物理学教程上册课后答案第六章

合集下载

上海交大版大学物理第六章参考答案

上海交大版大学物理第六章参考答案

上海交大版大学物理第六章参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2版权归原著所有 本答案仅供参考习题66-1.设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:l l =2112x =-+22112u c ≈-,2140021 1.25102u l l l l m c-∆=-=⨯=⨯。

6-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,c t x u 5.0/=∆∆=利用t '∆=∆0.866t s '∆==。

6-3.从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系,利用:21x x xv uv uv c'+='+,则:220.80.811x x x v u c cv c uv c c c c'++==='⨯++ 。

6-4 1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命62.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。

3解:(1)地面上的观察者认为时间膨胀:有t ∆=66410t sa -∆==⨯由860.83104109601000l v t m m -=∆=⋅⨯⋅⨯=<,∴到达不了地球; (2)π介子静止系中的观测者认为长度收缩:有l l =600l m ==而682.4100.8310576600s v t m m -=∆=⨯⋅⋅⨯=<,∴到达不了地球。

大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解

大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解
[解答]利用几何关系得两物体的加速度之间的关系为a2= 2a1,而力的关系为T1= 2T2.
对两物体列运动方程得
T2- μm2g=m2a2,
F – T1– μm1g=m1a1.
可以解得m2的加速度为
= 4.78(m·s-2),
绳对它的拉力为
= 1.35(N).
2.4两根弹簧的倔强系数分别为k1和k2.求证:
AB方向的速度大小为 ,所以飞行时间为
.证毕.
1.10如图所示,一汽车在雨中沿直线行驶,其速度为v1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v2.今在车后放一长方形物体,问车速v1为多大时此物体刚好不会被雨水淋湿?
[解答]雨对地的速度 等于雨对车的速度 加车对地的速度 ,由此可作向量三角形.根据题意得tanα=l/h.
因此人飞越的时间为:t= t1+ t2= 6.98(s).
人飞越的水平速度为;vx0=v0cosθ=60.05(m·s-1),
所以矿坑的宽度为:x=vx0t= 419.19(m).
(2)根据自由落体速度公式可得人落地的竖直速度大小为:vy=gt= 69.8(m·s-1),
落地速度为:v= (vx2+vy2)1/2= 92.08(m·s-1),
大学物理上册课后习题答案
第一章质点运动学
1.1一质点沿直线运动,运动方程为x(t) = 6t2- 2t3.试求:
(1)第2s内的位移和平均速度;
(2)1s末及2s末的瞬时速度,第2s内的路程;
(3)1s末的瞬时加速度和第2s内的平均加速度.
[解答](1)质点在第1s末的位置为:x(1) = 6×12- 2×13= 4(m).
t1=vy0/g= 2.49(s).

大学物理教程(上)课后习题答案解析

大学物理教程(上)课后习题答案解析

大学物理教程(上)课后习题答案解析物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1)质点的运动轨迹;(2)从1t s =到2t s =质点的位移的大小;(3) 2t s =时,质点的速度和加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t =代入,有21)y =或1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小231r =+= (3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt ==, 2y y dv a dt==22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+ 22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。

求(1)质点的速度;(2)速率的变化率。

解(1)质点的速度为sin cos drv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dv dt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。

求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。

解由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。

(完整)物理学教程第二版马文蔚上册课后答案完整版

(完整)物理学教程第二版马文蔚上册课后答案完整版

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由0d d =tx 得知质点的换向时刻为 s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为 2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -7 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为 m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d题 1-8 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分. 解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=txx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得 v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a=A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )e 1(Bt B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BA t y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt B A t B A y 1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt t t 000)d 46(d d j i a vvj i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=ty t x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -13 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为o 5.12arctan==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为 vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α 1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为1500=v h km 1-⋅,他随即以仰角ο5=α冲出,飞越跨度达57 m ,安全着陆在西岸木桥上,求:题 1-14 图(1) 柯飞车跨越黄河用了多长时间?(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米?(3) 西岸木桥和起飞点的高度差为多少?分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度.解 在图示坐标系中,有t v x )cos (0α= (1)2021sin (gt t v y -=)α (2) gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0m m ==αv x t s (2)由式(3),令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式(2),得飞行最大高度 67.02sin 220m ==gv y αm 则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m =t s 代入式(2),得西岸木桥位置为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角ο30=α,球的抛射角ο60=β,设球被抛出时的速率v 0 =19.6 m·s-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g αcos 和-g αsin ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1) 20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20==οg v t s将 t 值代入式(1),得1.26322===g v x OP m解 2 由分析知,在图(b )坐标系中,对小球 t v x )cos (0β=(1) 2021)sin (gt t v y -=β(2) 对点P αtan x y ='(3) 由式(1)、(2)可得球的轨道方程为οββ2202cos 2tan v gx x y -=(4) 落地时,应有y y '=,即οοο60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为g v x 332=(5) 则 1.263230cos 20===g v xOP οm联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为 b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -19 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有θθcos sin arctan 221v v v -=α而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题2-7 图分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT-( m1+m2)g =(m1+m2)a (1)F N2 - m2g =m2a (2) 解上述方程,得FT=(m1+m2)(g +a) (3)F N2=m2(g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8如图(a)所示,已知两物体A、B 的质量均为m=3.0kg 物体A 以加速度a =1.0 m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有m A g-FT=m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有。

物理学教程上册课后答案第六章

物理学教程上册课后答案第六章

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。

物理学第六版上册答案

物理学第六版上册答案

物理学第六版上册答案【篇一:大学物理学 (第3版.修订版) 北京邮电大学出版社上册第六章习题6 答案】题(1)一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(a)它的动能转化为势能.(b)它的势能转化为动能.(c)它从相邻的一段质元获得能量其能量逐渐增大.(d)它把自己的能量传给相邻的一段质元,其能量逐渐减小.[答案:d](2) 某时刻驻波波形曲线如图所示,则a,b两点位相差是[答案:a](3) 设声波在媒质中的传播速度为u,声源的频率为vs.若声源S不动,而接收器R相对于媒质以速度vb 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为(a)vs (b)u?vbvs u(c) uuvs (d) vs u?vbu?vb[答案:a]6.2填空题(1)频率为100hz,传播速度为300m/s的平面简谐波,波线上两点振动的相位[答案:0.5m](2)一横波的波动方程是y?0.02sin2?(100t?0.4x)(si),则振幅是____,波长是____,频率是____,波的传播速度是____。

[答案:0.02m;2.5m;100hz;250m/s](3) 设入射波的表达式为y1?acos[2?(?t?x?)??],波在x=0处反射,反射点为一固定端,则反射波的表达式为________________,驻波的表达式为____________________,入射波和反射波合成的驻波的波腹所在处的坐标为____________________。

[答案:y2?acos2?(?t?x?) ;2acos(2??)cos(2??t?) ?22x??x?(2k?1)?4]6.3产生机械波的条件是什么?两列波叠加产生干涉现象必须满足什么条件?满足什么条件的两列波才能叠加后形成驻波?在什么情况下会出现半波损失?答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质。

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理(上)课后习题答案解析

大学物理(上)课后习题答案解析

第1章质点运动学 P211.8一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。

⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;<5>计算t =0s 到t =4s 内质点的平均加速度;<6>求出质点加速度矢量的表示式,计算t =4s 时质点的加速度<请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式>。

解:〔1j t t i t r)4321()53(2-+++=m⑵1=t s,2=t s 时,j i r5.081-=m ;2114r i j =+m∴213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+∴140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ <5> 0t =s 时,033i j =+v ;4t =s 时,437i j =+v<6> 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。

1.9质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。

质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。

解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v1.11一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a⑵当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。

大学物理第六章课后习题答案

大学物理第六章课后习题答案

第六章静电场中的导体与电介质6 —1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。

由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 —2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。

若将导体N的左端接地(如图所示),则()(B)N上的正电荷入地(A )N上的负电荷入地(C)N上的所有电荷入地地(D)N上所有的感应电荷入题6-2图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为( A )。

6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d,参见附图。

设无穷远处为零电势,则在导体球球心0点有()(A)E =0,V —4 n^d(B)E J,V L4 n%d 4 n %d (C)E = 0,V = 0题6-3图分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷 q 在导 体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q'在球心 0点激发的电势为零,0点的电势等于点电荷q 在该处激发的电势。

因而正 确答案为(A )。

6 -4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合 曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是()(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有 自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代 数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有 极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零; 由于电介质会改变自由电荷的空间分布, 介质 中的电位移矢量与自由电荷与位移电荷的分布有关。

基础物理学上册习题解答和分析第六章习题解答和分析

基础物理学上册习题解答和分析第六章习题解答和分析

习题六6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。

解:波速ρ/E u =,波长νλ/u = 2/0.4E m λρν==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-=(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = ; /2 2.5/2 1.25Hz νωπππ===;2, 2.0m ππλλ== 2.5/u m s λν==(2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-=x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。

依旋转矢量法可求t=0时的各点的相位。

解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样? 分析无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标题图题图6-3t方向的正负关系)即可求解波的表达。

物理学简明教程第六章课后习题答案—高等教育出版社

物理学简明教程第六章课后习题答案—高等教育出版社

物理学简明教程第六章课后习题答案高等教育出版社第六章 静 电 场6-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )题 6-1 图分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).6-2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).6-3 下列说法正确的是( ) (A) 电场强度为零的点,电势也一定为零2εσ(B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).6-4 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析题 6-4 图6-5 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.2020π1)2/(2π41aqa q E P εε==题 6-5 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 6-6 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).θθδδd sin π2d d 2⋅⋅==R S q ()i E 2/3220d π41d r x qx +=εθR x cos =θR r sin =()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E 02/π004d cos sin 2εδθθθεδ⎰==E 1m V 120-⋅分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理地球表面电荷面密度单位面积额外电子数6-7 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2)R 1 <r <R 2 ,(3) r >R 2 .题 6-7 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E ∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ25cm 1063.6)/(-⨯=-=e nσ⎰⋅=⋅rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑qR 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变6-8 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 6-8 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===⎰∞⋅=p p V l E d rεQV 0π4=RεQV 0π4=区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布由电势 可求得各区域的电势分布.当r ≤R 1 时,有当R 1 ≤r ≤R 2 时,有当r ≥R 2 时,有(2) 两个球面间的电势差解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则若该点位于两个球面之间,即R 1≤r ≤R 2 ,则()()()22021321201211 π4 π40R r rεQ Q R r R rεQ R r r r>+=<<=<=e E e E E ⎰∞⋅=rV l E d 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E rεQ Q V r 02133π4d +=⋅=⎰∞l E ⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 2021011π4π4R εQ R εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则(2) 两个球面间的电势差6-9 一圆盘半径R =3.00 ×10-2m.圆盘均匀带电,电荷面密度σ=2.00×10-5C ·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 6-9 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势由电势叠加,轴线上任一点P 的电势的(1)202012π4π4R εQ r εQ V +=rεQ Q V 0213π4+=()2011012112π4π42R εQ R εQ V V U R r -=-==220d π2π41d x r rr σεV +=()x x R εσx r r r εσV R-+=+=⎰222202d 2(2) 轴线上任一点的电场强度为(2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得当x >>R 时,圆盘也可以视为点电荷,其电荷为.依照点电荷电场中电势和电场强度的计算公式,有由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.6-10 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J · kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V V 6911=V -1m V 6075⋅=E C 1065.5π82-⨯==σR q V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E kg 1098.8Δ4⨯===LqUL E m J 1008.1h kW 0003100⨯=⋅=E 8.2Δ00===E qUE E n一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.6-11 一真空二极管,其主要构件是一个半径R 1=5.0×10-4 m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3 m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 6-11 图分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率.(2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为由于电子的初始速度为零,故因此电子到达阳极的速率为(2) 两极间的电场强度为J 108.4Δ17ep -⨯-=-=eV E J 108.4ΔΔ17ep ek ek -⨯-=-==E E E 1-7ek s m 1003.122⋅⨯===meVm E v r rελe E 0π2-=两极间的电势差负号表示阳极电势高于阴极电势.阴极表面电场强度电子在阴极表面受力这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.6-12 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E r r R R R V R ελe e E 12110ln π2=-=r e e E F N)1037.414-⨯=-=(200π4R εQV =200π4R εQV ≠⎰∞⋅=p p V l Ed题 6-12 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4rεqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ()01=r E 2002π4π4R εQr εq V +=在球壳外(r >R 2)为由题意得于是可求得各处的电场强度和电势的分布:r <R 1时,;R 1<r <R 2 时,; r >R 2 时,;6-13 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解 建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为rqQ V 03π4ε+=102001π4π4R εQR εq V V +==Q R R V R q 21010π4==ε01=E 01V V =22012012π4r R εQR r V R E -=rR Q R r r V R V 201012π4)(ε-+=220122013π4)(r R Q R R r V R E ε-+=rR Q R R r V R V 2012013π4)(ε-+=-++=E E E电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为上式积分得因此,输电线单位长度的电容代入数据题 10-10 图6-14 如图所示,在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U AC 、U CD 和U DB .题 6-14 图)11(π20xd x E --=ελx xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελRR d ελU -=ln π0Rd εR R d εU λC ln /πln /π00≈-==F 1052.512-⨯=C解 (1) 由电容器的串、并联,有求得等效电容C AB =4 μF .(2) 由于,得6-15 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量.分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得,此时导线与圆筒之间各点的电场强度为μF 1221=+=C C C AC μF 843=+=C C C CD 51111C C C C CD AC AB ++=AB D B CD AC Q Q Q Q ===V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 00π2εσR ελE ==250max m C 1066.2--⋅⨯==b E εσb E R ελ10max π2=(其他)沿轴线单位长度的最大电场能量14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε()1210m π2R r R rR r E <<==ελ0=E 222102m 0m 2121rE R E w b εε==r rE R r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε。

物理学教程 第6章内容提要及习题讲解

物理学教程 第6章内容提要及习题讲解

yo 2 10 2 cos(2π )m 4 A π A 2 o y t (s ) 3
t 0, x 0 y A 2 v 0
波函数
y 2 10
2
t x π cos[2π( ) ]m 4 4 3
第六章 机械波
机械波内容提要
物理学教程 (第二版)
例 已知波动方程如下,求波长、周期和波速.
能流密度
1 2 2 I A u 2
四 惠更斯原理(作图法) 介质中波阵面上的各点都可以看作是发射子波的 波源,而在其后的任意时刻,这些子波的包络就是新 的波前.
s1 s2
r1
波的相干条件
*
P
1)频率相同;
r2
2)振动方向平行;
3)相位相同或相位差恒定.
波源振动
y1 A1 cos(t 1 )
y
A
o A
u
A
P*
yp
t
1 2 (B)
x
o A
v A
o
1 2
v A
t (s )
o
t (s )
v A
o
(A)
v A
t (s )
1
2
o
1
(D)
2
t (s )
(C)
第六章 机械波
机械波内容提要
物理学教程 (第二版)
例 一平面简谐波动在弹性媒质中传播时,在 传播方向上媒质中某质元在负的最大位移处,则它的 能量是 (1)动能为零,势能最大 (2)动能为零,势能为零
(1.0m) sin(π m ) x
1
y/m
1.0
o
-1.0
2.0
x/m

《物理学基本教程》课后答案 第六章 气体动理论

《物理学基本教程》课后答案 第六章  气体动理论

第六章 气体动理论6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强.分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力.解 以面积为S 的平板面为底面,取长度等于分子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nSv .每个分子与平板碰撞时,作用在平板上的冲力为2mv ,单位时间内平板所受到的冲力为v v nS m F ⋅=2根据压强的定义,分子与平板碰撞产生的压强为22v nm SFp ==6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式.分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和.v图6-1解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为θcos 2R AB =(2)该分子每秒钟撞击容器次数为θcos 2R AB ii v v =(3)每一次撞击给予器壁的冲量为θcos 2i m v(4)该分子每秒钟给予器壁的冲力为Rm R m i i i 2cos 2cos 2v v v =θθ由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每秒钟给予器壁的冲量为21212222221v v v v v v v RmN N N R m R m R m R m R m R m N i i N i i N i ===+++++∑∑== 其中n R N 334π=.根据压强的定义,分子与器壁碰撞产生的压强为W n m n nm R R m Np 3221323142222=⎪⎭⎫ ⎝⎛===v v vπ 其中W 为分子的平均平动动能.6-3 容积为10 L 的容器内有1 mol CO 2气体,其方均根速率为1440 km/h ,求CO 2气体的压强(CO 2的摩尔质量为31044-⨯kg/mol ).分析 在常温常压下可以将气体视为理想气体,理想气体压强公式中引入了统计平均量----方均根速率2v 和分子数密度n ,1 mol 的气体中分子数为阿伏图6-2伽德罗常量N A ,根据这些关系可求出压强.解 容积为V 的容器中有1 mol CO 2气体,则分子总数为N A ,摩尔质量为M ,则分子数密度为V N A ,分子质量为A N M,因此由气体压强公式得22A A 2313131v v v VM N M V N nm p ===代入数字得Pa 102.35Pa 3600101440101010443131523332⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯==--v V M p 6-4 在实验室中能够获得的最佳真空相当于大约Pa 10013.19-⨯,试问在室温(273K )下在这样的“真空”中每立方厘米内有多少个分子?分析 引入玻尔兹曼常量k 和分子数密度n 后,理想气体状态方程可以表示为nkT p =.解 由理想气体状态方程nkT p =得3-113-239m 1069.2m 2731038.110013.1⨯=⨯⨯⨯==--kT p n 6-5 已知气体密度为1 kg/m 3,压强为Pa 10013.15⨯,(1)求气体分子的方均根速率;(2)设气体为氧,求温度.分析 气体密度ρ是单位体积中气体的质量,因此与分子数密度n 和分子质量m 的关系为nm =ρ.解 压强公式可写为 223131v v ρ==nm p(1)分子的方均根速率m/s 551m/s 110013.13352=⨯⨯==ρpv(2)氧的摩尔质量M =31032-⨯kg/mol ,由定义MRT32=v ,则 K 390K 31.8310325513322=⨯⨯⨯==-R M T v6-6 体积为10-3 m 3,压强为Pa 10013.15⨯的气体,所有分子的平均平动动能的总和是多少?分析 气体动理论的能量公式给出了微观量气体分子的平均平动动能和宏观量气体温度之间的关系.分子的平均平动动能是大量分子的统计平均值,是每个分子平均占有的平动动能量值.解 由气体动理论的能量公式,分子的平均平动动能为kT m 23212=v 容器中分子数nV N =,又由压强公式nkT p =,可得容器中所有分子的平均平动动能的总和为J152J 1010013.123232321352=⨯⨯⨯===-pV kT nV m Nv6-7 一容器内贮有氧气,其压强为Pa 10013.15⨯=p ,温度T =C 27︒,求(1)单位体积内的分子数;(2)氧气的密度;(3)氧分子的质量;(4)分子间的平均距离;(5)分子的平均平动动能;(6)若容器是边长为0.30 m 的立方体,当一个分子下降的高度等于容壁的边长时,其重力势能改变多少?并将重力势能的改变与其平均平动动能相比较.分析 常温和常压下,氧气可视为理想气体.从宏观的角度,可以认为气体是空间均匀分布的,因此分子间的平均距离的立方就是每个分子平均占有的体积.通过本题的计算,可以得到气体动理论中常用到的物理量的量级概念.解 (1) 由理想气体的状态方程nkT p =,可得单位体积内的分子数为3-253-235m 1045.2m 3001038.110013.1⨯=⨯⨯⨯==-kT p n (2) 利用理想气体的状态方程RT MmpV =,氧气的密度为 3335kg/m 3.1kg/m 30031.8103210013.1=⨯⨯⨯⨯===-RT pM V m ρ(3) 氧分子的质量为kg 105.3kg 1045.23.126-25⨯=⨯==nm ρ(4) 分子平均占有的空间开方等于分子间的平均距离m 10443m 1045.21193253.n d -⨯=⨯== (5) 分子的平均平动动能J 10.216J 3001038.123232121-232⨯=⨯⨯⨯==-kT m v(6) 一个氧分子下降的高度等于容壁的边长时,其重力势能改变为J 101.56J 30.08.9103.5-2526⨯=⨯⨯⨯=-mgh与分子平均平动动能相比较,有4252121098.31056.11021.621⨯=⨯⨯=--mgh m v 6-8 在什么温度时,气体分子的平均平动动能等于一个电子由静止通过1 V 电位差的加速作用所得到的动能(即1eV 的能量).解 根据题意,气体分子的平均平动动能J 10260.1eV 12321192-⨯===kT m v 则 K 7739K 1038.1310602.122319=⨯⨯⨯⨯=--T 6-9 1 mol 氢气,在温度C 27︒时,求(1)具有若干平动动能;(2)具有若干转动动能;(3)温度每升高C 1︒时增加的总动能是多少?分析 氢气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,根据能量按自由度均分原则可以求出平均平动动能和平均转动动能.解 (1) 1 mol 氢气的平动动能为J 10.743J 30031.82323233A⨯=⨯⨯==RT kT N(2) 1 mol 氢气的转动动能为J 10.492J 30031.8223A⨯=⨯==RT kT N(3) 温度每升高C 1︒,1 mol 氢气增加的总动能为J 8.02J 131.8252525A=⨯⨯=∆=∆T R T k N 6-10 1 mol 单原子理想气体和1 mol 双原子理想气体,温度升高C 1︒时,其内能各增加多少?1 g 氧气和1 g 氢气温度升高C 1︒时,其内能各增加多少?分析 一定量理想气体的内能T R iM m E ∆=2,对于单原子理想气体3=i ,对于双原子理想气体5=i ,对于1 mol 理想气体1=Mm.氧气和氢气都是双原子气体,氧气的摩尔质量kg/mol 10323-⨯=M .解 1 mol 单原子理想气体温度升高C 1︒,内能增量为J 5.12J 131.8232=⨯⨯=∆T R i1 mol 双原子理想气体温度升高C 1︒,内能增量为J 8.02J 131.8252=⨯⨯=∆T R i1 g 氧气温度升高C 1︒,内能增量为J 65.0J 131.8251032101233=⨯⨯⨯⨯⨯=∆--T R i M m 1 g 氢气温度升高C 1︒,内能增量为J 4.01J 131.825102101233=⨯⨯⨯⨯⨯=∆⋅--T R i M m 6-11 计算:(1)氧分子在C 0︒时的平均平动动能和平均转动动能;(2)在此温度下,4 g 氧的内能.分析 氧气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,5=i .解 (1) 氧分子在C 0︒时的平均平动动能为J 10.655J 2731038.1232321-23⨯=⨯⨯⨯=-kT 平均转动动能为J 10.773J 2731038.12221-23⨯=⨯⨯==-kT kT(2) 4 g 氧在C 0︒时的内能为J 709J 27331.8251032104233=⨯⨯⨯⨯⨯=⋅--RT i M m 6-12 有40个粒子速率分布如下表所示 (其中速率单位为m/s):速率区间100以下100~200 200~300 300~400 400~500 500~600 600~700 700~800 800~900 900以上粒子数 1 4 6 8 6 5 4 3 2 1若以各区间的中值速率标志处于该区间内的粒子速率值,试求这40个粒子的平均速率v 、方均根速率2v 和最概然速率p v ,并计算出p v 所在区间的粒子数占总粒子数的百分率.分析 为了更深入地理解麦克斯韦速率分布律以及气体动理论中引入的平均速率v 、方均根速率2v 和最概然速率p v 的统计意义,有必要通过实际例子,经过计算,体验速率分布规律和统计方法.解 这40个粒子分成了10个速率区间,若取1000 m/s 为粒子速率在900 m/s 以上的速率区间的中值速率,则根据定义,其平均速率v 为m/s448.75 m/s )1100028503750465055506450 835062504150150(4011101=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N N v v 方均根速率2v 为m/s 499.9 m/s )]1100028503750465055506450 835062504150150(401[121222222222210122=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N Nv v 最概然速率m/s 350p =v .p v 所在区间的粒子数占总粒子数的百分率为%20%100408p =⨯=∆NN 6-13上题所给分布情况,若以200m/s 为间隔作重新统计,列出分布情况表,计算出相应的v 、2v 和p v ,以及p v 所在区间的粒子数占总粒子数的百分率,并与上题结果进行比较.分析 通过本题和上题计算结果可以看出,在某一速率区间中的分子数和所计算的三种速率不但与速率区间位置有关,还与速率区间的宽度有关.只有当所统计的分子总数足够大,划分的速率区间足够小时,才可能获得处于平衡状态的气体分子速率的一个确定的分布函数,三种速率也才有确定值.解 以200m/s 为间隔对上题粒子速率作重新统计,速率分布情况为(其中速率单位为m/s):速率区间 200以下 200~400 400~600 600~800 800以上 粒子数 5 14 11 7 3这40个粒子分成了5个速率区间,若取900 m/s 为粒子速率在800 m/s 以上的速率区间的中值速率,则根据定义,其平均速率v 为m/s445 m/s)3900770011500143005100(401151=⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N N v v 方均根速率2v 为498m/sm/s )]39007700 11500143005100(401[121222225122=⨯+⨯+⨯+⨯+⨯⨯==∑=i i iN Nvv最概然速率m/s 300p =v .p v 所在区间的粒子数占总粒子数的百分率为%35%1004014p =⨯=∆NN 6-14 N 个假想的气体分子,速率分布如图6-14所示.(1)用N 和v 0表示出a 的值;(2)求最概然速率p v ;(3)以v 0为间隔等分为三个速率区间求各区间中分子数占总分子数的百分率.分析 速率分布函数)(v f 表示气体分子速率在v 值附近单位速率区间内的分子数占总分子数的百分率.本题给出了一个特殊的分布情况,通过计算,理解速率分布函数和最概然速率的物理意义,以及各速率区间中分子数占总分子数的百分率的计算方法.解 (1) 由图6-14可见,分布函数与气体分子总数N 的乘积曲线下的总面积应等于气体分子总数N ,即000302322121d )(0v v v v v v a a a f N =⋅+==⎰则 032v Na =Nf (v )a0 v 0 2 v 0 3 v 0 v图6-14(2) 最概然速率 0p v v =(3) 以v 0为间隔等分为三个速率区间,分子数占总分子数的百分率分别为%3.3331211d )(10010==⋅==⎰v v v v a N f N N N %5021431d )(10220==⋅==⎰v v v v v a N f N N N %7.1661411d )(103230==⋅==⎰v v v v v a N f NN N *6-15在速率区间1v ~2v 内麦克斯韦速率分布曲线下的面积等于分布在此区间内的分子数的百分率.应用(6-17)式和麦克斯韦速率分布函数表示式(6-18)式,求在速率区间v p ~1.01v p 内的气体分子数占总分子数的比率.分析 麦克斯韦速率分布律表明,由速率分布函数)(v f 可得气体分子速率在v ~v v ∆+速率区间内的分子数占分子总数的百分率为v v ∆=∆)(f NN. 解 麦克斯韦速率分布函数22232e24)(v v v kT m kT m f -⎪⎭⎫ ⎝⎛=ππ,因mkT2p =v ,则分布函数可写为1p 2p223p2p22p2e4e4)(----==v v v v v v v v v v ππππf 速率区间v p ~1.01v p 内的气体分子数占总分子数的比率为%83.001.01e 4e4e 4)(1p 2p223p 2p22p2=⨯⨯⨯=∆=∆=∆=∆----πππv v v v v v v v v v v v v f N N *6-16应用平均速率表示式(6-20)*式、麦克斯韦速率分布函数表示式(6-18)式以及积分公式bb 21d e23=-∞⎰v v v 求v 的值.分析 这里采用的是数学中加权求某量值的平均值的方法,权重就是麦克斯韦速率分布函数)(v f .如果要计算方均根速率2v ,可先求速率平方的平均值,只需将积分式中的v 改为2v ,即v v)v v d 022⎰∞=f(,再将积分结果开方.解 麦克斯韦速率分布函数表示式(6-18)式和平均速率表示式(6-20)*式给出v v v v)v v v d e24d 0322302⎰⎰∞-∞⎪⎭⎫⎝⎛==kTm kT m f(ππ利用积分公式bb 21d e 23=-∞⎰v v v 得 mkTkT m kT m f(πππ822124d 2230=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==⎰∞v v)v v *6-17 试由麦克斯韦速率分布律推出相应的平动动能分布律,并求出最概然能量E p ,它是否就等于2p 21v m .分析 要找出分子按平动动能的分布规律,即求出分布在平动动能区间E k ~E k +d E k 中的分子数占总分子数的百分率.解 速率为v 的分子的平动动能为E k = 221v m ,则v v d d k m E =,麦克斯韦速率分布律可改写为kk k k 232212232223d )(d e12 d e 2112 d e 24d )(d k 22E E f E E kT m m kT kT m f N N kTE kT m kT m =⎪⎭⎫ ⎝⎛=⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==---ππππv v v v v v v v v即分子按平动动能分布律,其中分布函数kTE E kT E f k e12)(k 23k -⎪⎭⎫⎝⎛=π参考最概然速率的定义,令0d )(d kk =E E f ,由上式得最概然动能 kT E 21k p =因m kT 2p =v ,则 k p 2p 221E kT m ==v 6-18 飞机起飞前机舱中的压强计指示为Pa 10013.15⨯,温度为C 27︒.起飞后压强计指示为Pa 1010.84⨯,温度仍为C 27︒.试计算飞机此时距地面的高度.解 根据玻尔兹曼分子数密度按高度分布公式kT mgh n n /0e -=和压强公式nkT p =,在高度1h 和2h 的压强分别为1p 和2p ,则有kT h h mg p p /)(2121e --=得m 100.2m 1010.810013.1ln 8.9102930031.8 ln ln 3453212112⨯=⨯⨯⨯⨯⨯⨯==+=-p p Mg RTp p mg kT h h6-19 设地球大气是等温的,温度为C 17︒,海平面上的气压为Pa 100.150⨯=p ,已知某地的海拔高度为h = 2000 m ,空气的摩尔质量kg/m ol 10293-⨯=M ,求该地的气压值.解 根据玻尔兹曼分子数密度按高度分布公式kT mgh n n /0e -=和理想气体状态方程nkT p =,在高度h 处的压强p 为Pa 107.90Pa e100.1e 429031.820008.910295/03⨯=⨯⨯==⨯⨯⨯⨯---RT Mgh p p6-20 在某一粒子加速器中,质子在Pa 10333.14-⨯的压强和273 K 的温度的真空室内沿圆形轨道运动.(1)估计在此压强下每立方厘米内的气体分子数;(2)如果分子有效直径为2.0×10-8 cm .则在此条件下气体分子的平均自由程为多大?分析 由理想气体状态方程nkT p =可得压强和分子数密度的关系,并由此可计算平均自由程.解 (1) 由理想气体状态方程可得3103163234cm 1054.3m 1054.3m 2731038.110333.1----⨯=⨯=⨯⨯⨯==-kT p n (2) 由定义,平均自由程为cm 101.59m )102(1054.32121428102⨯=⨯⨯⨯⨯⨯==-ππλnd6-21设电子管内温度为300 K ,如果要管内分子的平均自由程大于10 cm时,则应将它抽到多大压强?(分子有效直径约为3.0×10-8 cm ).分析 由平均自由程定义和理想气体状态方程可建立压强与平均自由程以及温度之间的关系.解 由平均自由程定义221ndπλ=和理想气体状态方程nkT p =,得Pa 0.1035Pa 1.0)103(23001038.12210232=⨯⨯⨯⨯⨯==--πλπd kT p6-22 计算:(1)在标准状态下,一个氮分子在1 s 内与其它分子的平均碰撞次数;(2)容积为4 L 的容器,贮有标准状况下的氮气,求1 s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76×10-8 cm .)解 (1) 因平均速率MRTπ8=v ,标准状态下22.4 L 中的分子数为A N ,则平均碰撞次数1-91-32321033-A 22s 1067.7 s 104.2210023.6)1076.3(102827331.816 1022.4162⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⨯==---πππN d M RT n d Z v(2) 4 L 氮的分子数N =A 4.224N ,分子间的总碰撞次数为1321923s 10125.4s 1067.710023.64.2242121-⨯=⨯⨯⨯⨯⨯=-Z N 6-23 假设氦气分子的有效直径为10-10 m ,压强为Pa 10013.15⨯,温度为300 K ,(1)计算氦气分子的平均自由程λ和飞行一个平均自由程所需要的时间τ;(2)如果有一个带基本电荷的氦离子在垂直于电场的方向上运动,电场强度为104 V/m ,试计算氦离子在电场中飞行τ时间内沿电场方向移动的距离s 及s 与λ的比值;(3)气体分子热运动的平均速率与氦离子在电场方向的平均速率的比值;(4)气体分子热运动的平均平动动能与氦离子在电场中飞行一个λ远的距离所获得的能量和它们的比值.解 (1) 由平均自由程定义221ndπλ=和理想气体状态方程nkT p =,得m 1029m 10013.1)10(23001038.1275210232-.pd kT ⨯=⨯⨯⨯⨯⨯==--ππλ 平均速率 m/s 1260m/s 10430031.8883=⨯⨯⨯⨯==-ππM RT v 则 s 107.3s 1260102.910-7⨯=⨯==-v λτ (2) 氦离子质量为A N M m =,沿电场方向受到的电场力为eE ,加速度meE a =,在τ时间内沿电场方向移动的距离为m 106.4m 1042103.710023.610106.1 2218-310234192A 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯===---M eEN a s ττ 14.4104.6102.987=⨯⨯=--s λ(3) 氦离子沿电场方向的平均速率为m/s 87.7m/s 103.7104.6108E =⨯⨯==--τsv 14.4E==s λv v(4) 氦气分子平均平动动能为J 106.21J 3001038.1232321-23⨯=⨯⨯⨯=-kT 氦离子在电场中飞行一个λ远的距离所获得的能量为J 101.472J 102.910106.1-217419⨯=⨯⨯⨯⨯=--λeE二者之比为 22.410472.11021.62121=⨯⨯-- *6-24用范德瓦耳斯方程计算压强为Pa 10013.18⨯,体积为0.050 L 的1 mol氧气的温度,如果用理想气体状态方程计算,将引起怎样的相对误差?已知氧的范德瓦耳斯常数为:225/mol L Pa 10378.1⋅⨯=a ;L/mol 0318.0=b .解 由范德瓦耳斯方程得K 342.6K 10)0318.0050.0(050.010378.110013.131.81 )(13258020=⨯-⨯⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯=-⎪⎪⎭⎫⎝⎛+=-b V V a p R T由理想气体状态方程得K .5609K 31.810050.010013.138=⨯⨯⨯==-R pV T相对误差为%7878.06.3426.3425.609==-*6-25在C 27︒时,2 mol 氮气的体积为0.1 L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气224/mol L Pa 1039.8⋅⨯=a ,L/mol 1005.32-⨯=b .解 范德瓦耳斯方程)(222RT M m b V V a M m p =-⎪⎪⎭⎫ ⎝⎛+,得Pa 109.43Pa 101039.82Pa 1005.321030031.82 782254222⨯=⨯⨯-⨯⨯-⨯⨯=--=----V a M m bMm V RTM m p 由理想气体状态方程得Pa 104.99Pa 1030031.8274⨯=⨯⨯==-V RT M m p 结果表明由理想气体状态方程计算出的压强小于由范德瓦耳斯方程的计算值.*6-26实验测知C 0︒时氧的粘滞系数1.92×10-4 s)g/(cm ⋅,试用它来求标准状态下氧分子的平均自由程和分子的有效直径.解 粘滞系数 v λρη31= 其中密度Vm=ρ.又由理想气体状态方程 RT Mm pV =平均速率MRTπ8=v ,联立可得m109.49 m 1032827331.810013.11092.138338-355⨯=⨯⨯⨯⨯⨯⨯⨯⨯===--ππηρηλM RT p v 分子的有效直径为m 102.97m 1049.910013.122731038.1 210-8523⨯=⨯⨯⨯⨯⨯⨯⨯==--πλπp kT d*6-27实验测知氮气C 0︒时热传导系数为23.7×10-3 W/(m ·K),定体摩尔热容为20.9 J/(mol ·K),试由此计算氮分子的有效直径.解 热传导系数 λρκv MC mV,31=其中密度A N nM =ρ,平均速率MRTπ8=v ,平均自由程221nd πλ=,则2Am V,132dM RT N C ππκ=m 102.23m 1102827331.810023.6107.2339.202 13210-4343233434Am V,⨯=⨯⨯⋅⨯⨯⨯⨯⨯=⋅=--ππκM RT N C d。

大学_大学物理教程上册(范仰才著)课后答案

大学_大学物理教程上册(范仰才著)课后答案

大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 机 械 波6-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题6-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ). 6-2 一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻()(A )A 点相位为 π (B )B 点静止不动(C )C 点相位为2π3 (D )D 点向上运动分析与解 由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 6-2 图6-3 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题6-3 图6-4 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ(C ) 43λ (D ) λ分析与解 驻波方程为t λx A y v π2cos π2cos 2=,它不是真正的波.其中λx A π2cos 2是其波线上各点振动的振幅.显然,当Λ,2,1,0,2=±=k k x λ时,振幅极大,称为驻波的波腹.因此,相邻波腹间距离为2λ.正确答案为(B ).6-5 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x = m处质点的振动曲线并讨论其与波形图的不同. 分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率?、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中ux 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v 则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x = 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题6-5 图6-6 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解. 解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT = m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A = ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 6-7 波源作简谐运动,周期为s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源m 和 m 两处质点的运动方程和初相;(2) 距波源为 m 和的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 = m 和x 2 = m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-π和φ20 =-π(若波源初相取φ0=3π/2,则初相φ10 =-π,φ20 =-π.)(2) 距波源 和 m 两点间的相位差()π/π2Δ1212=-=-=λϕϕϕx x6-8 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λ?;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度?=d y /d t .解 (1) 从图中得知,波的振幅A = m ,波长λ=,则波速u =λ?= ×103 m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为 ()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2) 距原点O 为x =m 处质点的运动方程为 ()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为 ()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题6-8 图6-9 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.题6-9 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A = m, 波长λ= m, 波速u =m·s-1,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为 ()m 2π08.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=x t(2) 距原点O 为x =m 处的P 点运动方程为 ()m 2π52π0.04cos y ⎥⎦⎤⎢⎣⎡+= *6-10 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x = m 处质点的振动曲线,求此波的波动方程.题6-10图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A = m,t =0 时位于x = m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='ϕ.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) .由上述特征量可写出x = m 处质点的运动方程为 ()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x = m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x = m 处的运动方程作比较,可得φ0=-π/2,则波动方程为()()m 2π10/6π0.04cos ⎥⎦⎤⎢⎣⎡-+=x t y6-11 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s,求:(1) t = s 时波源及距波源 两处的相位;(2) 离波源 m 及 m 两处的相位差.解 (1)将t = s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t = s 和x ′= m 代入题给波动方程,得 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ= m .这样,x 1= m 与x 2= m 两点间的相位差πΔπ2Δ=⋅=λϕx6-12 为了保持波源的振动不变,需要消耗 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源 m 和 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 = m 、r 2 = 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I6-13 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距 m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题6-13 图分析 两列相干波相遇时的相位差λϕϕϕr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /?= m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B,x r +=15A ,则两列波在点P的相位差为 ()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.6-14 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1)题6-14 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.*6-15 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题6-15 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos 1t T A t T A y pλλ 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos 3t T A t T A y p设反射波的波动方程为()ϕλ+-=/π2/π2cos 3x T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=ϕπ23π2cos 3t T A y p与上式比较得π2-=ϕ,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.6-16 如图(a )所示,将一块石英晶体相对的两面镀银作电极,它就成为压电晶体,两极间加上频率为ν的交变电压,晶片就沿竖直方向作频率为ν的驻波振动,晶体的上下两面是自由的,故而成为波腹.设晶片d = mm ,沿竖直方向的声速13s m 1074.6-⋅⨯=u,试问要激起石英片发生基频振动,外加电压的频率应是多少?分析 根据限定区域内驻波形成条件(如图(b )所示),当晶体的上下两面是自由的而成为波腹时,其厚度与波长有关系式 k k d λ2=成立,k 为正整数.可见取不同的k 值,得到不同的k λ,晶体内就出现不同频率k ν的波.对应k =1称为基频,k =2,3,4,…称为各次谐频.解 根据分析基频振动要求2λ=d ,于是要求频率Hz 10685.126⨯===duuλν题 6-16 图6-17 一平面简谐波的频率为500 Hz ,在空气(ρ= kg·m -3)中以u =340 m·s -1的速度传播,到达人耳时,振幅约为A = ×10 -6m .试求波在耳中的平均能量密度和声强. 解 波在耳中的平均能量密度2622222m J 1042.6π221--⋅⨯===v A A ρωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约×10-6W·m -2左右. 6-18 面积为 m 2的窗户开向街道,街中噪声在窗口的声强级为80 dB .问有多少“声功率”传入窗内? 分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 = ×10-12W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS . 解 根据分析,由L =lg (I /I 0 )可得声强为I =10LI 0则传入窗户的声功率为P =IS =10L I 0S = ×10-4W6-19 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v =800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态. 解 (1) 根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su u vv υμ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2) 客车的速度为0υ=15 m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ6-20 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析 由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u .首先,蝙蝠是声源,发出信号频率为v ,运动速度为40su=υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为40u=υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解 将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u uv u u v u u v υυυυυ。

相关文档
最新文档