平面图形密铺的特点:

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形密铺的特点

(1) 用一种或几种全等图形进行拼接。

(2) 拼接处不留空隙、不重叠。

(3) 连续铺成一片。

能密铺的图形在一个拼接点处的特点是:几个图形的内角拼接在一起时,其和等于

360o,并使相等的边互相重合.

问题 1:用形状大小完全相同的正三角形能否密铺?观察每个拼接点处有几个角?他们之间有什么关系?用大小完全相同的正三角形可以密铺,每个拼接点处有六个角,他们的和为 360 度所以,用 6 个这样的三角形就可以组合起来密铺成一个平面。

问题 2:用同一种正方形可以密铺吗?观察每个拼接点处有几个角?他们之间有什么关系?

拿出自制的正方形演示拼接,观察分析,小组交流探讨出结论。也可以密铺,每个拼接点处有四个角,他们的和也是 360 度。问题 3:正五、六边形能否密铺?正七、八边形呢?请简述你的理由。

通过上面的长方形、正方形的学习的方法学生很快就会知道:正六边形能密铺。因为正六边形的每个内角都120度, 在每个拼接点处,恰好能容纳下3 个内角,而且相互不重叠,没有空隙。而正五边形的每个内角都是 108°, 360 不是 108 的整数倍。在每个拼接点处,三个内角之和为 324°,小于 360°,而四个内角之和又大于 360°。

在每个拼接处,拼三个内角不能保证没空隙,而拼四个角时,必定有重叠现象. 通过实际的拼摆、探究看一看得出 : 要用正多边形密铺成一个平面的关键是看:这种正多边形的一个内角的倍数是否是 360°,在正多边形里,正三角形的每个内角都是 60°,正四边形的每个内角都是 90°,正六边形的每个内角都是 120°,这三种多边形的一个内角的倍数都是 360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺。

只有正三角形、正方形和正六边形可以密铺,其他正多边形不可以密铺吗?

探究二:用一种任意多边形密铺

问题1:用任意几个全等的三角形能否密铺?观察每个拼接点处有几个角?他们与这种三角形有什么关系?(学生分组拼接、讨论,寻找规律,教师巡视指导)结论:任意全等的一种三角形可以密铺,每个拼接点处有六个角(其中

有三组分别相等)这六个角的和是360。

问题2:用任意几个全等的四边形呢?(通过学生动手的拼摆,讨论等多种形式得出结论)结论:任意全等的一种四边形也可以密铺,在每个拼接点处有四个角,这四个角的和是360度。

师:通过以上几种图形的拼摆你能总结出什么规律吗?

从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360。

单独使用正方形,等边三角形可以密铺•

单独使用不规则四边形可以密铺• 结论:1.任意全等的三角形能密铺,在每个拼接点处有六个角,而这六个角的和恰好是这个三角形的内角和的两倍,也就是它们的和为360o。

2. 任意全等的四边形能密铺,在每个拼接点处有四个角,而这四个角的和恰好是这个四边形的内角和,也就是它们的和为 3600。

密铺的关键是每个拼接点处的几个角拼在一起恰好组成一个360 o的周角。

正多边形密铺的条件:一种正多边形是否可以密铺与其内角度数有关。内角度数可以整除360o,则可以密铺,反之则不能密铺。用一种正多边形可以密铺的只有正三角形、正方形和正六边形。

四、归纳小结

1、平面图形的密铺指没有空隙和不重叠的拼接;

2、密铺的关键是几个角拼在一起恰好组成一个 360o的周角;

3、用一种多边形密铺时,三角形、四边形和正六边形都能密铺;

相关文档
最新文档