基因组学(复习)

合集下载

基因组学整理试题

基因组学整理试题

基因组学整理试题填空题:1.位置效应的两种类型:稳定型,花斑型2.细胞器基因组:线粒体基因组,叶绿体基因组3.基因组进化的分子基础:突变,重组,转座4.RNA聚合酶的三种类型:pol1(RNA聚合酶1),pol2(RNA聚合酶2),pol3(RNA聚合酶3)5.转座子分类:DNA转座子,逆转录转座子6.克隆载体的几种类型:YAC,BAC,HAC,MAC7.重叠群组建的方法:步移法,指纹法名词解释:1.C值:是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。

2.C值悖理:生物种属所具有的基因数目与其生物结构的复杂性不成比例的现象.3.N值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理(N所表示的是基因数目)。

4.基因家族:来自一个共同的祖先, 因基因加倍和趋异产生许多在DNA序列上基本一致而略有不同的成员。

1)大部分担负类似的生物学功能.2)比较各个成员间的序列差异,可追踪基因的演变轨迹。

5.假基因:来源于功能基因但已失去原来功能的DNA序列.包括重复假基因、加工假基因、残缺假基因。

6. DNA标记->限制性片段长度多态性( RFLP)同一物种的亚种、品系或个体间基因组DNA 受到同一种限制性内切酶作用而形成不同的酶切图谱的现象->简单序列长度多态性(SSLP)可变排列的简单重复序列, 即重复次数不一,在染色体的同一座位重复序列拷贝数不同;包括俩种类型:小卫星序列(VNTR)、微卫星序列(SSR)->单核苷酸多态性(SNP)SNP是指同一物种不同个体基因组DNA的等位序列上单个核苷酸存在差异的现象。

其中最少一种在群体中的频率不小于1%;如果出现频率低于1%,则视作点突变。

7.序列间隙:因覆盖率的原因而留下的未能测序的序列,仍存在于克隆文库中, 这类间隙称为序列间隙。

物理间隙:因克隆载体自身的限制或DNA顺序特殊的组成等原因造成某些序列丢失或未能克隆, 这类间隙称为物理间隙。

基因组学复习

基因组学复习

联合基因:一段连续的DNA序列编码一组关联的彼此重叠的功能产物遗传图谱:利用遗传学的原理和方法,以遗传图距为单位绘制的染色体上基因与遗传标记之间相对位置物理图谱:采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置表观遗传学调控基因表达的方式包括DNA甲基化,组蛋白的共价修饰,染色体结构的重塑以及小RNA介导的基因沉默等多个方面。

研究证明表观遗传学机制在基因组防御、进化、基因调控等方面都发挥着重要作用。

大量研究表明,DNA甲基化能引起染色质结构、构象、染色体DNA稳定性及蛋白质与DNA 相互作用方式的改变,从而影响基因表达。

一般认为DNA甲基化抑制基因的表达。

印记的基因只占人类基因组中的少数,不超过5%,但在胎儿的生长和行为发育中起着至关重要的作用。

大量研究表明这些修饰与染色体构象、基因组稳定性及基因转录活性相关。

组蛋白甲基化的位点是赖氨酸和精氨酸,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域。

组蛋白H3K9,K27的甲基化与基因的转录抑制及异染色质有关。

连锁群:在染色体中具有不同的连锁程度并按线性顺序排列的一组基因座位(存在于同一染色体上)物理连锁图:DNA分子标记在同源染色体上有具体的物理位置,因此采用DNA分子标记绘制的遗传连锁图又称物理连锁图连锁不平衡:群体遗传学中有关两个或多个不同座位的等位基因成员出现在个体中的非随机关联性序列间隙:因覆盖度的原因而留下的未能测序的序列,仍存在于克隆文库中,这类间隙称为序列间隙。

物理间隙:因克隆载体自身的限制或DNA序列特殊的组成等原因造成某些序列丢失或未能克隆,这些间隙称为物理间隙复制子是DNA的复制单位, 由复制起始点, 复制序列和复制终点组成DNA 复制的意义:1子代保留了亲代DNA的全部信息;2 DNA通过复制和基因表达决定生物特性;3体现了遗传过程的相对保守性;保守性是相对的,不能忽视其变异性DNA拓扑异构酶(DNA Topisomerase )的作用:通过切断、旋转和再连接作用,理顺DNA 链各种酶与蛋白质的作用小结解螺旋酶:解开DNA双螺旋DNA拓朴异构酶:理顺DNA链单链DNA结合蛋白:稳定维持DNA单链状态前导链的合成:在聚合酶III与滑动夹子结合下连续合成。

基因组学期末复习课后习题

基因组学期末复习课后习题

基因组学期末复习课后习题1.为什么RNA不能成为主要的遗传信息载体?RNA分子在细胞自然生理状态条件下很容易断裂,因此长度有限,不能储存大量遗传信息。

此外,RNA复制酶缺少校读机制,不能及时消除复制时产生的错配碱基,很容易积累突变。

RNA分子的胞嘧啶残基脱氨基可生成尿嘧啶,这种自发突变产生的尿嘧啶很难与RNA分子中正常的尿嘧啶加以区分。

此外,现存生物细胞中缺少RNA分子突变修复机制。

2.什么是序列复杂性?如何计算序列复杂性?序列复杂性是指基因组中单拷贝的DNA序列为单一序列,多拷贝的DNA序列为重复序列,不同序列的DNA总长为复杂性。

在DNA浓度确定时,c0t1/2值表示不同序列的总长,即复杂性的程度,一般以碱基对bp表示。

通常以大肠杆菌基因组的单一序列为标准,在相同的复性条件下计算其他基因组的复杂性。

3.假基因能否表达?为什么?假基因相对于原来的功能基因而言失去正常功能,但是它可能产生了新的功能。

随着基因组数据的积累,现在已知有不少假基因仍然保持转录活性,特别是起源于重复基因的假基因和获得启动子的加工的假基因。

假基因的表达产物已失去原有功能,如产生残缺蛋白质。

有些假基因在进化过程中产生了新的功能。

4.低等生物与高等生物基因组组成有何差别?为什么会产生这些差别?低等生物与高等生物基因组组成的差别可以从生物进化的角度来解释。

随着生物进化的发展,核膜的出现和细胞器的复杂程度的增高等因素,导致了低等生物与高等生物基因组组成的差别。

5.有哪些异常结构基因?举例说明。

重叠基因是指编码序列彼此重叠的基因,含有不同蛋白质的编码序列。

例如,人类核基因组INK4a/ARF座位有2个蛋白质产物p16和p19,它们利用同一座位的不同启动子,第一个外显子不同,但共享第二和第三个外显子,产生两个不同读框的mRNA。

巢式基因(基因内基因)是指一个完整的基因包含在另一个基因的内部。

例如,线虫基因组中一个编码甘氨酸合成酶的基因FGAM有21个内含子,内含子9中含有一个独立的基因,内含子11中含有4个独立的基因。

基因组学复习大全

基因组学复习大全

基因组学复习大全第一章基因组:生物所具有的携带遗传信息的遗传物质总和基因组学:用于概括涉及基因组作图、测序和整个基因组功能分析的遗传学学科分支一、分子基础核苷酸、2’-脱氧核糖、含氮碱基:β-N-糖基键和嘧啶环1N或嘌呤环9N、磷酸基团dNTP,前一个3’-OH和后一个5’-三磷酸缩合成磷酸脂键。

双螺旋:碱基配对、碱基堆积:与DNA双螺旋主轴垂直的相邻碱基对杂环之间的互作,科增加双螺旋稳定性。

大小沟:沿着双螺旋的走向交替分布两个凹槽,具有特征性的结构信息,在基因表达中重要作用,结合蛋白的特定功能域可伸入大小沟,通过氨基酸侧链和碱基杂环上的基团互作读取DNA所包含信息。

DNA甲基化:细菌发生在腺嘌呤6N和胞嘧啶5C,高等只发生在后者。

哺乳动物CpG变为mCpG,植物包括CpG和CpNpG。

RNA:rRNA+tRNA80%、mRNA5%,大多数还含胞质内小RNA(sc)、核仁小RNA(sno),真核还有核内小RNA(sn),小分子干扰miRNA,小干扰siRNA。

几乎所有RNA都会单链区段回折形成分子内双螺旋。

G和U也可配对,形成两对氢键。

RNA核糖2’C上连的不是H而是OH,和DNA差别:⑴非常靠近连接两个核苷酸的磷酸二酯键位置,使RNA对碱性环境非常敏感⑵活泼使RNA构型受限,双螺旋区段在数十碱基对一下⑶限制RNA长度,其易与磷酸二酯键互作断链⑷其可参与同磷酸或碱基的互作而稳定RNA折叠构型,易于形成三级结构,并获得特殊功能⑸T变为U,因此C甲基化形成的U无法区分,增加RNA突变几率。

蛋白质结构:一级:N→C;二级:α螺旋:多肽链中一些连续氨基酸序列自发形成有规律的盘旋,螺距0.54,每圈3.6残基。

β折叠:由侧向平行的多肽链组成,羰酰O和酰胺H 形成氢键。

每条5~8残基。

转角(转环):由3~4个氨基酸残基组成的紧凑U型,两端多肽形成氢键来转折,大多位于蛋白质表面,形成回折使多肽链重新定向。

二级稳定性取决于多肽链中形成的氢键。

基因组学复习资料整理

基因组学复习资料整理

基因组学1. 简述基因组的概念和其对生命科学的影响。

基因组:指一个物种的全套染色体和基因。

广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。

基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。

②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。

Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。

④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。

2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。

该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。

Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。

不同的Ds因子的长度差异由Ac因子发生不同缺失所致。

Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。

当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。

Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。

2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。

3)Ac对Ds的控制具有负剂量效应。

4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。

5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。

基因组学复习题

基因组学复习题

第1章1)什么是C-值悖理?什么是N-值悖理?C-值悖理:生物基因组的大小同生物进化所处地位的高低无关的现象。

N-值悖理:基因数目与进化程度或生物复杂性的不对应性,称之为N值悖理2)什么是序列复杂性?基因组中不同序列的DNA总长,用bp 表示。

3)RNA分子有哪些种类?mRNA tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA4)不编码蛋白质的RNA包括哪些类型?tRNA rRNA scRNA snRNA snoRNA 小分子干扰RNA5)什么是假基因?假基因是如何形成的?来源于功能基因但已失去活性的DNA序列,有沉默的假基因,也有可转录的假基因。

产生假基因的原因有很多,如编码序列出现终止密码子突变,或者插入和缺失某些核苷酸使mRNA移码,造成翻译中途停止或者异常延伸,合成无活性的蛋白质。

6)假基因能否表达? 为什么?能,假基因相对于原来的基因已经失去功能但是可能产生新的功能。

最初人们认为, 假基因是不能转录的基因, 随着基因组数据的积累, 现在已知有不少假基因仍然保持转录的活性, 特别是起源于重复基因的假基因和获得启动子加工的假基因,但假基因的转录产物已失去原有的功能, 如产生残缺蛋白质。

7)如何划分基因家族? 什么是超基因家族?基因家族:将来自共同的祖先,因基因加倍或变异产生了许多在DNA序列组成上基本一致而略有不同的成员划分为一个基因家族。

超基因家族:起源于共同祖先,由相似DNA序列组成的许多基因亚家族或相似的基因成员构成的群体,它们具有相似的功能。

8)低等生物与高等生物基因组组成有何差别?为什么会产生这些差别?低等生物:1)结构紧凑,一般不存在内含子(古细菌除外);2)大小在5 Mb以下;3)缺少重复序列;4)很少非编码序列。

高等生物:1)结构松弛,含有大量重复序列;2)基因大多为断裂基因,由内含子和外显子构成;3)由线性DNA与蛋白质组成染色体结构; 4)含有细胞器基因组。

基因组学试题

基因组学试题

基因组学试题1、什么是基因组(5分)?什么是转录组(5份)?说明基因组合的关系和异同(10分)基因组是生物体(细胞或病毒)中所有的DNA的总和, 包括所有的基因和基因间区域,包括染色体之外的遗传物质,如线粒体、叶绿体、质粒等。

基因组:物种内恒定(♀/♂),生物体或细胞内恒定,没有时空变化(?)。

事实上有特例,1、盲鳗(Hugfish) ,性细胞和体细胞DNA量差异; 2、部分昆虫,性细胞和体细胞染色体数目差异; 3、动物雌雄个体差异转录组:•生物体、组织、细胞不同生长发育阶段的转录产物不同。

•生物体不同组织、同一组织不同细胞的转录产物不同。

•生物体、组织、细胞不同环境、不同生理状态下的转录产物不同。

•转录产物中包含大量不翻译蛋白的RNA,如rRNA; sRNA2、简述原核生物基因组和真核生物基因组的特点和差异(10分)原核生物基因组•一条环状DNA;•只有一个复制起始点;•有操纵子(Operon)结构1.结构基因为多顺反子,若干个功能相关的功能基因串联在一起,手统一调控区调控。

2.数个操纵子还可以受同一个调节基因(regulaterygene),即调节子(regulon)调控。

•结构基因无重叠现象,基因组中任何一段DNA不会用于编码2种蛋白质•基因是连续的,无内含子,转录后不剪接;•重复序列少,蛋白质基因一般为单拷贝基因,但编码rRNA的基因一般为多拷贝,有利于核糖体快速组装。

真核生物基因组•复杂的染色体结构,一般有多条染色体•每条染色体上有多个复制起始点;•基因组中有大量的重复序列(轻度、中度、高度重复);•基因是不连续的,有内含子,转录后经过剪接加工成成熟RNA;•有许多来源相同、结构相似、功能相关的基因组成的单一基因簇,或基因家族•有细胞器基因,真核生物除具有核基因外,还有存在于线粒体和叶绿体中基因,编码同功酶等。

3、什么是遗传图谱(5分)?遗传图谱在基因组研究中的意义何在(15分)?采用遗传学分析方法将基因或其它DNA标记按一定的顺序排列在染色体上,这一方法包括杂交实验,家系分析。

基因组学期末复习资料

基因组学期末复习资料

第一章基因组概论1、基本概念隔裂基因:大多数真核生物蛋白质基因的编码顺序(Exon)都被或长或短的非编码顺序(Intron)隔开。

重叠基因/嵌套基因:指调控具有独立性但部分使用共同基因序列的基因/同一段DNA 能携带两种不同蛋白的信息.假基因:一般由先前的功能基因积累突变形成,称为假基因,用符号Ψ表示。

基因家族:真核基因组中有许多来源相同、结构相似、功能相关的基因,这组基因称为基因家族。

基因组:一个物种的一套完整遗传物质的总和,包括核基因组和细胞质基因组。

基因组学:研究生物体基因组的组成、结构与功能的学科。

结构基因组学:着重研究基因组的结构并构建高分辨的遗传图、物理图、序列图和转录图以及研究蛋白质组成与结构的学科。

功能基因组学:主要是利用结构基因组学研究所得到的各种信息在基因组水平上研究编码序列及非编码序列生物学功能的学科。

人类元基因组:指人体内共生的菌群基因组的总和,包括肠道、口腔、呼吸道、生殖道等处菌群。

Alu序列:灵长类动物细胞的主要散在的重复DNA序列。

含有限制性内切酶Alu的切点(AG↓CT)。

2、原核与真核生物基因组与顺反子的等价关系在简单基因组中基因与顺反子等价原核和低等真核细胞:基因与产物之间的关系比较简单。

通常是一基因一相应产物,而且基因往往与产物共线性。

基因和顺反子等价:基因是遗传的功能单位;也是可表达的遗传信息的单位。

在细菌中:基因是编码区(开放阅读框)。

细菌基因常常组合成一个操纵子,这样几种产物均由一条多顺反子mRNA翻译而成。

在真核细胞中:基因是转录的单位。

大多数基因以单顺反子mRNA的形式转录。

3、基因组C值与C值矛盾基因组C值是一个物种的基因组固有的DNA含量,一般是恒定的。

C值矛盾或C值悖论:C值大小与生物进化不协调的现象。

C值矛盾原因: 基因内(内含子)、基因间的间隔序列、重复序列和假基因序列4、基因组序列复杂性与基因组大小的关系①序列复杂性:不同序列的DNA总长。

基因组学重点整理

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物具有催化活性的RNA分子称为核酶〔ribozyme〕核酶催化的生化反响有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成新基因的产生:基因与基因组加倍1〕整个基因组加倍;2〕单条或局部染色体加倍;3〕单个或成群基因加倍。

DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。

动物中由于种间隔离不易进展种间杂交,但其主要来源于真核细胞与原核细胞的内共生。

动物种间基因转移主要集中在逆转录病毒及其转座成分。

外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌基因冗余:一条染色体上出现一个基因的很多复份(复本〕当人们别离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。

许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。

这意味着,基因组中有冗余基因存在。

看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。

与个体发育调控相关的基因表达为转录因子,具有多功能域的构造。

这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。

非编码序列扩张方式:滑序复制、转座因子模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。

模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。

进化程度越高, G+C 含量和CpG 岛的比例就比拟低如果基因之间不存在重叠顺序,也无基因内基因〔gene-within-gene〕,那么ORF阅读出现过失的可能只会发生在非编码区。

细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。

细菌基因组的ORF阅读相比照拟简单,错误的机率较少。

基因组学复习资料

基因组学复习资料

基因组学复习资料基因组学复习资料名词解释1.蛋白质基序:由2或3个二级结构如α-螺旋,β-折叠和转环构成的组合,它们有特征性的序列,具有特定的功能,称为基序或模体。

2.C 值(C value):是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。

3. C值悖理(paradox) 生物的复杂性与基因组的大小并不完全成比例增加的现象.4.遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA顺序标定在染色体上构建连锁图。

这一方法包括杂交实验和家系分析。

基因或DNA标志在染色体上的相对位置与遗传距离。

遗传距离用重组率来衡量。

即通过计算两个连锁的遗传标记在每次减数分裂中的重组概率,确定两者的相对距离遗传图距单位为 cM,每单位厘摩定义为1%交换值5.物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。

物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对。

6.重组热点(recombination hot spot):染色体的某些位点之间比其他位点之间有更高的交换频率,被称为重组热点。

7.基因组测序覆盖面(coverage):随机测序获得的序列总长与单倍体基因组序列总长之比,覆盖面越大,遗漏的序列越少。

8.密码子偏爱(codon bias):生物有时更加偏爱地使用一个或者一组密码子的现象。

这是在进化过程中基因复制的差异所产生的结果。

(仅供参考)9.开放读框(open reading frame ORF)它们由一系列指令氨基酸的密码子组成,有一个起始点和一个终止点。

10.功能域或外显子洗牌(domain shuffling or exon shuffling)由不同基因中编码不同结构域的片段彼此连接形成的全新编码序列称为功能域或外显子洗牌。

基因组学复习资料整理(word文档良心出品)

基因组学复习资料整理(word文档良心出品)

基因组学1. 简述基因组的概念和其对生命科学的影响。

基因组:指一个物种的全套染色体和基因。

广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。

基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。

②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。

Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。

④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。

2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。

该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。

Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。

不同的Ds因子的长度差异由Ac因子发生不同缺失所致。

Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。

当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。

Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。

2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。

3)Ac对Ds的控制具有负剂量效应。

4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。

5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。

基因组学-Genomics-知识考点汇总

基因组学-Genomics-知识考点汇总

基因组学-Genomics-知识考点汇总•基因组(Genome:Gene+chromosome)细胞或生物体中一套完整的单倍体遗传物质•基因组学(Genomics)最早Thomas Roderick在1986年提出,包括基因组作图、测序和分析。

可分为结构基因组学和功能基因组学。

一、结构基因组学1.遗传图(Genetic Mapping Genomes) : Based on the calculation of recombination frequencyby linkage analysis .通过亲本的杂交,分析后代的基因间重组率,并用重组率来表示两个基因之间距离的线形连锁图谱每条染色体组成一个连锁群,所有染色体的连锁群组成的图谱即构成基因组遗传图。

重组率代表基因位点之间的相对距离。

在遗传作图中,人们把一个作图单位定义为1厘摩(cM),1cM等于1%的重组率。

提高遗传作图的分辨率:选用不同的杂交群体;增加杂交群体的数目;增加分子标记的数目;扩大分子标记的来源分子标记:绘制基因组遗传图需要的坐标点。

分子标记的主要来源是染色体上存在的大量等位基因。

在DNA水平上,两个基因间一个碱基的差异就足以形成等位基因。

2.物理图(physical map):指DNA序列上两点的实际距离,它是以DNA的限制酶片段或克隆的大片段的基因组DNA分子为基本单位,以连续的重叠群为基本框架,通过遗传标记将重叠群或基因组DNA分子有序排列于染色体上。

物理图的绘制: Based on molecular hybridization analysis and PCR techniques杂交法;指纹法;荧光原位杂交技术。

3.基因组序列测定: Sequencing methods: the chain termination procedure;Map-based clone by clone strategy;Whole genome shotgun (WGS) strategy;Sequence assembly;•传统基因组测序的方法:克隆步移法(BAC-by-BAC Strategy)和全基因组鸟抢法(Whole Genome Shotgun Strategy)。

基因组学复习资料

基因组学复习资料

为什么说基因组学是生命科学的前沿学科?基因组学已成为生命科学的前沿学科,已渗透到各个科学领域,出现了结构基因组学,功能基因组学,蛋白组学,功能蛋白组学,功能酶学,生物信息学,生物计算机,药物基因组学,疾病基因组学等基因研究方向。

1、启动子:细菌中RNA聚合酶结合并启动转录的DNA序列。

2、转录因子:是转录起始过程中RNA聚合酶所需的辅助因子。

3、RNA聚合酶:是能够特异性地与启动子结合并启动转录的蛋白质。

4、转录因子(transcription factor,TF):是转录起始过程中RNA聚合酶所需的辅助因子。

按功能可分为两类: 1.普遍性转录因子(general transcription factor)是转录起始复合物的组成成员,将RNA聚合酶定位在核心启动子上。

2.激活转录因子:对转录起始复合物的组装及转录速率施加影响,决定某一基因是否表达。

5、RNA编辑(RNA editing):改变原有mRNA碱基序列组成的修饰。

有两种方式:①将mRNA分子中某些碱基进行代换,使原有mRNA密码子的含义发生改变②在mRNA分子内部插入某些核苷酸,使mRNA原有的读码框发生大范围的改变6、转录物组(transcriptome):基因组在整个生命过程中所表达的全部转录物的总和。

7、翻译(translation):按照mRNA密码子的排列顺序在核糖体上依次连接对应氨基酸合成多肽链的过程。

8、密码子摆动性(wobble):密码子的第3个碱基选择不同碱基配对的现象。

出现的原因:反密码子位于环化的tRNA序列内,是反密码子的第一个核苷酸与密码子第三个核苷酸不能形成标准的碱基配对。

9、密码子(codon):mRNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表一种氨基酸。

61个氨基酸密码子,3个终止密码子。

10、移码(frame shift):如果翻译时出现反密码子与正密码子的配对间断或重叠,将改变后续的编码信息,这一现象称为移码。

福建农林大学基因组学复习材料

福建农林大学基因组学复习材料

第一章1.什么是基因组?基因组是一种生物所拥有的整套遗传物质,它包含该生物的全部遗传信息。

2.基因组学研究内容、分支、特点基因组学研究内容:疾病基因组学研究、药物基因组学、环境基因组学、蛋白质组学、模式生物和病原生物基因组学、基因开发研究分支:结构基因组学,比较基因组学,功能基因组学基因组研究的特点:基因组学是一门关于基因组图、测序和基因组分析的学科。

与传统的遗传学比较,基因组学具有全局性、高效性、综合性和先进性的特点。

1 全局性(Overall, genome-wide):以整个基因组为研究对象,而非具体到单个特定的基因。

2 高效性(High-throughput):研究方法是平行的、高通量的,一次试验可产生大量的数据。

1 综合性:需要多学科的合作,包括生物学、化学、统计学、机械技术、电子技术、信息技术等。

2 先进性:将现有各种最先进的技术应用到极至,同时也推动了各种技术的高速发展。

3.人类基因组计划诺贝尔奖获得者Dulbecco:“人类DNA序列是人类的真谛,这个世界发生的一切,均与DNA序列息息相关”(1986);90年启动的国际性研究计划;利用大规模测序技术,完成全部人类数万个基因,30亿对碱基的序列分析4. 人类基因组进化的意义人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨大影响是不可估量的。

首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。

第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。

最后,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。

第二章1.遗传作图、物理作图概念、意义遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA 分子标记标定在染色体相对位置上构建连锁图。

物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组的实际位置所构建的位置图。

基因组学复习资料

基因组学复习资料

基因组学复习资料基因组学复习资料为什么说基因组学是生命科学的前沿学科?基因组学已成为生命科学的前沿学科,已渗透到各个科学领域,出现了结构基因组学,功能基因组学,蛋白组学,功能蛋白组学,功能酶学,生物信息学,生物计算机,药物基因组学,疾病基因组学等基因研究方向。

基因组学形成和发展的科学技术基础?基因组学有哪些特点?1).可能性;2)整体性;3)大科学性(复杂性);4)原创性;5)前沿性;6)竞争性;7)自动化,程序化(标准化),规模化,快速化,产业化。

为什么基因组DNA测序能发现许多新基因?基因组研究已取得那些重要进展?基因组:所有生命都具有指令其生长与发育,维持其结构与功能所必需的遗传信息,生物所具有的携带遗传信息的遗传物质总和称为基因组。

基因组学:是研究生命体全部遗传信息的一门学科。

模式生物:反向遗传学:为什么要在基因组水平上研究生命现象/为什么线粒体基因组大小在不同生物中变化大,而叶绿体基因组大小相对稳定?有什么证据支持细胞器起源的的内共生假说?人类基因组顺序已经完成,但编码蛋白质基因的准确数仍存在不同的看法,为什么?染色体组:不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。

C值:指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。

CpG岛:基因组中富含GC(60%—70%)的DNA区段,一般长度为1—2kb。

支架附着区(SAR):从致密的蛋白质骨架向外伸展的DNA环与染色体骨架附着区结合的DNA顺序成为SAR。

基质附着区(MAR):从致密的蛋白质骨架向外伸展的DNA环与核基质结合的DNA顺序称为MAR。

核型:将中期染色体按照大小与着丝粒的位置依次排列,可组成每种生物特有的染色体组图像,称为核型。

转座子:转座子是基因组中一段可移动的DNA顺序,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。

人类基因组计划中为什么要构建遗传图?人类基因组中有30亿个碱基对,含有大量重复序列,要在这样大的序列中确定某一基因的位置,如同大海捞针。

基因组学知识点

基因组学知识点

基因组学知识点基因组学是研究生物个体遗传物质的组成、结构、功能和变异等的一门科学。

下面将介绍基因组学的几个重要知识点。

一、基因组的概念和组成基因组指一个个体或者一个物种所拥有的所有基因的集合。

基因组由DNA分子构成,DNA是生物体内存储遗传信息的分子。

人类的基因组由大约30亿个碱基对组成,这些碱基对编码着我们的遗传信息。

基因组还包括非编码DNA序列,这些序列虽然不直接编码蛋白质,但在基因调控和遗传变异中起着重要作用。

二、基因组测序技术基因组测序是基因组学研究的重要手段。

体外测序技术的出现使我们能够更加高效、准确地测定基因组的序列。

目前常用的基因组测序技术有Sanger测序、Illumina测序和第三代测序技术等。

这些技术的不断发展使得我们能够深入研究基因组中基因的分布、变异以及功能。

三、基因组水平的生物信息学分析基因组水平的生物信息学分析能够帮助我们理解基因组的结构和功能。

其中基因预测是基因组水平的重要任务之一,通过计算机算法,预测基因组DNA序列中的基因位置、结构和功能。

基因注释是对已预测的基因信息进行进一步分析和解释,包括基因的功能、进化关系和调控信息等。

四、基因组变异和人类疾病基因组变异是指个体之间基因组DNA序列的差异。

人类基因组的变异包括单核苷酸多态性(SNP)、插入缺失变异和结构变异等。

这些变异在人类的个体差异、种群进化以及人类疾病的发生和发展中起着重要作用。

基因组学的研究使我们能够深入了解基因组变异与疾病之间的关联。

五、基因组学在个性化医学中的应用基因组学的发展对个性化医学产生了重大影响。

通过对个体基因组的分析,医生可以更好地为病患提供个体化的诊断和治疗方案。

例如,基因组学研究对癌症靶向治疗的发展做出了重要贡献。

此外,基因组学的研究还有助于预测个体对药物的反应和药物剂量的调整,提高了药物治疗的效果和安全性。

六、基因组学在植物和动物研究中的应用基因组学的研究不仅局限于人类,还广泛应用于植物和动物研究中。

基因组学考试资料 整理版

基因组学考试资料 整理版

第一章一、基因组1、基因组(genome):生物所具有的携带遗传信息的遗传物质的总和,是指生物细胞中所有的DNA,包括所有的基因和基因间区域。

2、基因组学:指以分子生物学技术、计算机技术和信息网络技术为研究手段,以生物体内全部基因为研究对象,在全基因背景下和整体水平上探索生命活动的内在规律及其内外环境影响机制的科学。

基因组学包括3个不同的亚领域结构基因组学(structural genomics) :以全基因组测序为目标功能基因组学(functional genomics):以基因功能鉴定为目标比较基因组学(comparative genomics)二、基因组序列复杂性1、C值是指一个单倍体基因组中DNA的总量,以基因组的碱基对来表示。

每个细胞中以皮克(pg,10-12g)水平表示。

C 值悖理(矛盾)(C-value paradox):在结构、功能很相似的同一类生物中,甚至在亲缘关系十分接近的物种之间,它们的C值可以相差数10倍乃至上百倍。

C值反映了总体趋势上,随着生物结构和功能的复杂性的增加,各分类单元中最小基因组的大小随分类地位的提高而递增。

2、序列复杂性单一顺序:基因组中单拷贝的DNA序列重复顺序:基因组中多拷贝的基因序列真核生物基因组DNA组分为非均一性,可分为3种类型:快速复性组分、居间复性组分、缓慢复兴组分三、基因与基因家族1、基因家族:是真核基因组的共同特征,他们来自一个共同的祖先,因基因加倍和趋异,产生了许多在DNA序列上基本一致而略有不同的成员。

包括编码RNA的基因和编码蛋白质的基因2、隔裂基因(split gene):指基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。

3、异常结构基因分类重叠基因:编码序列彼此重叠的基因,含有不同蛋白质的编码序列。

基因内基因:一个基因的内含子中包含其他基因。

反义基因: 与已知基因编码序列互补的的负链编码基因,参与基因的表达调控,可以干扰靶基因mRNA转录与翻译。

基因组学考试试题

基因组学考试试题

基因组学考试试题一、选择题(每题 2 分,共 40 分)1、以下哪个不是基因组的组成部分?()A 编码区B 非编码区C 内含子D 核糖体2、人类基因组计划的主要目标是()A 测定人类 23 对染色体的全部 DNA 序列B 鉴定所有基因的功能C 研究人类疾病的遗传机制D 以上都是3、基因表达的过程不包括()A DNA 复制B 转录C 翻译D 转录后加工4、以下哪种技术可以用于检测基因突变?()A PCRB 基因芯片C 核酸电泳D 以上都是5、真核生物的基因结构中,外显子和内含子的关系是()A 外显子和内含子交替排列B 内含子在编码区,外显子在非编码区C 外显子在编码区,内含子在非编码区D 以上都不对6、以下关于基因组印记的说法,错误的是()A 是一种表观遗传现象B 只发生在父源染色体上C 与基因的甲基化有关D 可以影响基因的表达7、人类的性染色体为()A XX 和 XYB XX 和 YYC X 和 YD 以上都不对8、以下哪种生物的基因组最小?()A 细菌B 病毒C 真菌D 植物9、基因治疗的主要策略不包括()A 基因替换B 基因修正C 基因增强D 基因抑制E 以上都是10、以下关于线粒体基因组的描述,错误的是()A 为环状 DNA 分子B 具有独立的转录和翻译系统C 所含基因数量与核基因组相同D 遗传方式为母系遗传11、以下哪种技术可以用于大规模测序?()A Sanger 测序法B 二代测序技术C 三代测序技术D 以上都是12、基因重组的类型不包括()A 同源重组B 位点特异性重组C 转座重组D 随机重组13、以下关于转录因子的说法,正确的是()A 可以结合到启动子区域B 可以促进或抑制基因转录C 是一种蛋白质D 以上都是14、以下哪种疾病与基因组变异无关?()A 镰刀型细胞贫血症B 白化病C 艾滋病D 唐氏综合征15、以下关于 SNP(单核苷酸多态性)的说法,错误的是()A 是最常见的遗传变异形式之一B 可能影响基因的表达和功能C 只存在于编码区D 可以用于疾病的关联研究16、以下哪种技术可以用于研究基因的表达调控?()A ChIPseqB RNAseqC ATACseqD 以上都是17、以下关于基因组学在医学中的应用,错误的是()A 疾病诊断B 药物研发C 法医学鉴定D 以上都不对18、以下哪种生物的基因组存在重复序列?()A 细菌B 病毒C 人类D 以上都是19、以下关于基因编辑技术的说法,错误的是()A CRISPRCas9 是一种常用的基因编辑技术B 可以精确地修改基因组中的特定序列C 不存在伦理问题D 具有广泛的应用前景20、以下关于比较基因组学的说法,正确的是()A 可以比较不同物种的基因组B 有助于了解物种的进化关系C 可以发现保守的基因和序列D 以上都是二、填空题(每题 2 分,共 20 分)1、基因是具有_________的 DNA 片段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

王前飞:(1)为什么要研究表观遗传学?答:表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。

表观遗传学是近几年兴起的而且发展迅速的一个研究遗传的分支学科,其研究和应用不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治以及干细胞定向分化研究、基因芯片中亦具有十分重要的意义。

表观遗传学补充了“中心法则”忽略的两个问题,即哪些因素决定了基因的正常转录和翻译以及核酸并不是存储遗传信息的唯一载体;在分子水平上,表观遗传学解释了DNA序列所不能解释的诸多奇怪的现象。

如: 同一等位基因可因亲源性别不同而产生不同的基因印记疾病,疾病严重程度也可因亲源性别而异。

表观遗传学信息还可直接与药物、饮食、生活习惯和环境因素等联系起来,营养状态能够通过改变表观遗传以导致癌症发生,尤其是维生素和必需氨基酸。

此外,表观遗传学信息的改变,对包括人体在内的哺乳动物基因组有广泛而重要的效应,如转录抑制、基因组印记、细胞凋亡、染色体灭活等。

DNA 甲基化模式的改变,尤其是某些抑癌基因局部甲基化水平的异常增加,在肿瘤的发生和发展过程中起到了不容忽视的作用。

研究发现,肿瘤细胞DNA 存在广泛的低甲基化和局部区域的高甲基化共存现象,以及总的甲基化能力增高,这3个特征各以不同的机制共同参与甲基化在肿瘤发生、发展中的作用。

如胃癌、结肠癌、乳腺癌、肺癌、胰腺癌等众多恶性肿瘤都不同程度地存在一个或多个肿瘤抑制基因CpG 岛甲基化。

而表观遗传学改变在本质上的可逆性,又为肿瘤的防治提供了新的策略。

所以,随着表观遗传学研究的深入,肯定会对人类生长发育、肿瘤发生以及遗传病的发病机制及其防治做出新的贡献,也必将在其他领域中展示其不可估量的作用和广阔的前景。

(2)表观遗传学涉及到哪些方面?答:表观遗传学的研究内容主要包括:DNA甲基化、组蛋白的末端修饰和变异体、DNAaseⅠ高敏感位点、非编码RNA、转录因子及其辅助因子、顺式调控元件和基因组印记等。

(3)什么因素会影响基因表达水平?答:基因选择性转录表达的调控( DNA甲基化,基因印记,组蛋白共价修饰,染色质重塑) 基因转录后的调控(基因组中非编码RNA,微小RNA(miRNA),反义RNA、内含子、核糖开关等)1.转录水平的调控:包括DNA转录成RNA时的是否转录及转录频率的调控,DNA 的序列决定了DNA的空间构型,DNA的空间构型决定了转录因子是否可以顺利的结合到DNA的调控序列上,比如结合到TATA等序列上。

2.翻译水平的调控:翻译水平的调控又可以分成翻译前的调控和翻译后的调控。

a、翻译前的调控主要是RNA编辑修饰。

b、翻译后调控主要是蛋白的修饰,蛋白修饰后可以成为有功能的蛋白或者有隐藏功能的蛋白。

在真核和原核细胞中,从基因表达到蛋白质合成,其间有许多地方受到调控,这些调控点主要可以分成两个部分:转录调控(transcription control)和转录后调控(posttranscription control)。

转录调控是指以DNA为模板合成RNA的调控,所有的细胞都具有大量序列特异的DNA结合蛋白,这些蛋白能准确地识别并结合到特异的DNA序列,在转录水平上起着开关的作用。

转录后调控是指在RNA 转录后对基因表达的调控,转录后调控主要包括:①RNA加工调控,它仅在真核细胞中发生,由它控制初级转录物如何及何时进行剪接形成可用的mRNA,例如,在不同类型的细胞中从同一基因产生的转录物可以通过选择内含子来产生不同的mRNA;②翻译调控,通过翻译调控确立哪些mRNA翻译成蛋白质及什么时候翻译,例如通过特异的mRNA结合蛋白可以抑制翻译,或者通过位于mRNA末端的特异核苷酸序列加速核糖体的结合,从而促进翻译;③mRNA降解调控,这可影响到某些mRNA种类的稳定性;④蛋白质活性调控,可选择性地使某些特异的蛋白分子激活、失活、修改、或区域化,从而影响到蛋白质怎样或何时起作用,例如,某些蛋白质只在某个特殊的发育阶段的某些细胞中起作用,而这些蛋白质对其它的细胞有很大的影响,因而在这些细胞中必须将其失活或激活后立即将其定位到特殊的细胞结构中,否则就会引起不正常的发育。

(4)有哪些研究方法?它们各有什么特点?meDNA analysisDNase I mappingMNase mappingAlternative Splicing & Non-coding RNA染色质免疫共沉淀技术(ChIP)真核生物的基因组DNA以染色质的形式存在。

因此,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。

染色质免疫沉淀技术(chromatin immunoprecipitation assay, CHIP)是目前唯一研究体内DNA与蛋白质相互作用的方法。

它的基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。

CHIP不仅可以检测体内反式因子与DNA 的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。

而且,CHIP与其他方法的结合,扩大了其应用范围:CHIP与基因芯片相结合建立的CHIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP用于研究RNA在基因表达调控中的作用。

由此可见,随着CHIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用●染色体构象捕捉技术(3C),首先将标本用甲醛处理,使染色体交互的部分紧密的连接在一起,然后用特殊的方法是交联的两段序列形成环状,最后用定量PCR或者芯片检测某两段序列发生交联的频率。

●甲基化特异性PCR(MSP)原理:MSP是一种简单、特异、敏感的检测单基因甲基化的方式。

其基本原理是用亚硫酸氢钠处理基因组DNA,未甲基化的胞嘧啶变成尿嘧啶,而甲基化的胞嘧啶不变,然后用3对特异性引物对所测基因的同一核苷酸序列进行扩增。

扩增产物用DNA琼脂糖凝胶电泳,凝胶扫描观察分析结果。

●凝胶迁移或电泳迁移率实验(EMSA-electrophoretic mobility shift assay)是一种研究DNA结合蛋白和其相关的DNA结合序列相互作用的技术,可用于定性和定量分析。

这一技术最初用于研究DNA结合蛋白,目前已用于研究RNA结合蛋白和特定的RNA序列的相互作用。

通常将纯化的蛋白和细胞粗提液和32P同位素标记的DNA或RNA探针一同保温,在非变性的聚丙烯凝胶电泳上,分离复合物和非结合的探针。

DNA-复合物或RNA-复合物比非结合的探针移动得慢。

同位素标记的探针依研究的结合蛋白的不同,可是双链或者是单链。

当检测如转录调控因子一类的DNA结合蛋白,可用纯化蛋白,部分纯化蛋白,或核细胞抽提液。

在检测RNA结合蛋白时,依据目的RNA结合蛋白的位置,可用纯化或部分纯化的蛋白,也可用核或胞质细胞抽提液。

竞争实验中采用含蛋白结合序列的DNA或RNA片段和寡核苷酸片段(特异),和其它非相关的片段(非特异),来确定DNA或RNA结合蛋白的特异性。

在竞争的特异和非特异片段的存在下,依据复合物的特点和强度来确定特异结合。

●荧光原位杂交(FISH):,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule)结合,杂交后再通过免疫细胞化学过程连接上荧光染料.FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子偶联的单克隆抗体与探针分子特异性结合来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析.FISH具有安全、快速、灵敏度高、探针能长期保存、能同时显示多种颜色等优点,不但能显示中期分裂相,还能显示于间期核.同时在荧光原位杂交基础上又发展了多彩色荧光原位杂交技术和染色质纤维荧光原位杂交技术.肖景发:简述药物基因组学的定义以及生物信息学在药物发现过程中的主要应用。

答:药物基因学(1):是研究遗传因素对药物效应的影响 ,确定药物作用的靶点 ,即从表型至基因型的药物反应的个体多样性的研究。

它将基因的多态性与药物效应个体多样性紧密联系在一起。

通过它的研究 ,将更科学地评价各种药物的疗效和毒性 ,同时也对不同患者根据DNA多态性的差别选择高效和低毒的药物加以治疗。

药物基因学(2):综合药理学和遗传学、研究个体基因遗传因素如何影响机体对药物反应的交叉学科。

主要研究基因结构多态性与不同药物反应之间关系,解释由于个体之间差异所表现出药物的不同治疗效果,趋向于用药个性化。

用药个性化将产生最大的效果和安全性。

生物信息学在药物发现过程中的主要应用:答:主要体现在以下几个方面:1.靶点的确定;生物信息学可以帮助人们在药物开发过程中更早、更快地找到更佳的药物作用靶点减少研发时间和所需临床试验的数量(如抗生素类药物理想的作用靶点应具有为病原体所特有、在病原体中高度保守在人体中不存在等特点)生物信息学技术就可以通过将病原体基因或基因序列与人类基因及其基因序列进行比较分析筛选出该类药物理想的作用靶点。

2.靶点的选择;通过生物信息学的帮助能更好地在靶点发现的早期阶段进行位点的筛选和确定。

除此之外它还在以下三个方面有助于对靶点的选择:●对靶点的定性如蛋白质家族的分类和亚类;●对靶点的功能等特性的理解如靶点在更大的生化或细胞环境中的生物学行为;●对靶点的利用及其对有关内容的研究(如预测针对靶点的药物在病人体内的摄取或重复摄取解毒及其以此基因为基础的变异);3.表达序列标签;表达序列标签来自随机选取的克隆的末端序列,简单地说,一个EST就是对应于某一种mRNA的一个cDNA克隆的一段序列 ,一般长度大于15Ob的 EST在同源查找和基因作图中的作用较大。

4.基因组序列;生物信息学在作图和序列数据处理方面为破译人类基因组的全部 10万个左右基因提供了主要的支持。

5.基因多态性;作为基因组的标志之一SNPs与疾病和药效的变化有很大关系。

在人类基因组中估计有300到 1000万个SNPs。

对于如此巨大的数目的SNP只有将生物信息学手段和计算机自动识别方法相结合并充分利用 DNA信息数据库才能简便有效价廉地发掘出具有应用价值的SNPs。

6.基因表达;基因表达的组织定位是靶点确立中十分重要的一个方面。

基因组研究的启动提供了大量的可作为研究目标的药物潜在作用靶点,而了解基因在何时何处表达对认识基因的功能将有十分重要的意义。

相关文档
最新文档