电气主接线设计原则和设计程序
电气主接线及设计
1)系统中的大型发电厂或变电所其供电容量大,范围广地位重要 作用强,应采用可靠性高的主接线形式,反之,应采用可靠性低 的主接线形式。
2)发电厂和变电所接入电力系统方式 接入系统方式指其与电力 系统连接方式
三、电气主接线的设计程序
1. 对原始资料分析 (1)工程情况
发电厂类型、设计容量、 单机容量及台数、最大负 荷利用小时数、可能的运 行方式
(2)电力系统情况
电力系统近远期规划、发电厂 或变电站在电力系统中的位置 和作用、本期工程与电力系统 的连接方式及各级电压中性点 接地方式等
(3)负荷情况
负荷的性质、地理位置、输电电压 等级、出线回路数、输送容量
定性分析和衡量主接线可靠性的基本标准: 1)断路器检修时,能否不影响供电. 2)断路器、线路或母线故障及母线隔离开关检修时,停运的出线
回路数和停电时间的长短,以及能否保证对一类用户供电。 3)发电厂或变电所全部停电的可能性。 4)大型机组突然停运时,对电力系统稳定性的影响与后果。 2.灵活性 1)操作的方便性。 2)调度方便性。主接线能适应系统或本厂所的各种运行方式 3)扩建方便性。具有初期—终期—扩建的灵活方便性。 3.经济性 1)投资省 设备少且廉价(接线简单且选用轻型断路器)。 2)占地面积少 一次设计,分期投资,尽快发展经济效益。 3)电能损耗少 合理选择变压器的容量和台数,避免两次变压。 正确处理可靠性和经济性的矛盾 一般在满足可靠性的前提条件下,
电气主接线是发电厂或变电站电气部分的主体,直接影响运行 的可靠性、对配电装置布置、继电保护配置、自动装置及控制方 式的拟定都有决定性的关系。对电气主接线的基本要求是:可靠 性、灵活性和经济性灵活性。
发电厂电气主接线的设计原则和步骤
该大型发电厂设计容量为1000MW, 采用燃煤发电技术。
主接线方案
采用3/2接线方式,每条母线配置两 回进线和一回出线,共三条母线。
设备选择
断路器、隔离开关、电流互感器等设 备均按照大容量、高可靠性的原则进 行选择。
保护和控制
采用分层分布式结构,配置独立的继 电保护和控制系统,实现自动化控制 和智能监测。
应确保主接线设计能够使 发电厂在任何情况下都能 提供可靠的电力,避免因 电源故障导致供电中断。
保证负荷的可靠性
主接线设计应能满足用户 对电力可靠性的要求,确 保在任何情况下都能提供 稳定的电力供应。
设备选型可靠性
设备选型应优先考虑可靠 性高、稳定性好的产品, 以确保主接线运行的稳定 性和可靠性。
灵活性原则
某小型发电厂电气主接线设计案例
设计规模
该小型发电厂设计容量为50MW,采用燃气 轮机发电技术。
主接线方案
采用单母线分段接线方式,每段母线配置一 回进线和一回出线。
设备选择
断路器、隔离开关等设备按照中小容量、高 可靠性的原则进行选择。
保护和控制
配置简单的继电保护和控制系统,实现基本 的控制和监测功能。
发电厂电气主接线的 设计原则和步骤
• 引言 • 设计原则 • 设计步骤 • 案例分析
目录
01
引言Biblioteka 发电厂电气主接线的定义发电厂电气主接线是发电厂中最重要的组成部分之一,它负责将发电机、变压器 、断路器、隔离开关等电气设备按照一定的方式连接起来,形成一个完整的电力 系统。
电气主接线的设计需要考虑到发电厂的规模、容量、运行方式、设备选型等多个 因素,以确保发电厂的稳定、安全、经济运行。
电气主接线在发电厂中的重要性
电气主接线主要设计原则
电气主接线主要设计原则1.安全性原则:电气主接线的设计应以确保人员和设备的安全为首要原则。
在设计中要考虑到电流、电压等参数,并采取相应的保护措施,如使用足够大的导线截面以减小电阻、安装过流保护器和漏电保护器等。
2.可靠性原则:电气主接线的设计应确保电气设备的正常运行。
要选择质量可靠的电气元件和连接器,避免接线松动、接触不良等问题,并进行必要的防护措施,如防水、防尘等。
3.实用性原则:电气主接线的设计应便于操作和维护。
要合理布置接线盒、开关箱等设备,使其易于接线和检修。
同时要做好标识和记录工作,方便后续的操作和维护人员了解电路的结构和参数。
4.灵活性原则:电气主接线的设计应具有一定的灵活性,方便后续的扩展和改造。
要留出一定的余量,以适应后期动力负荷的增加和设备布局的变化。
同时要考虑到不同回路之间的相互影响,合理安排电缆线的敷设和引出。
5.经济性原则:电气主接线的设计应尽量节约材料和成本。
要根据具体的项目需求,选择适当的导线和电缆规格,避免浪费。
在布线上要尽量减少开挖和穿墙的次数,减少工程量。
6.规范性原则:电气主接线的设计应符合相关的标准和规范要求。
要熟悉国家和行业的相关标准,如《电气安装工程施工质量验收规范》、《电气工程施工及验收规范》等,确保设计符合法律法规和行业标准。
7.整体性原则:电气主接线的设计应与整个电气系统相协调。
要与其他配电设备、电气设备、控制系统等进行协调,确保电气主接线的设计与其他部分的配套工作能够有效衔接,以提高整个电气系统的运行效率和安全性。
综上所述,电气主接线的设计原则涉及到安全性、可靠性、实用性、灵活性、经济性、规范性和整体性等方面的要求。
在实际设计过程中,应根据具体情况综合考虑各种因素,以确保电气主接线的安全、可靠、高效运行。
电气主接线基础知识及操作
IA
-2
IA
-2
012
012
8202
8203
021-0
#1主变
#3启备变 022-0
#2主变
023-0
#3主变
1FC-0
#1机
1FN-0
#1厂高变
2FC-0
#2机 #2厂高变
2FN-0
#3机
3FN-0
#3厂高变
制制 制制制 制制
制制
制制
220KV主接线图 01
1.2我厂220KV电气主接线采用双母三分段代旁路母 线的接线方式。正常运行方式:IA、IB、II母均运 220KV旁母正常备用,8240-3及所有出线-4刀闸均断 开,当任一无件的开关故障或检修时,可用旁路 8240开关代替运行,但旁路开关不能代替#1、#2、 #3机(8201、8202、8203开关)运行。双母线三分 段代旁母接线方式的优点是提高了供电的可靠性、
断路器检修时,能否不影响供电; 线路、断路器或母线故障时以及母线或母线隔离
开关检修时,尽量减少停运出线回路数和停电时 间,并能保证对全部Ⅰ类及全部或大部分Ⅱ类用 户的供电; 尽量避免发电厂或变电站全部停电的可能性; 大型机组突然停运时,不危及电力系统稳定运行。
3、电气主接线设计的重要性
1、电气主接线图是电气运行人员进行各种操作和事 故处理的重要依据。
优点:
(4)操作方便、安全。
隔离开关不做操作电器,减少了误操作。
(5)正常运行时两组母线与
WL1
全部断路器都投入使用,
每串断路器互相连接形成
多环状供电,运行调度较灵活。
缺点:
使用设备较多,配电装置复杂,
投资较多。
S1
WL4
35KV变站电气主接线设计
35KV变站电气主接线设计引言:35kV变电站是电力系统的重要组成部分,它起到将高压输电线路的电能进行降压、分配和供应给用户的作用。
为了保证变电站的安全稳定运行,电气主接线设计是十分关键的一环。
本文将对35kV变电站电气主接线设计进行详细阐述。
一、设计依据:2.电站设计规范:DL/T5183-2024变电站工程电气设计规范3.设备选型:参考国内外类似变电站、设备厂商评价、性价比分析等综合考虑二、设计步骤:1.需求分析:了解变电站的运行需求,包括负荷需求、电力分配需求、电能质量要求等。
2.主接线图设计:根据变电站的功能布置、设备选型、负荷需求等,设计主接线图。
主接线图应满足以下要求:-各设备之间的连接合理,布置紧凑。
-确保每个设备的最大电流能够通过。
-考虑主变压器的容量和并联变压器的选取。
-考虑备用设备的串并联,保证可靠性。
3.主接线布置设计:确定设备的放置位置,遵循以下原则:-各设备之间的距离符合安全操作和维护的要求。
-保证设备的冷却通风良好。
-考虑设备的重量和重心,保证稳定性。
4.主接线回路计算:根据电压等级、负荷要求等进行主接线回路计算。
计算包括电缆选型、电缆截面积确定、电缆长度计算、电缆负载流计算等。
5.系统接地设计:根据设计图纸和电气设备布置要求进行系统接地设计,包括接地电阻计算,接地极数量和布置等。
6.设备连接设计:根据设备类型和工作要求,确定设备之间的电缆连接,考虑电缆长度、连接方式等。
7.安全与可靠性设计:根据标准和规范,设计接地保护装置、电流互感器、电压互感器、分段绝缘开关等设备的选择和布置。
三、设计要点:1.主接线图设计时要考虑最大电流负荷,以及备用线路的布置,确保变电站的可靠性和灵活性。
2.设备的放置位置要合理,不能影响设备的冷却和通风,且便于操作和维护。
3.电缆的选型要充分考虑电流载流量、电压降和线损等因素,并满足国家标准和工程要求。
4.系统接地设计要符合标准和规范,确保人员安全和设备的可靠性。
电气主接线及设计-2
五. 变压器母线组接线
1.接线形式 2.正常运行时,两组母线和断路器均投 入。 3.变压器故障时,连接于对应母线上的 断路器跳开,但不影响其他回路供电。 4.特点:
调度灵活,电源和负荷可自由调配, 安全可靠,有利于扩建; 一组母线故障或检修时,只减少输 送功率,不会停电。 可靠性较双母线带旁路高,但主变 压器故障即相当于母线故障。
•发电机-三绕组变压器(或自耦变压器)单元接线
1.在发电机出口处需装 设断路器; 2.断路器两侧均应装设 隔离开关; 3.大容量机组一般不宜 采用。
3)发电机—变压器—线路组成单元接线
a) 这种接线方式下,在电厂不设升压配电装置,把电能直接送 到附近的枢纽变电站或开关站,使电厂的布置更为紧凑,节省 占地面积; b) 由于不设高压配电装置,所以不存在火电厂的烟尘及冷却水 塔的水汽对配电装置的污染问题。
(2)发电机定子绕组本身故障时,若变压器高压侧断路器 失灵拒跳,则只能通过失灵保护出口启动母差保护或发 远方跳闸信号使线路对侧断路器跳闸;若因通道原因远 方跳闸信号失效,则只能由对侧后备保护来切除故障, 这样故障切除时间大大延长,会造成发电机、主变压器 严重损坏。
(3)发电机故障跳闸时,将失去厂用工作电源,而这种情 况下备用电源的快速切换极有可能不成功,因而机组面 临厂用电中断的威胁。
四. 一台半断路器接线及三分之四台断路器接线
运行时,两组母线和同一串的3
个断路器都投入工作,称为完
W2
整串运行,形成多环路状供电,
QF1
具有很高的可靠性。
一串中任何一台断路器退出或
检修时,这种运行方式称为不
QF2
完整串运行,此时仍不影响任
ቤተ መጻሕፍቲ ባይዱ
何一个元件的运行。
电气主接线及设计
电气主接线及设计1. 引言电气主接线是电气系统中至关重要的一环,它负责将电源与各个电气设备之间进行连接,使电能得以传输和利用。
在电气系统设计过程中,主接线的设计合理与否直接影响到电气设备的正常运行和系统的安全性。
本文将详细介绍电气主接线的概念、设计原则以及关键步骤,以帮助读者了解和掌握电气主接线的基本知识。
2. 电气主接线的概念电气主接线是指通过电线或电缆将电源与各个电气设备之间进行连接的系统。
主接线通常由主干线、支干线和分支线组成。
其中,主干线负责将主电源与电气设备连接起来,支干线则负责将主干线连接到各个分支设备上。
电气主接线的设计主要考虑功率传输、电压降低、电气设备的组织布局以及系统的可靠性等因素。
3. 电气主接线的设计原则3.1 安全性原则电气主接线的设计首先要求保证系统的安全性。
这包括合理设置过载保护装置、漏电保护装置以及接地保护装置等,以防止电气设备的损坏和人身安全事故的发生。
此外,还应考虑电气设备的绝缘性能,避免因绝缘破损导致电气故障。
3.2 系统可靠性原则电气主接线的设计需要保证系统的可靠性,尽量减少电线和电缆的故障概率。
这包括选择合适的导线截面积、减少线路阻抗、合理布置线路等措施,以提高系统的可靠性和稳定性。
3.3 经济性原则电气主接线的设计需要综合考虑经济因素。
在满足系统需要的前提下,应尽量选择价格合理的电线和电缆,并通过合理布线节省材料和人工成本。
同时,应合理利用现有线路资源,尽量减少线路的开挖和占用,降低工程投资。
4. 电气主接线设计的关键步骤4.1 确定电气设备布置在进行电气主接线设计之前,首先需要根据实际情况确定电气设备的布置。
这包括了解主要电气设备的功率和数量、设备之间的相对位置以及设备的工作方式等。
4.2 计算负荷和电流在了解了电气设备布置后,需要计算每个电气设备的负荷和电流。
负荷和电流的计算是电气主接线设计的基础,它们直接决定了后续选线和设备的选择。
4.3 选择导线和电缆根据负荷和电流的计算结果,需要选择合适的导线和电缆。
电气主接线的基本要求和设计原则
电气主接线的基本要求和设计原则电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。
标签:主接线;要求;原则1 对电气主接线的基本要求1.1 可靠性供电可靠性是电力生产和分配的首要要求,停电会对国民经济各部门带来巨大的损失,往往比少发电能的损失大几十倍,导致产品报废、设备损坏、人身伤亡等。
因此,主接线的接线形式必须保证供电可靠。
因事故被迫中断供电的机会越小,影响范围越小,停电时间越短,主接线的可靠程度就越高。
研究主接线可靠性应注意的问题如下:(1)考虑变电所在电力系统中的地位和作用。
变电所是电力系统的重要组成部分,其可靠性应与系统要求相适应。
(2)变电所接入电力系统的方式。
现代化的变电所都接入电力系统运行。
其接入方式的选择与容量大小、电压等级、负荷性质以及地理位置和输送电能距离等因素有关。
(3)变电所的运行方式及负荷性质。
电能生产的特点是发电、变电、输电、用电同一时刻完成。
而负荷类、类、的性质按其重要性又有类之分。
当变电所设备利用率较高,年利用小时数在以上,主要供应类、类负荷用电时,必须采用供电较为可靠的接線形式。
(4)设备的可靠程度直接影响着主接线的可靠性。
电气主接线是由电气设备相互连接而组成的,电气设备本身的质量及可靠程度直接影响着主接线的可靠性。
因此,主接线设计必须同时考虑一次设备和二次设备的故障率及其对供电的影响。
随着电力工业的不断发展,大容量机组及新型设备投运、自动装置和先进技术的使用,都有利于提高主接线的可靠性,但不等于设备及其自动化元件使用得越多、越新、接线越复杂就越可靠。
相反,不必要的接线设备,使接线复杂、运行不便,将会导致主接线可靠性降低。
因此,电气主接线的可靠性是一次设备和二次设备在运行中可靠性的综合。
1.2 灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。
不仅正常运行时能安全可靠地供电,而且在系统故障或电气设备检修及故障时,也能适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使停电时间最短,影响范围最小。
电气主接线及设计课件
出线回路少,并且没有重要
负荷的中小型发电厂和变电所
2. 单母线分段接线
优点:
(1)电源可以并列运行也 可以分列运行
WL1 WL2
WL3 WL4
QS32
(2)重要用户可以从不同
QF3
段引出两回馈线
(3)任一母线或母线隔离 开关检修,只停该段,其 他段继续供电
(4)任一母线段故障,则只 有该母线段停电
电气“五防”是指: 防止误分、合断路器; 防止带负荷分、合隔离开关; 防止带电挂接地线或合接地刀闸; 防止带接地线(接地刀闸)合断路器(隔离开关); 防止误入带电间隔。
防止误操作的措施:除严格按照操作规程实行操作 票制度外,还应加装电磁闭锁、机械闭锁或电脑钥 匙
倒闸操作程序示意图:
接受调令
通告全值
应用范围: 广泛应用于超高压电网中,500kV变电站一般都采用这种接 线方式
五. 变压器母线组接线
优点: 可靠性较高 调度灵活 扩建方便
缺点:使用断路器和隔 离开关多,投资大 适用范围:
远距离、大容量输电系 统中,对系统稳定和供 电可靠性要较高的变电 站中采用
W2 QF1
QF2 W1
无汇流母线的电气主接线 六. 单元接线
适用范围: 200MW及以上大机组一般采用与双绕组变压器组成单元 接线,当电厂具有两种升高电压等级时,则装设联络变 压器。
七. 桥形接线
只有两台变压器和两 条线路时,宜采用桥 形接线,使用断路器 最少。
内桥:桥连断路器设 置在变压器侧
外桥:桥连断路器设 置在线路侧
QS1 QS2 QF1 QF2
QF3
单母线接线
双母线接线
一台半断路器接线
1
1 3
第四章 电气主接线及设计1讲解
10.5kV电压级:地方负荷容量最大为20MW,共有10回电缆 馈线,与50MW发电机机端电压相等,采用直馈线为宜。
18kV电压级: 300MW发电机出口电压,既无直配负荷, 又无特殊要求,拟采用单元接线形式。
220kV电压级:出线回路数为5回,为保证检修出线断路 器不致对该回路停电,拟采取带旁路母线接线形式为宜。
4-4 限制短路电流的方法
一、选择适当的主接线形式和运行方式
1、发电机组采用单元接线 2、环形电网开环运行 3、并联运行的变压器分开运行 二、装设限流电抗器
1、在发电机电压母线上装设分段电抗器 2、在发电机电压电缆出线上装设出线电抗器 3、装设分裂电抗器 三、采用低压绕组分裂变压器
4-5 电气主接线设计举例
厂 备 用 电 源
某新建热电厂原始资料如下
1、发电厂规模: ①装机容量:2台QFQ-50-2机组,额定电压10.5kV,功 率因数为0.8;2台QFN-100-2机组,额定电压10.5kV,功率 因数为0.85。 ②厂用电率:按10%考虑。 2、电力负荷及与电力系统连接情况: ①10.5kV电压级:电缆馈线14回,每回平均输送容量3MW。 10.5kV最大综合负荷为35MW,最小负荷为25MW,功率 因数为0.8。 ②60kV电压级: 架空线路2回,60kV最大负荷为30MW,最 小负荷为20MW,功率因数为0.8。 ③220kV电压级: 架空线路6回,220kV与电力系统连接, 接受该厂的剩余功率。
220~500kV容量较大的发电厂或变电所高压接线,有时 采用双母线三分段或四分段接线。
三、带旁路母线的单母线和双母线接线
1、单母线带旁路母线的接线 ①普通单母线带旁路母线接线 ②单母线分段带旁路接线
③利用分段兼旁路(旁路兼分段) 单母线分段接线
电气主接线设计
电气主接线设计摘要电气主接线(main electrical connection scheme)按牵引变电所和铁路变、配电所(或发电所)接受(输送)电能和分溜配电能的要求,表征其主要电气设备相互之间连接关系的总电路。
通常以单线图表示。
电气主接线中表示的主要电气设备有电力变压器、发电机、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及p带旁路母线接线、桥型接线和双T接线(或T形)分支接线等。
电气主接线包括从电源进线侧到各级负荷电压侧的全部一次接线,有时还包括各类变、配电所(或发电所)的自用电部分、后者常称作自用电接线。
电气主接线反应了牵引变电所和铁路变、配电所(发电所)的基本结构和功能。
关键词:电气主接线;方式;原则;展望与未来第一部分,电气主接线电气主接线是变电站电气部分的主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性作用,同时也对变电站电气设备的选择、配电装置的配置、继电保护和控制方式的拟定有着很大的影响。
因此,正确处理好各方面的关系,全面分析相关影响因素,综合评价各项技术,合理确定主接线方案是十分重要的。
本论文研究的电气主接线,主要针对高压配电网中110kv变电站高压电气主接线的设计。
随着城市电网和农村电网的三年改造结束,目前220kv及以上电压级的骨干网架已基本形成,110kv 变电站的地位大多数已变成了中间变电站和终端变电站,直接与用户相关联,是实现电能传递的关键环节,首先从探讨变电站电气主接线方式的分析原则入手,对常用110kv中间变电站主接线方式进行分析:单母接线方式、内桥加跨条接线方式以及四角形接线方式。
并且进行综合比较、评价,最后讨论了110kv 变电站电气主接线方式的现状与展望。
一、研究的意义电气主接线是变电站电气部分主体,是电力系统中电能传递通道的重要组成部分之一;其连接方式的确定对电力系统整体以及变电站本身的供电可靠性、运行灵活性、检修方便与否和经济合理性起着决定性的作用,同时也对变电站电气设备的选择、配电装置的布置、继电保护和控制方式的拟定有着很大的影响。
发电厂电气部分主接线的设计原则和步骤
二、电气主接线的设计程序
工程设计程序:
可行性研究 初步设计 技术设计 施工设计
课程设计:
相当于初步设计,部分可达到技术设计。
二、电气主接线的设计程序
课程设计步骤:
对原始资料分析 拟定主接线方案 短路电流的计算——为电气设备选择做准备 主要电气设备选择——第六章介绍 绘制电气主接线图——将最终确定的主接线,按工程
要求,绘制工程图 工程概算
二、电气主接线的设计程序
对原始资料分析:
① 本工程情况:发电厂类型,设计规划容量,单机容量 及台数,最大负荷利用小时数及可能的运行方式等。
② 电力系统情况:电力系统近期及远景发展规划(5~ 10年)发电厂或变电所在电力系统中的位置和作用; 本工程与电力系统连接方式等。
二、电气主接线的设计程序
经济比较方法:
静态比较法:
以设备、材料和人工等的经济价值固定不变作为前提,认为 经济价值与时间无关。
最常用的为抵偿年限法。
抵偿年限法: 若I1>I2,C1<C2,则抵偿年限为 T I1 I2 C2 C1 如果T小于5年,则采用投资大的第一方案; 如果T大于5年,则采用投资大的第二方案。
① 综合总投资计算 ② 年运行费计算 ③ 经济比较方法
二、电气主接线的设计程序
综合总投资计算:
综合总投资 I 主要包括变压器综合投资,开关设备、 配电装置综合投资以及不可预见的附加投资等。
I
I
0
,包括变压器、开关设备、 母线、配电装置及明显的增修桥梁、公路和拆迁
② 从技术上论证各方案的优、缺点,淘汰一些明显不合 理的方案,保留2~3个技术上相当、又能满足任务书 要求的方案;
③ 经济计算比较:对各方案的综合投资和年运行费进行 综合效益比较;
电气主接线及其设计
③QFC断开,两组母线同时运行
QFC处于热备用状态。 此时相当于分裂为两部分, 各自承担向系统输送功率 的任务。
常用于系统最大运行方式时,限制短路电流。
2)优点: 又节省两台隔离开关。
小结
单母线分段带旁路母线接线的适用范围: A、35kV及以上的电气主接线中,或向特殊重要的一、二 类用户供电,不允许停电检修断路器时,才加设旁路母线。
B、一般电压为35kV出线8回以上,110kV出线6回以上, 220kV出线4回以上的户外装置,可考虑加装带专用旁路断 路器的旁路母线。
或生产流程紊乱且恢复较困难,企业内部运输停顿或出现大 量减产,因而在经济上造成一定的经济损失。
②特点: 一般允许停电几分钟,在工业企业中占得比例最大。 应由两回线路供电,两回线路应尽可能取自不同的变
压器或母线段。
负荷性质(补充) —三级负荷
①概念: 不属于一、二级负荷的用电设备。 例:农业用电、居民用电
3、 单母线分段带旁路母线的接线
为克服支路断路器检修时,该支路必须停电的缺点,可采 用增设旁路母线的方法。
(1)单母线分段带专用旁路断路器的旁路母线接线
1)接线方法
旁路母线: WP 旁路断路器: QFP 母线旁路隔离开关: QSP1、 QSP2、 QSPP 线路旁路隔离开关:QSP
3、 单母线分段带旁路母线的接线
②特点: 对供电无特殊要求,允许较长时间停电,可用单回线
路供电。
总结: 大型企业中,一、二级负荷约占总负荷的60%,即使短
时停电,损失也很大。 此外,各级负荷不能孤立的看待,一个企业中只要有一
个一级负荷,则该企业的总降压变电所对于上级供电部门而 言就是一级负荷。
发电厂电气部分-第四章 电气主接线及设计1讲解
单母线分段接线特点
• 优点
– 当母线发生故障时,仅故障母线 段停止工作,另一段母线仍继续 工作。
– 对重要用户,可由不同段母线分 别引出的两个回路供电,以保证 供电的可靠。
– 当一段母线故障或检修时,必须 断开接在该段母线上的所有支路, 使之停止工作,但不影响另一段 母线上所连的支路。
– 供电可靠性提高,运行较之灵活。
Ⅲ类负荷:Ⅰ类和Ⅱ负荷之外的其它负荷。 对 Ⅲ类负荷的供电要求:可以较长时间的停电,可用单回路 线路供电。
由此可见,对于带Ⅰ、Ⅱ类型负荷的发电厂和变 电站,应选择可靠性较高的主接线形式。
设备的可靠性程度 电气主接线是由电气设备组成的,选择可靠性
高、性能先进的电气设备是保证主接线可靠性的基 础。
电气主接线反映了:
1)发电机、变压器、线路、断路器和隔离开关等有 关电气设备的数量; 2)各回路中电气设备的连接关系; 3)发电机、变压器和输电线路及负荷间的连接方式。
• 电气主接线图
– 用规定的图形与文字符号将发电机、变压器、母线、 开关电器、输电线路等有关电气设备,按电能流程顺 序连接而成的电路图。
大、中型发电厂和变电站,其电气主接线采取供电可靠性 高的接线形式;对于小型发电厂和变电站对于接线可靠性要 求低。
我国发电机单机容量大小划分:
小型机组:50MW以下; 中型机组:50~200MW; 大型机组:200MW以上;
发电厂容量大小划分:
小型发电厂:总装机容量在100MW以下; 中型发电厂:250~1000MW; 大型发电厂:1000M供电可靠性的要求不同分
为三个等级,即Ⅰ、Ⅱ、Ⅲ类负荷。
Ⅰ类负荷:对这类负荷突然中断供电,将造成人身伤亡,或 造成重大设备损坏,或给国民经济带来重大的损失。 例:冶金行业的炉体冷却水泵、浇注车间、连续轧钢车间、 矿山企业的主排水泵、主扇风机、化工企业的反应炉;医院 的手术室;国家的铁路枢纽、通信枢纽、国防设施等。
第4章 电气主接线及设计
2.主接线方案的拟定 3.短路电流计算和主要电气设备选择 4.绘制电气主接线图 5.编制工程概算 等各项步骤,请参见P103~104
第二节 主接线的基本接线
相关专业术语及基本概念
主接线的基本形式——主要电气设备常用的几种连接 方式。它以电源和出线为主体。
汇流母线——发电厂或变电站出线回路和电源进线的 中间环节,以便于电能的汇集和分配。 由于各个发电厂或变电站的出线回路数和电源数 不同,且每路馈线所传输的功率也不一样 当进出线数较多时(一般超过4回),通常采用母 线连接。
(4)长期实践运行经验
主接线可靠性与运行管理水平和运行值班人员的素质 等因素有密切关系,衡量可靠性的客观标准是运行实 践。 国内外长期运行经验的积累,经过总结均反映于技术 规范之中,在设计时均应予以遵循(应采用典型设 计)。
2.灵活性
灵活性指电气主接线应能适应各种运行状态,并能灵 活地进行运行方式的转换。
包括当地的气温、湿度、覆冰、污秽、风向、水文、 地质、海拔高度及地震等因素,对主接线中电气设备 的选择和配电装置的实施均有影响,应予以重视。 330kv以上电压的电气设备和配电装置要遵循《电磁 辐射防护规程》、控噪、控静电感应的场强水平和电 晕无线电干扰。对重型设备的运输条件亦应充分考虑。
(5)设备供货情况 这往往是设计能否成立的重要前提,为使所设计的主 接线具有可行性,必须对各主要电气设备的性能、制 造能力和供货情况、价格等资料汇集并分析比较。
工程设计中设计任务书(或委托书)的内容
根据国家经济发展及电力负荷增长率的规划 (1)所设计电厂(变电站)的容量、机组台数; (2)电压等级、出线回路数、主要负荷要求; (3)电力系统参数和对电厂的具体要求; (4)设计的内容和范围。
电气主接线设计原则和程序
一、对电气主接线的基本要求一、对电气主接线的基本要求
一、对电气主接线的基本要求
定性分析和衡量主接线可靠性的评判标准
主接线可靠性的评判方法: 定性分析和定量计算(可靠性计算)。
1)断路器检修时,能否不影响供电。
定性分析和衡量主接线可靠性时,可从以下几方面考虑:
思考练习
思考练习
感谢各位的观看
单击此处添加副标题
本节结束!
汇报人姓名
01
操作的方便性 可以方便地停运断路器、母线及其二次设备进行检修,而不致影响电网的运行和对其它用户的供电。应尽可能的使操作步骤少,便于运行人员掌握,不易发生误操作。
01
扩建的方便性 能根据扩建的要求,方便地从初期接线过渡到远景接线:在不影响连续供电或停电时间最短的情况下,投入新机组、变压器或线路而不互相干扰,对一次设备和二次设备的改造为最少。
01
2.灵活性
一、对电气主接线的基本要求
一、对电气主接线的基本要求
经济性
(2) 占地面积小
主接线的形式影响配电装置的布置和电气总平面的格局,主接线方案应尽量节约配电装置占地和节省构架、导线、绝缘子及安装费用。在运输条件许可的地方,应采用三相变压器而不用三台单相变压器组。
(3)电能损耗小
我国的发电机单机容量大小的划分为:50MW以下的发电机组为小型机组;50~200MW的发电机组为中型机组;200MW以上的发电机组为大型机组。发电厂容量大小的划分为:总装机容量在100MW以下的发电厂为小型发电厂;总装机容量在100~250MW的发电厂为中型发电厂;总装机容量在250~1000MW的发电厂为大中型发电厂;总装机容量在1000MW以上的发电厂为大型发电厂。
电气主接线设计要求与原则
电气主接线设计要求与原则电气主接线设计的基本要求(1)可靠性电能产生和传送的特殊性,不能存储,生产和使用同时进行,所以任何一个环节出错就会导致整个系统出现问题。
因此生产运行过程中的安全问题应当放在首要位置。
变电站是电能传输分配的主要环节,主接线的可靠性也应该首先满足可靠性的要求。
主接线可靠性关系到的几个方面:①发电厂和变电站在系统中的地位和作用;②用户的负荷性质和类别;③设备制造水平及运行经验等因素。
主接线可靠性的要求通常包含以下几个方面:①断路器检修时,对供电的影响。
②当设备检修时,影响的供电区域大小,停电的长短。
能否满足一二级负荷的用电需求。
③变电站全部停运的可能性。
(2)灵活性在电力系统发生故障或设备检修时,应使停电时间最短,影响范围最小,灵活性主要体现在:调度灵活、操作方便、检修安全、易于扩建。
(3)经济性通常情况下,设计应经济、合理、可靠、灵活。
主要从降低投资,少占地,降功损等方面考虑。
电气主接线的设计原则(1)确定本设计变电站在系统中起的作用(2)确定变压器的运行方式(3)合理地确定电压等级(4)变电所的分期和最终建设规模(5)开关电器的设置(6)电气参数的确定110kV 侧电气主接线设计本变电站选用2台主变,其高压110kV 侧是两回不同进线,高压110kV侧采用全桥的主接线方式,为了提高对低压供电侧的供电可靠性以及操作方便。
10kV 侧电气主接线设计由原始数据,变电站供电共9个负荷,总计16 条出线,带2 条出线的负荷共 7 个。
有高要求的供电可靠性,故而低压10kV 侧用单母分段接线。
单母线用分段断路器来分段,当某段母线出现故障时,分段断路器会自动分离这段母线,从而保证了另一段母线的正常运行,不会导致重要用电用户停电,而两段母线同时故障的几率很小,可以不予考虑[4]。
110kV 变电站主接线形式110kV 侧采用全桥的主接线方式。
共有2回不同进线WL1 和 WL2,其中进线WL1线路型号为LGJ185,长度为25公里,上一级变电站母线的短路容量为1200MVA;进线WL2线路的型号为LGJ185,长度为 20公里,上一级变电站母线的短路容量为1000MVA。
发电厂电气部分第4章 电气主接线及设计-3
T2 L2
k2
W2
L1
k1
G2
图4图-139-19
母线电抗器的参数选择:
IN =(0.5 ~ 0.8) IGmax xL %= 8% ~ 12%
加装母线电抗器后:可使所选择的发电机、主变、分段、母联 回路的断路器容量不升级,减少投资。
母线电抗器对出线回路的限流作用较小型地区性电厂的电气主接线
中小型地区性电厂的特点: 1)建设在工业企业或靠近城市的负荷中心,通常还
兼供部分热能,所以它需要设置发电机电压母 线,使部分电能通过6~10kV的发电机电压向 附近用户供电。 2) 机组多为中、小型机组,总装机容量也较小。 3) 以1~2种升高电压将剩余电能送往电力系统。
一、装设限流电抗器
普通电抗器
{ { 限流电抗器分
母线电抗器 线路电抗器
分裂电抗器
k3
1.装设母线分段电抗器
T1
如图4-19所示。
母线分段电抗器装设地点:在发电
机电压的6~10kV母线分段处。
作用:限制来自另一母线的发电机 W1
所提供的短路电流(限制发电厂内
部的短路电流),对系统提供的短
G1
路电流也能起到一定的限制作用。
图4-22所示 为某大型区域性 火电厂主接线简 图,该厂有两台 300MW和两台 600MW大型凝 汽式汽轮发电机 组,均采用发电 机一双绕组变压 器单元接线形式, 其中两台 300MW机组单 元接入带专用旁 路断路器的 220kV双母线带 旁路母线接线。
图4-22
水电厂的特点:
1) 通常建设在水力资源丰富的江河湖泊狭谷处, 厂址较为狭窄,建设规模比较明确。
2) 接发电机的三绕组变压器,为低压侧向高中压侧输送功率, 应选升压型;
电气主接线设计
2、双母线带旁路母线的接线 、 双母线可以带旁路母线,用旁路断路器替代检修中 的回路断路器工作,使该回路不致停电。 分为:设专用旁路断路器;旁路断路器兼作母联断 路器;母联断路器兼作旁路断路器。
WP WP
QFP
QFC
W1 W2
W1 W2
3、旁路母线设置的原则 、 110KV及以上高压配电装置中,需设置旁路母线, 110KV出线在6回及以上、220KV出线在4回及以上时, 宜采用带专用旁路断路器的旁路母线。 在出线回路数较少的情况下,也可为节省投资, 采用母联断路器或分段断路器与旁路断路器之间互相 兼用的带旁路母线的接线方式。 下列情况下,可不设置旁路设施:
第二节 主接线的基本接线形式
电气主接线基本接线形式和规律: 以电源和出线为主体。为便于电能的汇集和分配, 在进出线数较多时,采用母线作为中间环节,可使接 线简单和清晰,运行方便,有利于安装和扩建。无汇 流母线的接线使用电气设备较少,配电装置占地面积 较小,通常用于进出回路少,不再扩建和发展的发电 厂或变电站。 1.单母线接线 1.汇流母线 2.双母线接线 主接线的接线形式 1.桥形接线 2.无汇流母线 2.多角形接线 3.单元接线
无汇流母线的主接线 单元接线 发电机—双绕组变压器单元接线 发电机—三绕组变压器(或自耦变压器)单元接线 发电机—变压器扩大单元接线 发电机—变压器—线路组单元接线 桥型接线 内桥接线 外桥接线 多角型接线 三角型接线 四角型接线
六、单元接线
发电机—变压器单元 接线,是大型机组采用 的接线方式。 单元接线简单,开 关设备少,操作简便, 不设发电机电压级母线。 存在问题: (1)当主变压器或厂总变 压器发生故障时,除了 跳主变压器高压侧出口 断路器外,还需跳发电 机磁场开关。 (2)发电机定子绕组本身故障时,若变压器高压侧断路器失灵 拒跳,则只能通过失灵保护出口启动母差保护。 (3)发电机故障跳闸时,将失去厂用工作电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气主接线设计原则和设计程序4.5.1电气主接线的设计原则电气主接线的设计是发电厂或变电站电气设计的主体。
它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。
因此,主接线设计,必须结合电力系统和发电厂或变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。
电气主接线设计的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。
在工程设计中,经上级主管部门批准的设计任务书或委托书是必不可少的。
它将根据国家经济发展及电力负荷增长率的规划,给出所设计电厂(变电站)的容量、机组台数、电压等级、出线回路数、主要负荷要求、电力系统参数和对电厂(变电站)的具体要求,以及设计的内容和范围。
这些原始资料是设计的依据,必须进行详细的分析和研究,从而可以初步拟定一些主接线方案。
国家方针政策、技术规范和标准是根据国家实际状况,结合电力工业的技术特点而制定的准则,设计时必须严格遵循。
设计的主接线应满足供电可靠、灵活、经济、留有扩建和发展的余地。
设计时,在进行论证分析阶段,更应合理地统一供电可靠性与经济性的关系,以便于使设计的主接线具有先进性和可行性。
4.5.2 电气主接线的设计程序电气主接线的设计伴随着发电厂或变电站的整体设计进行,即按照工程基本建设程序,历经可行性研究阶段、初步设计阶段、技术设计阶段和施工设计阶段等四个阶段。
在各阶段中随要求、任务的不同,其深度、广度也有所差异,但总的设计思路、方法和步骤基本相同。
电气主接线的设计步骤和内容如下:1.对原始资料分析(1)工程情况,包括发电厂类型(凝汽式火电厂,热电厂,或者堤坝式、引水式、混合式水电厂等),设计规划容量(近期、远景),单机容量及台数,最大负荷利用小时数及可能的运行方式等。
发电厂容量的确定与国家经济发展规划、电力负荷增长速度、系统规模和电网结构以及备用容量等因素有关。
发电厂装机容量标志着发电厂的规模和在电力系统中的地位和作用。
在设计时,对发展中的电力系统,可优先选用较为大型的机组。
但是,最大单机容量不宜大于系统总容量的10%,以保证在该机检修或事故情况下系统的供电可靠性。
当前,单机300、600MW容量的机组已成为电网的主力机组,1000MW级的火电机组正在酝酿中。
发电厂运行方式及利用小时数直接影响着主接线设计。
承担基荷为主的发电厂,设备利用率高,一般年利用小时数在5000h以上;承担腰荷的发电厂,设备利用小时数应在3000~5000h;承担峰荷的发电厂,设备利用小时数在3000h 以下。
对不同的发电厂其工作特性有所不同。
对于核电厂或单机容量300MW及以上的火电厂以及径流式水电厂等应优先担任基荷,相应主接线应以供电可靠为主选择主接线形式。
水电厂是电力系统中最灵活的机动能源,启、停方便,多承担系统调峰、调相任务,根据水能利用及库容的状态可酌情担负基荷、腰荷和峰荷。
因此,其主接线应以供电调度灵活为主选择主接线形式。
(2)电力系统情况,包括电力系统近期及远景发展规划(5~10年),发电厂或变电站在电力系统中的位置(地理位置和容量位置)和作用,本期工程和远景与电力系统连接方式以及各级电压中性点接地方式等。
发电厂的总容量与电力系统容量之比,若大于15%时,则就可认为该厂是在系统中处于比较重要地位的电厂,应选择可靠性较高的主接线形式。
因为它的装机容量已超过了电力系统的事故备用和检修备用容量,一旦全厂停电,会影响系统供电的可靠性。
主变压器和发电机中性点接地方式是一个综合性问题。
它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的运行安全以及对通信线路的干扰等。
我国一般对35kV及以下电压电力系统采用中性点非直接接地系统(中性点不接地或经消弧线圈接地),又称小电流接地系统;对llOkV及以上高压电力系统,皆采用中性点直接接地系统,又称大电流接地系统。
发电机中性点都采用非直接接地方式,目前,广泛采用的是经消弧线圈接地方式或经中性点接地变压器接地。
(3)负荷情况,包括负荷的性质及其地理位置、输电电压等级、出线回路数及输送容量等。
电力负荷的原始资料是设计主接线的基础数据,电力负荷预测工作是电力规划工作的重要组成部分,也是电力规划的基础。
对电力负荷的预测不仅应有短期负荷预测,还应有中长期负荷预测,对电力负荷预测的准确性,直接关系着发电厂和变电站电气主接线设计成果的质量,一个优良的设计,应能经受当前及较长远时间(5—10年)的检验。
发电厂承担的负荷应尽可能地使全部机组安全满发,并按系统提出的运行方式,在机组间经济合理地分配负荷,减少母线上电流流动,使发电机运转稳定和满足电能质量要求。
(4)环境条件,包括当地的气温、湿度、覆冰、污秽、风向、水文、地质、海拔高度及地震等因素,对主接线中电气设备的选择和配电装置的实施均有影响。
对此,应予以重视。
对重型设备的运输条件亦应充分考虑。
(5)设备供货情况。
这往往是设计能否成立的重要前提,为使所设计的主接线具有可行性,必须对各主要电气设备的性能、制造能力和供货情况、价格等资料汇集并分析比较。
2.主接线方案的拟定与选择根据设计任务书的要求,在原始资料分析的基础上,根据对电源和出线回路数、电压等级、变压器台数、容量以及母线结构等不同的考虑,可拟定出若干个主接线方案(本期和远期)。
依据对主接线的基本要求,从技术上论证并淘汰一些明显不合理的方案,最终保留2~3个技术上相当,又都能满足任务书要求的方案,再进行经济比较。
对于在系统中占有重要地位的大容量发电厂或变电站主接线,还应进行可靠性定量分析计算比较,最终确定出在技术上合理、经济上可行的最终方案。
3.短路电流计算和主要电器选择对选定的电气主接线进行短路电流计算,并选择合理的电气设备。
4.绘制电气主接线图对最终确定的主接线,按工程要求,绘制工程图。
5.编制工程概算 .对于工程设计,无论哪个设计阶段(可行性研究、初步设计、技术设计、施工设计),概算都是必不可少的组成部分。
它不仅反映工程设计的经济性与可靠性的关系,而且为合理地确定和有效控制工程造价创造条件,为工程付诸实施,为投资包干、招标承包、正确处理有关各方的经济利益关系提供基础。
’概算的编制以设计图纸为基础,以国家颁布的《工程建设预算费用的构成及计算标准》、《全国统一安装工程预算定额》、《电力工程概算指标》以及其他有关文件和具体规定为依据,并按国家定价与市场调整或浮动价格相结合的原则进行。
概算的构成主要有以下内容:(1)主要设备器材费,包括设备原价、主要材料(钢材、木材、水泥等)费、设备运杂费(含成套服务费)、备品备件购置费、生产器具购置费等。
除设备及材料费外,其他费用均按规定在器材费上乘一系数而定。
其系数由国家和地区随市场经济的变化在某一时期内下达指标定额。
(2)安装工程费,包括直接费、间接费及税金等。
直接费指在安装设备过程中直接消耗在该设备上的有关费用,如人工费、材料费和施工机械使用费等;间接费指安装设备过程中为全工程项目服务,而不直接耗用在特定设备上的有关费用,如施工管理费、临时设施费、劳动保险基金和施工队伍调遣费用等;税金是指国家对施工企业承包安装工程的营业收入所征收的营业税、教育附加和城市维护建设税。
以上各种费用都根据国家某时期规定的不同的费率乘以基本直接费来计算。
(3)其他费用,系指以上未包括的安装建设费用,如建设场地占用及清理费、研究试验费、联合试运转费、工程设计费及预备费等。
所谓预备费是指在各设计阶段用以解决设计变更(含施工过程中工程量增减、设备改型、材料代用等)而增加的费用、一般自然灾害所造成的损失和预防自然灾害所采取的措施费用以及预计设备费用上涨价差补偿费用等。
根据国家现阶段下达的定额、价格、费率,结合市场经济现状,对上述费用逐项计算,列表汇总相加,即为该工程的概算。
4.6 发电厂和变电所主变压器的选择发电厂和变电所中,用于向电力系统或用户输送功率的变压器,称为主变压器;只用于两种升高电压等级之间交换功率的变压器,称为联络变压器。
4.6.1主变压器容量、台数的选择主变压器的容量和台数直接影响主接线的形式和配电装置的结构。
它的选择除依据基础资料外,主要取决于输送功率的大小、与系统联系的紧密程度、运行方式及负荷的增长速度等因素,并至少要考虑5年内负荷的发展需要。
如果容量选得过大、台数过多,则会增加投资、占地面积和损耗,不能充分发挥设备的效益,并增加运行和检修的工作量;如果容量选得过小、台数过少,则可能封锁发电厂剩余功率的输送,或限制变电所负荷的需要,影响系统不同电压等级之间的功率交换及运行的可靠性等。
1.发电厂主变压器容量、台数的选择《发电厂设计技术规程》规定:(1)单元接线中的主变压器容量SN应按发电机额定容量扣除本机组的厂用负荷后,留有10%的裕度选择SN ≈1.1PNG(1﹣KP)/cosφG(MVA) (4.6.1)式中PNG——发电机容量,在扩大单元接线中为两台发电机容量之和,MW;cosφG——发电机额定功率因数;KP——厂用电率。
每个单元的主变压器选择一台。
(2)接于发电机电压母线与升高电压母线之间的主变压器容量SN按下列条件选择。
1)当发电机电压母线上的负荷最小时(特别是发电厂投入运行初期,发电机电压负荷不大),应能将接于发电机电压母线上发电机发出的功率减去发电机电压母线上的最小负荷而得到的最大剩余功率送至系统(计算中不考虑稀有的最小负荷情况)。
即SN ≈[∑PNG(1﹣KP)/COSφG﹣Pmin/cosφ]/n (MVA) (4.6.2)式中∑PNG——发电机电压母线上的发电机容量之和,MW;Pmin——发电机电压母线上的最小负荷,MW;cosφ——负荷功率因数;n——接于发电机电压母线上的主变压器台数。
2)若发电机电压母线上接有2台及以上主变压器,当负荷最小且其中容量最大的一台主变压器退出运行时,其他主变压器应能将发电厂最大剩余功率的70%以上送至系统。
即SN≈[∑PNG(1﹣KP)/COSφG﹣Pmin/cosφ]×70%/(n—1) (MVA)(4.6.3)3)当发电机电压母线上的负荷最大且其中容量最大的一台机组退出运行时,主变压器应能从系统倒送功率,满足发电机电压母线上最大负荷的需要。
即S N ≈Pmax/cosφ一∑P'NG(1﹣KP)/COSφG(MVA)(4.6.4)式中∑P'NG——发电机电压母线上除最大一台机组外,其他发电机容量之和,MW;Pmax——发电机电压母线上的最大负荷,MW。