初三数学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学试卷及答案
一.选择题
1.﹣22=()
A.﹣2B.﹣4C.2D.4
【分析】根据幂的乘方的运算法则求解.
【解答】解:﹣22=﹣4,
故选B.
【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.
2.太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数
法表示为()
A.1.5×108B.1.5×109C.0.15×109D.15×107
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点
移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000000用科学记数法表示为:1.5×108.
故选A.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×1
0n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()
A.B.C.D.
【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.
【解答】解:∵DE∥BC,
∴△ADE∽△ABC,
∵BD=2AD,
∴===,
则=,
∴A,C,D选项错误,B选项正确,
故选:B.
【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是
解题关键.
4.|1+|+|1﹣|=()
A.1B.C.2D.2
【分析】根据绝对值的性质,可得答案.
【解答】解:原式1++﹣1=2,
故选:D.
【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.
5.设x,y,c是实数,()
A.若x=y,则x+c=y﹣cB.若x=y,则xc=yc
C.若x=y,则D.若,则2x=3y
【分析】根据等式的性质,可得答案.
【解答】解:A、两边加不同的数,故A不符合题意;
B、两边都乘以c,故B符合题意;
C、c=0时,两边都除以c无意义,故C不符合题意;
D、两边乘以不同的数,故D不符合题意;
故选:B.
【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是
解题关.
6.若x+5>0,则()
A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12
【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.
【解答】解:∵x+5>0,
∴x>﹣5,
A、根据x+1<0得出x<﹣1,故本选项不符合题意;
B、根据x﹣1<0得出x<1,故本选项不符合题意;
C、根据<﹣1得出x<5,故本选项符合题意;
D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;
故选C.
【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.
7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()
A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8
C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8
【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.
【解答】解:设参观人次的平均年增长率为x,由题意得:
10.8(1+x)2=16.8,
故选:C.
【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2 =b.
8.如图,在Rt△ABC中,∠ABC=90°,A B=2,BC=1.把△ABC分别绕直线AB和BC 旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()
A.l1:l2=1:2,S1:S2=1:2B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4D.l1:l2=1:4,S1:S2=1:4
【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.
【解答】解:∵l1=2π×BC=2π,
l2=2π×AB=4π,
∴l1:l2=1:2,
∵S1=×2π×=π,
S2=×4π×=2π,
∴S1:S2=1:2,
故选A.
【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.
9.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()
A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0
C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<0
【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.
【解答】解:由对称轴,得
b=﹣2a.
(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a
当m<1时,(m﹣3)a>0,
故选:C.
【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.
10.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()
A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21
【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y, AQ=6y,在Rt△DEM中,根据勾股定理求出即可.
【解答】解:
过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,
∵BE的垂直平分线交BC于D,BD=x,
∴BD=DE=x,