统中的各种主要的高频电子电路的组成、电路功能、基本工作原理,并掌握其分析方法及应用;通过实验教学、开放实验室、课外实验等实践环节使学生加深对基本概念的理解,掌握基本电路的设计、仿真与调试方法(用计算机采用EDA软件)。

同时为后续专业课的学习打好基础。

二、制定考试大纲的目的和依据制定《高频电子线路》课程的考试大纲是为了使教师和学生在教与学的过程中共同建立明确的目标和要求,使考试成绩能比较正确和客观地反映学生掌握本课程的水平,同时还能起到检验教师教学效果的作用。

按照考试大纲考试能够进一步促进课程教学的改革,并为提高教学质量提供了依据。

本大纲制定的考核要求,主要是依据《高频电子线路》课程所使用的电子工业出版社出版、高吉祥编著的《高频电子线路》一书,并依据该门课程的教学大纲而制定的。

三、考试大纲内容说明:1、考试形式:分为闭卷、开卷、闭卷+开卷、实验操作、实验操作+闭卷考试等,本课程采用闭卷考试形式。

2、所用教材:包括书名,作者名,出版社,版次。

3、考试对象:分为年级,学期。

4、考核目标:其中a、b、c,分别表示a:了解;b:掌握;c:熟练掌握。

四、内容要求:第一章选频网络1.掌握LC串并联谐振回路的谐振特性;2.串并联阻抗转换(在同一工作频率处);3.接入系数的计算(电容抽头、电感抽头、变压器等);4.耦合回路(1)反射阻抗的概念(2)耦合系数(3)耦合因数(4)频率特性及通频带第二章高频小信号放大器1.单级单调谐放大器掌握电路分析方法,画交流等效电路,求谐振放大电路的电压增益、功率增益、通频带、选择性。

电子教案-高频电子教案(第三版)-高频电子教案(第三版)-5fuxi-电子课件

电子教案-高频电子教案(第三版)-高频电子教案(第三版)-5fuxi-电子课件
第 5 章 振幅调制、解调与混频电路
振幅调制的基本原理 相乘器电路 振幅调制电路 振幅检波电路 混频电路
一、三种调幅方式的比较 1. 单频调制表达式 AM: uO Um0 (1 ma cos Ωt )cos ωct
DSB: uO = kaU mcos t coswct SSB: uO =1/2[ kaU mcos( /-wc)t]
2. 混频电路的组成模型
uL(t) us(t)
AMXY uO(t)
X
BPF
uI(t)
Y
中频已调波
fc
uL(t)
本机振荡
载f频I 已变调换波后的新
fL 调幅收音机: fI = 465 kHz
fI = fL+ f调c 制类型和调 或 fI = fL– fs 制(当参f数L>不f变c )。
fI = fs – fL (当 fL< fc)
当 fI > fc 称为上混频
当 fI < fc 称为下混频
ur(t) us(t)
AMXY u’O(t)
X
LPF
uO(t)
ur(t) — 与载波同频 同相的同步信号
Y
乘积型同步检波电路组成模型
2. 失真
u
1. 惰性失真
原因:
RC过大放电慢,C上电压不 能跟随输入调幅波幅度下降。
现象
ma越大,Ω越大,越容易产生惰性失真。
2. 负峰切割失真
uO
原因:
检波电路的交流负载电 阻和直流负载电阻相差太大。 u
例 解:
(设ωc为Ω的整数倍)
BW = 2F
求带宽
例 解:
(设ωc为Ω的整数倍)
BW = F
求带宽

振幅调制电路

振幅调制电路
振幅调制电路有两个输入端和一个输出端,如图 5.2 所 示 。 输 入 端 有 两 个 信 号 : 一 个 是 输 入 调 制 信 号 uΩ(t)=UωmcosΩt= Uωm cos2πFt,称之为调制信号,它 含有所需传输的信息;另一个是输入高频等幅信号, uc(t)=Ucmcosωct=Ucmcos2πfct,称之为载波信号。其中, ωc=2πfc,为载波角频率;fc为载波频率。
uo(t)= Amuc(t)uΩ(t)
=AmUΩm cosΩt Ucmcosωct
(5―10)
由上式可得双边带调幅信号的波形,如图5.9(a)所示。
根据(5―10)式可得双边带调幅信号的频谱表达式为
uo
(t)
1 2
AmUmUcm[cos(c
)t
cos(c
)t]
(5―11)
u(t)
Am uo(t)=Amu(t)uc(t)
(5―2)
4) 普通调幅信号的频谱结构和频谱宽度
将式(5―1)用三角函数展开:
Uo (t) Uomct mUom cos t cosct
Uom
cosct
1 2
maUom
cos(c
)t
1 2
maUom
cos(c
)t
(5―3)
u(t)
t uc(t)
t
uo(t)
Uo mmax
Uo mmin
t
Uo m(1+macos t)
(5―5)
可以看到,uo(t)的频谱结构中,除载波分量外, 还有由相乘器产生的上、下边频分量,其角频率为
(ωc±Ω)、(ωc+2Ω)…(ωc±nmaxΩ)。这些上、下 边频分量是将调制信号频谱不失真地搬移到ωc两边, 如图5.7所示。不难看出,调幅信号的频谱宽度为调制 信号频谱宽度的两倍,即

通信原理-第5章 振幅调制、解调及混频 63页 2.5M PPT版

通信原理-第5章 振幅调制、解调及混频 63页 2.5M PPT版
可见,调幅波并不是一个简单的正弦波,包含有三个频率分量:
载 波 分(量 c ):不 含 传 输 信 息
上边频分量 c :含传输信息 下边频分量 c :含传输信息
调制信号
Ω
载波
调幅波
U
ωc
c
下边频
1 2 m aU c
1 2
m
aU
c
上边频
ωc - Ω ωc +Ω
(2) 限带信号的调幅波
5.3 .2 高电平调幅电路 1. 集电极调幅电路 2. 基极调幅电路
返回
5.3 振幅调制电路
A信 M:u 号 AM U c(1m co ts)co cts 纯调幅 DS 信 B :u 号 DSB k U U cco tsco cts 调,调 幅相 SS 信 B:u 号 SS BU (c otcso ctssi n tsi n ct) 调,调 幅频
n
Uncosc(n)t

5.2.2双边带( double sideband DSB)调幅信号 2. 波形与频谱
休息1 休息2 返回
调制信号

下边频
载波
c 上边频
(1) DSB信号的包络正比于调制信号 Uco s t
仿真
(2) DSB信号载波的相位反映了调制信号的极性,即在调制信号负半周 时,已调波高频与原载波反相。因此严格地说,DSB信号已非单纯的振 幅调制信号,而是既调幅又调相的信号。
返回
(则1那)有么设u 调A :幅M 载U 信波c号信1( 号 n 已 :1m 调un cc 波U )o c可n cts 表o (达n sc)t为c:调 o u 制cA t信sM 其号中:U u :m m ( tn )U c cko aoU cs sttn

高频电子线路第5章ppt课件

高频电子线路第5章ppt课件
2
载波uc
已调波uAM
振荡器
倍频
高频 放大器
调制
话筒
调制信号 放大器 调制信号 uΩ
无线电通信发射机的组成框图
3
5.1.1 普通调幅波
所谓调制,就是使幅度、频率、或相位随调制信号 的大小而线性变化的过程。分别称为振幅调制、频率调 制或相位调制,简称调幅、调频和调相。
解调是调制的相反过程,即从已调波信号中恢复原 调制信号的过程。与调幅、调频和调相相对应,有振幅 解调、频率解调和相位解调,简称检波、鉴频和鉴相。
u A M =U cm (1+M acosΩ t)cosω ct
=U cm cosω ct+M a 2 U cm cos(ω c+Ω )t+M a 2 U cm cos(ω c-Ω )t
载波分量
上边带分量
下边带分量
电 压 振 幅
U Ωm
调幅波的频谱图
U cm
MaUcm / 2
MaUcm / 2

ω c - Ω ω c ωc + Ω
过调幅失真
Ma >1
8
U m (t)= U c m (1+ M a c o sΩ t)
U m m ax=U cm (1+M a) Um m in=Ucm(1-M a)
包络的振幅为:
Um=Umm ax2 -Umm in=UcmM a
调制度
包络振幅
Ma 载波振幅
Um Ucm
9
3. AM调幅波的频谱及带宽
ω
u A M = U c m (1 + M a c o s Ω t)c o s ω c t
= U c m c o s ω c t+ M a 2 U c m c o s ( ω c + Ω ) t+ M a 2 U c m c o s ( ω c -Ω ) t

第五章振幅调制..

第五章振幅调制..

表示单位调制信号电压所引起的高频振荡幅度的变化
高频电子线路
二、单频调制
1. 表达式
uΩ (t ) U Ωm cos Ωt U Ωm cos 2Ft
uAM (t ) 〔U cm Ku (t )〕 cos(ct ) 〔U cm KU mcost〕 cos(ct ) U cm ( 1 ma cost〕 cos(ct )
高频电子线路
第 5 章 振幅调制、解调电路
振幅调制:用待传输的低频信号去控制高频载波信 号的幅值 解调:从高频已调信号中还原出原调制信号
振幅调制、解调和混频电路都是频谱线性搬移电路
地位: 通信系统的基本电路
高频电子线路
高频电子线路
高频电子线路
第 5 章 振幅调制、解调电路
概述 调幅信号的基本特性 低电平调幅电路 高电平调幅电路 包络检波 同步检波
uDSB (t ) AM u (t )uc (t )
uDSB (t ) AMUcmUm cos(t ) cos( c t ) Um cos(t ) cos( c t )
1 1 U m cos[(c )t ] U m cos[(c )t ] 2 2
高频电子线路
高频电子线路
5.2.1 普通调幅波(AM)
一、普通调幅波表达式
包络函数(瞬时振幅)U(t)可表示为:
U (t ) U cm U (t ) U cm Ku (t )
U (t ) 与调制电压 u (t )
成正比,代表已调波振幅的变化量;
包络函数所对应的曲线是由调幅波各高频周期峰值所连成的 曲线,称为调幅波的包络。因此,包络与调制信号的变化规 律完全一致,其包含有调制信号的有用信息。

第5章调制与解调共51讲160页课件

第5章调制与解调共51讲160页课件
18
残留边带调制是介于单边带调制与双边带调制之间的一种 调制方式,它既克服了DSB信号占用频带宽的问题,又解决 了单边带滤波器不易实现的难题。
在残留边带调制中,除了传送一个边带外,还保留了另外 一个边带的一部分。对于具有低频及直流分量的调制信号, 用滤波法实现单边带调制时所需要的过渡带无限陡的理想 滤波器,在残留边带调制中已不再需要,这就避免了实现上 的困难。
接将载频与调 制信号相乘
1 2
AUmUcm cos(c
)t
cos(c
)t
15
[优点] 发送功率利用率提高
uDSB Auuc AUm cos t Ucm cosct
1 2
AUmUcm cos(c
)t
cos(c
)t
[不足]
1) 存在180deg相位突变点; 2) 包络变化不反映调制信号 的变化;
41
失真原理 放电时常数过大,导致放电过慢形成。 解决办法
降低放电时常数, 使放电速率快于 包络下降速率 不失真条件
RC 1 ma2 ma
42
1)大信号包络检波 实用电路
Ri:为后级电路输入电阻,
此处作为检波负载。
CC:隔离Uo中的直流分量,
只让交流成份送至后级处理,
CC的容抗要求远小于Ri阻抗
u (t) Um cos t Um cos 2Ft 2F
又令载波信号
uC (t) Ucm cosct Ucm cos 2fc t c 2fc 调幅波振幅(包络) (与调制信号成比例)
U AM (t) Ucm kaUm cost
Ucm(1
ka
U m Ucm
c ost )
6
普通调幅波的表达式、功率与效率计算 三种调幅波的波形图、频谱图

第5章 振幅调制、解调答案

第5章 振幅调制、解调答案

第5章 振幅调制、解调及混频5.1有一调幅波的表达式为625(10.7cos250000.3cos210000)cos210u t t t πππ=+-(1)试求它所包含的各分量的频率与振幅;(2)绘出该调幅波包络的形状,并求出峰值与谷值幅度。

解:(1)此调幅波所含的频率分量与振幅为(2)此调幅波的包络为:()25(10.7cos 250000.3cos 210000)25(10.7cos 0.3cos 2)m U t t t ππθθ=+-=+-令利用高等数学求极值的方法求解出包络的峰值与谷值:当180θ︒=时,包络的谷值为0;当54.3θ︒=时,包络的峰值约为37.6。

5.2有一调幅波,载波功率为100W 。

试求当1a m =与0.3a m =时每一边频的功率。

解:设调幅波载波功率为c P ,则边频功率为214c u a c l P P m P P ==。

(1)1a m =时,1110025(W)44u l c P P P ===⨯= (2)0.3a m =时,2110.30.09100 2.25(W)44u l cP P P ==⨯⨯=⨯⨯=5.3一个调幅发射机的载波输出功率为5kW ,70%a m =,被调级的平均效率为50%。

试求: (1)边频功率;(2)电路为集电极调幅时,直流电源供给被调级的功率; (3)电路为基极调幅时,直流电源供给被调级的功率。

解:设调幅波载波功率为c P ,则边频功率为214u a c l P m P P ==。

(1)∵214u l a c P P m P ==∴22110.75 1.225(kW)22a c P m P ==⨯⨯=边频(2)集电极调幅时:50%o c D D P PP P η===∴510(kW)0.5cD P P η=== (3)基极调幅时:50%oDP P η==,而5 1.225 6.225(kW)o c u l P P P P =++=+= ∴ 6.22512.45(kW)0.5oD P P η===5.4载波功率为1000W ,试求1a m =与0.7a m =时的总功率和两边频的功率各为多少?解:设载波功率为c P ,则1000W c P =,边频功率为214u a c l P m P P ==,总功率为212(1)c u a c P P P m P =+=+,因此5.6图题5.6示出一振幅调制波的频谱。

《高频电子线路》课后答案

《高频电子线路》课后答案

高频电子线路参考答案第2章 小信号选频放大器2.1 已知并联谐振回路的1μH,20pF,100,L C Q ===求该并联回路的谐振频率0f 、谐振电阻p R 及通频带0.7BW 。

[解] 90-612110.035610Hz 35.6MHz 2π2π102010f LCH F-===⨯=⨯⨯6312640.71010022.4k 22.361022.36k 201035.610Hz35.610Hz 356kH z100p HR Q Ff BW Q ρρ--===Ω=⨯Ω=Ω⨯⨯===⨯=2.2 并联谐振回路如图P2.2所示,已知:300pF,390μH,100,C L Q ===信号源内阻s 100k ,R =Ω负载电阻L 200k ,R =Ω求该回路的谐振频率、谐振电阻、通频带。

[解] 011465kHz 2π2π390μH 300PFf LC≈==⨯0.70390μH100114k Ω300PF////100k Ω//114.k Ω//200k Ω=42k Ω42k Ω42k Ω371.14k Ω390μH/300 PF/465kHz/37=12.6kHzp e s p Lee e R Q R R R R R Q BWf Q ρρ===========2.3 已知并联谐振回路的00.710MHz,C=50pF,150kHz,f BW ==求回路的L 和Q 以及600kHz f ∆=时电压衰减倍数。

如将通频带加宽为300 kHz ,应在回路两端并接一个多大的电阻? [解] 6262120115105μH (2π)(2π1010)5010L H f C --===⨯=⨯⨯⨯⨯ 6030.7101066.715010f Q BW ⨯===⨯2236022*********.78.11010p oU f Q f U ••⎛⎫⎛⎫∆⨯⨯=+=+= ⎪ ⎪⨯⎝⎭⎝⎭当0.7300kHz BW =时6030.746120101033.33001033.31.061010.6k 2π2π10105010e e e ef Q BW Q R Q f C ρ-⨯===⨯====⨯Ω=Ω⨯⨯⨯⨯而471266.72.131021.2k 2π105010p R Q ρ-===⨯Ω=Ω⨯⨯⨯ 由于,p e pRR R R R =+所以可得10.6k 21.2k 21.2k 21.2k 10.6k e p p eR R R R R Ω⨯Ω===Ω-Ω-Ω2.4 并联回路如图P2.4所示,已知:360pF,C =1280μH,L ==100,Q 250μH,L = 12=/10,n N N =L 1k R =Ω。

第五章振幅调制电路

第五章振幅调制电路

i5
I0 2
(1
th
u2 2UT
)
i6
I0 2
(1 th
u2 2UT
)
UT
kT q
③T1、T2和T3、T4组成的差分对管的电流电压关系
No i1
i5 2
(1
th
u1 2UT
)
Image i3
i6 2
(1
th
u1 2U T
)
i2
i5 2
(1
th
u1 2U T
)
i4
i6 2
(1
th
u1 2U T
3、普通调幅波的波形
①右图是单音频调制普通调幅波
的波形图。
调制信号
②从波形上可以看出:
Ummax Ucm (1 ma )
Ummin Ucm (1 ma )
则调幅指数
ma
U mmax U mmax
U mmin Ummin
载波信号 已调波信号
已调波振幅的包络形状 与调制信号一样第2页/共43页
ma
B 2Fmax
5、结论
调幅过程是一种线性频谱搬移过程将调制信号的频谱由低频被搬移到 载频附近,成为上、下边频带。
第5页/共43页
三、普通调幅波的功率关系
1、普通调幅波中各频率分量之间的功率关系
将普通调幅波电压加在电阻R两端,电阻R上消耗的各频率分量对应的 功率可表示为
①载波功率
POT
1
U
2 cm
第21页/共43页
④分类 根据输入信号的极性可分为:
四象限模拟乘法器 二象限模拟乘法器 一象限模拟乘法器
⑤常用于频率变换的模拟乘法器的型号

第五章 信号变换一:振幅调制、解调

第五章 信号变换一:振幅调制、解调
普通调幅( 普通调幅(AM):含载频、上、下边带 ) 含载频、 双边带调幅( 双边带调幅(DSB):不含载频 ) 单边带调幅( 单边带调幅(SSB):只含一个边带 ) 残留单边带调幅( 残留单边带调幅(VSB):含载频、一个 ) 含载频、 边带
二、双边带调制和单边带调制
1. 双边带调制
(1) 双边带调制电路的模型 )
例题
设载波功率Pc为100W,问调幅度为1及0.3 设载波功率 ,问调幅度为 及 总边频功率、总平均功率各为多少? 时,总边频功率、总平均功率各为多少? (ma =1时, P = 50W、 P∑a=150W、 时 、 、 ma = 0.3 时, P = 4.5W、 P∑a=104.5W) 、 )
7.调幅波的几种调制方式 调幅波的几种调制方式
二、混频器组成框图及工作原理
⒈ 组成框图
⒉ 工作原理
两个不同频率的高频电压作用于非线性器 件时,经非线性变换, 件时,经非线性变换,电流中包含直流分 基波、谐波、和频、差频分量等。 量、基波、谐波、和频、差频分量等。其 中差频分量f 中差频分量 Lo-fs就是混频所需要的中频成 分,通过中频带通滤波器把其它不需要的 频率分量滤掉,取出差频分量完成混频。 频率分量滤掉,取出差频分量完成混频。 若同一个非线性器件既完成混频、又作为 若同一个非线性器件既完成混频、 本地振荡,则这个混频器通常称为变频器 变频器。 本地振荡,则这个混频器通常称为变频器。
5.1.1 振幅调制电路
一、普通调幅(AM) 普通调幅( )
什么是调幅? ⒈ 什么是调幅? ——载波的振幅值随调制信号的大小作线 载波的振幅值随调制信号的大小作线 性变化,称为振幅调制,简称调幅 调幅( 性变化,称为振幅调制,简称调幅(AM) ) 2. 普通调幅电路模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以用频谱表示,如右图所示。
首页 上页 下页 退出
高频电子线路
首页 上页 下页 退出
六、振幅调制电路的分类及要求
1、分类:分低电平调幅和高电平调幅两大类
2、要求 ①低电平调幅是在低功率电平级进行振幅调制,输出功率和效 率不是主要指标。重点是提高调制的线性,减小不需要的频率 分量的产生和提高滤波性能。
高频电子线路
首页 上页 下页 退出
3、通过带通滤波器选出调幅波输出
流过二极管电流中含有 :直流、? c、? c ? ? 、3? c ? ? 、5? c ? ? 、
和 2 ? c、4 ? c、
经中心频率为? c ,通
频带略大于 2? 的带通
滤波器取出 ? c、? c ? ?
的普通调幅波信号输出 。
结论:单二极管开关状态调幅电路只能实现普通调幅 波(AM)
?
?
)t
?
2 3π cos(3? c
?
?
)t ?
? ??
3、通过带通滤波器取出双边带调幅波
由于i中包含 Ω、? c ? Ω、3ωc ? Ω、?,等频率成分,经中心频率为 ,带宽略大于
2? 的带通滤波器取出 ? c ? ? 的频率成分电流在负载 RL上建立双边?带c调幅电压输出。
结论:双二极管开关状态调幅电路能实现平衡调幅(DSB)
单音频调制
则普通调幅波的数学表示式为: u(t) ? Ucm (1? ma cos ? t)cos ? ct
其中 ma
?
KaU? m U cm
称为调幅指数(调幅度)
高频电子线路
3、普通调幅波的波形
①右图是单音频调制普通调幅
波的波形图。
调制信号
②从波形上可以看出:
U mmax ? U cm(1? ma )
④分类
四象限模拟乘法器
根据输入信号的极性可分为: 二象限模拟乘法器
一象限模拟乘法器
⑤常用于频率变换的模拟乘法器的型号
国外同类产品:MC1496 MC1596 MC1495 MC1496 LM1496 LM1596…….. AD834(宽带)、AD630(多功能)、 AD734(高精度)…….
国内同类产品:CB1595 CB1596 BG314…….
经过中心频率为 ? c ,通带略大于2? 的带通滤波器,则在 RL上
只取 ? c ? ? 的双边带调幅电压。
结论:①二极管环形调幅电路能实现平衡调幅(DSB)
②与双二极管调幅电路相比输出信号的频谱少了 ? 的成份,
且幅度为其二倍。
高频电子线路
首页 上页 下页 退出
四、模拟乘法器调幅电路
1、模拟乘法器
i
?
i1 ?
i2
?
2u? (t) rd ? 2RL
K(? ct)
?
2U ? m cos ? rd ? 2RL
t
? ??
1 2
?
2 π
cos
?
c
t
?
2 3π
cos3
?
ct
?
? ??
?
U? m rd ? 2RL
???cos ?
t?
2 cos(? π
c
?
?
)?
2 π cos(? c
?
?
)t ?
2 3π
cos(3? c
④频带宽度 B ? F
高频电子线路
五、振幅调制电路的功能
1、振幅调制电路的功能
是将输入的调制信号和载波信号 通过电路变换成高频调幅信号输 出。
2、功能的表示
当载波为 uc (t ) ? U cm cos ? ct 调制信号为 u? (t) ? U? m cos ? t 时,三种振幅调制电路的功能可
高频电子线路
三、二极管环形调幅电路
首页 上页 下页 退出
高频电子线路
首页 上页 下页 退出
1、在 uc (t ) 的正半周,D1和D2导通,D3和D4截止。
1:2
2:1
D1和D2的开关函数为
K(? ct) ?
1 ?
2
2
?
cos ? ct ?
2
3?
cos 3? ct ? ?
在无带通滤波器的条件下,
②高电平调幅是直接产生满足发射机输出功率要求的已调波。 利用丙类高功放改变来实现调幅。其优点是效率高。设计时必 须兼顾输出功率、效率和调制线性的要求。
七、振幅调制电路的基本组成
一般来说,振幅调制电路由输入回路、非线性器件和带通 滤波器三部分组成。
高频电子线路
首页 上页 下页 退出
第二节 低电平调幅电路
U mmin ? U cm (1? ma )
则调幅指数
ma
?
U mmax U mmax
? U mmin ? U mmin
载波信号 已调波信号
已调波振幅的包络形状 与调制信号一样
首页 上页 下页 退出
ma
=
U U
m max m max
? U mmin ? U mmin
U m max
? U cm (
高频电子线路
A、在T5和T6的发射极之间接入负反馈电阻Ry。
并将恒流源I0分为两个I0/2的恒流源。
电信号是占有一定频谱宽度 的低频信号,通常称为基带信号。 2、调制的作用:将基带信号加载到高频信号上,用高频信号作为运
载工具,能够较好地实现多路有选择性的通信。基带信号在调制
时又常称调制信号。
3、调制的分类: 调制分为
模拟调制 数字调制
幅度调制(AM) 频率调制(FM) 相位调制(PM)
幅度键控(ASK) 频率键控(FSK) 相位键控(PSK)
多频调制的AM 波的频带宽度:
B ? 2Fmax
5、结论
调幅过程是一种线性频谱搬移过程将调制信号的频谱由低频被 搬移到载频附近,成为上、下边频带。
高频电子线路
三、普通调幅波的功率关系
首页 上页 下页 退出
1、普通调幅波中各频率分量之间的功率关系
将普通调幅波电压加在电阻R两端,电阻R上消耗的各频率分量 对应的功率可表示为
高频电子线路
首页 上页 下页 退出
高频电子线路
首页 上页 下页 退出
2、单边带调幅波(SSB)
①数学表示式
u (t )
?
U
' m
cos(?
c
?
?
)t或u(t)
?
U
' m
cos(?
c
?
?
)t
②频谱
单频调制的单边带调幅波的频谱为? c ? ? 或 ? c ? ?
③特点 频带只有双边带调幅波的一半,其频带利用率高。 全部功率都含有信息,功率有效利用率高。
流过负载的总电流:
i?
?
i1
?
i2
?
2u? (t) rd ? 2RL
K(? ct)
i ? i ? i ? 2u? (t) K(? t ? ? )
高频电子线路
首页 上页 下页 退出
2、在 uc (t ) 的负半周,D1和D2截止,D3和D4导通。
1:2
2:1
而D3和D4的开关函数为:K(?
ct
i????)=i1
①数学表示式

u(t)
?
1 2
U
m
cos
??
c
?
?
?t
?
1 2
U
m
cos ??
c
?
?
?t
②波形特点
? 双边带调幅的振幅,其包络随调制信号变化, 但包络不能完全准确地反映调制信号变化规律
? 双边带信号的载波相位在调制电压零交点突变 1800
③双边带调幅波的频谱 ? c ? ?
④双边带调幅波的频带宽度 B ? 2F
1?
2
?i22π?corsd2?u?c?t2(?Rt )32Lπ
Kco(s?3
?ctc)t
?
2 5π
cos5 ?
ct
?
在无带通滤波器的条件下,
流过负载的总电流:
i?
? i4 ? i3 ?
2u? (t) rd ? 2RL
K (?
ct
?
?
)
高频电子线路
首页 上页 下页 退出
3、负载RL中的电流

i ? i? ? i?
(1 ?
th u2 ) 2U T
i6
?
I0 2
(1 ? th u2 ) 2U T
kT UT ? q
③T1、T2和T3、T4组成的差分对管的电流电压关系
i1
?
i5 2
(1 ?
th
u1 2UT
)
i3
?
i6 2
(1 ?
th
u1 2U T
)
i2
?
i5 2
(1 ?
th
u1 2UT
)
i4
?
i6 2
(1 ?
th
u1 2UT
?
2u? (t) rd ? 2 RL
[K (?
ct) ?
K (?
ct
?
?
)]
i
?
2U ? m cos ? 2RL ? rd
t
?4 ?? π
cos ?
ct
?
4 3π
cos3?
ct
?
? ??
4、通过带通滤波器取出双边带调幅波
流过负载 RL 的总电流 i中含有 ? c ? ? 、3? c ? ? 、 等频率分量。
)
温度当量,常 温下为26mv
④双端输出时,输出电流 i ? iⅠ ? iⅡ
相关文档
最新文档