元素与集合的关系判断(教师版)

合集下载

2022新高考数学高频考点题型归纳01集合(教师版)

2022新高考数学高频考点题型归纳01集合(教师版)

专题01集合一、关键能力1.通过集合的学习,使学生学会使用基本的集合语言描述有关的数学对象,发展学生运用数学语言进行交流的能力;使学生初步感受到运用集合语言描述数学对象时的简洁性和准确性。

2.通过常用逻辑用语的学习,使学生学会使用常用的逻辑用语准确地表达数学内容;体会逻辑用语在表述和论证中的作用,形成自觉地利用逻辑知识对一些命题间的逻辑关系进行分析和推理的意识,发展学生利用数学语言准确贴切地描述问题、规范简洁地阐述论证过程的能力,从而能够更好地进行交流。

二、教学建议1.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

2.理解集合之间包含与相等的含义,能识别给定集合的子集,在具体情境中,了解全集与空集的含义。

3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集,能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

三、自主先学1.重读课本.独立完成下列梳理. 2.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)3.集合间的关系(1)子集:对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ).(2)真子集:若A B ⊆,且A B ≠,则A B ⊂≠(或B A⊃≠).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即A ∅⊆,B⊂≠∅(B ≠∅).(4)若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个. (5)集合相等:若A ⊆B ,且B ⊆A ,则A =B . 4.集合的运算集合的并集集合的交集集合的补集5.集合的运算性质 并集的性质:A ∅=A ;A ∪A =A ;A ∪B =B ∪A ;A ∪B =A ⇔B ⊆A .交集的性质:A ∅=∅;A ∩A =A ;A ∩B =B ∩A ;A ∩B =A ⇔A ⊆B .补集的性质:)(A C A U ⋃=U ;)(A C A U ⋂=∅;)(A C C U U =A .四、高频考点+重点题型 考点一、文氏图1.(2020·全国高三其他模拟(文))记全集{}1,2,3,4,5,6,7,8U =,{}1,2,3,5A =,{}2,4,6B =,则图中阴影部分所表示的集合是( )A .{}4,6,7,8B .{}7,8C .{}2D .{}1,2,3,4,6【答案】B 【详解】由图知,阴影部分所表示的集合是)(B A C U ⋃∵{}1,2,3,5A =,{}2,4,6B =,全集{}1,2,3,4,5,6,7,8U =, ∴{}1,2,3,4,5,6AB =,∴{}87)(,=⋃B A C U故选:B.2.(2020·浙江高三练习)设全集{}1,2,3,4,5,6,7,8U =,集合{}{}2,4,5,7,1,4,7,8A B ==,那么图中的白色部分所表示的集合是( ).A .{}3,6B .{}4,7C .{}1,2,4,5,7,8D .{}1,2,3,5,6,8【答案】C3.(2020·南岸区·重庆第二外国语学校高三月考)已知全集U =R ,集合{}2,3,4A =,(){}ln 3B x y x ==-,则图中阴影部分表示的集合为( )A .{}2,4B .{}2,3C .{}2,3,4D .{}1,2,3,4【答案】B 【详解】图中阴影部分表示的集合为=⋂)(B C A U {}2,3 故选:B4.(2021·全国高三专题练习(文))设全集{}{}2,40,1,U R A x x B x x ==-≥=≤-则下图阴影部分表示的集合为( )A .(]1,2-B .[]1,2-C .[)2,1--D .(],1-∞-【详解】{}{}2|40|22A x x x x =-≥=-≤≤,易知阴影部分为集合(]1,2-,5.(八省新高考统一适应性模拟考试 2021届高三二模T1)如图所示,A ,B 是非空集合,定义集合A #B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y },B ={y |y =3x ,x >0},则A #B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |x =0或x >2}答案:D考点二、含参集合1.(2020·山东)已知集合A ={﹣1,2},B ={x |ax =1},若B ⊂A ,则由实数a 的所有可能的取值组成的集合为( ) A .1{1,}2B .1{1,}2-C .1{0,1,}2D .1{0,1,}2-【答案】D 【详解】当0a =时, B =∅,满足条件,所以0a =,当0a ≠时, 1{}B a=,由B ⊆A 得11a =-或12a =,所以1a =-或12a =,因此由实数a 的所有可能的取值组成的集合为1{0,1,}2-故选:D2.(2021·辽宁高三一模(理))已知集合{}12A x a x a =-≤≤+,{}35B x x =<<,则使A B ⊇成立的实数a 的取值范围为( ) A .{}34a a <≤ B .{}34a x ≤≤C .{}34a a <<D .∅【答案】B若满足A B ⊇, 由已知条件得1325a a -≤⎧⎨+≥⎩,解得 34m ≤≤,故选:B .3.(2021·新余市第一中学高三二模(理))已知集合{}2|20P y y y =-->,{}2|0Q x x ax b =++≤,若P Q R =,则(2,3]P Q ⋂=,则a b +=A .-5B .5C .-1D .1【答案】A【解析】{}2|20{2y 1}P y y y y y =-->=<-或,而由P Q R ⋃=及(2,3]P Q ⋂=得[13]Q ,=- ,所以1,3-是方程20x ax b ++=的两根,由根与系数关系得 13,132,3,5a b a b a b -=-+=-⨯⇒=-=-+=- ,选A.4.(2020·吉林吉林市·高三三模(理))设全集,U R =集合{}|1A x x =>,集合{}|,B x x p =>若()UA B ⋂=∅,则p 应该满足的条件是A .1p >B .p ≥1C .1p <D .p ≤1 【答案】B【解析】由{}1A x x =得:,由()UA B ⋂=∅,得p ≥1,故选B.5.(2020·安徽淮南市·高三二模(文))已知全集U R =,集合{|20}M x x a =+≥,()2{|log 11}N x x =-<,若集合(){|13}U M C N x x x ⋂==≥或,那么a 的取值为A .12a =B .12a ≤C .12a =-D .12a ≥【答案】C 【详解】由题得::2M x a ≥-,:13N x <<,因为(){|13}U M C N x x x ⋂==≥或,所以12a =- 题型三、集合关系判断1.(2021·全国高三其他模拟)已知全集U ,A ,B ,C 为U 的非空子集,且)(B A C C U ⋃⊂,则下列正确的是( )A .A A C C U =⋃)(B .R B C C U =⋃)( C .A C C C U U ⊂ D .A A C C U =⋂)( 【答案】D2.(2018·辽宁高三期中(理))已知集合,M N I ⊂,若M N N ⋂=,则( ) A .I I C M C N ⊇ B .I M C N ⊆C .I I C M C N ⊆D .I M C N ⊇【答案】C 【详解】∵M∩N=N ,∴N ⊆M ,若把I 看作全集,作出韦恩图如图所示: ∴N 的补集包含M 的补集, 故选C .3.(2017·陕西西安市·高三其他模拟(理))已知U 是全集,M 、N 是U 的两个子集,若M N U ⋃≠,M N ≠∅,则下列选项中正确的是A .U C M N =B .UC N M =C .()()U U C M C N ⋂=∅D .()()U U C M C N U ⋃≠【答案】D 【详解】由韦恩图可知,A B 不一定成立,由集合的运算律可知()()()U U U U C M C N C M N C U φ⋂=⋃≠=, 所以选项C 是错误的,故选D .4.(2017·上海市奉贤中学)设U 是全集,若A B U ⋃=,则下列关系式一定正确的是A .φ=⋂B A B .AC B U ⊂ C .B A C U ⊂D .U B C A C U U =⋂【答案】C 【详解】如图,A B U ⋃=,此时U C A B ⊆.故选:C5.(2017·四川高三三模(理))已知全集U ,集合M ,N 满足M N U ⊆⊆,则下列结论正确的是 A .M N U ⋃= B .φ=⋂)()N C M C U U ( C .φ=⋂)(N C M U D .φ=⋃)()N C M C U U ( 【答案】C题型四、新定义集合1.(2021·全国高三其他模拟)已知M ,N 是任意两个非空集合,定义集合{},M N x x M x N -=∈∉,则()MN M -=( )A .NB .N M -C .M N -D .M N ⋂【答案】B 【详解】由题意(){}{},,M N M x x M N x M x x N x M N M ⋃-=∈⋃∉=∈∉=-. 故选:B.2.(2019·浙江高三专题练习)设P 、Q 为两个非空集合,定义集合{|}P Q a b a P b Q ∈∈+=+,.若{}{}0,2,51,2,6P Q =,=,则P Q +中元素的个数是( ) A .9 B .8C .7D .6【答案】B【详解】根据题意,若P={0,2,5},Q={1,2,6},则P+Q={1,2,6,3,4,8,7,11}, 其中有8个元素,故选B .3.(2021·全国高三专题练习)设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈⋃且}x A B ∉⋂.已知{|A x y ==,{}1B x x =,则A B ⨯等于A .[]()0,12,⋃+∞B .[)()0,12,⋃+∞C .[]0,1 D .[]0,2【答案】A 【详解】求出集合A 中的函数的定义域得到:220x x -≥,即()20x x -≥可化为020x x ≥⎧⎨-≥⎩或020x x ≤⎧⎨-≤⎩解得02x ≤≤,即{}[]|0202A x x =≤≤=,{}1B x x =)0A B ⎡⋃=+∞⎣,,](12A B ⋂=, 则[]()012A B ⨯=⋃+∞,, 故选A4.(2016·湖南高三竞赛)设集合{}0123,,,S A A A A =,在集合S 上定义运算“⊕”:j i k A A A ⊕=,其中,k 为i j +被4除的余数,i 、{}0,1,2,3j ∈.则满足关系()20x x A A ⊕⊕=的()x x S ∈的个数为( )A .1B .2C .3D .4【答案】B解:当x=A 0时,(x ⊕x )⊕A 2=(A 0⊕A 0)⊕A 2=A 0⊕A 2=A 2 当x=A 1时,(x ⊕x )⊕A 2=(A 1⊕A 1)⊕A 2=A 2⊕A 2=A 0 当x=A 2时,(x ⊕x )⊕A 2=(A 2⊕A 2)⊕A 2=A 0⊕A 2=A 2 当x=A 3时,(x ⊕x )⊕A 2=(A 3⊕A 3)⊕A 2=A 2⊕A 2=A 0则满足关系式(x ⊕x )⊕A 2=A 0的x (x ∈S )的个数为:2个. 故选B .5.(2020·湖南株洲市·株洲二中高一月考)定义集合运算:(){},,A B z z x x y x A y B =∈=-∈∈R ※︳,设集合 {}1,2A =,{}2,3B =,则集合A B ※ 的所有元素个数为( )A .2B .3C .4D .5【答案】B 【详解】当1,2x y ==时,1(12)1z =⨯-=-; 当1,3x y ==时,1(13)2z =⨯-=-; 当2,2x y ==时,2(22)0z =⨯-=; 当2,3x y ==时,2(23)2z =⨯-=-. 所以集合 A B ※ 的共有3个元素. 故选:B题型五、集合与不等式、方程、函数结合1.(2019·江西宜春市·上高二中高三月考(理))已知全集U =R ,1218x N x⎧⎫=<<⎨⎬⎩⎭,(){}ln 1M x y x ==--,则图中阴影部分表示的集合是A .(3,1)--B .()3,0-C .[)1,0-D .(),3-∞-答案:C 【详解】解:图中阴影部分表示的集合U N C M ⋂,由1{|21}{|30}8x N x x x =<<=-<<,(){|ln 1{|1},M x y x x x ==--=<- 则{|1}U C M x x =≥-, 则{|10}U N C M x x ⋂=-≤<. 故选C .2.(2019·北京高考模拟(理))已知集合{}1,0,1,2A =-,{|B x y ==,则下图中阴影部分所表示的集合为A .{}1-B .{}0C .{}1,0-D .{}1,0,1-答案:B 【详解】∵B ={x |x 2﹣1≥0}={x |x ≥1或x ≤﹣1}, ∴∁U B ={x |﹣1<x <1},又由图象可知阴影部分对应的集合为A ∩(∁U B ), ∴A ∩(∁U B )={0}, 故选B .3.(2019·全国高三专题练习)已知集合(){}22,|,,2M x y x y xy =+=为实数且,(){},|,,2N x y x y x y =+=为实数且,则M N ⋂的元素个数为A .0B .1C .2D .3答案:B 【详解】联立方程组2222x y x y ⎧+=⎨+=⎩ 所以2210x x -+= 判别式0∆= ,所以M N ⋂ 的解集只有一个. 故选B4.(2018·全国高三专题练习)已知*n N ∈,集合13521,,,,2482n n n M -⎧⎫=⎨⎬⎩⎭,集合n M 的所有非空子集的最小元素之和为n T ,则使得80n T >的最小正整数n 的值为( ) A .12B .13C .14D .15 答案:B【解析】当n=2时,n M 的所有非空子集为:{1313,?},2424⎧⎫⎧⎫⎨⎬⎨⎬⎩⎭⎩⎭, ∴和为S=1237244⨯+= 当n=3时,∴和为S=1235412448⨯+⨯+⨯= 当n≥4时,当最小值为212n n - 时,每个元素都有或无两种情况,共有n-1个元素,共有2n-1-1个非空子集,S 1=212n -当最小值为1232n n --不含212n n -含1232n n --共n-2个元素,有2n-2-1个非空子集, S 2=23......2n - ∴n T =S 1+S 2+S 3+…+S n =212n -+2237531......222442n n --++++=则21802n -> 的最小正整数n 为13故选B5.(2019·湖南长沙市·雅礼中学高三月考(文))集合{}{|3},1,0,1xM y R y N =∈==-,则下列结论正确的是A .B .(0,)M N ⋃=+∞C .()(,0)R C M N ⋃=-∞D .{}()1,0R C M N ⋂=- 答案:D 【详解】{}0M y y =,{|0}R M y y =≤,所以{}()1,0R C M N ⋂=-,故选D6.(2016·吉林白城市·高三月考(理))已知集合{|{||1|2}M x y N x x ==+≤,且M 、M 都是全集I 的子集,则右图韦恩图中阴影部分表示的集合为A.{|1}x x ≤≤B .{|31}z z -≤≤ C.{|3z z -≤<D.{|1x x <≤答案:C【详解】试题分析:{{}|,|31{|I M x x N x x C M x x =≤=-≤≤⇒=I N C M ⇒⋂={|3x x -≤<,故选C .7.(2011·河北唐山市·高三二模(理))已知i 是虚数单位,集合M Z =(整数集)和()2211,,,i N i i i i ⎧⎫+⎪⎪=⎨⎬⎪⎪⎩⎭的关系韦恩图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷个 答案:B【详解】因为21i =-,()2211222i i i i i i i+++===,所以集合1,1,,2N i i ⎧⎫=-⎨⎬⎩⎭, 因为阴影部分所示的集合为M N ⋂,M Z =,所以{}1,2M N ⋂=-,阴影部分所示的集合的元素共有2个,故选B .达标测试一、单项选择题1.(2018·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4答案 A解析 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0, -1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.2.已知集合A ={x ∈N *|x 2-3x -4<0},则集合A 的真子集有( )A .7个B .8个C .15个D .16个答案 A解析 ∵集合A ={x ∈N *|x 2-3x -4<0}={x ∈N *|-1<x <4}={1,2,3},∴集合A 中共有3个元素,∴真子集有23-1=7(个).3.已知集合M ={x |x >4或x <1},N =[-1,+∞),则M ∩N 等于( )A .(-∞,+∞)B .(-1,1)∪(4,+∞)C .∅D .[-1,1)∪(4,+∞)答案 D解析 因为M ={x |x >4或x <1},N =[-1,+∞),所以M ∩N =[-1,1)∪(4,+∞). 4.(2020·山东模拟)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B 等于() A .{(1,1)} B .{(-2,4)}C .{(1,1),(-2,4)}D .∅答案 C解析 首先注意到集合A 与集合B 均为点集,联立⎩⎪⎨⎪⎧ x +y =2,y =x 2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4.从而集合A ∩B ={(1,1),(-2,4)}.二、多项选择题5.已知集合A ={x |x 2-3x +2≤0},B ={x |2<2x ≤8},则下列判断不正确的是( ) A .A ∪B =B B .(∁R B )∪A =RC .A ∩B ={x |1<x ≤2}D .(∁R B )∪(∁R A )=R答案 ABD解析 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2};因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3}.所以A ∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2}.(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.三.填空题6.已知集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a =________.答案:-1或2解析:由a 2-a +1=3,得a =-1或a =2,经检验符合.由a 2-a +1=a ,得a =1,由于集合中不能有相同元素,所以舍去.故a =-1或2.7.设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为________.答案 (-∞,2]解析 当a >1时,A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),当且仅当a -1≤1时,A ∪B =R ,故1<a ≤2;当a =1时,A =R ,B ={x |x ≥0},A ∪B =R ,满足题意;当a <1时,A =(-∞,a ]∪[1,+∞),B =[a -1,+∞),又∵a -1<a ,∴A ∪B =R ,故a <1满足题意,综上知a ∈(-∞,2].四.解答题8.已知集合A =()122log 23215x x x x ⎧⎫⎧+>-⎪⎪⎪⎨⎨⎬⎪⎪⎪≤+⎩⎩⎭,B ={x |m +1≤x ≤2m -1}.(1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.解析:(1)解不等式12log (2)x +>-3得:-2<x <6. ① 解不等式x 2≤2x +15得:-3≤x ≤5. ②由①②求交集得-2<x ≤5,即集合A =(-2,5].(2)当B =∅时,m +1>2m -1,解得m <2;当B ≠∅时,由⎩⎪⎨⎪⎧ m +1≤2m -1,m +1>-2,2m -1≤5解得2≤m ≤3,故实数m 的取值范围为(-∞,3].。

高一第1讲 集合概念与运算(教师)

高一第1讲 集合概念与运算(教师)

第1讲 集合概念与运算(教师版)一. 学习目标(1)了解集合的含义,元素与集合的属于关系;能用列举法或描述法表示集合.(2)理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.(3)理解并会求并集、交集、补集;能用Venn 图表达集合的关系与运算.二.重点难点重点:(1)理解集合、子集,空集的概念(2)了解属于、包含、相等关系的意义(3)掌握集合的有关术语和符号(4)理解集合的交、并、补运算的概念及性质(5)会用Venn 图及数轴解有关集合问题难点:子集与真子集、属于与包含关系、交集与并集之间的区别与联系.三.知识梳理1.集合的基本概念:(1)集合的概念: 具有某种公共属性的一类事物的全体形成一个集合。

;(2)集合中元素的三个特性: 确定性,互异性,无序性。

;(3)集合的三种表示方法: 描述法,列举法,图示法。

2.集合的运算(1)子集:若 集合A 中任意一个元素都是集合B 中的元素,则A ⊆B ;真子集:若A ⊆B ,且 B 中至少有一个元素不在A 中 ,则A ⊂B ;∅是 任何 集合的子集,是 任何非空 集合的真子集.(2)交集:A ∩B ={|x x A B ∈∈且x };(3)并集:A ∪B ={|x x A B ∈∈或x }.(4)补集:若U 为全集,A ⊆U ,则u C A ={|x x U A ∈∉且x },3.集合的常用运算性质(1)A ∩φ=φ;A ∩A =A ;(2)A ∪φ=A ;A ∪A =A ;(3) A ∩(u C A )= φ ;A ∪(u C A )= U ;u C (u C A )= A ;(4)A ⊆B ⇔A ∩B = A ,A ∪B = B ;(5)()u C A B =()()u u C A C B ;()u C A B =()()u u C A C B ;(6)card(A ∪B )=card(A )+card(B )-()card A B四.典例剖析题型一 集合的基本概念例1 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)2012年度诺贝尔文学奖获得者.思路探索: 紧扣集合的概念,根据集合元素的确定性逐一分析,作出判断.解 (1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)2012年度诺贝尔文学奖获得者是中国作家莫言,是确定的,能构成集合.综上:(1),(2)不能构成集合;(3),(4)能构成集合.教师点评:1.判断元素能否构成集合,关键在于是否有一个明确的客观标准来衡量这些对象,即看这些元素是否具有确定性,如果条件满足就可以断定这些元素可以组成集合,否则就不能构成集合.2.注意集合元素的互异性,相同的元素在集合中只能出现一次.例2 (1) 若所有形如3a +2b (a ∈Z ,b ∈Z)的数组成集合A ,判断6-22是不是集合A 中的元素.解:根据元素与集合的关系判断,可令a=2,b=-2.所以6-2 2是集合A中的元素.(2)已知A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数2 013a的值;思路探索:(1)1∈A,则a+2,(a+1)2,a2+3a+3可以分别为1,但又要注意它们互不相同.(2)从集合元素互异性的特点分析,它们必须具备两两不等.解:(1)当a+2=1,即a=-1时,(a+1)2=0,a2+3a+3=1与a+2相同,∴不符合题意.当(a+1)2=1,即a=0或a=-2时,①a=0符合要求.②a=-2时,a2+3a+3=1与(a +1)2相同,不符合题意.当a2+3a+3=1,即a=-2或a=-1.①当a=-2时,a2+3a +3=(a+1)2=1,不符合题意.②当a=-1时,a2+3a+3=a+2=1,不符合题意.综上所述,a=0.∴2 013a=1.教师点评:1.(1)判断一个元素是不是某个集合的元素关键是判断这个元素是否具有这个集合中元素的共同特征.(2)要熟练掌握R、Q、Z、N、N*表示什么数集.(2)加强对集合中元素的特征的理解,互异性常常容易忽略,求解问题时要特别注意.(3)分类讨论的思想方法常用于解决集合问题.例3 用适当的方法表示下列集合:(1)A={(x,y)|x+y=4,x∈N*,y∈N*};(2)平面直角坐标系中所有第二象限的点.解(1)∵x∈N*,y∈N*,∴x=1,y=3或x=2,y=2或x=3,y=1,∴A={(1,3),(2,2),(3,1)}.(2){(x,y)|x<0,y>0}.教师点评:表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.课堂练习1:(1)下列各组对象可以组成集合的是( )A.数学必修1课本中所有的难题.B.方程x2-9=0在实数范围内的解C.直角坐标平面内第一象限的一些点.D.3的近似值的全体解析A中“难题”的标准不确定,不能构成集合;B中只有两个元素3与-3,是确定的,B 能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.答案 B(2)下列所给关系正确的个数是( )①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .4解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数, ∴①②正确,③④不正确,正确的个数为2..答案 B(3)(2013年高考江西卷(文))若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=A .4B .2C .0D .0或4【答案】A 题型二 集合间的基本关系例4(1)(2012年高考大纲文)已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则 ( )A .A B ⊆B .C B ⊆ C .D C ⊆ D .A D ⊆解析:B (2)、(2011·新课标全国)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个解析 P =M ∩N ={1,3},故P 的子集有22=4个.*(3)(2011 年高考安徽)设集合 A ={1,2,3,4,5,6},B ={4,5,6,7},则满足 S ⊆A 且 S ∩B ≠∅的集合 S 的个数为( )(A )57 (B )56 (C )49 (D )8【答案】B教师点评:1.写有限集合的所有子集,首先要注意两个特殊的子集:∅和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A 含n 个元素,那么它子集个数为2n ;真子集个数为2n -1,非空真子集个数为2n -2.例5 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.[思路探索] 借助数轴分析,注意B 是否为空集.解 ∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.课堂练习2:(2011·北京高考改编)已知集合P ={x|x 2≤1},M ={x|-a +2≤x ≤2a -7}, 若P ∪M =P ,求实数a 的取值范围.【解析】 由P ∪M =P ,知M ⊆P ,(1)若-a +2>2a -7,即a <3时,M =∅,满足P ∪M =P.(2)当a ≥3时,M ≠∅,由M ⊆P ,得⎩⎪⎨⎪⎧-a +2≥-1,2a -7≤1.解之得a ≤3,∴a =3. 综合(1)、(2)可知,若P ∪M =P ,实数a 的取值范围是a ≤3.,教师点评:在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行分类讨论.分类时要遵循“不重不漏”的分类原则,然后对每一类情况都要给出问题的解答.分类讨论的一般步骤:①确定标准;②恰当分类;③逐类讨论;④归纳结论. 题型三 集合的基本运算例6 (1)(2013年高考课标Ⅰ卷(文))已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = A .{1,4} B .{2,3} C .{9,16} D .{1,2}【答案】A(2)设集合 A ={x |x >3},B ={x |x 2-5x +4<0},则 A ∪B =( )A .∅B .{x |3<x <4}C .{x |-2<x <1}D .{x |x >1}【答案】D(3)(2013年高考陕西卷(理))设全集为R ,函数()f x M , 则C M R 为(A) [-1,1] (B) (-1,1) (C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D(4)(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,1 【答案】A 例7 设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}.若A ∩B =B ,求a 的取值范围.[思路探索] 由A ∩B =B ,得B ⊆A ,由子集的定义建立关于a 的方程或不等式求解. 解 由已知得A ={-4,0},且A ∩B =B ,∴B ⊆A ,则B =ϕ,{-4},{0},{-4,0}.①若B =ϕ,则Δ=4(a +1)2-4(a 2-1)=8(a +1)<0,得a <-1.②若B ={-4},则方程x 2+2(a +1)x +a 2-1=0有两个相等的实根x 1=x 2=-4.∴⎩⎪⎨⎪⎧ -42+2a +1·-4+a 2-1=0,Δ=8a +1=0,方程组无解. ③若B ={0},则⎩⎪⎨⎪⎧a 2-1=0,Δ=8a +1=0,∴a =-1. ④若B ={-4,0},则⎩⎪⎨⎪⎧ -2a +1=-4,a 2-1=0,Δ=8a +1>0.解得a =1.综上可知,a =1或a ≤-1.教师点评:1.在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等,解答时应灵活处理.2.当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时要考虑B =∅的情况,切不可漏掉.课堂练习3:(1)已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解 ∵A ∪B =A ,∴B ⊆A .,若B =∅时,2a >a +3,即a >3;若B ≠∅时,⎩⎪⎨⎪⎧ 2a ≥-2,a +3≤5,2a ≤a +3,解得:-1≤a ≤2,综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.*(2)(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){}|10A x x x a =--≥, {}|1B x x a =≥-.若A B =R ,则a 的取值范围为 A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞【答案】B 题型四 用韦恩图解题例8 (1) 已知全集 U =R ,则正确表示集合 M ={-1,0,1}和 N ={x |x 2+x =0}关系的韦恩(Venn)图是( )答:B .(2) (2013年上海市春季高考数学试卷)设全集U R =,下列集合运算结果为R 的是( )(A)u Z N ð (B)u N N ð (C)()u u ∅痧 (D){0}u ð【答案】A (3)设全集U ={1,2,3,4,5},集合A ∩B ={2},(∁U A )∩B ={4},(∁U A )∩(∁U B )={1,5},求集合A 和B .解:由Venn 图,可知A ={2,3},B ={2,4}.教师点评:Venn 图直观形象地反映了元素、集合之间的关系.在解题中将隐性的关系显性化,利用韦恩图易于找到元素与元素、元素与集合、集合与集合之间的联系.例9.向50名学生调查对A 、B 两事件的态度,有如下结果赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人。

必修第一册第一章 集合与常用逻辑用语第2讲 集合的表示方法教师版

必修第一册第一章    集合与常用逻辑用语第2讲 集合的表示方法教师版

第2讲 集合的表示【知识梳理】知识点一 列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.【要点讲解】使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a 1,a 2,…,a n };(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【知识精讲】例1 (1)设集合A ={1,2,3},B ={1,3,9},若x ∈A 且x ∉B ,则x =( )A .1B .2C .3D .9 (2)用列举法表示下列集合:①不大于10的非负偶数组成的集合;②方程x 2=x 的所有实数解组成的集合;③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1的解.【解】选B (1)∵x ∈A ,∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧ x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1的解集为{(0,1)}.【变式训练】1、已知集合A ={-2,-1,0,1,2,3},对任意a ∈A ,有|a |∈B ,且B 中只有4个元素,求集合B .解:对任意a ∈A ,有|a |∈B .因为集合A ={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A ,知0,1,2,3∈B .又因为B 中只有4个元素,所以B ={0,1,2,3}.2、 用列举法表示下列集合.(1)小于10的所有自然数组成的集合;(2)方程x 2=x 的所有实数根组成的集合.解:(1)设小于10的所有自然数组成的集合为A ,那么A ={0,1,2,3,4,5,6,7,8,9}.(2)设方程x 2=x 的所有实数根组成的集合为B ,那么B ={0,1}.3、用列举法表示下列集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由1~20以内的所有素数组成的集合.解:(1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.(2)设由1~20以内的所有素数组成的集合为C ,那么C ={2,3,5,7,11,13,17,19}.4、用列举法表示集合A ={(x ,y )|y =x 2,-1≤x ≤1,且x ∈Z}.解:由-1≤x ≤1,且x ∈Z ,得x =-1,0,1,当x =-1时,y =1;当x =0时,y =0;当x =1时,y =1.∴A ={(-1,1),(0,0),(1,1)}.【方法技巧总结】用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.【知识梳理】知识点二描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.【要点讲解】1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x的取值范围A需写明确,但若从上下文的关系看,x∈A是明确的,则x∈A可以省略,只写元素x.例1 (1)用符号“∈”或“∉”填空:①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.【解】(1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.【答案】(1)①∈∉②∈【变式训练】1、下列三个集合:①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A={x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}=R,即A=R;集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{y|y=x2+1}={y|y≥1}.集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对.可以认为集合C是坐标平面内满足y=x2+1的点(x,y)构成的集合,其实就是抛物线y=x2+1的图象.2、试用描述法表示下列集合.(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.解:(1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A ={x∈R|x2-2=0}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.3、用描述法表示函数y=x2-2图象上所有的点组成的集合.解:{(x,y)|y=x2-2}.4、用描述法表示下列集合.(1)方程x2+y2-4x+6y+13=0的解集;(2)平面直角坐标系中坐标轴上的点组成的集合.解:(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.所以方程的解集为{(x,y)|x=2,y=-3}.(2)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.5、集合A={1,-3,5,-7,9,…}用描述法可表示为( )A.{x|x=2n±1,n∈N}B.{x|x=(-1)n(2n-1),n∈N}C.{x|x=(-1)n(2n+1),n∈N}D.{x|x=(-1)n-1(2n+1),n∈N}【解】选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.【方法技巧总结】利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.(2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.知识点三集合表示的综合应用【知识梳理】用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.【知识精讲】题型1 选择适当的方法表示集合例1 用适当的方法表示下列集合.(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.解(1)列举法:{0,2,4};或描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.【变式训练】1、若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.【答案】{2 000,2 001,2 004}【解析】由A ={x ∈Z|-2≤x ≤2}={-2,-1,0,1,2},所以x 2∈{0,1,4},x 2+2 000的值为2 000,2001,2 004,所以B ={2 000,2 001,2 004}.2、设集合B =⎭⎬⎫⎩⎨⎧∈+∈N x N x 26|. ①试判断元素1,2与集合B 的关系;②用列举法表示集合B .【解】①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N. 所以1∈B,2∉B .②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}.【方法技巧总结】判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.题型2 新定义的集合例2 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={}5n +k |n ∈Z ,k =0,1,2,3,4,给出如下四个结论:①2 016∈[1];②-3∈[3];③若整数a ,b 属于同一“类”,则a -b ∈[0];④若a -b ∈[0],则整数a ,b 属于同一“类”.其中,正确结论的个数是( )A .1B .2C .3D .4答案 C解析 由于[k ]={ 5n +k |n ∈Z|,对于①,2 016除以5等于403余1,∴2 016∈[1],∴①正确;对于②,-3=-5+2,被5除余2,∴②错误;对于③,∵a ,b 是同一“类”,可设a =5n 1+k ,b =5n 2+k ,则a -b =5(n 1-n 2)能被5整除,∴a -b ∈[0],∴③正确;对于④,若a -b ∈[0],则可设a -b =5n ,n ∈Z ,即a =5n +b ,n ∈Z ,不妨令b =5m +k ,m ∈Z ,k =0,1,2,3,4,则a =5n +5m +k =5(m +n )+k ,m ∈Z ,n ∈Z ,∴a ,b 属于同一“类”,∴④正确,则正确的有①③④,共3个.【变式训练】1、 定义集合运算:A ※B ={t |t =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A ※B 中的所有元素之和为________.答案 6解析 由题意得t =0,2,4,即A ※B ={0,2,4},又0+2+4=6,故集合A ※B 中的所有元素之和为6.【易错题】[典例] 集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,求a 的取值范围.【解析】当a =0时,原方程变为2x +1=0,此时x =-12,符合题意; 当a ≠0时,方程ax 2+2x +1=0为一元二次方程,当Δ=4-4a =0,即a =1时,原方程的解为x =-1,符合题意.故当a =0或a =1时,原方程只有一个解,此时A 中只有一个元素.【易错点】解答上面例题时,a =0这种情况极易被忽视,对于方程“ax 2+2x +1=0”有两种情况:一是a =0,即它是一元一次方程;二是a ≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.【易错点训练】1、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,若A 中至多有一个元素,求a 的取值范围解:A 中至多有一个元素,即A 中有一个元素或没有元素.当A 中只有一个元素时,由例题可知,a =0或a =1.当A 中没有元素时,Δ=4-4a <0,即a >1.故当A 中至多有一个元素时,a 的取值范围为{a |a =0或a ≥1}.2、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,若A 中至少有一个元素,求a 的取值范围解:A 中至少有一个元素,即A 中有一个或两个元素.由例题可知,当a =0或a =1时,A 中有一个元素;当A 中有两个元素时,Δ=4-4a >0,即a <1.∴A 中至少有一个元素时,a 的取值范围为{a |a ≤1}.3、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,若1∈A ,则a 为何值?解:∵1∈A ,∴a +2+1=0,即a =-3.4、集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,是否存在实数a ,使A ={1},若存在,求出a 的值;若不存在,说明理由.解:∵A ={1},∴1∈A ,∴a +2+1=0,即a =-3.又当a =-3时,由-3x 2+2x +1=0,得x =-13或x =1, 即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾. 故不存在实数a ,使A ={1}.【课堂小测】1.方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)} 解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧ x =5,y =-4,故解集为{(5,-4)}.2.下列四个集合中,不同于另外三个的是( )A .{y |y =2}B .{x =2}C .{2}D .{x |x 2-4x +4=0} 解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2};③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的.其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧ x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎨⎧ x ,y ⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A ={-1,-2,0,1},B ={x |x =|y |,y ∈A },则B =________.解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性,∴B ={0,1,2}.答案:{0,1,2}5.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)大于-3.5小于12.8的整数的全体;(3)梯形的全体构成的集合;(4)所有能被3整除的数的集合;(5)方程(x -1)(x -2)=0的解集;(6)不等式2x -1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}.(2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}.(3){x |x 是梯形}或{梯形}.(4){x |x =3n ,n ∈Z}.(5){1,2}.(6){x |x >3}.【课后作业】一、选择题1.方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解集不可以表示为( ) A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧ x +y =3,x -y =-1 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x =1,y =2 C .{1,2}D .{(1,2)} 考点 集合的表示综合题点 用适当的方法表示集合答案 C解析 方程组的集合中最多含有一个元素,且元素是一个有序实数对,故C 不符合.2.集合A ={x ∈Z|-2<x <3}的元素个数为( )A .1B .2C .3D .4考点 用描述法表示集合题点 用描述法表示有限数集答案 D解析 因为A ={x ∈Z|-2<x <3},所以x 的取值为-1,0,1,2,共4个.3.集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合考点 用描述法表示集合题点 用描述法表示点集答案 D解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4.已知x ,y 为非零实数,则集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m =x |x |+y |y |+xy |xy |为( ) A .{0,3}B .{1,3}C .{-1,3}D .{1,-3}考点 集合的表示综合题点 用另一种方法表示集合答案 C解析 当x >0,y >0时,m =3, 当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}.5.下列选项中,集合M ,N 相等的是( )A .M ={3,2},N ={2,3}B .M ={(3,2)},N ={(2,3)}C .M ={3,2},N ={(3,2)}D .M ={(x ,y )|x =3且y =2},N ={(x ,y )|x =3或y =2}考点 集合的表示综合题点 集合的表示综合问题答案 A解析 元素具有无序性,A 正确;点的横坐标、纵坐标是有序的,B 选项两集合中的元素不同;C 选项中集合M 中元素是两个数,N 中元素是一个点,不相等;D 选项中集合M 中元素是一个点(3,2),而N 中元素是两条直线x =3和y =2上所有的点,不相等.6.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( )A.{}x |x 是小于18的正奇数B.{}x |x =4k +1,k ∈Z ,且k <5C.{}x |x =4t -3,t ∈N ,且t ≤5D.{}x |x =4s -3,s ∈N *,且s ≤5 考点 集合的表示综合题点 用另一种方法表示集合答案 D解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.7.已知集合A ={}x |x =2m -1,m ∈Z ,B ={}x |x =2n ,n ∈Z ,且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 考点 用描述法表示集合题点 用描述法表示与余数有关的整数集合答案 D解析 ∵集合A 表示奇数集,集合B 表示偶数集,∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3为偶数,故D 错误.8.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn ,则在此定义下,集合M ={(a ,b )|a ※b =16}中的元素个数是( )A .18B .17C .16D .15答案 B解析 因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M 中的元素是有序数对(a ,b ),所以集合M 中的元素共有17个,故选B.二、填空题9.集合{x ∈N|x 2+x -2=0}用列举法可表示为________.考点 集合的表示综合题点 用另一种方法表示集合答案 {1}解析 由x 2+x -2=0,得x =-2或x =1.又x ∈N ,∴x =1.10.已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________.考点 集合的表示综合题点 用适当的方法表示集合答案 3解析 根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.11.定义集合A -B ={x |x ∈A ,且x ∉B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -23<0,则集合A -B =________.考点 集合的表示综合题点 集合的表示综合问题答案 {x |x ≥2}解析 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >-12且x ≥2={x |x ≥2}. 三、解答题12.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.考点 用描述法表示集合题点 用描述法表示集合的综合问题解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}. 集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}.13.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.考点 集合的表示综合题点 用适当的方法表示集合解 (1)用描述法表示为{x |2<x <5,且x ∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.四、探究与拓展14.已知集合A ={x |x =3m ,m ∈N *},B ={x |x =3m -1,m ∈N *},C ={x |x =3m -2,m ∈N *},若a ∈A ,b ∈B ,c ∈C ,则下列结论中可能成立的是( )A .2 006=a +b +cB .2 006=abcC .2 006=a +bcD .2 006=a (b +c ) 考点 用描述法表示集合题点用描述法表示与余数有关的整数集合答案 C解析由于2 006=3×669-1,不能被3整除,而a+b+c=3m1+3m2-1+3m3-2=3(m1+m2+m3-1)不满足;abc=3m1(3m2-1)(3m3-2)不满足;a+bc=3m1+(3m2-1)(3m3-2)=3m-1适合;a(b+c)=3m1(3m2-1+3m3-2)不满足.故选C.15.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a∈P,b∈Q},用列举法表示集合P+Q.考点集合的表示综合题点用另一种方法表示集合解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.∴P+Q={1,2,3,4,6,7,8,11}.。

人教版高数必修一第1课:集合的含义与表示(教师版)

人教版高数必修一第1课:集合的含义与表示(教师版)

集合的含义与表示1、 通过实例了解集合的含义,并掌握集合中元素的三个特性。

2、 掌握元素与集合的关系,并能用符号“∈”或“∉”来表示。

3、 掌握列举法和描述法,会选择不同的方法来表示集合,记住常用数集的符号。

一、集合与元素的概念:一般地,一定范围内某些确定的,不同的对象的全体构成一个集合,简称集。

集合中每一个对 象称为该集合的元素。

如所有的三角形可以组成集合,每个三角形都是这个集合的元素;所有的直角三角形也可以组成集合,每个直角三角形都是集合的元素;由1,2,3,4组成的集合{1,2,3,4}。

1,2,3,4就是这个集合的元素 。

类似“与2非常接近的全体实数”,“高个子”这样模糊的说法就不能确定集合。

特别提醒:1、集合是一个“整体”。

一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象。

2、集合具有两个方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件。

3、集合通常用大写的字母表示,如A B C 、、、……;元素通常用小写的字母表示,如a b c d 、、、……。

二、集合中元素的特性:1、确定性:设A 是一个给定的集合,x 是某一具体的对象,则x 或者是A 的元素,或者不是A 的元素,二者必居其一,不能模棱两可.2、互异性: 对于一个给定的集合,它的任意两个元素是不能相同的。

集合中相同的元素只能算是一个。

如方程0122=+-x x 有两个重根121==x x ,其解集只能记为{}1,而不能记为{}1,1。

3、无序性:集合中的元素是不分顺序的.如{},a b 和{},b a 表示同一个集合.特别提醒:集合和点的坐标是不同的概念,在平面直角坐标系中,点(l ,0)和点(0,l )表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合。

三、元素与集合的关系:一般地,如果a 是集合A 的元素,就说a 属于A ,记作a A ∈;如果a 不是集合的元素,就说a 不属于A ,记作A a ∉。

专题09 集合的概念(教师版)-2024年新高一(初升高)数学暑期衔接讲义

专题09 集合的概念(教师版)-2024年新高一(初升高)数学暑期衔接讲义

D:倒数等于它自身的实数为 1 与﹣1,∴满足集合的定义,故正确.
故选:D.
变式 1.(2023·高一课时练习)下列各组对象不能构成集合的是( )
A.上课迟到的学生 C.所有有理数
B. 2020 年高考数学难题 D.小于 的正整数
【答案】B
【解析】根据集合中元素的三要素判断.上课迟到的学生属于确定的互异的对象,所以能构成集合;2020 年
若 a 1,则集合 a2, a, 0 {1,1, 0}不满足互异性,故舍去.
则只能为 a 1, b 0 . 则 a2019 b2020 1 . 故答案为: 1.
变式 5.(2023·高一课时练习)由 a, a, a , a2 构成的集合中,元素个数最多是______.
【答案】2
【解析】当 a 0 时, a a a a2 0 ,此时元素个数为 1;
C. 1 M
【答案】A
【解析】由题意知集合 M x | x x 1 0 {0,1} ,
D. 0 M
故 0 M ,故 A 正确,D 错误,1 M ,故 B 错误, 1 M ,故 C 错误, 故选:A
例 6.(2023·全国·高三专题练习)已知 A a 2,(a 1)2,a 2 3a 3 ,若1 A ,则实数 a 构成的集合 B 的元素
【题型归纳目录】
题型 1:集合与元素的含义 题型 2:元素与集合的关系
题型 3:集合中元素特性的简单应用 题型 4:列举法表示集合
题型 5:描述法表示集合
题型 6:集合表示的综合问题
【典例例题】
题型 1:集合与元素的含义
例 1.(2023·高一课时练习)下列语句中,正确的个数是( )
(1) 0 N ;(2) π Q ;(3)由 3、4、5、5、6 构成的集合含有 5 个元素;(4)数轴上由 1 到 1.01 间的线段的点

元素与集合的关系判断(含答案)

元素与集合的关系判断(含答案)
元素与集合的关系判断
一、单选题
1.下列五个写法:① 꼨ሆ ͳ ǡ ʹሆ ;②
꼨ሆ ;③ ͳ ǡ ʹሆ ǡ ʹ ͳሆ ;④ 꼨 ;⑤ 꼨ሆ
.其中
正确写法的个数为( )
A. 1
B. 2
C. 3
D. 4
2.已知全集
ͳǡʹ
, 集合
ǡ ʹ , 集合
ͳʹ
, 则集合
A. ʹ
B. ǡ
C. ͳ
D. ǡ ʹ
3.设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A B,则集合
( ).
A. ͳ 10.如果集合
B. ͳ
C. 꼨 或 ͳ
ܽ ǡ ❐ ❐ ͳ 꼨ሆ 中只有一个元素,则 ܽ 的值是( )
D. 꼨 或 ͳ
A. 0
B. 4
C. 0 或 4
D. 不能确定
11.已知集合 A={x|ax2﹣5x+6=0},若 2∈A,则集合 A 的子集个数为( )
A. 4
B. 3
C. 2
D. 1
D. b≤4 或 b≥4
ܽ ❐ ǡ ǡ ܽ ǡ ሆ ,那么 x,y 与集合 M 的关系是
A. x∈M,y∈M
B. x∈M,y∉ M
C. x∉ M,y∈M
D. x∉ M,y∉ M
3
29.下列各式中,正确的是( )
A. 2⊆{x|x≤2}
B. 3∈{x|x>2 且 x<1}
C. {x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
A. {0}∈M
B. Φ∈M
C. {0}⊆M
D. 0⊆M
16.已知集合 A={x|x2﹣4=0},则下列表示不正确的是( )

高中数学 第一讲 集合的概念与运算教案(教师版) 新人教版

高中数学 第一讲 集合的概念与运算教案(教师版) 新人教版

第一讲 集合的概念与运算教学目的: 理解集合、子集、交集、并集、补集的概念。

了解空集和全集的意义,了解属于、包含、相等关系的意义,能正确进行“集合语言”、“数学语言”“图形语言”的相互转化.教学重点: 交集、并集、补集的定义与运算.教学难点: 交集、并集、补集的定义及集合的应用.【知识概要】新课标教学目标: 1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 知识点1 集合某些指定的对象集在一起就成为一个集合。

集合中每个对象叫做这个集合的元素 点评:(1)集合是数学中不加定义的基本概念.构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象. (2)集合里元素的特性确定性:集合的元素,必须是确定的.任何一个对象都能明确判断出它是或者不是某个集合的元素.互异性:集合中任意两个元素都是不相同的,也就是同一个元素在集合中不能重复出现. 无序性:集合与组成它的元素顺序无关.如集合{a, b, c}与{c, a, b}是同一集合. (3)元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A (或a ∈A ).(4)集合的分类集合的种类通常可分为有限集、无限集、空集(用记号φ表示).有限集:含有有限个元素的集合(单元素集:只有一个元素的集合叫做单元素集。

第02讲 1.2集合间的基本关系(教师版)

第02讲 1.2集合间的基本关系(教师版)

第02讲 1.2集合间的基本关系课程标准学习目标①理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;②理解与掌握空集的含义,在解题中把握空集与非空集合、任意集合的关系。

1.能利用集合间的包含关系解决两个集合间的问题。

2. 在解决集合问题时,易漏集合的特殊形式,比如集合是空集时参数所具备的意义。

3. 能利用Venn 图表达集合间的关系。

4.判断集合之间的关系时,要从元素入手。

知识点01:venn 图(韦恩图)在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Venn 图。

Venn 图和数轴一样,都是用来解决集合问题的直观的工具。

利用Venn 图,可以使问题简单明了地得到解决。

对Venn 图的理解(1)表示集合的Venn图的边界是封闭曲线,它可以是圆、椭圆、矩形,也可以是其他封闭曲线.(2)用Venn 图表示集合的优点是能够呈现清晰的视觉形象,即能够直观地表示集合之间的关系,缺点是集合元素的公共特征不明显.知识点02:子集1子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(1)记法与读法:记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”)(2)性质:①任何一个集合是它本身的子集,即A A ⊆.②对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆(3)venn 图表示:2集合与集合的关系与元素与集合关系的区别符号“⊆”表示集合与集合之间的包含关系,而符号“Δ表示元素与集合之间的从属关系.【即学即练1】(2024·全国·高三专题练习)写出集合{,}a b 的所有子集.【答案】{}{}{},,,,a b a b f 【详解】集合{,}a b 的所有子集有:{}{}{},,,,a b a b f 知识点03:集合相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A B =.也就是说,若A B ⊆,且B A ⊆,则A B =.(1)A B =的venn 图表示(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关【即学即练2】(2024秋·辽宁沈阳·高一沈阳二中校考阶段练习)下面说法中不正确的为( )A .{}{}1||1x x y y x y +==+=B .(){}{},2||2x y x y x x y +==+=C .{|2}{|2}x x y y >=>D .{}{}1,22,1=【答案】B【详解】对于A ,因{}1|R x x y +==,{}1|R y x y ==+,即{}{}1||1x x y y x y +==+=,A 正确;对于B ,因集合(){},2|x y x y +=的元素为有序数对,而{}2|x x y +=的元素为实数,两个集合的对象不同,B 不正确;对于C ,因集合{|2}x x >与{|2}y y >都表示大于2的数形成的集合,即{|2}{|2}x x y y >=>,C 正确;对于D ,由列举法表示集合知{}{}1,22,1=正确,D 正确.故选:B知识点04:真子集的含义如果集合A B ⊆,但存在元素x B Î,且x A ∉,我们称集合A 是集合B 的真子集;(1)记法与读法:记作A B Ü,读作“A 真包含于B ”(或“B 真包含A ”)【即学即练3】(2024·全国【答案】7【详解】由{}a ￿{,,M a b ⊆M 中的元素个数多于{}a 中的元素个数,不多于因此M 中的元素来自于b ,c,d 即在b ,c,d 中取1元素时,M 故足条件:{}a ￿{,,M a b ⊆故答案为:7.{}{}Ì,故③正确,④错误,正确的个数为2.11,2,3故选:B题型01 判断两个集合的包含关系【详解】由题意知,,M xì=【典例1】(2024·陕西咸阳·统考三模)设集合*{|13}A x N x =Î-<£,则集合A 的真子集个数是( )A .6B .7C .8D .15【答案】B【详解】因为*{|13}A x N x =Î-<£,【典例1】(多选)(2024·全国·高三专题练习)已知集合{17}A xx =-££∣,{221}B x a x a =+££-∣,若使B A ⊆成立的实数a 的取值集合为M ,则M 的一个真子集可以是( )A .{4}x x £∣B .{3}xx £∣C .{|34}x x <£D .{|45}x x £<【答案】BC【详解】由题意集合{17}A xx =-££∣,{221}B x a x a =+££-∣,因为B A ⊆,所以当B =∅时,221a a +>-,即3a < ;当B ≠∅时,有12217a a -£+£-£ ,解得34a ££,故(,4]M =-¥,则M 的一个真子集可以是(,3]-¥或(]3,4,故选:BC.【典例2】(2024·高一课时练习)设{1,2}A =,{|}B x x A =⊆若用列举法表示,则集合B 是________.【答案】{∅,{1},{2},{1,2}}【详解】由题意得,A ={1,2},B ={x |x ⊆A },则集合B 中的元素是集合A 的子集:∅,{1},{2},{1,2},所以集合B ={∅,{1},{2},{1,2}},故答案为:{∅,{1},{2},{1,2}}.【变式1】(多选)(2024秋·福建宁德·高一福建省霞浦第一中学校考期末)已知集合{2,4}M =,集合M N N ⊆,是{1,2,3,4,5}的真子集,则集合N 可以是( )A .{2,4}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】ABC【详解】集合{2,4}M =,集合M N ⊆￿{1,2,3,4,5},则集合N 中至少包含2,4两个元素,又不能等于或多于{1,2,3,4,5}中的元素,所以集合N 可以是{2,4},{2,3,4},{1,2,3,4},故选:ABC题型04空集的概念集判断【典例1】(2024·河北·高三学业考试)下列集合中,结果是空集的是( )A .2{|10}x R x Î-=B .{|61}x x x ><或C .22{(,)|0}x y x y +=D .{|61}x x x ><且【答案】D【详解】A 选项:21{|10}x R x ±ÎÎ-=,不是空集;B 选项:7$Î{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数,即:{x |x >6且x <1}=∅.故选:D【典例2】(2024春·宁夏银川·高二银川一中校考期中)下列各式中:①{}{}00,1,2Î;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}(){}0,10,1=;⑥{}00=.正确的个数是()A .1B .2C .3D .4【答案】B【详解】①集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{}{}0,1,22,1,0⊆,正确;③空集是任意集合的子集,故{}0,1,2∅⊆,正确;④空集没有任何元素,故{}0∅≠,错误;⑤两个集合所研究的对象不同,故{}(){}0,1,0,1为不同集合,错误;⑥元素与集合之间只有属于、不属于关系,故错误;∴②③正确.故选:B.【变式1】(2024·上海·高一专题练习)下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00Î.其中正确的个数是( )A .1B .3C .4D .6【答案】C【详解】①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立.④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立;⑤正确,空集是任何非空集合的真子集;⑥正确,由元素与集合的关系知,{}00Î.故选:C.【变式1】(多选)(2024·全国·高一校联考阶段练习)下列关系中正确的是( )A .0Î∅B .{}∅Î∅C .{}∅⊆∅D .{}0∅⊆【答案】BCD【详解】选项A :空集中没有元素,故A 错误;选项B :{}∅中只有一个元素∅,故B 正确;选项C ,D :空集是任意集合的子集,故C ,D 正确故选:BCD题型05 空集的性质及应用【典例1】(2024·全国·高一专题练习)已知集合{|21}M x m x m =<<+,且M =∅,则实数m 的取值范围是____.【答案】m ≥1【详解】∵M =∅,∴2m ≥m +1,∴m ≥1.故答案为m ≥1【典例2】(2024·高一课时练习)不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,则实数a 的取值范围是_____________.【答案】{|1}a a £-【详解】解:∵不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,①当0a >时,由0ax >求得0x >;由10x a ++>,求得1x a >--,故不等式组10(0)0x a a ax ++>ì≠í>î的解集为{|0}x x >≠∅,故不满足条件;②当a<0时,由0ax >求得0x <;由10x a ++>,求得1x a >--,若10a --³,即1a £-时,不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,满足条件;若10a --<,即01a >>-时,不等式组10(0)0x a a ax ++>ì≠í>î的解集为{|10}x a x --<<≠∅,不满足条件,综上可得实数a 的取值范围是{|1}a a £-,故答案为:{|1}a a £-.【变式1】(2024秋·湖南永州·高一校考阶段练习)若集合{}R 2x a x Σ£ 为空集,则实数a 的取值范围是______.【典例1】(2024·全国·高三专题练习)已知集合{}20,1,A a =,{}1,0,32B a =-,若A B =,则a 等于( )A .1或2B .1-或2-C .2D .1【答案】C【详解】解:因为A B =,所以232a a =-,解得1a =或2a =.当1a =时,21a =,与集合元素互异性矛盾,故1a =不正确.题型08根据集合的包含关系求参数【典例1】(2024·全国·高一专题练习)给定集合{}1,2,3,4,5,6,7,8S =,对于x S Î,如果11x S x S +∉-∉,,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有_________个.【答案】6【详解】若不含好元素,则集合S 中的3个元素必须为连续的三个数,故不含好元素的集合共有{}{}{}{}1,2,3,2,3,43,4,545,6,5,6,7,6,7,8{},{},,,共有6个.故答案为:6.【典例2】(2024·高一课时练习)设A 是整数集的一个非空子集,对于k A Î,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个.【答案】7【详解】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”,则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.故答案为:7.本节重点方法(数轴辅助法)【典例1】(2024·全国·高三专题练习)已知集合{|4A x x =³或}5x <-,{}|13B x a x a =+££+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <-或}3a ³【详解】用数轴表示两集合的位置关系,如上图所示,要使B A ⊆,只需35a +<-或14a +³,解得8a <-或3a ³.所以实数a 的取值范围{|8a a <-或}3a ³.故答案为:{|8a a <-或}3a ³ 综上,实数a 的取值范围为{4a a -或}2a >.本节数学思想方法(分类讨论法){},|34B A A x x ⊆=-££Q ,213m \-³-且14m +£,解得:13m -≤≤,所以12m -£<,②若B 为空集,符合题意,可得:211m m -³+,解得:2m ³.综上,实数m 的取值范围是1m ³-.故答案为:[)1,-+¥.。

集合及其表示方法学案(教师用)

集合及其表示方法学案(教师用)

1.1.1集合及其表示方法【知识导学】知识点一集合与元素的定义(1)集合:把一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个集合(有时简称为集).(2)元素:组成集合的每个对象都是这个集合的元素.(3)表示:通常用英文大写字母A,B,C,…表示集合,用英文小写字母a,b,c,…表示集合中的元素.知识点二元素与集合的关系(1)“属于”:如果a是集合A的元素,就记作,读作“a属于A”.(2)“不属于”:如果a不是集合A的元素,就记作,读作“a不属于A”.知识点三空集一般地,我们把不含任何元素的集合称为,记作.知识点四集合中元素的三个特性(1);(2) ;(3) .知识点五集合的分类(1 ;(2) .知识点六几个常用数集的固定字母表示知识点七集合的表示方法集合常见的表示方法有:、、、(以及后面将要学习的维恩图法和数轴表示法等直观表示方法).(1)列举法:把集合中的元素出来(相邻元素之间用逗号分隔),并写在内,以此来表示集合的方法称为列举法.使用列举法表示集合时需注意的几点①元素之间用“,”隔开;②元素不重复,满足元素的互异性;③元素无顺序,满足元素的无序性;④对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.(2)描述法:如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)称为集合A的一个.此时,集合A可以用它的特征性质p(x)表示为.这种表示集合的方法,称为特征性质描述法,简称为描述法.知识点八区间实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.我们可以把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为、、.可以看出,区间实质上是一类特殊(即由数轴某一段上所有点对应的实数组成的集合)的符号表示;例如,大于1且小于10的所有自然数组成的集合就不能用区间(1,10)表示.【评价自测】1.判一判(正确的打“√”,错误的打“×”)(1)某校高一年级16岁以下的学生能构成集合.()(2)已知A是一个确定的集合,a是任一元素,要么a∈A,要么a∉A,二者必居其一且只居其一.()(3)对于数集A={1,2,x2},若x∈A,则x=0.()(4)对于区间[2a,a+1],必有a<0.()(5)集合{y|y=x2,x∈R}与{s|s=t2,t∈R}的元素完全相同.()答案(1)√(2)√(3)×(4)×(5)√2.做一做(1)下列所给的对象能组成集合的是()A.“金砖国家”成员国B.接近1的数C.著名的科学家D.漂亮的鲜花(2)用适当的符号(∈,∉)填空.0________∅,0________{0},0________N,-2________N*,13________Z,2________Q,π________R.(3)不等式2x-1≥3的解集可以用区间表示为________.答案(1)A(2)∉∈∈∉∉∉∈(3)[2,+∞)【核心素养】题型一集合概念的理解例1下列所给的对象能构成集合的是________.①所有的正三角形;②高一数学必修第一册课本上的所有难题;③比较接近1的正数全体;④某校高一年级的全体女生;⑤平面直角坐标系内到原点的距离等于1的点的集合;⑥参加2019年世乒赛的年轻运动员;⑦a,b,a,c.[解析]①能构成集合.其中的元素需满足三条边相等.②不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合.③不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合.④能构成集合.其中的元素是“高一年级的全体女生”.⑤能构成集合.其中的元素是“到坐标原点的距离等于1的点”.⑥不能构成集合.因为“年轻”的标准是模糊的,不确定的,故不能构成集合.⑦不能构成集合.因为两个a是重复的,不符合集合元素的互异性.[答案]①④⑤【金版点睛】判断一组对象能否构成集合的方法(1)关键:看是否给出一个明确的标准,使得对于任何一个对象能按此标准确定它是不是给定集合的元素.(2)切入点:解答此类问题的切入点是集合元素的特性,即确定性、互异性和无序性.【跟踪训练1】判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)出席2019年全国两会的所有参会代表组成一个集合.解(1)中的对象是确定的,互异的,所以可构成一个集合,故正确.(2)中的“高科技”标准是不确定的,所以不能构成集合,故错误.(3)中由于0.5=12,不符合集合中元素的互异性,故错误.(4)中的对象是确定的,所以可以构成一个集合,故正确.题型二元素与集合关系的判断与应用例2(1)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2 C.3 D.4(2)集合A中的元素x满足66-x∈N,x∈N,则集合A中的元素为________.[解析](1)∵π是实数,3是无理数,∴①②正确;∵N*表示正整数集,而0不是正整数,故③不正确;又|-4|=4是正整数,故④不正确,∴正确的共有2个.(2)∵66-x∈N,x∈N,∴⎩⎪⎨⎪⎧66-x≥0,x≥0,即⎩⎨⎧6-x>0,x≥0,∴0≤x<6,∴x=0,1,2,3,4,5.当x分别为0,3,4,5时,66-x相应的值分别为1,2,3,6,也是自然数,故填0,3,4,5.[答案](1)B(2)0,3,4,5【金版点睛】1.常用数集之间的关系2.确定集合中元素的三个注意点(1)判断集合中元素的个数时,注意集合中的元素必须满足互异性.(2)集合中的元素各不相同,也就是说集合中的元素一定要满足互异性.(3)若集合中的元素含有参数,要抓住集合中元素的互异性,采用分类讨论的方法进行研究.【跟踪训练2】(1)用符号“∈”或“∉”填空.①0________N*;②1________N;③1.5________Z;④22________Q;⑤4+5________R;⑥若x2+1=0,则x________R.(2)设x∈R,集合A中含有三个元素3,x,x2-2x.①求实数x应满足的条件;②若-2∈A ,求实数x 的值.答案 (1)①∉ ②∈ ③∉ ④∉ ⑤∈ ⑥∉ (2)见解析 解析 (1)①∵0不是正整数,∴0∉N *. ②∵1是自然数,∴1∈N .③∵1.5是小数,不是整数,∴1.5∉Z . ④∵22是无理数,∴22∉Q .⑤∵4+5是无理数,无理数是实数,∴4+5∈R . ⑥∵满足x 2+1=0的实数不存在, ∴x 为非实数,∴x ∉R .(2)①根据集合元素的互异性,可知⎩⎨⎧x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0,且x ≠3且x ≠-1.②∵x 2-2x =(x -1)2-1≥-1,且-2∈A ,∴x =-2. 题型三 集合中元素的特性例3 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值.[解] (1)由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. 得a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. 【金版点睛】利用集合元素互异性求参数问题(1)根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对集合中元素进行检验.(也是本讲易错问题)(2)利用集合中元素的特性解题时,要注意分类讨论思想的应用.【跟踪训练3】 已知集合A 包含三个元素:a -2,2a 2+5a,12,且-3∈A ,求a 的值. 解 因为A 包含三个元素a -2,2a 2+5a,12, 且-3∈A ,所以a -2=-3或2a 2+5a =-3, 解得a =-1或a =-32.当a =-1时,A 中三个元素为:-3,-3,12,不符合集合中元素的互异性,舍去.当a =-32时,A 中三个元素为:-72,-3,12,满足题意.故a =-32. 题型四 集合的分类例4 下列各组对象能否构成集合?若能,请指出它们是有限集、无限集,还是空集. (1)非负奇数;(2)小于18的既是正奇数又是质数的数; (3)在平面直角坐标系中所有第三象限的点; (4)在实数范围内方程(x 2-1)(x 2+2x +1)=0的解集; (5)在实数范围内方程组⎩⎨⎧x 2-x +1=0,x +y =1的解构成的集合.[解] (1)能构成集合,是无限集.(2)小于18的质数是2,3,5,7,11,13,17.只有2是偶数,其余的都是正奇数,所以能构成集合,是有限集.(3)第三象限的点的横坐标和纵坐标都小于0,能构成集合,是无限集.(4)能构成集合,注意集合中元素的互异性,集合中的元素是-1,1,是有限集.(5)由x 2-x +1=0的判别式Δ=-3<0,方程无实根,由此可知方程组⎩⎨⎧x 2-x +1=0,x +y =1无解,能构成集合,是空集.【金版点睛】集合的分类方法判断集合是有限集,还是无限集,关键在于弄清集合中元素的构成,从而确定集合中元素的个数.【跟踪训练4】 指出下列各组对象是否能组成集合,若能组成集合,则指出集合是有限集、无限集,还是空集.(1)平方等于1的数;(2)所有的矩形;(3)平面直角坐标系中第二象限的点;(4)被3除余数是1的正数;(5)平方后等于-3的实数;(6)15的正约数.解 (1)中对象能组成集合,它是一个有限集;(2)中对象能组成集合,它是一个无限集;(3)中对象能组成集合,它是一个无限集;(4)中对象能组成集合,它是一个无限集;(5)中对象能组成集合,它是一个空集;(6)中对象能组成集合,它是一个有限集.题型五 用列举法表示集合 例5 用列举法表示下列集合: (1)方程x 2-4x +2=0的所有实数根组成的集合; (2)不大于10的质数集;(3)一次函数y =x 与y =2x -1图像的交点组成的集合. [解] (1)方程x 2-4x +2=0的实数根为2,故其实数根组成的集合为{2}.(2)不大于10的质数有2,3,5,7,故不大于10的质数集为{2,3,5,7}.(3)由⎩⎪⎨⎪⎧ y =x ,y =2x -1,解得⎩⎪⎨⎪⎧x =1,y =1.故一次函数y =x 与y =2x -1图像的交点组成的集合为{(1,1)}. 【金版点睛】用列举法表示集合应注意的三点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素. (2)集合中的元素一定要写全,但不能重复.(3)若集合中的元素是点,则应将有序实数对用小括号括起来表示一个元素. 【跟踪训练5】用列举法表示下列集合:(1)不等式组⎩⎨⎧2x -6>0,1+2x ≥3x -5的整数解组成的集合;(2)式子|a |a +|b |b (a ≠0,b ≠0)的所有值组成的集合. 解 (1)由⎩⎪⎨⎪⎧2x -6>0,1+2x ≥3x -5得3<x ≤6,又x 为整数,故x 的取值为4,5,6,组成的集合为{4,5,6}. (2)∵a ≠0,b ≠0,∴a 与b 可能同号也可能异号,则: ①当a >0,b >0时,|a |a +|b |b =2; ②当a <0,b <0时,|a |a +|b |b =-2; ③当a >0,b <0或a <0,b >0时,|a |a +|b |b =0. 故所有值组成的集合为{-2,0,2}.题型六用描述法表示集合例6用描述法表示下列集合:(1)坐标平面内,不在第一、三象限的点的集合;(2)所有被3除余1的整数的集合;(3)使y=1x2+x-6有意义的实数x的集合.[解](1)因为不在第一、三象限的点分布在第二、四象限或坐标轴上,所以坐标平面内,不在第一、三象限的点的集合为{(x,y)|xy≤0,x∈R,y∈R}.(2)因为被3除余1的整数可表示为3n+1,n∈Z,所以所有被3除余1的整数的集合为{x|x=3n+1,n∈Z}.(3)要使y=1x2+x-6有意义,则x2+x-6≠0.由x2+x-6=0,得x1=2,x2=-3.所以使y=1x2+x-6有意义的实数x的集合为{x|x≠2且x≠-3,x∈R}.【金版点睛】用描述法表示集合的注意点(1)用描述法表示集合,首先应弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.【跟踪训练6】试用描述法表示下列集合:(1)方程x2-x-2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解(1)方程x2-x-2=0的解可以用x表示,它满足的条件是x2-x-2=0,因此,方程的解集用描述法表示为{x∈R|x2-x-2=0}.(2)大于-1且小于7的整数可以用x表示,它满足的条件是x∈Z,且-1<x<7,因此,该集合用描述法表示为{x∈Z|-1<x<7}.题型七列举法和描述法的综合运用例7集合A={x|kx2-8x+16=0},若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.[解]①当k=0时,原方程为16-8x=0,∴x=2,此时A={2},符合题意.②当k≠0时,由集合A中只有一个元素,∴方程kx2-8x+16=0有两个相等实根.即Δ=64-64k=0,即k=1,从而x1=x2=4,∴集合A={4}.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.[条件探究]把本例条件“只有一个元素”改为“有两个元素”,求实数k取值范围的集合.解由题意可知方程kx2-8x+16=0有两个不等的实根.∴⎩⎨⎧k≠0,Δ=64-64k>0,解得k<1且k≠0.∴k的取值范围的集合为{k|k<1且k≠0}.【金版点睛】分类讨论思想在集合中的应用(1)①本题在求解过程中,常因忽略讨论k是否为0而漏解.②由kx2-8x+16=0是否为一元二次方程而分k =0和k ≠0两种情况,注意做到不重不漏.(2)解答与集合描述法有关的问题时,明确集合中的代表元素及其共同特征是解题的切入点.【跟踪训练7】(1)设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N .①试判断元素1,2与集合B 的关系; ②用列举法表示集合B .(2)已知集合A ={x |x 2-ax +b =0},若A ={2,3},求a ,b 的值. 解 (1)①当x =1时,62+1=2∈N . 当x =2时,62+2=32∉N .所以1∈B,2∉B . ②∵62+x ∈N ,x ∈N ,∴2+x 只能取2,3,6,∴x 只能取0,1,4.∴B ={0,1,4}. (2)由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系,得⎩⎪⎨⎪⎧2+3=a ,2×3=b ,因此a =5,b=6.题型八 集合中的新定义问题例8 已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( ) A .3B .6C .8D .9[解析] 根据已知条件,列表如下:由上表可知,B 中的元素有9个,故选D. [答案] D 【金版点睛】本例借助表格语言,运用列举法求解.表格语言是常用的数学语言,表达问题清晰,明了;列举法是分析问题的重要的数学方法,通过“列举”直接解决问题或发现问题的规律,此方法通常配合图表(含树形图)使用.【跟踪训练8】定义A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 中的所有元素之和为( )A .0B .2C .3D .6 答案 D解析 根据已知条件,列表如右图:根据集合中元素的互异性,由上表可知A *B ={0,2,4},故集合A *B 中所有元素之和为0+2+4=6,故选D.【随堂测试】1.下列所给的对象不能组成集合的是( )A .我国古代的四大发明B .二元一次方程x +y =1的解C.我班年龄较小的同学解A={x|(x-1)(x-a)=0},当a=1时,A={1};当a≠1时,A={1,a}.D.平面内到定点距离等于定长的点答案 C解析C项中“年龄较小的同学”的标准不明确,不符合确定性.故选C.2.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a为()A.2 B.2或4C.4 D.0答案 B解析集合A中含有三个元素2,4,6,且当a∈A时,有6-a∈A.当a=2∈A时,6-a=4∈A,∴a=2符合题意;当a=4∈A时,6-a=2∈A,∴a=4符合题意;当a=6∈A时,6-a=0∉A,综上所述,a=2或4.故选B.3.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是()A.1 B.2C.3 D.4答案 B解析对a进行分类讨论:①当a=0时,四个数都为0,只含有一个元素;②当a≠0时,含有两个元素a,-a,所以集合中最多含有2个元素.故选B.4.用适当符号(∈,∉)填空.(1)(1,3)________{(x,y)|y=2x+1};(2)2________{m|m=2(n-1),n∈Z}.答案(1)∈(2)∈解析(1)当x=1时,y=2×1+1=3,故(1,3)∈{(x,y)|y=2x+1}.(2)当n=2∈Z时,m=2×(2-1)=2,故2∈{m|m=2(n-1),n∈Z}.5.设a∈R,关于x的方程(x-1)(x-a)=0的解集为A,试分别用描述法和列举法表示集合A.。

判断元素与集合的关系问题

判断元素与集合的关系问题

判断元素与集合的关系问题
在数学中,元素与集合的关系问题主要是指判断一个元素是否属于某一个集合的问题。

这是集合论中最基本的问题之一,也是其他集合运算的基础。

对于给定的集合A和元素a,我们可以使用符号“∈”或“∉”表示a属于A或不属于A。

比如,如果A={1,2,3},那么1∈A,而4∉A。

同时,我们也可以把元素看作是集合的子集,即把元素看作是只有它自身的一个集合。

因此,我们可以说1是一个单元素集合,也可以把它表示为{1}。

同理,如果我们有一个二元集合B={(1,2),(3,4)},那么(1,2)∈B,而(5,6)∉B。

此外,我们还可以使用Venn图来表示元素和集合的属于或者不属于关系。

Venn图由一组相互交叉的圆环组成,每个圆环代表一个集合,而圆环之间的重叠部分则代表两个集合的交集。

通过观察Venn图,我们可以轻松地判断出各个元素所属的集合以及它们之间的关系。

除了基本的元素与集合的关系问题,还有一些复杂的问题需要考虑。

比如,当我们需要判断多个元素是否都属于同一个集合时,就需要使用逻辑运算符“AND”。

比如,如果A={1,2,3},B={2,3,4},C={3,4,5},那么(1,2) AND (3,4) ∈A∩B∩C就是一个复杂的问题了。

同样的道理,当我们需要判断多个元素是否都不在同一个集合中时,就需要使用逻辑运算符“OR”和“NOT”,
比如A∪B∩C=Ø。

总之,元素与集合的关系问题是数学中一个基础而又重要的问题。

通过对这个问题的研究和掌握,我们可以更好地理解和应用集合论和其他相关的数学知识。

集合概念及表示方法(教师版)

集合概念及表示方法(教师版)

1.1集合的概念及表示方法一、教学目标:1、了解集合、元素的概念,掌握集合中元素的三大特征;2、理解元素与集合的“属于”与“不属于”的关系;3、了解集合的表示方法并能选择恰当的方法表示集合;二、教学重难点:教学重点:集合的基本概念与表示方法。

教学难点:集合的表示方法并选择恰当的表示方法。

三、新课引入引入:接下来的课程要坐很久,老师建议我们整个小班同学集合起来,小小的运动一下,简单的头部运动、伸展运动;提出问题:要求运动的对象是?四、知识呈现1、集合概念:一些研究对象的总体.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

【老师口头阐述】:(1)游戏:各种QQ头像混在一起(有人物的、动物的);创造集合并说明(多种)(2)判断以下是否组成集合。

(1)大于3小于11的偶数;(2)非负奇数;x+=的解;(3)方程210(4)巴蜀校2012级新生;(5)血压很高的人;(6)著名的数学家;2、关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

3、元素与集合的关系集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。

(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A 【老师口头阐述】例:我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A ,等等。

重庆主城中考考试科目组成的集合A ;计算机 A 。

所有亚洲国家组成的集合B ;中国 B ,美国 B ;印度 B ,英国 B 。

2020年高一上学期数学人教旧版必修一(全):元素与集合的概念-《讲义教师版》

2020年高一上学期数学人教旧版必修一(全):元素与集合的概念-《讲义教师版》

元素与集合的概念知识集结知识元判断能否构成集合知识讲解集合的三个特征:确定性,无序性,互异性例题精讲判断能否构成集合例1.下列各组对象中,不能形成集合的是()A.连江五中全体学生B.连江五中的必修课C.连江五中2020级高一学生D.连江五中全体高个子学生【解析】题干解析:例2.下列各组对象解构不成集合的有()(1)所有的长方体(2)英德市区内的所有大超市(3)所有的数学难题(4)函数y=x图象上所有的点(5)英德华侨茶场2007年生产的所有茶叶(6)2020附近的数.A.(1)(4)(5)B.(1)(2)(4)C.(1)(5)(6)D.(2)(3)(6)【答案】D【解析】题干解析:(1)所有的长方体,其中的对象是明确的,能构成集合;(2)英德市区内的所有大超市,其中的对象大超市不是明确的,不能构成集合;(3)所有的数学难题,其中的对象难题不是明确的,不能构成集合;(4)函数y=x图象上所有的点,其中的对象是明确的,能构成集合;(5)英德华侨茶场2003年生产的所有茶叶,其中的对象是明确的,能构成集合;(6)2020附近的数.其中的对象附近的数不是明确的,不能构成集合;例3.能够组成集合的是()A.与2非常接近的全体实数;B.很著名的科学家的全体;C.某教室内的全体桌子;D.与无理数相差很小的数【答案】C【解析】题干解析:某教室特指“确定”的某个个体.全体是指“集”到一起。

所以C选项符合题意.集合元素的性质特征知识讲解集合元素的特征:确定性,互异性,无序性例题精讲集合元素的性质特定性、互异性、无序性例1.已知集合A含有三个元素1,0,x,若x2∈A,则实数x=________.【答案】-1【解析】题干解析:根据集合的互异性,求解,并排除增根.例2.已知集合A中含有三个元素m-1,3m,m2-1,若-1∈A,求实数m的值.【答案】-【解析】题干解析:根据题意:且.例3.已知集合M含有三个元素1,2,x2,则x的值为______________.【答案】x≠±1,且x≠±【解析】题干解析:根据集合的互异性去思考,一定不能有两个相同的元素备选题库知识讲解例题精讲元素与集合关系的判断知识讲解1.元素与集合的关系只有两种:属于,不属于2.集合与集合的关系:包含,真包含例题精讲元素与集合关系的判断例1.用列举法表示下列集合(1);(2)【答案】(1)(2)【解析】题干解析:(1)∵,∴∴(2)∵∴或或∴例2.已知集合P={0,1,2,3,4},Q={x|x=ab,a,b∈P,a≠b},用列举法表示集合Q=______.【答案】Q={0,2,3,4,6,8,12}【解析】题干解析:例3.已知集合A={x|ax2-3x+2=0},其中a为常数,且a∈R①若A是空集,求a的范围;②若A中只有一个元素,求a的值;③若A中至多只有一个元素,求a的范围.【答案】见解析【解析】题干解析:①∵A是空集∴方程ax2-3x+2=0无实数根∴解得②∵A中只有一个元素,∴方程ax2-3x+2=0只有一个实数根.当a=0时,方程化为-3x+2=0,只有一个实数根;当a≠0时,令=9-8a=0,得,这时一元二次方程ax2-3x+2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a=0,或时,A中只有一个元素.③若A中至多只有一个元素,则包括两种情形,A中有且仅有一个元素,A是空集,由①、②的结果可得a=0,或.备选题库知识讲解本题库作为“判断能否构成集合”与“元素与集合关系的判断”的题目补充.例题精讲备选题库(2020秋∙林州市校级月考)点的集合M={(x,y)|xy≥0}是指()【解析】题干解析:xy≥0指x和y同号或至少一个为零,故为第一或第三象限内的点或坐标轴上的点。

第一章 集合的概念,集合的运算(共2课时教师版)

第一章 集合的概念,集合的运算(共2课时教师版)

§1.1集合的概念﹑集合间的基本关系(第1课时)学习目标1.了解集合的含义,体会元素与集合的属于关系;能选择自然语言﹑图形语言﹑集合语言描述不同的具体问题。

2.理解集合之间包含与相等的含义,能识别给定集合的子集。

学习重点,难点 1.集合的不同表示形式2.集合中元素与集合,集合与集合的包含关系 学习过程 一﹑知识要点1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)2.集合间的关系(1)子集:对任意的x ∈A ,都有x ∈B ,则A ⊆B (或B ⊇A ). (2)真子集:若A ⊆B ,且A ≠B ,则A B (或B A ).(3)空集:空集是任意一个集合的子集,是任何非空集合的真子集.即∅⊆A ,∅ B (B ≠∅). (4)若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个. (5)集合相等:若A ⊆B ,且B ⊆A ,则A =B .二﹑小题训练1.下列集合中表示同一集合的是________.(填序号) ①M ={(3,2)},N ={(2,3)}; ②M ={2,3},N ={3,2};③M ={(x ,y )|x +y =1},N ={y |x +y =1}; ④M ={2,3},N ={(2,3)}. 答案 ②2. (数学之友P 44)已知集合A ={a +2,2a 2+a},若3∈A ,则a =________.-32(数学之友P 44)变式训练:以正整数为元素的集合S ,满足“S x S x ∈∈-8,则若”写出符合条件的二元集答案:{1,7} {2,6} {3,5} 3.已知集合A ={(x ,y)|-1≤x ≤1,0≤y<2,x 、y ∈Z },用列举法可以表示集合A 为________.答案:{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}4.设M 为非空的数集,M ⊆{0,1,2,3},则这样的集合M 共有________个.答案:15三﹑典型题型题型一 集合的基本概念例1 (1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为________.(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.试题分析: 解决集合问题首先要理解集合的含义,明确元素的特征,抓住集合的“三性”.答案 (1)10 (2)2试题解析 (1)由x -y ∈A ,及A ={1,2,3,4,5}得x >y , 当y =1时,x 可取2,3,4,5,有4个; 当y =2时,x 可取3,4,5,有3个; 当y =3时,x 可取4,5,有2个; 当y =4时,x 可取5,有1个.故共有1+2+3+4=10(个).(2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,得ba =-1,所以a =-1,b =1.所以b -a =2.解题回顾:(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.变式训练: 数学之友P 94(1)已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.(2)若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________.答案 (1)2 (2)0或98试题解析: (1)集合A 表示的是圆心在原点的单位圆,集合B 表示的是直线y =x ,据此画出图象,可得图象有两个交点,即A ∩B 的元素个数为2. (2)∵集合A 的子集只有两个,∴A 中只有一个元素.当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.题型二 集合间的基本关系例2 (江海零距离P 22 )(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为________.(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.答案 (1)4 (2)(-∞,4]试题解析: (1)用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)对于含有有限个元素的集合的子集,可按含元素的个数依次写出;B ⊆A 不要忽略B =∅的情形.当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.(备用题数学之友P 82)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B B A ≠ ,则实数m 的取值范围是________解题回顾 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、V enn 图来直观解决这类问题.变式训练 (1)设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有________个.(2).设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2+14,k ∈Z ,N ={x|x =k 4+12,k ∈Z },则M________N. 答案 (1)6解析 (1)集合{1,2,3}的所有子集共有23=8(个),集合{2}的所有子集共有2个,故满足要求的集合M 共有8-2=6(个). 答案 (2) M ⊂N四﹑课堂反馈1.集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,则a 2 016+b 2 017的值 1 .解:由于a ≠0,由ba =0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a ≠1,则a =-1.所以a 2 016+b 2 017=1.2.(数学之友P 61)(2014.山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是5.3. (数学之友P 45) 设集合A ={x|x 2-3x+2=0},B ={x| ax -2=0}.若B ⊆A ,,则实数a 的取值集合 {0,1,2}4. (数学之友P 52)已知A ={x|1<x<2},B ={x| x>a}.若A ⊂B ,则a 的取值范围是1≤a反思小结1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ÍB ,则需考虑A =Æ和A ≠Æ两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、V enn 图帮助分析.§1.2集合的基本运算(第2课时)学习目标1.理解两个集合的交集与并集的含义,会求两个集合的交集与并集。

2023年高考数学总复习第一章 集合与常用逻辑用语 第1节:集合(教师版)

2023年高考数学总复习第一章 集合与常用逻辑用语 第1节:集合(教师版)

2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()答案(1)×(2)×(3)×(4)√解析(1)错误.空集只有一个子集.(2)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y =x2+1上的点集.(3)错误.当x=1时,不满足集合中元素的互异性.2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P答案D解析因为a=22不是自然数,而集合P是不大于2023的自然数构成的集合,所以a∉P,只有D正确.3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B解析因为A={x|-2<x<4},B={2,3,4,5},所以A∩B={2,3}.4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}答案D解析对于集合B,当a=0时,B=,满足B⊆A;当a≠0时,B又B⊆A,所以2a=-1或2a=2,解得a=-2或a=1.5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}答案D解析易知A={x|0≤x≤2},B={y|y>0}.∴∁U A={x|x<0或x>2},故(∁U A)∩B={x|x>2}.6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z答案C解析法一在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z),而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T.法二S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观察可知,T⊆S,所以S∩T=T.考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.6答案C解析当x=-1时,y=0;当x=0时,y=-1,0,1;当x=1时,y=0.所以U={(-1,0),(0,-1),(0,0),(0,1),(1,0)},共有5个元素.2.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.答案0或1解析①当a-3=-3,即a=0时,此时A={-3,-1,-4},②当2a-1=-3,即a=-1时,此时A={-4,-3,-3}舍,③当a2-4=-3,即a=±1时,由②可知a=-1舍,则a=1时,A={-2,1,-3},综上,a=0或1.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.答案{-2,2,4,5}解析由题意x可取-2,2,4,5,故答案为{-2,2,4,5}.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案6解析依题意可知,由S的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个整数.∴所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.感悟提升 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.答案(1)D(2)[-1,+∞)解析(1)当B=时,a=0,此时,B⊆A.当B≠时,则a≠0,∴B x|x=-1a又B⊆A,∴-1a∈A,∴a=±1.综上可知,实数a所有取值的集合为{-1,0,1}.(2)∵B⊆A,①当B=时,2m-1>m+1,解得m>2,②当B≠2m-1≤m+1,2m-1≥-3,m+1≤4,解得-1≤m≤2,综上,实数m的取值范围[-1,+∞).感悟提升 1.若B⊆A,应分B=和B≠两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]答案(1)B(2)B解析(1)集合A={1,a,b},B={a,a2,ab},若A=B,则a2=1或ab=1.由集合互异性知a≠1,当a=-1时,A={1,a,b}={1,-1,b},B={a,a2,ab}={-1,1,-b},有b=-b,得b=0.∴a2022+b2023=(-1)2022+02023=1.当ab=1时,集合A={1,a,b},B={a,a2,ab}={a,a2,1},有b=a2.又b=1a,∴a2=1a,得a=1,不满足题意.综上,a2022+b2023=1,故选B. (2)由log2(x-1)<1,得0<x-1<2,所以A=(1,3).由|x-a|<2得a-2<x<a+2,所以B=(a-2,a+2).因为A⊆B a-2≤1,a+2≥3,解得1≤a≤3.所以实数a的取值范围为[1,3].考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案(1)A(2)B解析(1)法一因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.故选A.法二因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.故选A.(2)题图中阴影表示的集合为(∁U M)∩N.易知M={x|x<1},N={x|0<x<2},∴(∁U M)∩N={x|1≤x<2}.角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A={x|x2-4≤0},B={x|2x+a≤0},若A∪B=B,则实数a的取值范围是()A.a<-2B.a≤-2C.a>-4D.a≤-4答案(1)C(2)D解析(1)因为x2-4x-5<0,解得-1<x<5,则集合A={x∈Z|x2-4x-5<0}={0,|x1,2,3,4},易知集合B又因为A∩B中有三个元素,所以1≤m2<2,解之得2≤m <4.故实数m 的取值范围是[2,4).(2)集合A ={x |-2≤x ≤2},B |x ≤由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a2≥2,即a ≤-4.感悟提升1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N |13≤x <M ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]答案(1)C(2)B 解析(1)由M ∩N =N ,∴M ⊇N .当N =∅时,即a ≤13成立;当N ≠∅时,借助数轴易知13<a ≤4.综上,a ≤4.(2)易得M ={x |2x 2-x -1<0}x |-12<x <1∵N ={x |2x +a >0}x |x >-a2∴∁U N x|x ≤-a 2由M ∩(∁U N )=,则-a 2≤-12,得a ≥1.Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.答案{1,3,5,7}{2,3,4,6,8}解析由题知U ={1,2,3,…,9},根据题意,画出Venn 图如图所示,由Venn图易得A ={1,3,5,7},B ={2,3,4,6,8}.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案C解析如图,用Venn 图表示该中学喜欢足球和游泳的学生所占的比例之间的关系,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x ,则(60%-x )+(82%-x )+x =96%,解得x =46%.故选C.例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.答案3613解析由题意知赞成A的人数为100×3560,赞成B的人数为60+3=63.如图,记100名学生组成的集合为U,赞成A的学生的全体记为集合A,赞成B的学生的全体记为集合B,并设对A,B都赞成的学生数为x,则对A,B都不赞成的人数为x3+1,由题意,知(60-x)+(63-x)+x+x3+1=100,解得x=36.所以对A,B都赞成的学生人数为36人,对A,B都不赞成的学生人数为13人.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案B解析由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]答案C解析∵A={x|3x-1<m},1∈A且2∉A,∴3×1-1<m且3×2-1≥m,解得2<m≤5.3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案D解析因为集合A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.故选D.4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±1答案A解析由题意a=1或a2=1,当a=1,此时A={1,1,0}与元素互异性矛盾,∴a=-1,故选A.5.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B答案C解析由x+1>0,得x>-1,∴A={x∈Z|x>-1}={0,1,2,3,…}.由x2-x-2<0,得-1<x<2,∴B={0,1},∴A∩B=B,A∪B=A,B A.6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.3答案C解析+y =1,-y =3=2,=-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =或M ={(2,-1)}.7.(2022·太原模拟)已知集合M ={x |(x -2)2≤1},N ={y |y =x 2-1},则(∁R M )∩N =()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)答案C解析由已知可得M ={x |-1≤x -2≤1}={x |1≤x ≤3},N ={y |y ≥-1},∴∁R M ={x |x <1或x >3},∴(∁R M )∩N ={x |-1≤x <1或x >3}.8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.4答案C解析因为A ={x |(x +2)(x -3)≤0},所以A ={x |-2≤x ≤3}.又因为B ={a },且A ∪B =A ,所以B ⊆A ,所以a 的最大值为3.9.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.答案{-1,0,1,2}解析B ={x |-2≤x -1≤2}={x |-1≤x ≤3},又A ={-2,-1,0,1,2},∴A ∩B ={-1,0,1,2}.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.答案(1,3)解析因为A ={x |y =x -3},所以A ={x |x ≥3},所以∁R A ={x |x <3}.又B ={x |1<x ≤9},所以(∁R A )∩B =(1,3).11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案[1,+∞)解析由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.答案34或1解析由A =B=2a ,=b 2=b 2,=2a .=2a ,=b 2,=0,=0=0,=1,=b 2,=2a ,=0,=0=14,=12,又由集合中元素的互异性,=0,=1=14,=12,所以a +b =1或a +b =34.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}答案D解析B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).又A∪B ={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}. 14.(2020·浙江卷)设集合S,T,S⊆N+,T⊆N+,S,T中至少有2个元素,且S,T 满足:①对于任意的x,y∈S,若x≠y,则xy∈T;②对于任意的x,y∈T,若x<y,则yx∈S.下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素答案A解析由题意,①令S={1,2,4},则T={2,4,8},此时,S∪T={1,2,4,8},有4个元素;②令S={2,4,8},则T={8,16,32},此时,S∪T={2,4,8,16,32},有5个元素;③令S={2,4,8,16},则T={8,16,32,64,128},此时,S∪T={2,4,8,16,32,64,128},有7个元素.综合①②,S有3个元素时,S∪T可能有4个元素,也可能有5个元素,可排除C,D;由③可知A正确.15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.答案-11解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.答案1解析M 1a,,由1a=12,得a=4,由1a=1,得a=1.当a=4时,M 12,M⊆N,不合题意;当a=1时,M={-1,1},满足题意.。

数学教案:集合X教师版

数学教案:集合X教师版

集合一、知识清单:1.元素与集合的关系:用∈或∉表示;2.集合中元素具有确定性、无序性、互异性.3.集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y |y =x 2},表示非负实数集,点集{(x ,y )|y =x 2}表示开口向上,以y 轴为对称轴的抛物线; 4.集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N +={0,1,2,3,…}; ②描述法③字母表示法:常用数集的符号:自然数集N ;正整数集*N N +或;整数集Z ;有理数集Q 、实数集R; 5.集合与集合的关系:用⊆,≠⊂,=表示;A 是B 的子集记为A ⊆B ;A 是B 的真子集记为A ≠⊂B 。

①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;空集是任何非空集合的真子集;③如果B A ⊆,同时A B ⊆,那么A = B ;如果A B ⊆,B C ⊆,A C ⊆那么.④n 个元素的子集有2n 个;n 个元素的真子集有2n -1个;n 个元素的非空真子集有2n -2个.6.交集A∩B={x |x ∈A 且x ∈B};并集A ∪B={x |x ∈A ,或x ∈B};补集C U A={x |x ∈U ,且x ∉A },集合U 表示全集.7.集合运算中常用结论:①;A B A B A ⊆⇔= A B A B B ⊆⇔= ②()()();U U U C A B C A C B = ()()()U U U C A B C A C B = ③()()card A B card A =+ ()()card B card A B -二、课前预习1.下列关系式中正确的是( A )(A){}Φ⊆Φ (B){}0∈Φ (C)0{}Φ= (D)0{}⊆Φ 2. 3231x y x y +=⎧⎨-=⎩解集为__{(2,1)}_.3.设{}{}24,21,,9,5,1A a a B a a =--=--,已知{}9A B = ,求实数a 的值.-34.设{}220,M x x x x R =++=∈,a =lg(lg10),则{a }与M 的关系是( B ) (A){a }=M (B)M ⊆{a } (C){a }∈M (D)M ⊇{a } 5.用适当的符号()∈∉⊆⊄、、=、、填空: ①π∈Q ; ②{3.14}__⊆__Q ;③-R ∪R +⊆R; ④{x |x =2k +1, k ∈Z}={x |x =2k -1, k ∈Z}。

元素与集合的关系判断

元素与集合的关系判断

元素与集合的关系判断一、图示法图示法是一种直观的展示方式,可以帮助学生理解元素与集合之间的关系。

教师可以在黑板上画出一个大圆表示一些集合,然后用小圆或者方块来表示集合中的元素。

通过这种方式,学生可以直观地看到每个元素与集合之间的关系,从而更好地理解元素与集合的概念。

例如,教师可以画一个大圆表示所有学生的集合,然后用小圆表示其中的一个学生,让学生看到这个小圆是属于这个大圆所表示的集合的。

然后再画一个大圆表示所有男生的集合,用小圆表示其中的一个男生,让学生看到这个小圆是属于这个大圆所表示的集合的。

通过这种图示的方式,学生可以更好地理解元素和集合之间的关系。

二、实例法实例法是通过具体的例子来让学生理解元素与集合的关系。

教师可以给出一些具体的集合和元素的例子,让学生通过观察例子来理解元素与集合之间的关系。

例如,教师可以给出一个集合的定义:A={1,2,3,4,5},然后问学生1是否属于集合A。

通过这个例子,学生可以看到1是属于集合A的,从而理解元素与集合之间的关系。

三、定义法定义法是通过给出元素与集合的定义来帮助学生理解元素与集合之间的关系。

教师可以给出集合的定义,然后通过对元素是否满足集合的定义来判断元素与集合的关系。

例如,教师可以给出一个集合的定义:B是所有大于0的整数的集合。

然后问学生-1是否属于集合B。

通过这个定义,学生可以看到-1不是大于0的整数,所以-1不属于集合B,从而理解元素与集合之间的关系。

在教学中,教师不仅要引导学生理解元素与集合的关系,还要帮助学生掌握元素与集合之间的运算规则。

可以通过举例子的方式让学生理解并应用集合的运算规则,比如并集、交集、差集等。

总之,元素与集合的关系判断是数学中的基础概念,可以通过图示法、实例法、定义法等方式来引导学生理解和应用。

通过多种方式的巧妙组合,教师可以帮助学生更好地掌握元素与集合之间的关系,培养学生的逻辑思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以
ǡᘽ ,即 ǡ .
, ǡ ǡ,
故答案为:B
【分析】解一元二次方程求出集合 的元素即可得出选项.
9.若 ͳ ⥈ ǡᘽ ,则
( ).
第 4 页 共 23 页
A. ͳ
B. ͳ
C. ⥈ 或 ͳ
D. ⥈ 或 ͳ
【答案】 B
【考点】元素与集合关系的判断
【解析】【解答】根据集合中元素的确定性和互异性可知,只能 ǡ ͳ ,且 ͳ ;
第 2 页 共 23 页
【分析】直接利用元素与集合的关系以及集合与集合的关系判断选项即可.
5.已知集合
ͳ ͳᘽ ,则下列结论不正确的有( )
A. ͳ
B. ͳᘽ
C.
D. ͳ ͳᘽ
【答案】 B
【考点】元素与集合关系的判断,集合的包含关系判断及应用
【解析】【解答】对于 A 选项, ͳ 是集合 的元素,A 选项正确.
元素与集合的关系判断
一、单选题
1.下列五个写法:① ⥈ᘽ ͳ ǡ ʹᘽ ;② 正确写法的个数为( )
⥈ᘽ ;③ ͳ ǡ ʹᘽ ǡ ʹ ͳᘽ ;④ ⥈ ;⑤ ⥈ᘽ
.其中
A. 1
B. 2
C. 3
D. 4
【答案】 C
【考点】元素与集合关系的判断,集合的包含关系判断及应用,交集及其运算
【解析】【解答】对于①表示的是集合与集合之间的关系,不能用元素属于集合的符号“ ”表示,故①写 法错误;
A. 4
B. 3
C. 2
对于 B 选项, ͳᘽ 是集合,集合与集合间是包含关系,B 选项结论不正确.
对于 C 选项,空集是任何集合的子集,C 选项正确.
对于 D 选项,根据子集的概念可知,D 选项正确.
故答案为:B.
【分析】根据元素与集合,集合与集合间的关系,选出结论不正确的选项.
6.集合
ሼሼ
ǡ 㘸ʹ
ሼ ᘽ 的元素个数是( )
逐一判断得选项. 2.(2015 天津)已知全集
ͳǡʹ
, 集合
ǡ ʹ , 集合
ͳʹ
, 则集合
A. ʹ
B. ǡ
C. ͳ
【答案】 B
【考点】集合的含义,元素与集合关系的判断
【解析】【解答】 ǡ ʹ
ǡ ,则
D. ǡ ʹ ǡ , 故选 B。
第 1 页 共 23 页
【分析】集合是高考中的高频考点,一般以基础题形式出现,属得分题。解决此类问题一般要把参与运算
所以
ͳ。
故答案为:B 【分析】根据集合中元素的确定性得出 1 肯定是 或者 ǡ 的一个,又由互异性可知 1 只能为 ǡ ,较
易解出答案. 10.如果集合
ܽ ǡ 㘸 㘸 ͳ ⥈ᘽ 中只有一个元素,则 ܽ 的值是( )
A. 0
B. 4
C. 0 或 4
D. 不能确定
【答案】 C
【考点】元素与集合关系的判断,一元二次方程的解集及其根与系数的关系
对于②表示的是集合与集合之间的关系,并且空集是任何集合的子集,故②写法正确;
对于③集合中的元素具有无序性,所以 ͳ ǡ ʹᘽ ǡ ʹ ͳᘽ 写法正确; 对于④空集不含有任何元素,所以④不正确;
对于⑤空集不含有任何元素,所以⑤正确;
所以共 3 个写法正确, 故答案为:C.
【分析】根据集合与集合之间的包含关系的定义、空集是任何集合的子集、集合的元素具有无序性对写法
⥈ ,所以 ሼ
.
第 3 页 共 23 页
综上,
ሼሼ
ǡ 㘸ʹ


ǡ ͳᘽ ,元素个数是 2 个.
故答案为:A.
【分析】根据题中给出的条件 ሼ ,分别从最小的自然数 0 开始给 代值,求出相应的 ሼ 的值,直到得
出的 ሼ ͳ 为止,求出 ሼ 的个数.
7.下列六个关系式:① ܽ ǡᘽ ǡ ܽᘽ ;② ܽ ǡᘽ ǡ ܽᘽ ;③ ⥈ᘽ ;④ ⥈ ⥈ᘽ ;
【解析】【解答】
ʹ Ͷ ǡ ͷᘽ ,
Ͷ ͷᘽ ,所以
ሻ ʹ ǡᘽ ,即集合

中共有 3 个元素。
故答案为:A.
【分析】利用并集的运算法则求出全集 U,再利用交集的运算法则求出集合 A 和集合 B 的交集,再利用
补集的运算法则求出集合
, 从而求出集合中的元素个数。
4.已知集合 M={0,1,2},则下列关系式正确的是( )
A. {0}∈M
B. {0}∉ M
】 C
【考点】元素与集合关系的判断
【解析】【解答】解:对于 A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;
对于 C,0 是集合中的一个元素,表述正确.
对于 D,是元素与集合的关系,错用集合的关系,所以不正确.
故选 C

⥈ᘽ ;⑥
⥈ᘽ ,其中正确的个数为( )
A. 个
B. 个
C. 个
D. 少于 个
【答案】C
【考点】元素与集合关系的判断,集合的包含关系判断及应用
【解析】【解答】解:根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素
与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何
的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数
轴进行运算。
3.设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A B,则集合
中的元素共有
()
A. 3 个
B. 4 个
C. 5 个
D. 6 个
【答案】 A
【考点】元素与集合关系的判断,交、并、补集的混合运算
A. 2
B. 4
C. 6
D. 8
【答案】 A
【考点】元素与集合关系的判断
【解析】【解答】因为
ሼሼ
ǡ 㘸ʹ

ᘽ,
所以:当
⥈ 时, ሼ
ǡ ʹ
;
当x
ͳ 时, ሼ
ǡ ͳ㘸ʹ
ǡ
;
当x
ǡ 时, ሼ
ǡ ǡ㘸ʹ
ǡ
;

ʹ 时, ሼ
ǡ ʹ㘸ʹ
ʹ
;
当x
时, ሼ
ǡǡ 㘸ʹ Ͷ
;

时, ሼ
ǡ 㘸ʹ
ͳ
;

时, ሼ
ǡ 㘸ʹ
ͳ ,且 ሼ
【解析】【解答】解:当 ܽ ⥈ 时,集合
ܽ ǡ 㘸 㘸 ͳ ⥈ᘽ
ͳ ᘽ ,只有一个元素,满足题意;
当 ܽ ⥈ 时,集合
ܽ ǡ 㘸 㘸 ͳ ⥈ᘽ 中只有一个元素,可得
ǡ ܽ ⥈ ,解得 ܽ

则 ܽ 的值是 ⥈ 或 .
故答案为:C.
【分析】利用 ܽ ⥈ 与 ܽ ⥈ ,结合集合元素个数,求解即可. 11.已知集合 A={x|ax2﹣5x+6=0},若 2∈A,则集合 A 的子集个数为( )
集合的子集可知⑥正确,即正确的关系式个数为 个,
故答案为:C.
【分析】利用元素与集合,集合与集合的关系对各选项进行判断即可.
8.设集合
ǡ 㘸 ǡ ǡ ⥈ᘽ 则下列关系正确的是( ).
A. ǡ
B. ǡ
C. ǡ
D.
【答案】 B
【考点】元素与集合关系的判断
【解析】【解答】因为 ǡ 㘸 ǡ ǡ ⥈ ,解得 ͳ
相关文档
最新文档