高中物理运动学测精彩试题(附答题卷和问题详解)
高考物理经典题(运动学)
高考物理经典题汇编--运动学(一)一、选择题1.(全国卷Ⅱ·15)两物体甲和乙在同一直线上运动,它们在0~0.4s时间内的v-t图象如图所示。
若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t1分别为( B )A.和0.30s B.3和0.30sC.和0.28s D.3和0.28s2.(江苏物理·7)如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18m。
该车加速时最大加速度大小为,减速时最大加速度大小为。
此路段允许行驶的最大速度为,下列说法中正确的有( AC )A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D.如果距停车线处减速,汽车能停在停车线处3.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑。
弹簧开始时处于原长,运动过程中始终处在弹性限度内。
在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( BCD )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B的速度相等时,A的速度达到最大D.当A、B的速度相等时,弹簧的弹性势能最大4.(广东物理·3)某物体运动的速度图像如图,根据图像可知( AC )A.0-2s内的加速度为1m/s2B.0-5s内的位移为10mC.第1s末与第3s末的速度方向相同D.第1s末与第4.5s末加速度方向相同5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示。
设该物体在和时刻相对于出发点的位移分别是和,速度分别是和,合外力从开始至时刻做的功是,从至时刻做的功是,则( AC )A.B.C.D.6.(海南物理·8)甲乙两车在一平直道路上同向运动,其图像如图所示,图中和的面积分别为和.初始时,甲车在乙车前方处。
高中物理运动学经典习题30道 带答案
一.选择题(共28小题)1.(2014•陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解正确的是()A.每经过1秒,物体的速度增加1倍B.每经过1秒,物体的速度增加2m/sC.物体运动的最小速度是2m/sD.物体运动的最大速度是2m/s2.(2014•廉江市校级学业考试)下列描述的运动,能找到实例的是()A.物体运动的加速度不断变化,而物体的动能却保持不变B.物体运动的加速度等于零,而速度却不等于零C.物体运动的加速度不等于零,而速度保持不变D.物体作曲线运动,但具有恒定的加速度3.(2014•越秀区校级三模)关于物体运动状态的改变,下列说法中正确的是()A.运动物体的加速度不变,则其运动状态一定不变B.物体的位置在不断变化,则其运动状态一定在不断变化C.做直线运动的物体,其运动状态可能不变D.做曲线运动的物体,其运动状态也可能不变4.(2013秋•江西期末)下列关于速度和加速度的说法中,正确的是()A.加速度表示速度变化的大小B.物体的速度为零,加速度也一定为零C.运动物体的加速度越来越小,表示速度变化越来越慢D.运动物体的加速度越来越小,表示物体运动的速度也越来越小5.(2013秋•龙华区校级期末)足球以8m/s的速度飞来,运动员把足球以12m/s的速度反向踢出,踢球时间为0.2s,设足球飞来的方向为正方向,则这段时间内足球的加速度是()A.﹣200m/s2B.200m/s2C.﹣100m/s2D.100m/s26.(2013秋•天山区校级期末)关于速度和加速度,以下说法中正确的是()A.速度表示物体位置变化的大小和方向B.物体的加速度增大,物体的速度可能减小C.物体的速度改变量△v越大,加速度一定越大D.加速度表示物体速度变化的大小和方向7.(2013秋•武陵区校级期末)已知一运动物体的初速度v0=5m/s,加速度a=﹣3m/s2,它表示()A.物体的加速度方向与速度方向相反,且物体的速度在增加B.物体的加速度方向与速度方向相同,且物体的速度在增加C.物体的加速度方向与速度方向相反,且物体的速度在减小D.物体的加速度方向与速度方向相同,且物体的速度在减小8.(2011秋•瑶海区校级期中)物体从静止开始做匀加速直线运动,已知第2s内位移为x,则物体运动的加速度大小为()A.B.C.D.9.(2015•沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为()A.B.C.D.10.(2015•嘉定区一模)用如图的方法可以测出一个人的反应时间,设直尺从静止开始自由下落,到直尺被受测者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()A.t∝h B.C.t∝D.t∝h2t∝11.(2014•吉林一模)科技馆中的一个展品如图所示,在较暗处有一个不断均匀滴水的水龙头,在一种特殊的灯光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)()A.普通光源即可B.间歇发光,间隔时间0.4sC.间歇发光,间隔时间0.14s D.间歇发光,间隔时间0.2s12.(2014秋•宝安区校级期中)为了求高层建筑的高度,从楼顶上自由下落一光滑小石子,除了知道当地的重力加速度以外,还需要知道下述哪个量()A.第一秒末的速度B.第一秒内的位移C.最后一秒的位移D.最后一秒的初速度13.(2014秋•雨城区校级期末)甲、乙两物体所受的重力之比为1:2,甲,乙两物体所在的位置高度之比为2:1,它们各自做自由落体运动,则()A.落地时的速度之比是:1B.落地时的速度之比是1:1C.下落过程中的加速度之比是1:2D.下落过程中加速度之比是2:114.(2014春•正定县校级期末)从地面竖直上抛一物体A,同时在离地面某一高度处有另一物体B自由落下,两物体在空中同时到达同一高度时速率都为υ,则下列说法中正确的是()A.物体A上抛的初速度和物体B落地时速度的大小相等,都是2υB.物体A、B在空中运动的时间相等C.物体A能上升的最大高度和B开始下落的高度相同D.两物体在空中同时达到同一高度处一定是B物体开始下落时高度的中点15.(2013秋•忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水刚要离开屋檐时,第一滴水正好落到地面,那么,这里第二滴离地面的高度是()A.2m B.2.5m C.2.9m D.3.5m16.(2014秋•淮南期末)自由下落的质点落地之前,第n秒内的位移与前(n﹣1)秒内的位移之比为()A.B.C.D.17.(2014秋•成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是()A.位置1是小球释放的初始位置B.小球下落的加速度为C.小球在位置3的速度为D.能判定小球的下落运动是否匀变速18.(2014秋•北林区校级期末)做自由落体运动的物体,下落到全程一半时经历的时间是t,全程的下落时间为T,则t:T为()A.1:2 B.2:3 C.:2 D.:19.(2014秋•滕州市校级期中)在塔顶上将一物体以20m/s初速度竖直向上抛出,抛出点为A,不计空气阻力,设塔足够高,则物体位移大小为10m时,物体通过的路程可能为(g取10m/s2)()A.10 m B.20 m C.30 m D.50 m20.(2014•上海)在离地高h处,沿竖直方向向上和向下抛出两个小球,他们的初速度大小均为v,不计空气阻力,两球落地的时间差为()A.B.C.D.21.(2014•甘肃模拟)近年来有一种测g值的方法叫“对称自由下落法”:将真空长直管沿竖直方向放置,自其中O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P点所用的时间为T1,测得T1、T2和H,可求得g等于()A.B.C.D.22.(2014•兰考县模拟)某物体以30m/s的初速度竖直上抛,不计空气阻力,g取10m/s2.5s内物体的()A.路程为25mB.位移大小为25m,方向向下C.速度改变量的大小为10m/sD.平均速度大小为5m/s,方向向上23.(2014春•金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石子以20m/s的初速度竖直上抛,若g取10m/s2,不计空气阻力,则以下说法正确的是()A.石子一定能追上气球B.石子一定追不上气球C.若气球上升速度等于9m/s,其余条件不变,则石子在抛出后1s末追上气球D.若气球上升速度等于7m/s,其余条件不变,则石子在到达最高点时追上气球24.(2013秋•楚雄州期末)某物体以30m/s的初速度竖直上抛,不计空气阻力,g取10m/s2.5s内物体的()A.平均速率为13m/sB.位移大小为25m,方向竖直向下C.速度改变量的大小为50m/s,方向竖直向上D.平均速度大小为5m/s,方向竖直向上25.(2013秋•万州区校级期末)某物体以20m/s的初速度竖直上抛,不计空气阻力,g取10m/s2.下列对物体4s内的运动描述错误的是()A.上升最大高度20m B.位移大小为40mC.速度改变量的方向向下D.平均速率为10m/s26.(2013秋•秦州区校级期末)以初速v0竖直上抛的物体可达到的最大高度为H,为使它能达到的最大高度加倍,则初速度应增为()A.v0B.2v0C.v0D.4v027.(2013•洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经过另一较高的b点的时间间隔为T b,则ab两点间的距离为()A.g(T a2﹣T b2)B.g(T a2﹣T b2)C.g(T a2﹣T b2)D.g(T a﹣T b)28.(2013秋•平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到达最高点,则有()A.地面上的人所见球抛出时的初速度为V0=gtB.升降机中的人看见球抛出的初速度为V0=gtC.地面上的人看见球上升的最大高度为h=gt2D.地面上的人看见球上升的时间也为t一.选择题(共28小题)1.B 2.ABD 3.C 4.C 5.C 6.B 7.C 8.D 9.C 10.C 11.C 12.CD 13.A 14.AC 15.D 16.D 17.BCD 18.C 19.ACD 20.A 21.A 22.D 23.BC 24.AD 25.B 26.A 27.A 28.B。
高中物理必修一第一章《运动的描述》测试题(有答案解析)
一、选择题1.一物体做直线运动,其位移一时间图像如图所示,设向右为正方向,则在前6s内()A.物体先向左运动,2s后开始向右运动B.在t=2s时物体距出发点最远C.前2s内物体位于出发点的左方,后4s内位于出发点的右方D.在t=4s时物体距出发点最远2.运动员在水上做飞行表演,忽高忽低,左突右边闪,河岸的观众非常受鼓舞,运动员甚至能够悬停在空中,如图所示,已知运动员与装备的总质量为90kg,两个喷嘴处喷水的速度可以达10m/s。
下列说法错误的是()A.题中描述的10m/s指的是瞬时速度B.运动员悬停在空中可以是以河岸为参照物得出的C.研究运动员在飞行运动表演中的轨迹时,不可能有路程和位移大小相等的阶段D.研究运动员在飞行运动表演中的轨迹时,可以将他视为质点3.关于速度、速度变化量、加速度,下列说法正确的是()A.物体的速度变化量很大,它的加速度一定很大B.某时刻物体的速度为零,其加速度一定也为零C.加速度大小不断变小,则速度大小也不断变小D.速度变化得越快,加速度就越大4.甲、乙两物体在同一直线上运动,运动情况如图所示。
下列说法中正确的是()A.经过2.5s时间,甲、乙两物体相遇B.经过5s时间,甲物体达到乙物体的出发点C.甲、乙两物体速度大小相等,方向相反D.接近10s时,乙物体的速度接近零5.近几年,国内房价飙升,在国家宏观政策调控下,房价上涨出现减缓。
小明同学将房价的“上涨”类比成运动学中的“加速”,将房价的“下跌”类比成运动学中的“减速”。
据此,你认为“房价上涨出现减缓”可以类比成运动学中的()A.速度增加,加速度减小B.速度增加,加速度增大C.速度减小,加速度增大D.速度减小,加速度减小6.如图所示,在水平面内的半圆弯道半径为70m,以半圆弯道的圆心为坐标原点O,建立Ox直线坐标系,一汽车从弯道的M点以54km/h的速率沿半圆弯道(虚线所示)运动到N 点,则从M到N的过程中,汽车的平均速度为()A.15m/s B.15m/sπC.s30m/π-D.s108m/π-7.智能手机上装载的众多app软件改变着我们的生活,如图所示为百度地图的一张截图,表示了张同学从金陵中学步行到南京一中的导航具体路径,其推荐路线中有两个数据,39分钟,2.5公里,关于这两个数据,下列说法正确的是()A.2.5公里表示了此次行程的位移的大小B.39分钟表示到达目的地的时刻C.39分钟表示通过这段路程可能所需要的时间D.根据这两个数据,我们可以算出此次行程的平均速度8.下列说法正确的是()A.即将到站的列车因速度减小,所以加速度减小B.慢走中的小刘突然加速跑向即将发车的列车时,因速度变化大,所以加速度大C.列车发车时因速度为零,所以加速度也为零D.列车在平直轨道上匀速行驶时,虽速度很大,但加速度为零9.一只船在静水中航行的速度为10m/s,当它在一条河水中逆流行驶经过一座桥下时,船上一木箱不慎掉入河水中,15min后才被发现,立即掉头追赶,已知河水流速为4m/s,则船从掉头到追上木箱,需要时间为()A.5min B.10min C.15min D.20min10.在平直的公路上,汽车启动后在第10 s末,速度表的指针指在如图所示的位置,前10 s内汽车运动的距离为150 m。
高考物理直线运动真题汇编(含答案)及解析
高考物理直线运动真题汇编(含答案)及解析一、高中物理精讲专题测试直线运动1.汽车在路上出现故障时,应在车后放置三角警示牌(如图所示),以提醒后面驾车司机,减速安全通过.在夜间,有一货车因故障停车,后面有一小轿车以30m/s 的速度向前驶来,由于夜间视线不好,驾驶员只能看清前方50m 的物体,并且他的反应时间为0.5s ,制动后最大加速度为6m/s 2.求:(1)小轿车从刹车到停止所用小轿车驾驶的最短时间;(2)三角警示牌至少要放在车后多远处,才能有效避免两车相撞.【答案】(1)5s (2)40m 【解析】 【分析】 【详解】(1)从刹车到停止时间为t 2,则 t 2=0v a-=5 s① (2)反应时间内做匀速运动,则 x 1=v 0t 1② x 1=15 m③从刹车到停止的位移为x 2,则x 2=2002v a -④x 2=75 m⑤小轿车从发现物体到停止的全部距离为 x=x 1+x 2=90m ⑥ △x=x ﹣50m=40m ⑦2.一位汽车旅游爱好者打算到某风景区去观光,出发地和目的地之间是一条近似于直线的公路,他原计划全程平均速度要达到40 km/h ,若这位旅游爱好者开出1/3路程之后发现他的平均速度仅有20 km/h ,那么他能否完成全程平均速度为40 km/h 的计划呢?若能完成,要求他在后的路程里开车的速度应达多少? 【答案】80km/h 【解析】本题考查匀变速直线运动的推论,利用平均速度等于位移除以时间,设总路程为s,后路程上的平均速度为v,总路程为s前里时用时后里时用时所以全程的平均速度解得由结果可知,这位旅行者能完成他的计划,他在后2s/3的路程里,速度应达80 km/h3.高铁被誉为中国新四大发明之一.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v0=288km/h的速度匀速行驶,列车长突然接到通知,前方x0=5km处道路出现异常,需要减速停车.列车长接到通知后,经过t l=2.5s 将制动风翼打开,高铁列车获得a1=0.5m/s2的平均制动加速度减速,减速t2=40s后,列车长再将电磁制动系统打开,结果列车在距离异常处500m的地方停下来.(1)求列车长打开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a2是多大?【答案】(1)60m/s(2)1.2m/s2【解析】【分析】(1)根据速度时间关系求解列车长打开电磁制动系统时列车的速度;(2)根据运动公式列式求解打开电磁制动后打开电磁制动后列车行驶的距离,根据速度位移关系求解列车的平均制动加速度.【详解】(1)打开制动风翼时,列车的加速度为a1=0.5m/s2,设经过t2=40s时,列车的速度为v1,则v1=v0-a1t2=60m/s.(2)列车长接到通知后,经过t1=2.5s,列车行驶的距离x1=v0t1=200m打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离x2 =2800m打开电磁制动后,行驶的距离x3= x0- x1- x2=1500m;4.总质量为80kg的跳伞运动员从离地500m的直升机上跳下,经过2s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t 图,试根据图象求:(g 取10m/s 2) (1)t =1s 时运动员的加速度和所受阻力的大小. (2)估算14s 内运动员下落的高度及克服阻力做的功. (3)估算运动员从飞机上跳下到着地的总时间.【答案】(1)160N (2)158; 1.25×105J (3)71s 【解析】 【详解】(1)从图中可以看出,在t =2s 内运动员做匀加速运动,其加速度大小为162t v a t ==m/s 2=8m/s 2 设此过程中运动员受到的阻力大小为f ,根据牛顿第二定律,有mg -f =ma 得f =m (g -a )=80×(10-8)N =160N (2)从图中估算得出运动员在14s 内下落了 39.5×2×2m =158m根据动能定理,有212f mgh W mv -= 所以有212f W mgh mv =-=(80×10×158-12×80×62)J≈1.25×105J(3)14s 后运动员做匀速运动的时间为 5001586H h t v '--==s =57s 运动员从飞机上跳下到着地需要的总时间 t 总=t +t ′=(14+57)s =71s5.(13分)如图所示,截面为直角三角形的木块置于粗糙的水平地面上,其倾角θ=37°。
高中物理运动学练习题及讲解
高中物理运动学练习题及讲解一、选择题1. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s²。
若物体在第3秒内通过的位移为9m,求物体在第2秒末的速度是多少?A. 2m/sB. 3m/sC. 4m/sD. 5m/s2. 一辆汽车以10m/s的速度行驶,突然刹车,产生一个-5m/s²的加速度。
求汽车在刹车后5秒内的位移。
A. 25mB. 31.25mC. 40mD. 50m二、填空题3. 某物体做自由落体运动,下落时间为3秒,忽略空气阻力,求物体下落的高度。
公式为:\[ h = \frac{1}{2} g t^2 \],其中\( g \)为重力加速度,\( t \)为时间。
假设\( g = 9.8 m/s^2 \)。
三、计算题4. 一个物体从高度为10米的平台上自由落下,求物体落地时的速度。
四、解答题5. 一辆汽车从静止开始加速,加速度为4m/s²,行驶了10秒后,汽车的速度和位移分别是多少?五、实验题6. 实验中,我们用打点计时器记录了小车的运动。
已知打点计时器的周期为0.02秒,记录了小车在第1、3、5、7、9点的位置。
位置数据如下(单位:米):1点:0.00,3点:0.20,5点:0.56,7点:1.08,9点:1.76。
请根据这些数据计算小车的加速度,并判断小车的运动类型。
六、论述题7. 论述在斜面上的物体受到的力有哪些,以及这些力如何影响物体的运动。
参考答案:1. B2. B3. 14.7m4. 根据公式\( v = \sqrt{2gh} \),落地速度为\( \sqrt{2 \times 9.8 \times 10} \) m/s。
5. 速度为40m/s,位移为200m。
6. 根据两点间的平均速度公式,可以求出加速度为0.8m/s²,小车做匀加速直线运动。
7. 斜面上的物体受到重力、支持力和摩擦力的作用。
重力使物体有向下运动的趋势,支持力和摩擦力则与重力的垂直和水平分量相平衡,影响物体的加速度和运动状态。
高中物理必修一运动学测精彩试题4套(含问题详解)
(一)一、选择题:每小题6分,共36分。
以下每小题有一个或几个正确选项。
1、下列说法中正确的是 ( )A.加速度增大,速度一定增大 B.速度为零,加速度也一定为零C.速度变化越大,加速度越大 D.速度变化越快,加速度越大2、在下面的图像中描述匀加速直线运动的有( )A.甲、乙 B.乙、丁 C.甲、丁 D.丙、丁3、物体从静止开始作匀加速直线运动,第10s末速度为2m/s,则下列说法中正确的是( )A.前10s内的位移为10m B.第10s内的位移为2mC.任意1s内的速度的增量都是0.2m./s D.第6s内的位移比第5s内的位移多0.4m 4、A、B两物体做匀加速直线运动,4kg的A物体速度从0变到5m/s用了2秒,3kg的B 物体速度从10m/s变到20m/s用了4秒,则下列说法正确的是:()A、A的速度变化量比B的速度变化量小B、A的速度比B的速度小;C、A的惯性比B的惯性小;D、A的加速度比B的加速度小;5.物体从静止开始以2m/s2的加速度作匀加速直线运动,则物体()A 第1s内通过的位移是2mB 第1s末的速度是2m/sC 第1s内的平均速度是2m/sD 第3s初的速度是4m/s6.一质点静止在坐标0处,从t = 0起开始出发,沿x轴运动,其v- t图象如图所示。
则在2.5s内 ( )A.t = 0.5s时离原点最远B.t = 1s时离原点最远C.t = 1s时回到原点D.t = 2s时回到原点二、填空题:每空4分,共40分。
把答案直接写在题中的横线上。
7.一个钢球由某一高处自由下落,到达地面的速度是40米/秒。
则这个钢球下落时间为__ ____ _____秒;钢球是从___ __ ____米高处落下的。
(本题g取10米/秒2)8.骑自行车的人沿着坡路下行,在第1秒内通过的位移为2米,在第2秒内通过的位移为4米,在第3秒内通过的位移为6米,在第4秒内通过的位移为8米,则骑车人在最初2秒内的平均速度是___________米/秒;最后2秒内的平均速度是___________米/秒。
高中物理直线运动题20套(带答案)含解析
高中物理直线运动题20套(带答案)含解析一、高中物理精讲专题测试直线运动1.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.2.为确保行车安全,高速公路不同路段限速不同,若有一段直行连接弯道的路段,如图所示,直行路段AB限速120km/h,弯道处限速60km/h.(1)一小车以120km/h的速度在直行道行驶,要在弯道B处减速至60km/h,已知该车制动的最大加速度为2.5m/s2,求减速过程需要的最短时间;(2)设驾驶员的操作反应时间与车辆的制动反应时间之和为2s(此时间内车辆匀速运动),驾驶员能辨认限速指示牌的距离为x0=100m,求限速指示牌P离弯道B的最小距离.【答案】(1)3.3s(2)125.6m【解析】【详解】(1)120 120km/h m/s3.6v==,6060km/h m/s3.6v==根据速度公式v=v0-at,加速度大小最大为2.5m/s2解得:t=3.3s;(2)反应期间做匀速直线运动,x1=v0t1=66.6m;匀减速的位移:2202v v ax-=解得:x=159m则x'=159+66.6-100m=125.6m.应该在弯道前125.6m距离处设置限速指示牌.3.高速公路上行驶的车辆速度很大,雾天易出现车辆连续相撞的事故。
高中物理曲线运动题20套(带答案)含解析
高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求: (1)小球离开屋顶时的速度v 0的大小范围; (2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v 0≤13 m/s ; (2)55m/s ; 【解析】 【分析】 【详解】(1)若v 太大,小球落在空地外边,因此,球落在空地上,v 的最大值v max 为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L+x=v max t 1, 小球的竖直位移:H=gt 12 解以上两式得 v max =(L+x )=(10+3)×=13m/s .若v 太小,小球被墙挡住,因此, 球不能落在空地上,v 的最小值v min为球恰好越过围墙的最高点P 落在空地上时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L=v min t 2 小球的竖直方向位移:H ﹣h=gt 22 解以上两式得v min =L=3×=5m/s因此v 0的范围是v min ≤v 0≤v max , 即5m/s≤v 0≤13m/s .(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min ′===5m/s3.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .4.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。
高中物理运动学试题
物理试题一、选择题(1-5题每小题只有一个选项符合题意,6、7两题每小题至少有一个以上选项符合题意,请把符合题意的选项填入答题卡内,共32分。
)1.关于参考系的选择,下列说法正确的是()A.在空中运动的物体不能作为参考系B.参考系必须选取与地面连在一起的物体C.参考系的选择应该以能准确而方便地描述物体的运动为原则D.对于同一个运动,选择的参考系不同,观察和描述的结果仍然相同2.关于质点,下列说法正确的是()A.任何静止的物体都可以视为质点B.研究电子自旋时,电子可以视为质点C.在平直的高速公路上行驶的小汽车,可视为质点D.质点是一个无大小形状的理想化模型,和几何点是一样的3.以下的计时数据指的是时间的是()A.列车在9时45分到达途中的南京站B.在某场足球赛中,甲队于开赛10min后攻入1球C.中央电视台的新闻联播节目于19时开播D.某短跑运动员用11.5秒跑完了100m4.一辆汽车从甲地驶向乙地以速度V行驶了2/3的路程,接着以20km/h的速度行驶到达乙地,后以36km/h的速度返回甲地,则全程中的平均速度v为()A.0 B.48km/h C.24km/h D.36km/h5.关于位移和路程,下列说法错误..的是()A.位移与运动路径无关,仅由初末位置决定B.位移的大小等于路程C.路程是标量,位移是矢量,位移的运算遵循平行四边行定则D.位移是由初位置指向末位置的有向线段,路程是物体运动轨迹的长度6.以下对于加速度和速度的认识中,错误..的有()A.物体加速度的方向,就是物体速度方向B.物体的速度为零,加速度可以不为零C.物体的速度很大,加速度可以为零D.物体的速度变化越大,则加速度越大7.左下图1表示A 、B 两运动物体相对于同一参考系的的s-t 图象,下列说法正确的是( )A .A 物体比B 物体早出发时间为t 1 B .A 、B 两物体都做匀速直线运动C .A 、B 两物体向同方向运动D .A 、B 两物体的出发点相距S 0二、填空题(每空4分,共 40 分)8.一人骑车由南向北行驶,这时有辆汽车也由南向北从他身旁疾驰而去,若以这辆汽车为参考系,此人__________(选填“向南”或“向北”)运动;汽车若在水平笔直的河岸上行驶,以汽车为参考系,它在河中的倒影是____________(选填“运动的”或“静止的”)。
高中物理曲线运动试题(有答案和解析)含解析
高中物理曲线运动试题( 有答案和分析 ) 含分析一、高中物理精讲专题测试曲线运动1. 有一水平搁置的圆盘,上边放一劲度系数为 k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A ,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为 l .设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω 多大时,物体 A 开始滑动?(2)当转速迟缓增大到2 ω 时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g 3 mgl ( 2) 4 mglkl 【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度 ω0 .( 2)当角速度达到 2 ω0 时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量 △x . 【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.( 1)当圆盘转速为 n 0 时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg = ml ω02,解得: ω0=g .l即当 ω0g时物体 A 开始滑动.=l( 2)当圆盘转速达到 2 ω0 时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即: μmg +k △x = mr ω12, r=l+△x解得: Vx =3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1N v2 R由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,水平长直轨道AB 与半径为R=0.8m 的圆滑1 竖直圆轨道BC 相切于B, BC 4与半径为r=0.4m 的圆滑1 竖直圆轨道CD相切于C,质量m=1kg 的小球静止在 A 点,现用4F=18N 的水平恒力向右拉小球,在抵达AB 中点时撤去拉力,小球恰能经过球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:D 点.已知小(1)小球在 D 点的速度 v D大小;(2)小球在 B 点对圆轨道的压力 N B大小;(3) A、B 两点间的距离 x.【答案】 (1) v D2m / s( 2)45N (3)2m【分析】【剖析】【详解】(1)小球恰巧过最高点D,有:mg m v D2r解得: v D2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 222设小球在 B 点遇到轨道支持力为 N ,由牛顿定律有:N mgmN B =Nv 2BR联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1mv B 222解得: x 2m故此题答案是: (1) v D 2m / s ( 2) 45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,4. 如下图,在圆滑的圆锥体顶部用长为的细线悬挂一质量为 的小球, 因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加快度 g 取 若北小球运动的角速度,求此时细线对小球的拉力大小。
高中物理运动学测试题(卷)(附答题卷和答案解析)
运动学测试(附答案)一.不定项选择题(5分×12=60分)1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( )A.速度开始减小,直到加速度等于零为止B.速度继续增大,直到加速度等于零为止C.速度一直增大D.位移继续增大,直到加速度等于零为止2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( )A.x tB.2x tC.x 2tD.x t 到2xt之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( )A .当研究护航舰艇的运行轨迹时,可以将其看做质点B .“五千多海里”指的是护航舰艇的航行位移C .“五千多海里”指的是护航舰艇的航行路程D .根据题中数据我们可以求得此次航行的平均速度 4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( )A .12 m/s ,39 m/sB .8 m/s ,38 m/sC .12 m/s ,19.5 m/sD .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同速度(m/s) 反应距离(m) 制动距离(m)10 15 25 14 X YA .驾驶员的反应时间为1.5 sB .汽车制动的加速度大小为2 m/s 2C .表中Y 为49D .表中X 为326. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 27.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( )A .这种估算方法是错误的,不可采用B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离C .这种估算方法没有考虑光的传播时间,结果误差很大D .即使声速增大2倍以上,本题的估算结果依然正确 8.某动车组列车以平均速度v 行驶,从甲地到乙地的时间为t .该列车以速度v 0从甲地出发匀速前进,途中接到紧急停车命令后紧急刹车,列车停车后又立即匀加速到v 0,继续匀速前进.从开始刹车至加速到v 0的时间是t 0,(列车刹车过程与加速过程中的加速度大小相等),若列车仍要在t 时间到达乙地.则动车组列车匀速运动的速度v 0应为( )A.vt t -t 0B.vt t +t 0C.vt t -12t 0D.vt t +12t 09.从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度-时间图象如图所示.在0~t 2时间,下列说法中正确的是( )A .Ⅰ物体所受的合外力不断增大,Ⅱ物体所受的合外力不断减小B .在第一次相遇之前,t 1时刻两物体相距最远C .t 2时刻两物体相遇D .Ⅰ、Ⅱ两个物体的平均速度大小都是v 1+v 2210.如图所示,t =0时,质量为0.5 kg 物体从光滑斜面上的A 点由静止开始下滑,经过B 点后进入水平面(设物体经过B 点前后速度大小不变),最后停在C 点.测得每隔2 s 的三个时刻物体的瞬时速度记录在表格中,由此可2)( )t /s 0 2 4 6 v /m·s -10 8 12 8 B 点 C .t =10 s 的时刻物体恰好停在C 点 D .A 、B 间的距离大于B 、C 间的距离11.打开水龙头,水顺流而下,仔细观察将会发现连续的水流柱的直径在流下的过程中,是逐渐减小的(即上粗下细),设水龙头出口处半径为1 cm ,安装在离接水盆75 cm 高处,如果测得水在出口处的速度大小为1 m/s ,g=10 m/s 2,则水流柱落到盆中的直径( ) A .1 cm B .0.75 cm C .0.5 cm D .0.25 cm12.a 、b 两物体从同一位置沿同一直线运动,它们的速度图象如图所示,下列说确的是( )A .a 、b 加速时,物体a 的加速度大于物体b 的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m 二.实验题(3分×5)13.某同学在测定匀变速直线运动的加速度时,得到了几条较为理想的纸带,已在每条纸带上每5个计时点取好了一个计数点,即两计数点之间的时间间隔为0.1 s ,依打点先后编为0、1、2、3、4、5.由于不小心,纸带被撕断了,如图所示.请根据给出的A 、B 、C 、D 四段纸带回答:(填字母)(1)从纸带A上撕下的那段应该是B、C、D三段纸带中的________.(2)打A纸带时,物体的加速度大小是________m/s2.14.某学生用打点计时器研究小车的匀变速直线运动.他将打点计时器接到频率为50 Hz的交流电源上,实验时得到一条纸带如图实所示.他在纸带上便于测量的地方选取第一个计数点,在这点下标明A,第六个点下标明B,第十一个点下标明C,第十六个点下标明D,第二十一个点下标明E.测量时发现B点已模糊不清,于是他测得AC长为14.56 cm,CD长为11.15 cm,DE长为13.73 cm,则打C点时小车的瞬时速度大小为________ m/s,小车运动的加速度大小为________ m/s2,AB的距离应为________ cm.(保留三位有效数字)三.计算题(8+9+9+9=35分)15.建筑工人安装脚手架进行高空作业时,一名建筑工人不慎将抓在手中的一根长5 m的铁杆在竖直状态下由静止脱手,不计空气阻力.试问:(1)假设杆的下端离地面40 m,那么铁杆碰到地面时的速度大约是多少?(2)若铁杆在下落过程中经过某楼层面的时间为0.2 s,试求铁杆下落时其下端距离该楼层面的高度是多少?(g取10 m/s2,不计楼层面的厚度)16.2011年7月2日下午,在滨江区的白金海岸小区,一个2岁女童突然从10楼坠落,楼下30多岁的吴菊萍女士奋不顾身地冲过去用双手接住了孩子,其手臂骨折,受伤较重,被网友称为最美妈妈,接抱坠楼女童的“最美妈妈”吴菊萍引发了海外的集体感动.吴菊萍不计后果的爱心托举,不仅给坠楼女童妞妞带来了生的希望,也激发着全社会的向善力量.设女童从45 m高的阳台上无初速掉下,吴菊萍迅速由静止冲向女童下落处的正下方楼底,准备接住女童.已知吴菊萍到楼底的距离为18 m,为确保安全能稳妥接住女童,吴菊萍将尽力节约时间,但又必须保证接女童时没有水平方向的冲击,不计空气阻力,将女童和吴菊萍都看做质点,设吴菊萍奔跑过程中只做匀速或匀变速运动,g取10 m/s2(1)吴菊萍至少用多大的平均速度跑到楼底?(2)若吴菊萍在加速或减速的加速度大小相等,且最大速度不超过9 m/s,求吴菊萍奔跑时加速度需满足什么条件?17. 在竖直的井底,将一物块以11 m/s的速度竖直的向上抛出,物体冲过井口时被人接住,在被人接住前1s物体的位移是4 m,位移方向向上,不计空气阻力,g取10 m/s2,求:(1)物体从抛出到被人接住所经历的时间;(2)此竖直井的深度.18.2011年7月23日晚,甬温线永嘉站至南站间,南至D301次列车与至南D3115次列车发生追尾事故,造成特大铁路交通事故.若事故发生前D3115次动车组正以速度为v A=10 m/s匀速向前行驶,D301次列车在其后以速度v B=30 m/s同方向匀速行驶.因当天正在下雨能见度低,D301次列车在距D3115次列车700 m时,才发现前方有D3115次列车.这时D301次列车立即刹车,但要经过1800 m D301次列车才能停止.问:D3115次列车若仍按原速前进,两车是否会相撞?说明理由.附加题:甲、乙两质点同时开始在彼此平行且靠近的两水平轨道上同向运动,甲在前,乙在后,相距s,甲初速度为零,加速度为a,做匀加速直线运动;乙以速度v0做匀速运动,关于两质点在相遇前的运动。
高中物理曲线运动题20套(带答案)含解析
高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
高中物理必修一运动学测试题4套(答案)
高中物理必修一运动学测试题4套(答案)一、选择题:1、正确选项为B。
加速度为零时,速度不一定为零,但速度不变。
2、描述匀加速直线运动的图像为甲、丁。
3、正确选项为C。
任意1s内的速度增量都是0.2m/s。
4、正确选项为A。
A的速度变化量为5m/s,B的速度变化量为10m/s,A的速度变化量比B小。
5、正确选项为B。
第1s末的速度为2m/s。
6、正确选项为A。
在t=0.5s时,质点离原点最远。
二、填空题:1、加速度的单位为m/s²。
2、匀加速直线运动的速度-时间图像为一条直线。
3、物体做匀加速直线运动时,速度的变化量等于加速度乘以时间。
4、匀加速直线运动的位移-时间图像为一个抛物线。
5、在匀加速直线运动中,速度和加速度的方向可以相同也可以相反。
6、匀加速直线运动的加速度为常数,速度的变化量与时间成正比。
A.一个钢球从高处自由下落,下落时间与下落高度无关B.骑车人在最初2秒内的平均速度等于最后2秒内的平均速度C.电火花计时器使用直流电源,电压为220VD.小车在A点时的瞬时速度大小为0.6m/s,加速度大小为0.6m/s²二、填空题7.这个钢球下落时间为4秒;钢球是从800米高处落下的。
8.骑车人在最初2秒内的平均速度是2米/秒;最后2秒内的平均速度是7米/秒。
9.电火花计时器使用交流电源,电压为220V。
当电源的频率为50Hz时打点计时器每隔0.02s打一个点,当交流电的频率小于50Hz时,仍按50Hz计算,则测量的速度的数值比真实的速度数值偏小。
10.打A点时瞬时速度的大小为6m/s,小车的加速度的大小是4m/s²。
三、计算题12.起飞时的速度为80米/秒,起飞前滑行的距离为800米。
13.(1)运动员在第1秒内下滑的距离为1.5米。
2)运动员在最后1秒内下滑了3米的距离。
1.一个物体在某一时刻速度很大,但加速度可能为零。
2.一个物体在某一时刻速度可能为零,但加速度可能不为零。
高中物理曲线运动题20套(带答案)及解析
高中物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高一物理运动学测试题4套(含答案)
高一物理运动学测试题4套(含答案) 二一、选择题1、图为一物体做直线运动的速度图象,根据图作如下分析,(分别用v、a表示物体在0,11t时间内的速度与加速度;v、a表示物体在t,t时间内的速度与加速度),分析正确的12212是( )A(v与v方向相同,a与a方向相反 1212B(v与v方向相反,a与a方向相同 1212C(v与v方向相反,a与a方向相反 1212D(v与v方向相同,a与a方向相同 12122.下列说法正确的是 ( )A.运动物体在某一时刻的速度可能很大而加速度可能为零B.运动物体在某一时刻的速度可能为零而加速度可能不为零 C.在初速度为正、加速度为负的匀变速直线运动中,速度不可能增大 D.在初速度为正、加速度为正的匀变速直线运动中,当加速度减小时,它的速度也减小3.沿一条直线运动的物体,当物体的加速度逐渐减小时,下列说法正确的是( )A.物体运动的速度一定增大B.物体运动的速度一定减小C.物体运动速度的变化量一定减小 D.物体运动的路程一定增大 4.图示甲、乙两个作直线运动的物体相对于同一个坐标原点的s-t图象,下列说法中正确的是( )A.甲、乙都作匀变速直线运动B.甲、乙运动的出发点相距s 1C.乙比甲早出发t 时间D.乙运动的速率大于甲运动的速率 15.对于自由落体运动,下列说法正确的是( ) A.在1s内、2s内、3s内……的位移之比是1?3?5?…B.在1s末、2s末、3s末的速度之比是1?3? 5C.在第1s内、第2s内、第3s内的平均速度之比是1?3?5D.在相邻两个1s内的位移之差都是9.8m- 1 -6.物体作匀加速直线运动,已知第 1s末的速度是 6m/s,第 2s末的速度是8m/s,则下面结论正确的是( )2A.物体的初速度是 3m/s B.物体的加速度是 2m/sC.任何 1s内的速度变化都是 2m/sD.第 1s内的平均速度是 6m/s 7.如图所示的v-t图象中,表示物体作匀减速运动的是 ( )8.某作匀加速直线运动的物体,设它运动全程的平均速度是v,运动到中间时刻的速度是1v经过全程一半位置时的速度是v,则下列关系中正确的是 ( ) 2,3A.v,v,vB.v,v=vC.v=v,vD.v,v=v 1231231231239.物体沿一条直线作加速运动,从开始计时起,第1s内的位移是1m,第2s内的位移是2m,第3s内的位移是3m,第4s内的位移是4m,由此可知( ) A.此物体一定作匀加速直线运动 B.此物体的初速度是零2C.此物体的加速度是1m/s D.此物体在前4s内的平均速度是2.5m/s 10.某物体作匀加速直线运动,先后通过A、B两点,经A点时速度是v,经B点时速度是v,AB则下列说法正确的是( )D.通过AB段的中点时的瞬时速度等于 AB段的位移和所用时间的比值11.几个作匀变速直线运动的物体,在相同时间内位移最大的是( ) A.加速度最大的物体 B.初速度最大的物体C.末速度最大的物体D.平均速度最大的物体- 2 -12.图是甲乙两物体从同一地点沿同一方向运动的速度图线,其中t=2t,则( ) 21A.在t 时刻乙物体在前,甲物体在后 B.甲的加速度比乙大 1C.在t时刻甲乙两物体相遇D.在t 时刻甲乙两物体相遇 12二、填空题13.质点从坐标原点O沿y轴方向运动到y,4m后,又沿x轴负方向运动到坐标为(-3,4)的B点,则质点从O运动以B通过的路程是________m,位移大小是_________m。
高中物理曲线运动题20套(带答案)含解析
高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F +【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大 v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()221 2A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字)【答案】(1)0v (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得0v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
高中物理曲线运动题20套(带答案)含解析
高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动学测试(附答案)一.不定项选择题(5分×12=60分)1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( )A.速度开始减小,直到加速度等于零为止B.速度继续增大,直到加速度等于零为止C.速度一直增大D.位移继续增大,直到加速度等于零为止2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( )A.x tB.2x tC.x 2tD.x t 到2xt之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( )A .当研究护航舰艇的运行轨迹时,可以将其看做质点B .“五千多海里”指的是护航舰艇的航行位移C .“五千多海里”指的是护航舰艇的航行路程D .根据题中数据我们可以求得此次航行的平均速度4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( ) A .12 m/s ,39 m/s B .8 m/s ,38 m/s C .12 m/s ,19.5 m/s D .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同A .驾驶员的反应时间为1.5 sB .汽车制动的加速度大小为2 m/s 2C .表中Y 为49D .表中X 为326. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 27.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( )A .这种估算方法是错误的,不可采用B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离C .这种估算方法没有考虑光的传播时间,结果误差很大D .即使声速增大2倍以上,本题的估算结果依然正确 8.某动车组列车以平均速度v 行驶,从甲地到乙地的时间为t .该列车以速度v 0从甲地出发匀速前进,途中接到紧急停车命令后紧急刹车,列车停车后又立即匀加速到v 0,继续匀速前进.从开始刹车至加速到v 0的时间是t 0,(列车刹车过程与加速过程中的加速度大小相等),若列车仍要在t 时间到达乙地.则动车组列车匀速运动的速度v 0应为( )A.vt t -t 0B.vt t +t 0C.vt t -12t 0D.vt t +12t 09.从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度-时间图象如图所示.在0~t 2时间,下列说法中正确的是( )A .Ⅰ物体所受的合外力不断增大,Ⅱ物体所受的合外力不断减小B .在第一次相遇之前,t 1时刻两物体相距最远C .t 2时刻两物体相遇D .Ⅰ、Ⅱ两个物体的平均速度大小都是v 1+v 2210.如图所示,t =0时,质量为0.5 kg 物体从光滑斜面上的A 点由静止开始下滑,经过B 点后进入水平面(设物体经过B 点前后速度大小不变),最后停在C 点.测得每隔2 s 的三个时刻物体的瞬时速度记录在表格中,由此可2)( )t /s 0 2 4 6 v /m·s -10 8 12 8 B 点 C .t =10 s 的时刻物体恰好停在C 点 D .A 、B 间的距离大于B 、C 间的距离11.打开水龙头,水顺流而下,仔细观察将会发现连续的水流柱的直径在流下的过程中,是逐渐减小的(即上粗下细),设水龙头出口处半径为1 cm ,安装在离接水盆75 cm 高处,如果测得水在出口处的速度大小为1 m/s ,g=10 m/s 2,则水流柱落到盆中的直径( ) A .1 cm B .0.75 cm C .0.5 cm D .0.25 cm12.a 、b 两物体从同一位置沿同一直线运动,它们的速度图象如图所示,下列说确的是( )A .a 、b 加速时,物体a 的加速度大于物体b 的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m 二.实验题(3分×5)13.某同学在测定匀变速直线运动的加速度时,得到了几条较为理想的纸带,已在每条纸带上每5个计时点取好了一个计数点,即两计数点之间的时间间隔为0.1 s ,依打点先后编为0、1、2、3、4、5.由于不小心,纸带被撕断了,如图所示.请根据给出的A 、B 、C 、D 四段纸带回答:(填字母)(1)从纸带A上撕下的那段应该是B、C、D三段纸带中的________.(2)打A纸带时,物体的加速度大小是________m/s2.14.某学生用打点计时器研究小车的匀变速直线运动.他将打点计时器接到频率为50 Hz的交流电源上,实验时得到一条纸带如图实所示.他在纸带上便于测量的地方选取第一个计数点,在这点下标明A,第六个点下标明B,第十一个点下标明C,第十六个点下标明D,第二十一个点下标明E.测量时发现B点已模糊不清,于是他测得AC长为14.56 cm,CD长为11.15 cm,DE长为13.73 cm,则打C点时小车的瞬时速度大小为________ m/s,小车运动的加速度大小为________ m/s2,AB的距离应为________ cm.(保留三位有效数字)三.计算题(8+9+9+9=35分)15.建筑工人安装脚手架进行高空作业时,一名建筑工人不慎将抓在手中的一根长5 m的铁杆在竖直状态下由静止脱手,不计空气阻力.试问:(1)假设杆的下端离地面40 m,那么铁杆碰到地面时的速度大约是多少?(2)若铁杆在下落过程中经过某楼层面的时间为0.2 s,试求铁杆下落时其下端距离该楼层面的高度是多少?(g取10 m/s2,不计楼层面的厚度)16.2011年7月2日下午,在滨江区的白金海岸小区,一个2岁女童突然从10楼坠落,楼下30多岁的吴菊萍女士奋不顾身地冲过去用双手接住了孩子,其手臂骨折,受伤较重,被网友称为最美妈妈,接抱坠楼女童的“最美妈妈”吴菊萍引发了海外的集体感动.吴菊萍不计后果的爱心托举,不仅给坠楼女童妞妞带来了生的希望,也激发着全社会的向善力量.设女童从45 m高的阳台上无初速掉下,吴菊萍迅速由静止冲向女童下落处的正下方楼底,准备接住女童.已知吴菊萍到楼底的距离为18 m,为确保安全能稳妥接住女童,吴菊萍将尽力节约时间,但又必须保证接女童时没有水平方向的冲击,不计空气阻力,将女童和吴菊萍都看做质点,设吴菊萍奔跑过程中只做匀速或匀变速运动,g取10 m/s2(1)吴菊萍至少用多大的平均速度跑到楼底?(2)若吴菊萍在加速或减速的加速度大小相等,且最大速度不超过9 m/s,求吴菊萍奔跑时加速度需满足什么条件?17. 在竖直的井底,将一物块以11 m/s的速度竖直的向上抛出,物体冲过井口时被人接住,在被人接住前1s物体的位移是4 m,位移方向向上,不计空气阻力,g取10 m/s2,求:(1)物体从抛出到被人接住所经历的时间;(2)此竖直井的深度.18.2011年7月23日晚,甬温线永嘉站至南站间,南至D301次列车与至南D3115次列车发生追尾事故,造成特大铁路交通事故.若事故发生前D3115次动车组正以速度为v A=10 m/s匀速向前行驶,D301次列车在其后以速度v B=30 m/s同方向匀速行驶.因当天正在下雨能见度低,D301次列车在距D3115次列车700 m时,才发现前方有D3115次列车.这时D301次列车立即刹车,但要经过1800 m D301次列车才能停止.问:D3115次列车若仍按原速前进,两车是否会相撞?说明理由.附加题:甲、乙两质点同时开始在彼此平行且靠近的两水平轨道上同向运动,甲在前,乙在后,相距s,甲初速度为零,加速度为a,做匀加速直线运动;乙以速度v0做匀速运动,关于两质点在相遇前的运动。
某同学作如下分析:设两质点相遇前,它们之间的距离为,则s=at2/2+s-v0t,当t=v0/a时,两质点间距离s 有最小值,也就是两质点速度相等时,两质点之间距离最近。
你觉得地的分析是否正确?如果认为是正确的,请求出它们的最小距离;如果认为是不正确的,请说明理由并作出正确分析。
高三一轮运动学测试答题卷二.实验题(3分×5)13.(1)______________ (2)______________14. ______________ ______________ ______________三.计算题(8+9+9+9=35分)15.16.17.18.附加题:高三一轮运动学测试答案一.不定项选择题(5分×12=60分)1.解析:因为物体原来做匀加速运动,所以a、v同向,虽然a减小,但由于a与v同向,所以v变大,当a=0时加速过程结束,以后做匀速直线运动,所以B 选项正确.位移一直变大,所以D 错. 答案: B2. 解析:根据公式v =v 2=x t 解得v =2xt答案:B3解析:将护航舰艇看做质点可较方便的研究其运行轨迹,故A 对;由题图可知,“五千多海里”指的是护航舰艇的航行路程,而不是位移故B 错,C 对;平均速度是位移与所用时间的比值,平均速率是路程与所用时间的比值,故D 错. 答案:AC4.解析:平均速度v =Δxt ,t =0时,x 0=5 m ;t =2 s 时,x 2=21 m ;t =3 s 时,x 3=59 m. 故v 1=x 2-x 02 s =8 m/s ,v 2=x 3-x 21 s =38 m/s.答案:B5.解析:在反应时间汽车做匀速运动,第一组数据中的速度是10 m/s ,反应距离为15 m ,所以反应时间为1.5 s ,A 正确;因反应时间一定,所以当汽车速度为14 m/s 时,X =14×1.5 m =21 m ,D 错误;制动后汽车做匀减速直线运动,路面情况相同,两次的加速度也相同,根据0-v 20=2as 可知,汽车制动的加速度a =-2 m/s 2,B正确;当汽车的速度为14 m/s 时,Y =-1422×(-2)m =49 m ,C 正确. 答案:D6.解析:设超声波往返的时间为2t ,根据题意汽车在2t 时间,刹车的位移12a (2t )2=20 m ,所以当超声波与A 车相遇时,A 车前进的位移为12at 2=5 m ,故超声波在2t 时间的路程为2×(345-5)m =680 m ,由声速340 m/s 可得t =1 s ,所以汽车的加速度a 的大小为10 m/s 2,B 正确. 答案:B7.解析:雷声在空气中传播的时间为闪电传播的时间+人看见闪电后听到雷声的时间.设闪电发生处与地面相距x ,则(x3×108+12.3)×0.33=x ,因x 的值远远小于光速,所以x 约为12.3×0.33=4.1,而0.33约等于13,故也可写成12.33=4.1,故A 、C 错,B 对;若声速增大2倍以上,则x 就约为12.3×0.66了,所以D 错. 答案:B8.解析:该动车组从开始刹车到加速到v0所发生的位移大小为v02·t0,依题意,动车组两次运动所用的时间相等,即vt -v02·t0v0+t0=t ,解得v0=vtt -12t0,故正确答案为C.答案:C9. 解析:速度-时间图象中Ⅰ物体的斜率逐渐减小,即Ⅰ物体的加速度逐渐减小,所以Ⅰ物体所受合外力不断减小,A 错误;在0~t 1时间,Ⅱ物体的速度始终大于Ⅰ物体的速度,所以两物体间距离不断增大,当两物体速度相等时,两物体相距最远,B 正确;在速度-时间图象中图线与坐标轴所围面积表示位移,故到t 2时刻,Ⅰ物体速度图线所围面积大于Ⅱ物体速度图线所围面积,两物体平均速度不可能相同,C 、D 错误. 答案:B10.解析:仔细观察数据可得,0~2 s 物体加速运动,加速度a 1=4 m/s 2,2~4 s 也是加速运动,但按照0~2 s 规律,4 s 末应加至16 m/s ,所以在4 s 末物体应处于水平段,4~6 s 物体的运动为水平方向的匀减速运动,加速度大小为a 2=2 m/s 2.因题目设计的数据较小且规律性明显,可做速度—时间图象如图所示.由图知物体在3~4 s 达到最大速度,大于12 m/s ,A 、B 均错误;在t =10 s 时到达C 点静止,C 正确;A 、B 间距离应小于B 、C 间距离,D 错误.答案:C11.解析:由题意可知水落到盘中过程中做匀变速运动,落到盘时速度为v则 由2gh =v 2-v 20得:v =v 20+2gh =12+2×10×0.75 m/s =4 m/s而水的流量是不变Q =ρv S 由s 1s 2=r 21r 22=v 2v 1可知半径r =0.5 cm ,答案选A. 答案:A12.解析:a 、b 加速时,a 的加速度a 1=40-1020 m/s 2=32 m/s 2.b 的加速度a 2=40-040-20m/s 2=2 m/s 2,a 1<a 2,故A 错.20 s 时,a 的速度为40 m/s.b 的速度为零,在以后的运动中,两者距离仍增大,B 错.60 s 时a 的位移x 1=10+402×20 m +40×(60-20) m =2100 m ,b 的位移s 2=12×40×80 m =1600 m.x 1>x 2,所以C 对.40 s 时,a 的位移x 1′=10+402×20 m +20×40 m =1300 m ,b 的位移x 2′=12×20×40 m =400m ,两者相距Δx =x 1′-x 2′=900 m ,D 错. 答案:C二.实验题(3分×5)13.解析:因小车做匀变速直线运动,加速度保持不变,打A 纸带时,加速度a =Δx T 2=x2-x1T 2=36.0-30.0×10-30.12 m/s2 =0.6 m/s2.又小车运动的加速度:a =x5-x23T 2,则4、5两点间隔为:x5=x2+3aT 2=36.0×10-3m +3×0.6×0.12m =54×10-3 m所以从纸带A 上撕下的那段应是C. 答案:(1)C (2)0.614.解析:由公式vC =AE4T 得vC =0.986 m/s ;由公式a =CE -AC 4T2得a =2.58 m/s2;由BC -AB =2.58 cm 与AB +BC =14.56 cm ,联立得AB =5.99 cm.答案:0.986 2.58 5.99 三.计算题(8+9+9+9=35分)15.解析 (1)由公式v 2=2gh 得,铁杆碰到地面时的速度为: v =2gh =2×10×40=28.28 m /s(2)设下落时铁杆下端距离该楼层面的高度为h 1, 则有h 1=12gt 21h 1+5=12gt 22t 2-t 1=0.2 s解得:h 1=28.8 m16. 解:(1)女童下落时间为t H =12gt 2要使他能接住女童,他奔跑的时间要小于3 s x =v t 得他的平均速度至少为6 m/s (2)设加速度为a由于要求没有水平方向的冲击则V t =0 时间上t 1+t 2+t 3=3 s 位移上s 1+s 2+s 3=18 m t 1=t 3=v mas 1=s 3=v 2m2as 2=v m t 2由上可得 a =9 m/s 2 则加速度应满足 a ≥9 m/s 2.17.解析:由公式vC =AE4T 得vC =0.986 m/s ;由公式a =CE -AC 4T2得a =2.58 m/s2;由BC -AB =2.58 cm 与AB +BC =14.56 cm ,联立得AB =5.99 cm. 答案:0.986 2.58 5.99解:(1)被人接住前1s 物体的位移是4 m, 由于自由落体的物体第一秒的位移 h 1=12gt 2=5 m故而一定是在物体通过最高点后返回过程中被接住, 设接住前1秒时的初速为v 1;由S =v 1t -12gt 2 解得v 1=9 m/s接住前的运动时间 t 1=v 0-v 1g =11-910s =0.2 s从抛出到被人接住所经历的时间 t =t 1+1s =1.2 s(2)由H =v 0t -12gt 2=11×1.2 m -12×10×1.22m =6 m. (小结:自由落体的物体第一秒的位移h 1=12gt 2=5 m ,竖直上抛一秒位移小于5 m 的应有往复过程.)18.解:D301次列车刹车时加速度大小a B =v 2B 2s=0.25 m/s 2,所以D301次列车减速至v A =10 m/s 时的时间t =v B -v A a B =30-100.25s =80 s 此段时间D3115次列车的位移为:x A =v A t =10×80 m =800 mD301次列车的位移为:x B =v B t -12a B t 2=(30×80-12×0.25×802) m =1600 m 因x B =1600 m>x A +x =800 m +700 m =1500 m 所以D3115、D301次列车会相撞. 附加题。