活性污泥法工艺控制参数实践应用

合集下载

国家精品课程《水污染控制工程》3-活性污泥法

国家精品课程《水污染控制工程》3-活性污泥法
水污染控制工程(下)
第四章、污水的生物处理
教学要求
1、掌握活性污泥法的基本原理及其反应机理 2、理解活性污泥法的重要概念与指标参数:如活性 污泥、剩余污泥、MLSS、MLVSS、SV、SVI、Qc、 容积负荷、污泥产率等。 3、理解活性污泥反应动力学基础及其应用。 4、掌握活性污泥的工艺技术或运行方式; 5、掌握曝气理论。 6、熟练掌握活性污泥系统的计算与设计; 时间安排 20h(其中机动2h)
7
后生动物(主要指轮虫),捕食菌胶团和原生动物,是水质稳 定的标志。因而利用镜检生物相评价活性污泥质量与污水处 理的质量。
• 思考题:后生动物的出现反映了处理水质较好,因此能否说 明出水氨氮较低,氨氮在生物处理过程中被硝化?
③微生物增殖与活性污泥的增长:
a、微生物增值:在污水处理系统或曝气池内微生物的增殖规 律与纯菌种的增殖规律相同,即停滞期(适应期),对数期, 静止期(也减速增殖期)和衰亡期(内源呼吸期)。
③泥龄(Sludge age)Qc:生物固体平均停留时间或活性污泥在 曝气池的平均停留时间,即曝气池内活性污泥总量与每日排 放污泥量之比,用公式表示:θc=VX/⊿X=VX/QwXr 。式中: ⊿X为曝气池内每日增长的活性污泥量,即要排放的活性污泥 量。
Qw为排放的剩余污泥体积。 Xr为剩余污泥浓度。其与SVI的关系为(Xr) max=106 /SVI • Qc是活性污混处理系统设计、运行的重要参数,在理论上也 具重要意义。因为不同泥龄代表不同微生物的组成,泥龄越 长,微生物世代长,则微生物增殖慢,但其个体大;反之, 增长速度快,个体小,出水水质相对差。 Qc长短与工艺组合 密切相关,不同的工艺微生物的组合、比例、个体特征有所 不同。污水处理就是通过控制泥龄或排泥,优选或驯化微生 物的组合,实现污染物的降解和转化。

污水处理 活性污泥法

污水处理 活性污泥法

污水处理活性污泥法活性污泥法是目前常用的污水处理方法之一,通过调节污水中的氧化还原电位、溶解氧浓度、污泥的混合活性等参数,从而促进有机物的降解和去除。

本文将详细介绍污水处理中的活性污泥法的原理、工艺流程、运行要点等内容。

一、原理活性污泥法是利用厌氧和好氧微生物的协同作用,将有机物降解为无机物的过程。

在好氧条件下,厌氧微生物通过氧化有机物、硝化硝酸盐等反应,将有机物转化为无机物。

而在厌氧条件下,好氧微生物通过还原反应,使带有氧的无机物还原为有机物。

二、工艺流程1、前处理:包括进水调节和初级过滤等步骤,目的是去除大颗粒杂质、调整污水的水质和水量。

2、活性污泥处理:将经过前处理的污水引入活性污泥池。

通过不断的搅拌、曝气等方式,促进污水中的有机物降解。

3、沉淀池处理:活性污泥法中产生的混合液经过一段时间的静置,使污泥与水分离,沉淀至池底。

4、出水处理:经过沉淀后的清水从上方取出,经过二次过滤和消毒等步骤,最终实现出水的净化和回用。

三、运行要点1、污水处理设备的维护保养:定期清理设备及管道,确保正常运行和通畅。

2、活性污泥的管理:控制进水水量和水质,根据实际情况调整搅拌和曝气的方式和参数。

3、污泥的处理和回用:及时清理沉淀池中的污泥,可以通过浓缩、脱水等方式处理后用于农田肥料或填埋。

4、出水水质的监测与控制:监测出水的COD、氨氮、总磷等指标,根据环保要求进行调整和控制。

附件:1、活性污泥处理工艺流程图2、活性污泥法相关设备的使用说明书法律名词及注释:1、污水处理:指对废水进行预处理和精处理,以达到排放排放标准或再利用的要求。

2、活性污泥:一种富含微生物的混合物,能够有效降解污水中的有机物。

3、厌氧:生物在缺氧或无氧条件下生长和代谢的过程。

序批式活性污泥法(SBR)原理与应用

序批式活性污泥法(SBR)原理与应用

SBR 法的工作原理
• 沉淀期
• 相当于传统活性污泥法中的二次沉淀池,停止曝气搅拌 后,污泥絮体靠重力沉降和上清液分离。本身作为沉淀池, 避免了泥水混合液流经管道,也避免了使刚刚形成絮体的 活性污泥破碎。此外,SBR 活性污泥是在静止时沉降而不 是在一定流速下沉降的,所以受干扰小,沉降时间短,效 率高。
SBR 法的工作原理与操作
1
空间上是按序排列、间歇的
如下图(处理生活污水的三池SBR系统 )
2
时间上是按次序列的、间歇的 如右图(SBR一个周期操作过程)
SBR 法的工作原理与操作
SBR处理示意图
传统SBR的操作过程
进水
曝气
曝气/不曝气
曝气
进水期
反应期
静置/不曝气 排水/排泥 污泥活化
沉淀期
排水排泥期 闲置期
d(VS)
dt QSO KXV QSO K ( XVV(O )3-4)
刚开始进水时(t=0),由假设(3)得:
VS (VO VF )Se 0
(3-5)
式中VF——充水期结束时进水的体积;
Se——出水底物浓度。
当进水结束时(t=tF),
VS VO S F
(3-6)
式中SF——进水期结束或反应期开始时底物浓度。
它的主要特征是在运行上的有序和间歇操作,SBR 技术的核心是SBR反应池,该池集均化、初沉、生 物降解、二沉等功能于一池,无污泥回流系统。
在用地紧张、处理量大的城市具有很高的使用价值。
SBR工艺早在1914年即已开发 ,70年代末 期美国教授R.L.Irvine等人为解决连续污水处理法 存在的一些问题首次提出,并于1979年发表了第 一篇关于采用SBR 工艺进行污水处理得论著。继 后, 日本、美国、澳大利亚等国的技术人员陆续 进行了大量的研究。并发展出很多的衍生工艺如 ICEAS、CASS等。

活性污泥法及其在环境工程中的应用

活性污泥法及其在环境工程中的应用

活性污泥法及其在环境工程中的应用活性污泥法及其在环境工程中的应用活性污泥法是一种常见的污水处理技术,其通过活性污泥中的微生物来降解有机物和净化水体。

该技术在环境工程领域被广泛应用,已取得了显著的效果和成就。

活性污泥是指孕育在废水中的富含生物多样性的污泥,它主要由具有降解和去除有机物能力的微生物所组成。

这些微生物在被合适的条件下,能够高效地降解废水中的有机污染物,并将其转化为无害的物质。

活性污泥的形成需要适宜的环境条件和适宜的营养物质供给。

不同类型的污水处理系统需要不同性质的活性污泥,因此在实际应用中需要进行定制化的设计和运营。

活性污泥法的基本原理是在一个封闭的反应器中,通过给予污水适宜的氧气和温度条件,以及提供足够的养分来维持微生物的生长和繁殖。

当废水进入反应器时,微生物附着在污泥颗粒上,利用废水中的有机物进行生长,而废水中的有机物则被降解和转化为氨氮、硝态氮和无害的气体。

通过相应的工艺设计和操作控制,可以实现高效的去除污水中的有机物和氮磷等营养物质。

活性污泥法在环境工程中具有广泛的应用。

首先,它被广泛用于城市污水处理厂的废水处理过程中。

通过活性污泥法,可以有效地去除废水中的有机物、氨氮和磷等营养物质,使废水达到排放标准,保护环境和水资源。

在大规模城市污水处理厂中,活性污泥法通常与其他处理工艺相结合,如二沉池、生物膜等,以提高污水处理的效果和速度。

其次,活性污泥法也被应用于工业废水处理中。

许多工业过程产生的废水含有高浓度的有机物和毒性物质,对环境造成严重影响。

活性污泥法可以通过调整反应器的氧气浓度和温度等条件来适应不同的废水特性,实现高效的废水处理效果。

在一些高难度的工业废水处理中,活性污泥法与其他先进的物理化学处理技术相结合,如膜分离、活性炭吸附等,可以有效地去除废水中的有毒有害物质。

此外,活性污泥法还可以用于污泥处理和资源化利用。

活性污泥中的微生物经过一段时间的生长与繁殖,会产生大量的污泥。

序批式活性污泥法原理与应用课件

序批式活性污泥法原理与应用课件
四、调试方案的制定
3、调试运行: 当污泥恢复活性、强制驯化完成以后即可进入驯化试运行阶段。此阶段不但要培养出适当的菌种,还要确定活性污泥系统的最佳运行条件。 第一阶段: A、配料:在调节池中进行。按原污水∶稀释水=1∶3的比例进行配制料液,即原污水30 m3,加入稀释水90 m3。根据情况可适当加入一定量的营养源(粪便水)。打开调节池空气阀,使调节池曝气搅拌均匀。监测该水质指标(CODCr 、PH、水温、SS)。 B、强制驯化完成后,停止曝气,静沉记录,根据固液分离情况决定静沉时间(一般为0.5---1.0小时),记录静沉时间。 C、排出上清液约40---50m3。取上清液100ml放入锥形瓶中,以备监测COD值所用。 D、进料运行:将配好的料液以10m3/h的流量加入SBR反应器,进料量为50m3/池,两个池子交替运行。先按22个小时为一周期进行运行。进料1小时后开始曝气,连续曝气4小时,停曝气0.5小时;再连续曝气4小时,停曝气1.0小时;再曝气3小时,停曝气0.5小时;再曝气3小时,停曝气1.0小时;再曝气2小时,静沉0.5—1.0小时,开始排水约50m3,记录排水时间(约0.5小时),闲置0.5---1.0小时。曝气过程中要及时监测DO和SV%;停曝后,重新曝气前要监测DO,并作纪录。一般指标为:DO=1—2mg/l PH=6---9 SV=10---30% 水温:10--35℃。 E、按以上A、B、C、D四步骤重复操作3---4天。注意观察污泥性状及生长情况,有条件时用显微镜观察活性污泥中的微生物生长状况,并及时监测排水水质指标(DO、CODCr、PH、SS),做好记录。
二、SBR调试程序
(三) 污泥沉降性能的控制 导致污泥沉降性能恶化的原因是多方面的,但都表现在污泥容积指数(SVI)的升高。SBR工艺中由于反复出现高浓度基质,在菌胶团菌和丝状菌共存的生态环境中,丝状菌一般是不容易繁殖的,因而发生污泥丝状菌膨胀的可能性是非常低的。SBR较容易出现高粘性膨胀问题。这可能是由于SBR法是一个瞬态过程,混合液内基质逐步降解,液相中基质浓度下降了,但并不完全说明基质已被氧化去除,加之许多污水的污染物容易被活性污泥吸附和吸收,在很短的时间内,混合液中的基质浓度可降至很低的水平,从污水处理的角度看,已经达到了处理效果,但这仅仅是一种相的转移,混合液中基质的浓度的降低仅是一种表面现象。可以认为,在污水处理过程中,菌胶团之所以形成和有所增长,就要求系统中有一定数量的有机基质的积累,在胞外形成多糖聚合物(否则菌胶团不增长甚至出现细菌分散生长现象,出水浑浊)。在实际操作过程中往往会因充水时间或曝气方式选择的不适当或操作不当而使基质的积累过量,致使发生污泥的高粘性膨胀。 污染物在混合液内的积累是逐步的,在一个周期内一般难以马上表现出来,需通过观察各运行周期间的污泥沉降性能的变化才能体现出来。为使污泥具有良好的沉降性能,应注意每个运行周期内污泥的SVI变化趋势,及时调整运行方式以确保良好的处理效果。

活性污泥法各参数控制范围

活性污泥法各参数控制范围

活性污泥法各参数控制范围
COD:化学需氧量,重铬酸钾法
重铬酸钾法测COD时计算公式:
COD Cr=(V0-V1)×C×8×1000/V 式中
C——硫酸亚铁铵标准溶液的浓度,mol/L
V——⽔样体积,mL
V0——滴定空⽩时硫酸亚铁铵标准溶液的⽤量,mL
V1——滴定⽔样时硫酸亚铁铵标准溶液的⽤量,mL
BOD5:五⽇⽣化需氧量营养物质⽐例:BOD5:N:P=100:5:1
温度:控制在20-30℃
pH:仪器(控制在6.5-8.5)
SS:重量法
NH3-N:蒸馏⽐⾊法
DO:仪器(初期控制在1-2mg/l,成熟期控制在3-4mg/L)
SVI:污泥体积指数SVI=(1L混合液30min静置沉淀形成的活性污泥体积(ml)/1L混合液中悬浮固体⼲重)50-120良好SV:污泥沉降⽐SV=(1OOml混合液静置30min后沉淀形成的活性污泥体积ml)/混合液体积)
污泥负荷率:Ns=QS/VX 污泥所需量m=XV/(1-ω) ω是含⽔率
污泥量回流量的⼤⼩⼀般为20%~50%,有时也⾼达150%,其直接影响曝⽓池污泥的浓度和⼆次沉淀池的沉降状况。

计算公式:
R·Q·Xr = (R·Q + Q)·X
式中:Xr——回流污泥的悬浮固体浓度,mg/L。

R——污泥回流⽐。

X——混合液污泥浓度,mg/L。

Q——流量
根据污泥沉降⽐确定回流⽐R=SV/(100—SV)
根据回流污泥浓度和混合液污泥浓度调节回流⽐,计算公式为:R=MLSS/(RSSS—MLSS)。

废水好氧生物处理工艺-——活性污泥法

废水好氧生物处理工艺-——活性污泥法
Si——进水BOD浓度(kgBOD/m3); Se ——出水浓度(kgBOD/m3)。
式中: x——每日的污泥增长量(kgVSS/d);= Qw·Xr Q ——每日处理废水量(m3/d);
a、b经验值的获得:
(1) 对于生活污水或相近的工业废水: a = 0.5~0.65,b = 0.05~0.1; (2) 对于工业废水,则:
合成纤维废水
0.38
0.10
含酚废水
0.55
0.13
制浆与造纸废水
0.76
0.016
制药废水
0.77
酿造废水
0.93
工业废水
a
b
亚硫酸浆粕废水
0.55
0.13
a、b经验值的获得:
(3)通过小试获得:
可改写为:
a
b
QSr/VXv(kgBOD/kgVSS.d)
x/VXv(1/d)
一、活性污泥法的工艺流程
回流污泥
二次 沉淀池
废水
曝气池
初次 沉淀池
出水
空气
剩余活性污泥
活性污泥系统的主要组成
曝气池:反应的主体,有机物被降解,微生物得以增殖; 二沉池:1)泥水分离,保证出水水质; 2)浓缩污泥,保证污泥回流,维持曝气池内的污泥浓度。 回流系统:1)维持曝气池内的污泥浓度; 2)回流比的改变,可调整曝气池的运行工况。 剩余污泥: 1)去除有机物的途径之一; 2)维持系统的稳定运行 供氧系统:为微生物提供溶解氧
在条件一定时, 较稳定; 对于处理城市污水的活性污泥系统,一般为0.75~0.85
4、活性污泥的性能指标:
(3)污泥沉降比(SV) (Sludge Volume) 定义:将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 功能:能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常范围: 2030%

SBR工艺特点及其应用发展

SBR工艺特点及其应用发展

SBR工艺特点及其应用发展SBR(Sequencing Batch Reactor)工艺是一种连续循环的活性污泥法,其特点是将整个处理过程划分为若干个步骤,通过调整步骤的时间顺序和操作条件,实现废水的生物降解和去除污染物的效果。

下面将介绍SBR工艺的特点及其应用发展。

1.SBR工艺的特点:(1)反应器多功能性:SBR反应器一般由进水、好氧、静置、沉降等4个步骤组成,通过不同步骤的操作及控制,能够适应各种水质和处理要求。

(2)周期性操作:SBR反应器通过周期性的运行方式,即周期的将进、排水过程连续地进行,保证了废水处理的连续性和稳定性。

(3)空间利用率高:由于SBR反应器可以采用单体或多体反应器的形式,可以根据实际需要选择合适的反应器数量,以最大限度地利用处理场地面积。

(4)操作简单灵活:SBR工艺不需要混合反应器和沉淀池,操作相对简单,且能够根据具体情况灵活调整步骤的时间和参数,适应不同水质的处理。

(5)处理效果好:SBR工艺在去除COD、氨氮、总磷等主要污染物方面有较好的处理效果,其出水指标能够达到国家排放标准要求。

2.SBR工艺的应用发展:(1)农村和小型城市污水处理:由于SBR工艺可以根据需要调整处理能力和出水水质,且操作灵活简单,因此在农村和小型城市污水处理中得到广泛应用。

(2)工业废水处理:SBR工艺在处理工业废水中,尤其是有机废水方面具有较好的适用性。

通过控制好氧环境和添加适宜的菌群,可以实现高效降解和去除有机污染物。

(3)蓄能池和回用系统:SBR工艺可以通过适当改变操作方式,使反应器具有蓄能的功能,形成SBR蓄能池,并用于需求相对平稳的场所,如虚拟电厂等。

同时,SBR工艺还可以与膜技术相结合,实现废水的高效再利用。

(4)微污染物处理:随着环境污染程度的不断加深,SBR工艺在处理微污染物方面的应用研究也日益受到关注。

通过调整反应器的运行条件和添加特定的微生物,可以实现对药物残留、重金属、农药等微污染物的高效去除。

SBR工艺在工厂小型生活污水处理厂的应用

SBR工艺在工厂小型生活污水处理厂的应用

SBR工艺在工厂小型生活污水处理厂的应用一、本文概述随着工业化和城市化的快速发展,小型生活污水处理厂在保障水质安全和环境可持续发展方面扮演着越来越重要的角色。

在众多污水处理工艺中,序批式活性污泥法(Sequencing Batch Reactor,简称SBR)工艺因其高效、灵活和节能的特点,在小型生活污水处理厂中得到了广泛应用。

本文旨在探讨SBR工艺在工厂小型生活污水处理厂的应用,分析其处理效果、运行管理、经济效益及环境影响等方面的实际情况,以期为相关领域的实践和研究提供参考。

本文首先介绍了SBR工艺的基本原理和特点,包括其发展历程、工艺流程、主要设备及其功能等。

随后,结合具体工程案例,详细阐述了SBR工艺在小型生活污水处理厂的设计、建设和运行过程中的实际应用情况,包括工艺参数的确定、设备的选型与配置、运行管理要点等。

在案例分析的基础上,本文进一步分析了SBR工艺在小型生活污水处理厂中的处理效果,包括出水水质、污染物去除率等指标的评价,并探讨了其经济性和环境友好性。

本文总结了SBR工艺在小型生活污水处理厂应用中的优势与不足,并提出了针对性的改进建议。

展望了SBR工艺在未来小型污水处理领域的发展趋势和应用前景,以期为相关领域的实践和研究提供有益的借鉴和指导。

二、SBR工艺原理及特点SBR(Sequencing Batch Reactor)工艺,即序批式活性污泥法,是一种按间歇曝气方式来运行的活性污泥污水处理技术。

其工艺原理主要基于生物反应动力学原理,通过在单一反应池内依次完成进水、反应、沉淀、排水和闲置五个阶段,实现对污水的有效处理。

工艺流程简单:SBR工艺将曝气、沉淀、排水等功能集于一个反应池内,省去了传统活性污泥法的多个构筑物,从而简化了工艺流程,减少了占地面积和投资成本。

运行灵活:SBR工艺可以通过调整运行周期、反应时间、曝气量等参数,以适应不同水质和处理要求,具有较强的运行灵活性。

污泥产量低:SBR工艺通过间歇曝气的方式,可以在一定程度上抑制污泥的产生,从而降低污泥处理成本。

SBR工艺在生活污水处理中的应用

SBR工艺在生活污水处理中的应用

SBR工艺在生活污水处理中的应用摘要:SBR属于活性污泥法的一种工艺,该工艺在小城镇污水中处理中具有投资省、自动化高、能耗低、污染物处理效率高、易管理等优势而受到青睐,并在应用中逐渐得到了发展及改进。

本文简要的阐述了SBR工艺原理及特点,并对SBR工艺的优势及缺点进行了概述,并介绍了SBR工艺在生活污水处理中的设计要点以期望实际工程设计中能有一定的指导借鉴作用。

关键词:SBR工艺生活污水污水处理。

1.概述SBR序批式活性污泥法(SequencingBatchReactor)是1914年英国学者Ardern和Lockett发明活性污泥法之时,首先运用的污水处理技术。

由于处理工艺流程简单,占地面积小,投资费用低,处理效果好的独特优点,逐渐引起世界污水处理界的广泛关注。

我国也于20世纪80年代中期开始对SBR进行研究并推广,目前SBR是近年来应用日趋广泛的一种污水处理工艺。

在SBR工艺的基础上,又延伸出了一些SBR的变型工艺,如ICEAS工艺、CAST工艺、DAT-IAT工艺等,拥有良好的发展前景。

2.SBR工艺原理及特点SBR与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。

它的主要特征是在运行上的有序和间歇操作。

在工艺运行过程中,SBR技术的核心是SBR反应池。

按照废水处理时间,一个池体共分为进水阶段、反应阶段、沉降阶段、排放阶段和闲置阶段,在此期间完成均化、初沉、生物降解、终沉等活性污泥处理过程。

在SBR池中需要进行培养驯化一定量的活性污泥,当废水进入反应器池体中,驯化后的污泥中的微生物利用废水中的有机物进行新陈代谢,将废水中的有机物降解并使微生物细胞增殖,最后再将微生物细胞物质与水沉淀分离,这样依次反复运行构成了序批式处理,实现污水处理效果。

进水阶段用来集中污水,有调蓄池的功用;反应阶段是关闭进水条件下,通过鼓风机曝气,好氧生物菌来降解有机物,并使氨氮进行硝化;沉淀阶段,停止鼓风机的运行,让污泥与水进行静止分离;排水阶段用滗水器吸水排放出水;闲置期是处于进水等待状态。

活性污泥法原理与应用

活性污泥法原理与应用

曝气池混合液:1.002~1.003 回流污泥:1.004~1.006
粒径
0.02~0.2mm
比表面积
20~100cm2/mL
9
(二)活性污泥的性状 1、不正常
供氧不足 或厌氧
黑色
供养过多或营养不 足Fra bibliotek灰白色
10
曝气1池1 11
12 12
曝气池出水13堰13
曝气池混合液配水进入二沉1池414
阿登在《无需滤池的污水氧化试验1》一文中首次提出“活性污 泥”的概念,对活性污泥的发明具有划时代的意义
什么是活性污泥法?
以活性污泥为主体的污水生物处理技术。 本质:天然水体自净化作用的人工强化,是好氧生
物处理过程。 应用:去除污水中溶解和胶体状态的可生物降解有
机物。
6
一、活性污泥
有活性的微生物存在形态——菌胶团: 由细菌分泌的多糖类物质将细菌等包覆成的粘性团块。
16
4、按有机性和无机性成分:
MLSS——混合液悬浮固体浓度,也叫污泥浓度(g/L), MLVSS——混合液挥发性悬浮固体浓度,表示混合液悬浮 固体中有机物含量,但不仅是微生物的量,由于测定方便, 目前还是近似用于表示污泥。 MLNVSS——灼烧残量,表示无机物含量。
(一)什么是活性污泥? 由细菌、菌胶团、原生动物、后生动物等微生物群
体及吸附的污水中有机和无机物质组成的、有一定活力 的、具有良好的净化污水功能的絮绒状污泥。
7
一组活性污泥图片
8 8
(二)曝气池活性污泥的性状
1、正常
颜色 味道 状态 相对密度
黄褐色、 pH 茶褐色
略显酸性
土腥味, 有霉臭味
似矾花絮绒颗粒

城市污水处理中活性污泥法的应用

城市污水处理中活性污泥法的应用

城市污水处理中活性污泥法的应用摘要:当前我国对于污水的处理仍然存在很多不完善的地方,对于活性污泥法的认识也缺乏有效的认识,所以如果这些问题不能得到合理解决,必然会对污水处理系统造成不利的负面影响。

针对这种情况,本文就将针对活性污泥法在污水处理中存在的问题着手,全面探索问题解决的对策,希望对我国环保行业的发展提供更有效的帮助和指导作用。

关键词:活性污泥法;污水处理;问题;对策1活性污泥法对污水进行处理的机理在对活性污泥法进行污水处理的过程中,主要就是借助活性污泥中的氧化物对有机物进行氧化处理,从而对污水中的有机物进行有效处理和分解,通过对二氧化碳与水的有效处理,更好的进行污水净化。

活性污泥法是对生物化学污水处理的重要方式,一般都要借助有氧环境下进行,也就是借助好氧细菌,借助细菌分泌的各种物质进行胶体性有机物的分解,促进其转变为溶液后的其他形式,从而更好的将污水达到净化作用。

2活性污泥法在污水处理中的优势根据有关的实践证明,在现代ASM中除了普通活性污泥法之外,还包括吸附再生、高负荷率活性污泥、多点进水等很多和ASM有关的污水处理技术。

其中由于它们之间具有不同的特点,因此它们的影响元素也各不相同,比如BOD符合率、溶解氧、有毒物质、水温、pH值在污水中占有不同的比例,这种情况下就会对ASM所产生的影响存在明显的差异,普通活性污泥法的符合率通常会在0.23~0.31之间。

如果在负荷率相同的环境下运用高负荷率活性污泥法既可以减少回流污泥的流浪以及空气量,又可以更好的降低运行投入的费用。

除此之外,根据相关的研究结果表明,在污水处理过程中,假如把污染物转移到污泥上去的速度非常快时,污水中的污染物就会代谢的非常慢。

尽管在目前对污水处理中使用ASM技术在1min之内就可以彻底的将废水有效的处理,但是将这些污泥流入到曝气池中时就会在一定程度上减少ASM的曝气能力,因此有关的研究人员根据这种现象创立的吸附再生法。

但是依然需要注意的是,活性污泥的再生实际上是为微生物延长了消化、转移有关污染有机物的时间。

活性污泥法的工艺设计与运行管理

活性污泥法的工艺设计与运行管理

活性污泥法的工艺设计与运行管理一、工艺设计1.活性污泥池设计:活性污泥池是活性污泥法的核心设备,需要合理设计。

设计时应考虑池体的尺寸、水力停留时间的确定、曝气系统的配置等因素,以保证池体内的活性污泥能够充分接触废水并进行降解。

2.污泥回流设计:在活性污泥池中,一部分污泥需要回流以维持污泥浓度。

回流污泥量的控制需要兼顾到污泥的降解效果和设备的运行稳定性。

回流污泥的浓度一般控制在活性污泥浓度的1-3倍之间。

3.曝气系统设计:曝气是活性污泥法中保持污泥悬浮的关键步骤。

曝气系统的设计要考虑气泡尺寸、曝气孔径、曝气方式等因素。

合理的曝气系统能提供足够的氧气供给微生物呼吸代谢,促进有机物的降解。

4.混合方式设计:混合方式是指在活性污泥池中促进废水与污泥的充分接触。

合理的混合方式能够提高废水和活性污泥的接触面积,促进废水中有机物的降解。

常见的混合方式包括机械搅拌和风混等。

二、运行管理1.合理控制进水负荷:进水负荷是指单位时间内单位池容积的废水量。

过高的进水负荷会导致活性污泥的浓度过高,降解效果不佳;过低的进水负荷会导致活性污泥的浓度过低,降解效果也不佳。

因此,运行管理中需要定期监测进水负荷并予以调整。

2.控制溶解氧浓度:溶解氧是活性污泥呼吸代谢所需的氧气供给,维持一定的溶解氧浓度有助于提高活性污泥的生化反应速率。

但过高的溶解氧浓度会导致好氧区域扩大,导致活性污泥触氧,从而影响有机物的降解效果。

因此,需要定期监测溶解氧浓度并予以控制。

3.控制污泥浓度:污泥浓度是指活性污泥中微生物的浓度。

过高的污泥浓度会导致污泥膨胀、降解效果不佳;过低的污泥浓度会导致污泥沉积不良、降解效果下降。

因此,在运行管理中需要定期监测并控制污泥浓度。

4.稳定运行设备:活性污泥法的运行过程中需要保持设备的稳定性,定期检查和维护设备,及时处理故障。

此外,废水质量的变化也会对活性污泥法的运行产生影响,因此需要根据实际情况进行调整和优化。

综上所述,活性污泥法的工艺设计和运行管理对于废水处理的效果和设备的运行稳定性至关重要。

活性污泥法的工艺控制指标——PH值

活性污泥法的工艺控制指标——PH值

活性污泥法的工艺控制指标——PH值1.书面定义及实践操作的理解(1)pH值的书面定义。

pH值是体现某溶液或物质酸碱度的表示方法,表示水中氢离子(H+)浓度值。

pH值的范围为014,一般0~7属酸性,7~14属碱性,7为中性。

(2)pH值在实践操作中的理解。

污水、废水处理过程中,往往会出现进流水pH值的异常波动,单靠调节池等设备自身调整,有时也无法达到系统可承受的pH值范围(通常为6~9)。

这种情况下,如果不对进流后的污水、废水进行pH值调整,将会对物化处理段和生化处理段造成明显的影响。

3.污水、废水pH值调整注意点首先,污水、废水的pH值调整,以废水中和废水最为经济节能,可通过调整池的水质调整达到以上目的。

废水的混合可在一项处理工序内完成,也可在相邻工厂之间完成,利用碱性废水或碱性废渣中和酸性废水。

例如,建筑材料厂产生碱性废水(石灰和氧化镁),在加以均化后,用泵送至附近化工厂与酸性废水混合。

这样结合所得的中性废水就比较适合进行最终处理了,完全达到了以废治废的目的,双方企业既节约了资金,也减轻了环境污染负荷。

在实际的污水、废水pH值调节过程中,经常会遇到如图3-1所示的pH值中和突跃现象,使得调整污水、废水很难真正调整到酚酞pH值为中性,特别是水量大,污水、废水pH值过高或过低时,使用强酸强碱中和效果尤为明显。

遇到这种情况还是要充分发挥调节池的作用,通过连续的中和药剂投加、频繁的监测,保证中和后的污水、废水pH值不致过大地偏离中性值。

就实际操作过程来看,污水、废水最终调节的pH值宁可偏碱性而不要偏酸性,原因在于:(1)酸性污水、废水更容易腐蚀污水、废水处理设施。

(2)偏碱性废水更利于后段混凝沉淀的效果提升。

(3)就活性污泥主体微生物来说,抗碱性污水、废水能力要优于抗酸性污水、废水能力。

(4)偏碱性废水更容易形成氢氧化物沉淀而为污染物的进一步去除提供了在中和酸性污水、废水的时候,如果污水、废水中需去除颗粒较多时,采用氢氧化钙要优于使用氢氧化钠的效果,特别是兼带去除废水中的磷酸盐时。

序批式活性污泥法原理与应用

序批式活性污泥法原理与应用

序批式活性污泥法原理与应用序批式活性污泥法(Sequence Batch Reactor,SBR)是一种污水处理工艺,主要用于处理工业和城市废水。

该工艺具有灵活的运行方式和良好的处理效果,因此被广泛应用于各种规模的污水处理厂。

序批式活性污泥法的原理基于曝气活性污泥法,通过循环、停留和曝气等操作,使污水中的有机物质在一定的时间内得到分解和去除。

整个处理过程可以分为四个阶段:进水、反应、絮凝沉淀和排水。

在进水阶段,生活污水被引入反应器中。

然后,通过搅拌和曝气作用,使活性污泥充分与污水接触,以促进有机物的降解和微生物的繁殖。

在反应阶段,污水中的有机物质被微生物分解为二氧化碳、水和污泥。

此时,污泥中的微生物数量和有机物浓度都达到最高水平。

在絮凝沉淀阶段,曝气停止,活性污泥会逐渐沉降下来,形成结块和絮状物。

这些团块足够大,可以很容易地被沉降于污水表面。

在排水阶段,清水从池底排出,而结块和絮状物则继续留在反应器中,作为下一次处理的初级污泥。

序批式活性污泥法具有以下应用优势:1. 灵活性:这种处理方法可以根据需要进行自由调整和改变。

运行周期、进水浓度和有机负荷等参数都可以根据实际情况进行调整和优化。

2. 处理效果稳定:序批式活性污泥法通过控制进水和停留时间,可以保证出水的稳定性。

同时,曝气过程可以有效地降解有机物质,提高污水处理效果。

3. 安装和运行成本低:相比传统的连续流反应器,序批式活性污泥法的设备和运行成本更低。

其反应器结构简单,废水处理厂可以根据实际需要灵活调整操作。

4. 对废水波动有良好的适应性:序批式活性污泥法对废水中有机物浓度的波动具有较强的适应性。

这意味着即使废水中有机物浓度发生变化,处理效果也能保持较好。

综上所述,序批式活性污泥法是一种高效、灵活并且经济的废水处理工艺。

它广泛应用于各种污水处理厂,可以有效地去除废水中的有机物质,减少对环境的污染。

序批式活性污泥法(Sequence Batch Reactor,SBR)是一种先进的活性污泥处理工艺,由于其优异的处理效果和灵活的操作方式,被广泛应用于各种规模的污水处理厂。

活性污泥法的工艺参数控制下

活性污泥法的工艺参数控制下

活性活泥法的工艺参数控制(下)任周鸣(中莺石纯上海石漓讫王簸份有限公司玮境保护串心,上海200540)2污泥沉降比《SV30)2。

l理论定义及实际应用上的理瓣Sv3。

是指曝气池混合液在量筒静止沉降30min后污泥所占的西分体积。

它是测定污泥性能最为简便的方法,僵在实际运行中污泥沉降比往往不被重视,相关专业书上对此介绍也很简单。

从污泥沉降比的定义可知,Sv30值越小,污泥沉降性能就越好,反之沉降性能就差。

城市污承处理厂SV30一般在15%~30%,工业废水处理厂的Sv3。

褶对要高。

对同一装置的污泥薅言,正常情况下污泥结构是褶对稳定的,污泥浓度越高SV∞值也越大,所以污泥沉降比的概念中还有污泥浓度的因素。

污泥沉降院兹取样点~敷定在曝气渣出水端。

SV3。

测定方便、快速,在了解工艺运行状态方面有无可替代的作用,除了解污泥的结构和沉降性能外,农污泥沉降性能稳定麴情况下,还霹作为剩余污泥排放的参考依据。

此外,污泥的一些异常现象也可通过沉降试验反映出来。

污泥沉降纥的定义,很容易给人造成误解,似乎测定Sv3。

就是为了解30min后的测定结果。

有的专业书上把sv3。

的测定过程称为污泥沉降试验,因力Sv3。

并不仅仅是测定30min后豹污泥百分体积,在测定过程中还要观察沉降速率、污泥外观、泥水界面是否清晰、上层液是否有悬浮物等情况,这些表戏情况对予了解和判断运行状态很有帮助。

有经验的操作人员不需其他数据,只根据污泥沉降试验就可大致判断整个生化过程的运行状况。

在13常运符中,操作人员在测定SV3。

对墩往往只看测定的污泥沉降比,而没有认真观察和了解沉降过程和下沉污泥的表观情况,这就失去了测定污泥沉降院酶大部分意义,猩运行发生舜常时,也会失去污泥沉降测定过程中所能提示我们的故障信息,而这些信息并不一定能通过其他途径及时获得。

44给水排水V01.33No.122007在进行沉降试验时,也要注意观察沉降初期的沉降情况。

如果两种污泥的SV∞相同,孺初始阶段5min的沉降速度不同,其沉降性能也是不同的。

活性污泥法工艺控制之活性污泥沉降比(SV30 % )

活性污泥法工艺控制之活性污泥沉降比(SV30 % )

h 沉降过程
.c 镇 压实性
描述 最终的沉淀物密实度;
原因 1、惰性物质量(越多越密实);2、负荷高低(越低越密实);3、曝气程度(过度则 差);4、污泥是否中毒(细碎密实);5、丝状菌膨胀(随膨胀度而变化)
www 国城 色泽
描述 1、颜色的深浅;2、颜色的光泽;3、颜色的鲜艳度
原因 1、活性污泥活性(越高色泽越淡);2、污泥老化程度(越老化越色深而无光泽); 3、污泥中毒(色泽晦暗);4、活性污泥负荷(负荷越高色泽越淡); 5、丝状菌膨胀 (淡而白);6、污泥浓度(浓度越高色泽越深);7、污泥反硝化(色泽亮丽)
8、SV30:充分掌握这个控制参数,几乎可以代替以上所有控制指标的系统判断功能
(检测方便、体现二沉池沉降过程、为及早发现系统问题提供可能)
注:水世界网是本次大会的唯一信息发布网站,任何转载请注明本站!
1
无可替代的模拟二沉池效果
.org 作用
模拟二沉池的沉 降过程
沉淀污泥压缩状 态的确认
便于确认上浮污 泥发生过程
1、土腥味重则活性高;2、酸碱味重则混合液PH异常;3、臭味重则缺氧考虑;4、其 他异味可考虑特殊工业废水的流入。
inaci水网 活性污泥沉降比观察要点释疑 [沉降过程]
h 沉降过程
.c 镇 整沉性
描述 自自由沉淀到集团沉淀的沉降阶段,整沉性体现表现出泥水界面清晰和整体沉淀
原因 1、活性污泥活性(越低越好);2、负荷高低(越高越差);3、曝气程度(过度则 差);4、污泥是否中毒(中毒污泥整沉差);5、丝状菌膨胀(整沉好但沉速慢)
or 间隙水
描述 原因
散在颗粒间水体清澈度;
1、曝气过度(大颗粒间隙水间仍可见小颗粒);2、活性污泥老化(间隙水清澈); 3、负荷过高(间隙水浑浊);4、污泥中毒(间隙水浑浊)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用SV30在污水处理运行管理中的尝试
肃宁第一污水处理厂张亚锋SV30 测定方便、快速,在了解工艺运行状态方面有无可代替的作用,除了解污泥的结构和沉降性能外,在污泥沉降性能稳定的情况下,还可作为剩余污泥排放的参考依据。

污泥沉降比的定义,很容易给人造成误解,似乎测定SV30就是为了解30min后的测定结果。

但SV30并不仅仅是测定30min后的污泥百分体积,在测定过程中还要观察沉降速率、污泥外观、泥水界面是否清晰、上层液是否有悬浮物等情况,这些表观情况对于了解和判断运行状态很有帮助。

有经验的操作人员不需其他数据,只根据污泥沉降试验就可大概判断整个生化过程的运行状况。

污泥沉降试验也不必遵循30min的规定,不同的污泥测试时间也需要改变。

有的专家建议检测SV
,这是因为不同的污泥在5分钟
5
相同,而初始阶段5min的沉降速度不同,其沉降性能也是不同的。

一般来说无机污泥下沉时体积差异最大。

而且如果两种污泥的SV
30
速度要大于有机污泥。

虽然污泥沉降试验的测定时间统一为30min,但在应用时可以根据实际情况来定,例如为了解沉淀池运行状况,可以采用延长沉降试验时间来判断,如果污泥在量筒中出现整体上浮现象,则可能有三方面的原因导致:
1、在有硝酸氮的情况下,将三十分钟沉降试验结束,再继续让其静止一段时间后下沉的污泥会在缺氧时伴随便氮气泡沫上浮;
2、负荷较高的活性污泥系统中,在气温高,污泥在沉淀池停留时间过长而发生酸化时,也会有气泡沫伴随便污泥上浮,这些气泡通常是酸化过程中产生的氨引起的;
3、当曝气量过大,而混合液进入沉淀池后空气不能充分释放,也会造成沉淀池漂泥等现象。

根据以上原因再根据其他相关因素可以对二沉池漂泥现象做一个初步判断。

下面以肃宁一污一期、二期百乐克生化池污泥以及二沉池缺氧污泥为检测对象,研究不同的污泥在5min、10min、15min、20min、
25min、30min时不同的SV。

一期污泥活性较好,运行正常。

二期污泥为新培养污泥,缺乏营养,活性较差。

二沉池污泥由于回流泵损坏,长时间停留导致缺氧。

做SV与时间曲线如下:
一期污泥
5minSV图片二期污泥5minSV图片缺氧污泥图片
由上图看出一期污泥沉降较慢,SV
5达到85,经过SV
10
以后污泥沉降呈平缓状态。

最终达到29。

但是污泥沉降完后上清液非常清
澈。

二期污泥沉降过程虽然很快,SV
5
达到了20,但是沉降完毕后上清液比较浑浊、污泥絮体也非常多。

厌氧污泥沉降速度非常慢,并且上清液非常浑浊。

SV状况分析:
SV
30
观察只能对生化池运行状况做出初步判断,具体异常现象还需要结合现场运行实际情况、污泥负荷、好氧污泥速率检测、镜检
等来确认,但是由于SV
30检测方便、快捷,运行管理人员在日常运行中只需做到常检测、细观察就能根据SV
30
对生化池异常情况做出
迅速反应,对于迅速诊断、预防污泥膨胀、中毒有很好的预警作用。

相关文档
最新文档