贵阳一中2018届月考(一)理科数学试卷及解析
贵阳一中2018届月考一理科数学试卷及解析
贵阳一中2018届第一次月考卷——理科数学一、选择题1.已知集合2{|23}A x y x x ==--,2{|0}2x B x x +=≤-,则A B =( ) A. [2,1]-- B. [1,2)- C. [1,1]-- D. [1,2)2.复数32(1)(1)i i +-在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D. 第四象限 3.已知()f x 在其定义域[1,)-+∞上是减函数,若(2)()f x f x ->,则( ) A. 1x > B. 11x -≤< C. 13x <≤ D. 13x -≤≤ 4.双曲线方程为2221x y -=,则它的右焦点坐标为( )A. 2,02⎛⎫ ⎪ ⎪⎝⎭B. 5,02⎛⎫⎪ ⎪⎝⎭ C. 6,02⎛⎫⎪ ⎪⎝⎭D. (3,0) 5.某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这4人中三个项目都有人参加的概率为( ) A.89 B. 49 C. 29 D. 8276.若方程2(1)10x k x --+=有大于2的根,则实数k 的取值范围是( )A. 7,2⎛⎫-∞ ⎪⎝⎭B.7,2⎛⎤-∞ ⎥⎝⎦ C. 7,2⎛⎫+∞ ⎪⎝⎭ D. 7,2⎡⎫+∞⎪⎢⎣⎭7.已知,αβ都是锐角,且sin cos cos (1sin )αβαβ=+,则( ) A. 32παβ-=B. 22παβ-=C. 32παβ+=D. 22παβ+=8.如图1.由曲线21y x =-,直线0,2x x ==和x 轴围成的封闭图形的面积是( ) A. 220(1)x dx -⎰ B. 220(1)x dx -⎰C. 2201x dx -⎰D.122211(1)(1)x dx x dx --+-⎰⎰9.设直线2a x =与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若OAB ∆是直角三角形,则椭圆的离心率为( ) A.22 B. 33 C. 63D. 1210.已知数列{}n a 满足:111,21(2)n n a a a n -==+≥,为求使不等式123n a a a a k ++++<的最大正整数n ,某人编写了如图2所示的程序框图,在框图的判断框中的条件和输出框输出的表达式分别为( ) A. ,S k i < B. ,1S k i <- C. ,S k i ≥ D. ,1S k i ≥-11.为得到函数22()2sin cos 3(sin cos )f x x x x x =++的图象,可以把函数()2cos(2)3g x x π=-的图象( )A. 向左平移4π个单位B. 向左平移2π个单位C. 向右平移4π个单位D. 向右平移2π个单位12.图3是某几何体的三视图,则该几何体的各个棱长中,最长的 棱的长度为( ) A. 32 B. 19 C. 22 D. 33二、填空题13. 61(12)x x x ⎛⎫-+ ⎪⎝⎭展开式的常数项是 (用数字作答).14.已知变量,x y 满足条件,230,29,x y x y x y ≥⎧⎪+-≥⎨⎪≤-⎩则23x y -的最小值等于 .15.如图4,在ABC ∆中,D 是AB 上一点,2AD DB = ,若CD CA ⊥ ,2CD =,则CD CB ⋅= .16.已知,,a b c 分别为锐角ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin )()sin b A sinB c b C +-=-,则ABC ∆周长的取值范围为 .三、解答题17.已知数列{}n a 满足:1111,(2)21n n n a a a n a --==≥+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列1{}n n a a +的前n 项和为n T ,求证:12n T <. 18.为了解学生完成数学作业所需时间,某学校统计了高三年级学生每天完成数学作业的平均时间介于30分钟到90分钟之间,图5是统计结果的频率分布直方图.(Ⅰ)数学教研组计划对作业完成较慢的20%的学生进行集中辅导,试求每天完成数学作业的平均时间为多少分钟以上的学生需要参加辅导?(Ⅱ)现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不超过50分钟的人数为X ,求X 的分布列和期望.19.如图6,在三棱锥K ABC -中,,,D E F 分别是,,KA KB KC 的中点,平面KBC ⊥平面ABC ,AC BC ⊥, KBC ∆是边长为2的正三角形,3AC =.(Ⅰ)求证:BF ⊥平面KAC ; (Ⅱ)求二面角F BD E --的余弦值.20. 已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,12,F F 是椭圆的左、右焦点, P 是椭圆上的一点,12PF PF ⋅的最小值为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点2F 且与x 轴不重合的直线l 交椭圆C 于,M N 两点,圆E 是以1F 为圆心椭圆C 的长轴长为半径的圆,过2F 且与l 垂直的直线与圆E 交于,P Q 两点,求四边形MPNQ 面积的取值范围.21.设2()(ln 1)(2),f x x x a x x a R =-+-∈. (Ⅰ)令()()g x f x '=,求()g x 的单调区间;(Ⅱ)已知()f x 在1x =处取得极大值,求实数a 的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)[选修4-4:坐标系与参数方程]已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的非负半轴重合,且长度单位相同.直线l 的极坐标方程为:2sin()33πρθ+=,曲线C 的参数方程为:3cos ,23sin ,x y αα⎧=⎪⎨=+⎪⎩(α为参数),其中[0,2)απ∈. (Ⅰ)写出直线l 的直角坐标方程及曲线C 的普通方程; (Ⅱ)若A 、B 为曲线C 与直线l 的两个交点,求AB .23. (本小题满分10分)[选修4-5:不等式选讲] 设()231f x x x =-++.(Ⅰ)求不等式()4f x x <+的解集;(Ⅱ)若函数()()g x f x ax =+有两个不同的零点,求实数a 的取值范围.贵阳第一中学2018届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACCCBCBCCBCC【解析】1. 函数223y x x =--的定义域为(1][3+)A =-∞-∞,,,不等式202x x +-≤的解集为[22)B =-,,所以[21]AB =--,,故选A.2.复数32(1i)(1i)+-1i =--,对应点为(11)--,,位于第三象限,故选C. 3.由单调性及定义域得12x x --<≤,解得13x <≤,故选C. 4.双曲线焦点在x 轴上,22213122a b c ==⇒=,,右焦点为602⎛⎫ ⎪ ⎪⎝⎭,,故选C. 5.23434C A 3643819P ===,故选B.6.问题等价于方程11x k x +=-在(2)+∞,有解,而函数1y x x=+在(2)+∞,上递增,值域为52⎛⎫+∞ ⎪⎝⎭,,所以k 的取值范围是72⎛⎫∞ ⎪⎝⎭,+,故选C. 7.πsin cos cos (1sin )sin()cos sin 2αβαβαβαα⎛⎫=+⇒-==- ⎪⎝⎭,即2αβπ-=2,故选B.8.阴影部分面积为12221[(1)]d (1)d x x x x ⎰--+⎰-,而222101|1|112x x x x x ⎧--=⎨-<⎩,,,,≤≤≤ 故选C.9.2a x =代入椭圆方程得32y b =±,222363()223a cb ac a a =⇒-=⇒=,故选C. 10.判断的条件为S k <;输出的结果为1i -,故选B. 11.ππ()2sin 22sin 236f x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,π()2sin 26g x x ⎛⎫=+ ⎪⎝⎭π2sin 212x ⎛⎫=+ ⎪⎝⎭,故选C .12.几何体ABCD 为图1中粗线所表示的图形,最长棱是AC ,图1AC =C .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.61x x ⎛⎫+ ⎪⎝⎭展开式的通项为6216C r rr T x -+=,6203621r r r -=⇒=-=-;无解,所以展开式的常数项为36C 20=.15.由已知3122CB CD CA =-,0CD CA =,231622CD CB CD CD CA =-=.16.由已知()()()a b a b c b c +-=-,即2221cos 2b c a bc A +-=⇒=得60A =︒,由正弦定理,三角形的周长为π24sin 26B C B ⎛⎫++=++ ⎪⎝⎭,ππ62B ⎛⎫∈ ⎪⎝⎭,,πsin 16B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦⎝,周长的取值范围为(26]+.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) (Ⅰ)解:111112111(2)2(2)21n n n n n n n a a a n n a a a a -----+=⇒==++≥≥,所以1n a ⎧⎫⎪⎨⎬⎪⎭⎩是以2为公差的等差数列,11111a a =⇒=,所以121nn a =-,所以数列{}n a 的通项公式为121n a n =-. ………………………………(6分) (Ⅱ)证明:由(Ⅰ)得111111212122121n n a a n n n n +⎛⎫=⋅=- ⎪-+-+⎝⎭, 11112212n T n ⎛⎫=-< ⎪+⎝⎭.…………………………………………………(12分)18.(本小题满分12分)解:(Ⅰ)设每天完成作业所需时间为x 分钟以上的同学需要参加辅导,则(70)0.02(9070)0.0050.2x -⨯+-⨯=,得65x =(分钟),所以,每天完成数学作业的平均时间为65分钟以上的同学需要参加辅导. …(6分)(Ⅱ)把统计的频率作为概率,则选出的每个学生完成作业的时间不超过50分钟的概率为0.2,~(40.2)X B ,, 44()C 0.20.8(01234)k k kP X k k -===,,,,, 0.8EX =. ……………………………………………………………………(12分)19.(本小题满分12分)(Ⅰ)证明:如图2,建立空间直角坐标系,则(103)K ,,, 33022BF CK ⎛⎫=-= ⎪ ⎪⎝⎭,,,(103)(030)CA =-,,,,,, 0BF CK =,BF CK ⊥得BF CK ⊥, 0BF CA =,BF CA ⊥得BF CA ⊥,CA ,CK 是平面KAC 内的两条相交直线, 所以BF ⊥平面KAC.……………………………………………………(6分)(Ⅱ)解:平面BDF 的一个法向量(103)m =,,, 平面BDE (即平面ABK )的一个法向量为(323)n =-,,, 3cos 4m n 〈〉=,, 所以二面角F BD E --的余弦值为34. ………………………………………(12分)20.(本小题满分12分)解:(Ⅰ)已知12c a =,12PF PF ⋅的最小值为222b c -=,又222a b c =+, 解得2243a b ==,,所以椭圆方程为22143x y +=. ………………………(6分) (Ⅱ)当l 与x 轴不垂直时,设l 的方程为1122(1)(0)()()y k x k M x y N x y =-≠,,,,.由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得2222(43)84120k x k x k +-+-=.则221212228412+4343k k x x x x k k -==++,.所以212212(1)|||43k MN x x k +-=+.过点2(1)F ,0且与l 垂直的直线1(1)m y x k =--:,1F 到m,所以||PQ == 故四边形MPNQ的面积1||||2S MN PQ == 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(12,. 当l 与x 轴垂直时,其方程为1||3||8x MN PQ ===,,,四边形MPNQ 的面积为12. 综上,四边形MPNQ面积的取值范围为[12,. …………………………(12分) 21.(本小题满分12分)解:(Ⅰ)由()ln 22f x x ax a '=-+, 可得()ln 22(0)g x x ax a x =-+∈+∞,,, 则112()2axg x a x x-'=-=, 当0a ≤时,(0)x ∈+∞,时,()0g x '>,函数()g x 单调递增, 当0a >时,102x a ⎛⎫∈ ⎪⎝⎭,时,()0g x '>,函数()g x 单调递增,12x a ⎛⎫∈+∞ ⎪⎝⎭,时,()0g x '<,函数()g x 单调递减.所以当0a ≤时,函数()g x 的单调递增区间为(0)+∞,, 当0a >时,函数()g x 的单调递增区间为102a ⎛⎫ ⎪⎝⎭,,单调递减区间为12a ⎛⎫+∞⎪⎝⎭,. ………………………………………………………………………………(6分) (Ⅱ)由(Ⅰ)知,(1)0f '=. ①当a ≤0时,()f x '单调递增,所以当(01)x ∈,时,()0()f x f x '<,单调递减, 当(1+)x ∈∞,时,()0()f x f x '>,单调递增, 所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(Ⅰ)知()f x '在102a ⎛⎫ ⎪⎝⎭,内单调递增,可得当(01)x ∈,时,()0f x '<,112x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,所以()f x 在(0,1)内单调递减,在112a ⎛⎫ ⎪⎝⎭,内单调递增,所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,即112a=,()f x '在(0,1)内单调递增,在(1)+∞,内单调递减, 所以当(0)x ∈+∞,时,()0f x '≤,()f x 单调递减,不合题意. ④当12a >时,即1012a <<, 当112x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,()f x 单调递增, 当(1)x ∈+∞,时,()0f x '<,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. ………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)∵π2sin 33ρθ⎛⎫+= ⎪⎝⎭,∴sin cos 3ρθθ+=,直线l 的直角坐标方程:30y +-=.曲线C :3cos 23sin x y αα⎧=⎪⎨=+⎪⎩(α为参数), 消去参数可得曲线C 的普通方程为:22(()29x y -+=.………………………………(5分)(Ⅱ)由(Ⅰ)可知,22(()29x y +-+=的圆心为D (2),半径为3. 设AB 中点为M ,连接DM ,DA , 圆心到直线l 的距离|323|22d -+-==,所以2DM =,又因为3DA =,所以MA ||AB = ………………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】解:(Ⅰ)分段讨论得不等式解集为(0,3). …………………………(5分) (Ⅱ)利用图象可得533a -<<-.…………………………………………(10分)。
贵阳市2018年高三适应性考试(一)理科数学问题详解
贵阳市2018年高三适应性考试(一)理科数学答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)答案:C 解析:由得,所以,又因为,故31228x ->=3x >-{}|3A x x =>-{}3,2,1B =---.{}2,1A B =-- (2)答案:B解析:由,因此.()()()41444221112i i i i z i i i i -+====+++-z z ===(3)答案:D解析:由题知这10个数按照大小排序为:10、30、30、40、40、50、60、60、60、70;所以这组数据的众数为:60,中位数为:;平均数为:4050452+=,因此所求的和为:1030240250603704510+⨯+⨯++⨯+=604545150++=(4)答案:C解析:如上图,画出可行域,表示斜率为2的一组平行线,当过点B y x z -=2y x z -=2(3.-4)时,目标函数取得最大值,故选C.10)4(32max =--⨯=z解析:由题知()111111111211311+-+2112231117k S S S k k k k k k k k +=+=+-=+-+-=-==+++++ 即,解得,此时,即()()721131k k +=+6k =1k a +>7a <(6)答案:D解析:由题可设甲、乙、丙、丁、戊所得分别为: ,由11111,,2,3,4x x d x d x d x d ++++已知可得,解得 ,因此111111111112345105234x x d x d x d x d x d x x d x d x d x d ++++++++=+=⎧⎨++=+++++⎩14316x d ⎧=⎪⎪⎨⎪=-⎪⎩丙所得为: 14122136x d ⎛⎫+=+⨯-= ⎪⎝⎭(7)答案:D 解析:函数图象上各点的横坐标缩短为原来的倍的函数为14y x π⎛⎫=++ ⎪⎝⎭12,由得变化后的函数的对称轴为:214y x π⎛⎫=++ ⎪⎝⎭()242x k k Z πππ+=+∈,()82k x k Z ππ=+∈(8)答案:A解析:设等比数列的公比为,由题知可化为,q ()26482a a a =-()2631182a q a q =-①又因为,所以①式化简为,解得,即 ,所以112a =6316640q q -+=38q =2q =()()2018201812017201811211221122a qS q--===---(9)答案:B解析:因为函数为奇函数,则,又()f x ()33311log log log 101010a f f f ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,,且函数为 减函数,因此333log 10log 9.1log 92>>=0.822<()f x ,即.()()()0.8332log 9.1log 10f f f >>c b a >>解析:根据三视图,作长为4,高为4,宽为2的长方体。
2018届贵州省贵阳市第一中学高三3月月考语数学(理)试题图片版含答案
贵阳第一中学2018届高考适应性月考卷(六)
理科数学参考答案
一、选择题(本大题共12小题,每小题5分,共60分)
【解析】
1.,所以,故选D.
2.,由的幂的周期性可知
,在复平面内对应的点位于第二象限,故选B.
3.原点不在该平面区域,将原点坐标代入可排除B,D,区域包含边界,故选A.
4.否定特称命题需改写量词,并否定命题,所以:,n3≤3n,这是一个真命题,故选A.5.将频率分布直方图补全,如图1所示,所以平均分:400.1
+500.15+600.15+700.3+800.25+900.0566(分),故选C.
6.设,由得,则①,②,又由
,得③,联立①②③可得,故选C.
7.整个电路共6个开关,所以共种闭合方式,每一条支线有3个开关,共种闭合方式,其中有3种闭合方式可以使支线接通,则有5种方式使支线不通,两条支线至少有一条接通则电路接通,所以共种闭合方式,故选A.
8.该题为几何概型,即求落入如图2所示阴影区域的概率,则,故选D.
9.可将该三棱锥放入如图3所示的长方体中,则,A选项正确;作的中点,连接
,则即二面角的平面角,。
2017-2018学年贵州省贵阳一中高三(上)适应性月考数学试卷(理科)(一)
2017-2018学年贵州省贵阳一中高三(上)适应性月考数学试卷(理科)(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的■1. (5分)已知集合A={x|y=「上三、_汀,B={X |¥ 三°},则A ° B=(A. b A . [ - 1,1]B. [ - 1, 2)C. [1, 2)D. [ - 2,- 1]2. (5分)复数」『’在复平面上对应的点位于()(1-i )2 A •第一象限 B.第二象限C 第三象限D .第四象限3. (5分)已知f (x )在其定义域[-1, +7 上是减函数,若f (2 -x )>f (x ), 则( ) A . x > 1 B .- 1<x v 1 C . 1v x < 3 D .- 1< x < 34.(5分)双曲线方程为x 2 - 2y 2=1,则它的右焦点坐标为( )A. I.「B ・ 1「C.「D .' ■-5. (5分)某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松 三个比赛项目,4位长跑爱好者各自任选一个项门参加比赛,则这 4人中三个项 目都有人参加的概率为( )A .6.(5分)若方程x 2- (k - 1)x+仁0有大于2的根,则实数k 的取值范围是( )7. (5 分)已知 a, B 都是锐角,且 sin a cos B =c (s1+sin )贝U ( ) A . -■ ■ — B. . :•——C. - . - :—D. . :—8.(5分)如图所示,曲线y=x - 1, x=2, x=0, y=0围成的阴影部分的面积为(27)A.丨 | T一]工B. I , :' :::;■C.丨 | 了工D. | ■■2 29. (5分)设直线与椭圆’交于A, B两点,若△ OAB是2 a b直角三角形,则椭圆的离心率为()A.「B.C.D.2 3 3 210. (5分)已知数列{a n}满足:a i=1, a n=2a h -1+1 (n > 2),为求使不等式a计a2+a3+・・+a n<k的最大正整数n,某人编写了如图所示的程序框图,在框图的判断框中的条件和输出的表达式分别为()口=叮=1a=2a^lS=S+aA. S v k, iB. S v k, i- 1C. S>k, iD. S>k, i- 111. (5 分)为得到函数f (x)=2sinxcos)+ ___ •一__ 二 .的图象,可以把函数二:「「-门;7—:?.-1的图象()A.向左平移个单位B.向左平移个单位C•向右平移.个单位D.向右平移个单位4 212. (5分)图是某几何体的三视图,则该几何体的各个棱长中,最长的棱的长度为()"4 2 T正视图侧视图A. 3 匚B.甘*C. cD. 3 匚二、填空题(每题5分,满分20分,将答案填在答题纸上)13. __________________________________________ (5分)二m:丿展开式的常数项是_________________________________________ .(用数字作答)x>y14(5分)已知变量x,y满足条件x+2y-3>0,则2x- 3y的最小值等于____________ .2rC 9-y115. (5分)如图,在△ ABC中,D是AB上一点,工若CD丄CA 川-:,16. (5分)已知a, b, c分别为锐角△ ABC的三个内角A, B, C的对边,a=2,且(2+b)(si nA- sinB)= (c- b)si nC,则△ ABC周长的取值范围为___ .三、解答题(本大题共5小题,共70分■解答应写出文字说明、证明过程或演算步骤.)17 . (12分)已知数列{a n}满足:a1=1,「一r_l(n>2).2a rrl + 1(1)求数列{a n}的通项公式;(2)设数列{a n a n+1}的前n项和为T n,求证:[叮一1n 218. (12分)为了解学生完成数学作业所需时间,某学校统计了高三年级学生每天完成数学作业的平均时间介于30分钟到90分钟之间,图是统计结果的频率分布直方图.(1)数学教研组计划对作业完成较慢的20%的学生进行集中辅导,试求每天完成数学作业的平均时间为多少分钟以上的学生需要参加辅导?(2)现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不超过50分钟的人数为X,求X的分布列和期望.19. (12分)如图,在三棱锥K- ABC中,D,E, F分别是KA, KB, KC的中点, 平面KBCL平面ABC, AC丄BC, △ KBC是边长为2的正三角形,AC=3(1)求证:BF丄平面KAC(2)求二面角F- BD-E的余弦值.20. (12分)已知椭圆:的离心率为,F1, F2是椭圆的左、显b2 2右焦点,P是椭圆上一点,计〕的最小值为2.(1)求椭圆C的方程;(2)过点F2且与x轴不重合的直线I交椭圆C于M , N两点,圆E是以F i为圆心椭圆C的长轴长为半径的圆,过F2且与I垂直的直线与圆E交于P,Q两点,求四边形MPNQ面积的取值范围.21. (12分)设f (x) =x (Inx—1) +a (2x—x2),a€ R.(1)令g (x) =f'(x),求g (x)的单调区间;(2)已知f (x)在x=1处取得极大值,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4 :坐标系与参数方程]22. (10分)已知极坐标的极点在平面直角坐标系的原点0处,极轴与x轴的非负半轴重合,且长度单位相同,直线I的极坐标方程为:」j L:| :,曲线C的参数方程为:■:,(a为参数),其中a€ [0,2n).(y=2+3sinCl(1)写出直线I的直角坐标方程及曲线C的普通方程;(2)若A,B为曲线C与直线I的两交点,求|AB| .[选修4-5:不等式选讲] 23 .设 f (x) =| 2x- 3|+| x+1| .(1)求不等式f (x)v x+4的解集;(2)若函数g (x) =f (x) +ax有两个不同的零点,求实数a的取值范围.20仃-2018学年贵州省贵阳一中高三(上)适应性月考数学试卷(理科)(一)参考答案与试题解析、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的■1. (5 分)已知集合A={x|y=f , B={x| 二< 0},则A H B=(A. [ - 1,1]B. [ - 1, 2)C. [1, 2)D. [ - 2,- 1]【解答】解:集合A={x| x2- 2x- 3>0} ={x| x<- 1 或x> 3},B={x| - 2< x v 2},利用集合的运算可得:A H B={x| - 2<x<- 1}.故选D.2. (5分)复数、厂、在复平面上对应的点位于()(1-i)2A•第一象限 B.第二象限C第三象限D.第四象限【解答】解:复数''''=''”「d-ir i-2i+i2一1-i匚,则复数「「一在复平面上对应的点为(-1, - 1),(1-D2且为第三象限的点,故选:C.3. (5分)已知f (x)在其定义域[-1, +7 上是减函数,若f (2 -x)>f (x),则()A. x> 1B.- 1<x v 1C. 1 v x< 3D.- 1< x< 3【解答】解:由题意得:X>-1 ,解得:1v x < 3,2-x< x故选:C.4. (5分)双曲线方程为X - 2y 2=1,则它的右焦点坐标为(故选C5. (5分)某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松 三个比赛项目,4位长跑爱好者各自任选一个项门参加比赛,则这 4人中三个项 目都有人参加的概率为( A .【解答】解:某市国际马拉松邀请赛设置了全程马拉松、 半程马拉松和迷你马拉 松三个比赛项目,4位长跑爱好者各自任选一个项门参加比赛, 基本事件总数n=34=81,这4人中三个项目都有人参加包含的基本事件个数 m=:〒,;k :=36,这4人中三个项目都有人参加的概率为p< ■'=■.故选:B.6.(5分)若方程x 2- (k - 1)x+仁0有大于2的根,则实数k 的取值范围是( ) A .: B:C :-D .【解答】解:双曲线的:-:,2 2D .k-1••方程x2- (k - 1) x+仁0有大于2的根,可得* 2f (2)=4-2(k-l)+l<C或号>2L A=(k-l)2-4>0解得:*m 或k >5.2故k 的取值范围为('',+x ),2 故选:C.7. (5分)已知 a, B 都是锐角,且 sin a cos B =c (s1+sin )贝U( )A.一 : _ :B.「一「_ :C. z • ] - D . :: —【解答】解: v sin a cos B =coS 1+sin ), ••• sin a cos B cos a sin B =cos 即: 又v a, B 都是锐角,可得:0<舟^-( a- B ) V n, …*-"®,整理可得:眈卡WT 故选:B.8.(5分)如图所示,曲线y=x - 1, x=2, x=0, y=0围成的阴影部分的面积为( )故选A .【解答】解: (x 2-l)dx |x 2-1) dx+ J J (1-x 2) dx【解答】解:由题意 S= |「,土:- . - 工=丨:■■■,sin ( a- (a- B)],AB2 29. (5分)设直线:,「与椭圆: -.:.■■■- :.-u :交于A , B 两点,若△OAB 是 2 a z b z 直角三角形,则椭圆的离心率为()A.丄B.C.D .2332【解答】解:•••椭圆C 的两个焦点与A 、B 两点,△ OAB 是直角三角形,二AB=a,••• ?孑=曲站3,a ?e=「, 故选:C.10. (5分)已知数列{a n }满足:a i =1,a n =2c h -1+1 (n > 2),为求使不等式 a 什a 2+a 3+・・+a n <k 的最大正整数n ,某人编写了如图所示的程序框图,在框图的 判断框中的条件和输出的表达式分别为()A . S v k ,iB . S v k , i - 1C . S >k ,iD . S >k ,i - 1【解答】解:由题意,进入循环的条件应为数列的和 S< k , 故判断框中的条件应为S< k .由程序框图可知i 为数列项数计数,先累加,后判断,故输出的数列的项数应为 第9页(共20页)即 A (:,;),2 4 a 2 2且4b 2i - 1.故选:B.11. (5分)为得到函数f (x)=2sinxcosx_ _ 口丄_ _ _工.的图象,可以把函数二:,:|「-门门—:?.-1的图象()A.向左平移"个单位B.向左平移厂个单位4 2C•向右平移宀个单位D.向右平移个单位4 2【解答】解:函数f (x)=2si nxcosx■眉(虽nJ© 口S2Z),=sin 2x—;cos2x,=2sin (2x-——),3所以:①函数Z yi :x=2cos( 2x- 一)的图象向左平移三个单位,■J L 1一得到:兀y=2co< 2 (x+ ) ]=2cos (2x+ )的图象,故A错误.②函数.I .. I =2cos (2x-丁)的图象向左平移=个单位,得到:O 0 也的图象,故B错误.y=2co< 2 (x+ ) -丁] =2cos (2x£O③函数-■-- 」=2cos(2x-…)的图象向右平移]个单位,得到:3 3 4y=2co< 2 (x-丄)-——]=2cos (2x-丄=2sin(2x-——)的图象,故C正确.4 3 6 3④函数―一“i二::y.=2cos (2x- 一)的图象向右平移—个单位,得到:V 0 乙y=2co< 2 (X--—)-= ] =2cos (2x- )的图象,故D 错误.故选:C12. (5分)图是某几何体的三视图,则该几何体的各个棱长中,最长的棱的长度为()2 T正规图侧视图俯视图A. 3匚B.寸丨丄C. “D. 3匚【解答】解:由几何体的三视图得所求几何体ABCD为圆中粗线所表示的图形, 最长棱是AC,由长方体对角线长公式得:AC y --- 2"=「「.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. (5分)」匚展开式的常数项是20 .(用数字作答)x【解答】解::「匚展开式的通项为•. /---,令6-2r=0? r=3;令6-2r=- 1, r无整数解,所以,展开式的常数项为-'_.||,故答案为:20.14. (5分)已知变量x,y满足条件r十2y-3>0,则2x- 3y的最小值等于一-3 .2rC 9-y第11页(共20页).■/ -「,作出可行域如图,【解答】解:由变量x, y满足条件,19-y化目标函数z=2x- 3y为y=:x-',3 3由图可知,当直线y=:x-过B (3, 3)时3 3直线在y轴上的截距最大,z有最小值为2X3-3X3=- 3.故答案为:-3.15. (5分)如图,在△ ABC中,D是AB上一点,工若CD丄CA 川-:, 则1“ | =.6【解答】解:由已知在厶ABC中,D是AB上一点,「■ ■ ■,可得二■一U- 乙CD丄CA,厂〕・:|,-* —* 3~2 1―•—•CD - CB^-CD pCD ・CA 二6・故答案为:6.16. (5分)已知a , b , c 分别为锐角△ ABC 的三个内角A , B , C 的对边,a=2, 且(2+b ) ( sinA - sinB ) = ( c - b ) sinC ,则厶ABC 周长的取值范围为• '■:.可得三角形的周长为:a+b+c=「 si nB+「 si nC+23 3 4屈.= sin3 二一 -sinB+一 - (—— cosB+〔 sinB ) +2 3 3 2 2 =2 si nB+2cosB^2 =4sin (B+丄)+2,6••• B €( 一,丄),sin (B+ )€(- , 1],6 2 6 2 4sin (B+—) +2€「■ '■■,6故答案为:.三、解答题(本大题共5小题,共70分■解答应写出文字说明、证明过程或演算 步骤.)(1) 求数列{a n }的通项公式;(2) 设数列{a n a n +1}的前n 项和为T n ,求证:..七 【解答】(本小题满分12分)【解答】解:由已知及正弦定理可得:(a+b ) ( a - b ) = ( c - b ) c , 即由正弦定理可得:二,可得: 2b= : sinB, c= : g +2 可得周长的取值范围为: (2+2 V3 - 6]17. (12分)已知数列{a n }满足:a i =1,(n 》2).,得 A=60°,2+c 2-asin (120- B ) 2arrl + 1所以;一:是以2为公差的等差数列, 所以—.:-, 所以数列{a n 的通项公式为-■ n1 ,2n+l 2 ^2n-L 2n+l 'T n = =i :; ! 丨’5 2 U 2n+l 218. (12分)为了解学生完成数学作业所需时间,某学校统计了高三年级学生每 天完成数学作业的平均时间介于 30分钟到90分钟之间,图是统计结果的频率分 布直方图.(1) 数学教研组计划对作业完成较慢的 20%的学生进行集中辅导,试求每天完 成数学作业的平均时间为多少分钟以上的学生需要参加辅导?(2) 现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不 超过50分钟的人数为X ,求X 的分布列和期望.【解答】(本小题满分12分)解:(1)设每天完成作业所需时间为x 分钟以上的同学需要参加辅导, 则由频率分布图得:(70 - x )x 0.02+ (90 - 70)x 0.005=0.2,解得 x=65 (分钟), 所以,每天完成数学作业的平均时间为 65分钟以上的同学需要参加辅导.⑴解:一宀'—-an-l a n-l2n-l⑵证明:由(1)得1+*■■+- 1 1(2)把统计的频率作为概率,则选出的每个学生完成作业的时间不超过50分钟的概率为0.2,X〜B(4, 0.2),P (X=0) =O0?0.20?0.84=0.4096,P (X=1) =C41?0.2?0.83=0.4096,2 2 2P (X=2) =C ?0.2 ?0.8 =0.1536,3 3P (X=3) =03?0.23?0.8=0.0256,P (X=4) =CC4?0.24=0.0016.••• X的分布列为:EX=0X 0.4096+1 0.4096+2 0.1536+3 0.0256+4 0.0016=0.8.19. (12分)如图,在三棱锥K- ABC中,D, E, F分别是KA, KB, KC的中点, 平面KBCL平面ABC, AC丄BC, △ KBC是边长为2的正三角形,AC=3(1)求证:BF丄平面KAC(2)求二面角F- BD-E的余弦值.【解答】(本小题满分12分)证明:(1)v在三棱锥K- ABC中,D, E, F分别是KA, KB, KC的中点,平面KBCL平面ABC, AC丄BC, △ KBC是边长为2的正三角形,AC=3 •如图,以C为原点,CB为x轴,AC为y轴,过C作平面ABC的垂线为z轴,建立空间直角坐标系,则■■- L' , B( 2, 0, 0), C( 0 , 0 , 0) , A( 0 , - 3, 0), F(] , 0,),第15页(共20页)•••"・ 1- ;f ;丄「,••• BF 丄 CK••• BF 丄 CA ,•••CA CK 是平面KAC 内的两条相交直线, ••• BF 丄平面KAC解:(2) D 寺—鲁,省),五=(—魯—器#),丽=(—養,0,爭),蘇= (-1, 0,),设平面BDE (即平面ABK )的一个法向量为z. yBD^a-b^^O ,取 4=3,得 + n*BK=-a+V3c=0 设二面角的平面角为9, 贝U cos 9 二[R .=; =,I m I v | n | V4 T V16 4•••二面角F- BD- E 的余弦值为1420.( 12分)已知椭圆:的离心率为77, Fi , F2是椭圆的左、z b‘ID =⑴0,:,则丿0,设平面BDF 的一个法向量:,则、2=0,取x=1,得右焦点,P是椭圆上一点,|计「-;叶:的最小值为2.(1)求椭圆C的方程;(2)过点冃且与x轴不重合的直线I交椭圆C于M , N两点,圆E是以Fi为圆心椭圆C的长轴长为半径的圆,过F2且与I垂直的直线与圆E交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(1)已知•,一:「■二;.[的最小值为b2- C2=2,a 2 1匸又a2=b2+c2,2 2解得a2=4,b2=3,所以椭圆方程为■.亠’1(2)当I与x轴不垂直时,设I的方程为y=k (x- 1)(心0),M (xi,yi),N (X2, y).y=k(x'l)由* / 2 得(4k2+3 ) x2- 8『x+4k2- 12=0 .则—=1l宀1,Sk 2昶宀121‘ 4k z+3 1£ 4k z+3所以lf r'- . .. < :■1.£4k2+3过点F2 (1,0)且与I垂直的直线.1 : "・■ :,F1到m的距离为^亠,k Vk2+1可得当I与x轴不垂直时,四边形MPNQ面积的取值范围为;一_ .当I与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为•二’_ .21. (12分)设f (x) =x (Inx—1) +a (2x—x2), a€ R.故四边形MPNQ的面积:1 "二匚j第仃页(共20页)(1)令g (x) =f'(x),求g (x)的单调区间;(2)已知f (x)在x=1处取得极大值,求实数a的取值范围.【解答】解:(1)由f (x) =lnx - 2ax+2a,可得g (x) =lnx- 2ax+2a, x€( 0, +^),则—J亠亠当a<0时,x€( 0, +x)时,g' (x)> 0,函数g (x)单调递增,当a>0时,一;….•■时,g' (x)> 0,函数g (x)单调递增,2a■, ■', …一时,g' (x)v 0,函数g (x)单调递减.2a所以当a< 0时,函数g (x)的单调递增区间为(0, +x),当a>0时,函数g (x)的单调递增区间为门亠.,单调递减区间为2a(圭,(2)由(1)知,f (1) =0.①当a< 0时,f (x)单调递增,所以当x€( 0, 1)时,f (x)v 0, f (x)单调递减,当x€( 1, +x)时,f (x)>0, f (x)单调递增,所以f ( X)在x=1处取得极小值,不合题意.②当「I时,1二,由(I)知f (x)在』. 「内单调递增,可得当x€( 0, 1)时,f (x)V 0,「]. ―时,f (x)> 0,2a所以f (乂)在(0, 1)内单调递减,在;〕.. 亍]内单调递增,2a所以f ( X)在x=1处取得极小值,不合题意.③当4一;时,即打-i. , f (乂)在(0 , 1)内单调递增,在(1 , +x)内单调递2 2a减,所以当x€( 0, +x)时,f (x)< 0, f (x)单调递减,不合题意.④当二二丄时,即,当亠1 •:时,f (x)> 0, f ( x)单调递2 2a 2a当x€( 1, +x)时,f (x)V 0, f (x)单调递减,所以f (x)在x=1处取得极大值,合题意.综上可知,实数a的取值范围为■■.2第20页(共20页)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4 :坐标系与参数方程]22. (10分)已知极坐标的极点在平面直角坐标系的原点0处,极轴与x轴的非负半轴重合,且长度单位相同,直线I的极坐标方程为| :,曲线C的参数方程为:■:,(a为参数),其中a€ [0,2n).(y=2+3sinCl(1)写出直线I的直角坐标方程及曲线C的普通方程;(2)若A,B为曲线C与直线I的两交点,求|AB| .【解答】(本小题满分10分)【选修4 - 4:坐标系与参数方程】解:(I) I直线I的极坐标方程为j ■,, I;I ;,•••:;」:,3直线I的直角坐标方程:Lj—= '1曲线C:•—:(a为参数),ly=2+3sina消去参数可得曲线C的普通方程为: 「迁,;小■ '!.(U)由(I)可知,(讣卫+^乂二g的圆心为D (皿,2),半径为3. 设AB中点为M,连接DM,DA,圆心到直线I的距离I _二,二DM=2,2又T DA=3,所以,匸,•丨「丨二「J[选修4-5:不等式选讲]23 .设f (x) =| 2x-3|+| x+1| .(1)求不等式f (x)v x+4的解集;(2)若函数g (x) =f (x) +ax有两个不同的零点,求实数a的取值范围.【解答】解:(1) f (x) =| 2x-3|+| x+1| .不等式f (x)v x+4转化为:| 2x—3|+| x+11 v x+4令:2x- 3=0, x+仁0,解得:x=- 1,2①当X》「时,22x- 3+x+1 v x+4,解得:x v3;则:合以二E②当—1 v x v 时,23 —2x+x+1 v x+4,解得:x> 0,则:-一「「.2③当x< —1时,3 —2x —x- 1 v x+4,无解,则:解集为?综合①②③得:不等式解集为(0, 3).(2)函数g(x)=f(x)+ax有两个不同的零点,即:g (x)=| 2x—3|+| x+1|+ax=0 有两个实数根,函数 f (x)=|2x-3|+| x+1| =—ax有两个交点.(33z-2 (x>y)-x+4(-l<x<|)-3x+2 -1)L利用函数的图象,利用(芦心,解得A(容冷)y=-x+4 2 2则:当-a「一且-a v3时,函数的图象有两个交点.即:可得-4-。
贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+ B.(1)+∞C. (1,3)D .(3,)+∞2. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成()A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥03. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .4. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm3A .πB .2πC .3πD .4π5. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1)6. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=()A .30°B .60°C .120°D .150°7. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .(0,]C .(0,)D .[,1)8. 从一个边长为的等边三角形的中心、各边中点及三个顶点这个点中任取两个点,则这两点间的距离小27于的概率是()1班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A . B . C .D .717374769. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)10.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日11.已知椭圆,长轴在y 轴上,若焦距为4,则m 等于()A .4B .5C .7D .812.已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确二、填空题13.已知实数a >b ,当a 、b 满足 条件时,不等式<成立.14.某几何体的三视图如图所示,则该几何体的体积为 15.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .16.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 . 17.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE 所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .18.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .三、解答题19.(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直1C 14822=+y x 21F F 、1F 于轴的直线,直线垂直于点,线段的垂直平分线交于点.2l P 2PF 2l M (1)求点的轨迹的方程;M 2C (2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积2F BD AC 、D C B A 、、、ABCD 的最小值.20.已知{a n }为等比数列,a 1=1,a 6=243.S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35.(1)求{a n }和{B n }的通项公式;(2)设T n =a 1b 1+a 2b 2+…+a n b n ,求T n . 21.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.22.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1;(II )求证:EF ∥平面B 1BCC 1;(III )求四棱锥B ﹣A 1ACC 1的体积.23.【南师附中2017届高三模拟二】已知函数.()()323131,02f x x a x ax a =+--+>(1)试讨论的单调性;()()0f x x ≥(2)证明:对于正数,存在正数,使得当时,有;a p []0,x p ∈()11f x -≤≤(3)设(1)中的的最大值为,求得最大值.p ()g a ()g a24.(本题满分12分)已知向量,,,记函数(sin cos ))a x x x =+r )cos sin ,(cos x x x -=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在中,角的对边分别为且满足,求的取值范围.ABC ∆C B A ,,c b a ,,C a c b cos 22=-)(B f【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m 的范围.2. 【答案】D【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题∴否定命题为:∀x∈R,都有x2+1≥0.故选D.3.【答案】D【解析】解:设|PF1|=t,∵|PF1|=|PQ|,∠F1PQ=60°,∴|PQ|=t,|F1Q|=t,由△F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,∴|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,∴椭圆的离心率为:e===.故选D.4.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.5.【答案】A【解析】解:∵偶函数f (x )在[0,+∞)上是增函数,则f (x )在(﹣∞,0)上是减函数,则f (x ﹣2)在区间[,1]上的最小值为f (﹣1)=f (1)若f (ax+1)≤f (x ﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax ≤0恒成立则﹣2≤a ≤0故选A 6. 【答案】A 【解析】解:∵sinC=2sinB ,∴c=2b ,∵a 2﹣b 2=bc ,∴cosA===∵A 是三角形的内角∴A=30°故选A .【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题. 7. 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 8. 【答案】A【解析】两点间的距离小于共有3种情况,1分别为中心到三个中点的情况,故两点间的距离小于的概率.127317P C ==9. 【答案】C【解析】解:令f (x )=x 2﹣mx+3,若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0,解得:m ∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.12.【答案】B【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.二、填空题13.【答案】 ab>0 【解析】解,当ab>0时,∵a>b,∴>,即>,当ab<0时,∵a>b,∴<,即<,综上所述,当a、b满足ab>0时,不等式<成立.故答案为:ab>0,.【点评】本题考查二类不等式饿性质,属于基础题.14.【答案】 26 【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.15.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.16.【答案】 {1,6,10,12} .【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题. 17.【答案】 4或 .【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.18.【答案】 8π .【解析】解:由题意旋转体的体积V===8π,故答案为:8π.【点评】本题给出曲线y=x 2与直线y=4所围成的平面图形,求该图形绕xy 轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题. 三、解答题19.【答案】(1);(2).x y 82=964【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定2MF 2MF MP =义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四AC BD 边形面积.当直线和的斜率都存在时,不妨设直线的方程为,则直ABCD 22b S =AC BD AC ()2-=x k y 线的方程为.分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,BD ()21--=x ky AC .利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,BD ABCD BD AC S 21=即可得出.(2)当直线的斜率存在且不为零时,直线的斜率为,,,则直线的斜率为,AC AC ),(11y x A ),(22y x C BD k1-直线的方程为,联立,得.111]AC )2(-=x k y ⎪⎩⎪⎨⎧=+-=148)2(22y x x k y 0888)12(2222=-+-+k x k x k ∴,.2221218k k x x +=+22212188k k x x +-=.由于直线的斜率为,用代换上式中的。
2018年贵州省贵阳市高考一模数学试卷(理科)【解析版】
2018年贵州省贵阳市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|2x>},B={﹣3,﹣2,﹣1},则A∩B=()A.∅B.{﹣3,﹣2,﹣1}C.{﹣2,﹣1}D.{x|x>﹣3}2.(5分)设是复数z的共轭复数,满足=,则|z|=()A.2B.2C.D.3.(5分)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70、60、60、50、60、40、40、30、30、10,则这组数据的众数、中位数、平均数的和为()A.170B.165C.160D.1504.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.3B.6C.10D.125.(5分)某程序框图如图所示,若该程序运行后输出的值是,则整数a的值为()A.6B.7C.8D.96.(5分)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱7.(5分)把函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),那么所得图象的一条对称轴方程为()A.x=B.C.D.8.(5分)已知等比数列{a n}的前n项和为S n,且a1=,a2a6=8(a4﹣2),则S2018=()A.22017﹣B.1﹣()2017C.22018﹣D.1﹣()20189.(5分)已知奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b 10.(5分)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是()A.8+4B.12C.8+4D.1011.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为,△AOB的面积为2,则p=()A.2B.1C.2D.312.(5分)已知函数f(x)=的图象上有两对关于y轴对称的点,则实数k的取值范围是()A.(0,e)B.(0,e﹣2)C.(0,2e2)D.(0,e﹣2)二、填空题,本题共4小题,每小题5分,共20分.13.(5分)若向量=(x,1)与向量=(1,﹣2)垂直,则|+|=.14.(5分)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.15.(5分)若直线l:ax﹣3y+12=0(a∈R)与圆M:x2+y2﹣4y=0相交于A、B 两点,若∠ABM的平分线过线段MA的中点,则实数a=.16.(5分)已知底面是正六边形的六棱锥P﹣ABCDEF的七个顶点均在球O的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为,则球O 的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,角A,B,C所对的边长分别是a,b,c,AB边上的高h=c.(Ⅰ)若△ABC为锐角三角形,且cos A=,求角C的正弦值;(Ⅱ)若∠C=,M=,求M的值.18.(12分)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(Ⅰ)求甲、乙两名学生共答对2个问题的概率.(Ⅱ)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?19.(12分)如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,P A=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.20.(12分)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,•=0,过F2垂直于x轴的直线交椭圆C 于A,B两点,且|AB|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点(2,﹣1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.21.(12分)已知函数f(x)=lnx+x2﹣ax+a(a∈R).(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求实数a的取值范围;(Ⅱ)若函数f(x)在x=x1和x=x2处取得极值,且x2≥x1(e为自然对数的底数),求f(x2)﹣f(x1)的最大值.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C:(α为参数),在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ+)=﹣1.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)过点M(﹣1,0)且与直线l平行的直线l1交曲线C于A,B两点,求点M到A,B两点的距离之和.[选修不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)解不等式f(x)>﹣x;(Ⅱ)若关于x的不等式f(x)≤a2﹣2a的解集为R,求实数a的取值范围.2018年贵州省贵阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|2x>},B={﹣3,﹣2,﹣1},则A∩B=()A.∅B.{﹣3,﹣2,﹣1}C.{﹣2,﹣1}D.{x|x>﹣3}【解答】解:A={x|2x>}={x|x>﹣3}B={﹣3,﹣2,﹣1},则A∩B={﹣2,﹣1},故选:C.2.(5分)设是复数z的共轭复数,满足=,则|z|=()A.2B.2C.D.【解答】解:∵==,∴|z|=||=.故选:B.3.(5分)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70、60、60、50、60、40、40、30、30、10,则这组数据的众数、中位数、平均数的和为()A.170B.165C.160D.150【解答】解:数据70、60、60、50、60、40、40、30、30、10的众数是60、中位数是45、平均数是45,故众数、中位数、平均数的和为150,故选:D.4.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.3B.6C.10D.12【解答】解:实数x,y满足约束条件的可行域如图所示:联立,解得A(3,﹣4).化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×3+4=10.故选:C.5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则整数a的值为()A.6B.7C.8D.9【解答】解:当S=1,k=1时,应不满足退出循环的条件,故S=,k=2;当S=,k=2时,应不满足退出循环的条件,故S=,k=3;当S=,k=3时,应不满足退出循环的条件,故S=,k=4;当S=,k=4时,应不满足退出循环的条件,故S=,k=5;当S=,k=5时,应不满足退出循环的条件,故S=,k=6;当S=,k=6时,应不满足退出循环的条件,故S=,k=7;当S=,k=7时,应满足退出循环的条件,故整数a的值为6,故选:A.6.(5分)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,∴在这个问题中,丙所得为1钱.故选:D.7.(5分)把函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),那么所得图象的一条对称轴方程为()A.x=B.C.D.【解答】解:函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),可得:y=sin(2x+)+1.令2x+=,k∈Z.可得:x=,令k=0,可得图象的一条对称轴方程为x=.故选:D.8.(5分)已知等比数列{a n}的前n项和为S n,且a1=,a2a6=8(a4﹣2),则S2018=()A.22017﹣B.1﹣()2017C.22018﹣D.1﹣()2018【解答】解:根据题意,设等比数列{a n}的公比为q,若a2a6=8(a4﹣2),则有(a4)2=8(a4﹣2),即a42﹣8a4+16=0,解可得a4=4,则q3===8,则q=2,则S2018==22017﹣,故选:A.9.(5分)已知奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b【解答】解:∵奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),∴a=﹣f(log3)=f(log310)<b=f(log39.1)<c=f(20.8),则a,b,c的大小关系为a<b<c.故选:B.10.(5分)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是()A.8+4B.12C.8+4D.10【解答】解:三视图可知三棱锥是从长方体中截出来的P﹣ABC,数据如图:S P AB=×4×4=8,S△P AC=×2 ×4=4 .S△ABC=×4×2=4,S△PBC=×2 ×2 =4 .则该三棱锥的四个面的面积中最大的是:8.面积的最小值为4.所以则该三棱锥的四个面的面积中最大与最小之和是:12,故选:B.11.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为,△AOB的面积为2,则p=()A.2B.1C.2D.3【解答】解:双曲线﹣=1(a>0,b>0)的离心率e=,∴e2===1+=5,∴=4,∴=2,∴双曲线﹣=1(a>0,b>0)的两条渐近线方程为y=±2x,∵抛物线y2=2px(p>0)的准线方程为x=﹣,∴或,解得,或,∴|AB|=p﹣(﹣p)=2p,点O到AB的距离为d=,=|AB|×d==2,∴S△AOB解得p=2,故选:A.12.(5分)已知函数f(x)=的图象上有两对关于y轴对称的点,则实数k的取值范围是()A.(0,e)B.(0,e﹣2)C.(0,2e2)D.(0,e﹣2)【解答】解:当x<0时,f(x)=ln(﹣2x),则此时函数f(x)关于y轴对称的函数为y=ln2x,x>0,若函数f(x)=的图象上有两对关于y轴对称的点,等价为当x≥0时,函数f(x)=kx﹣3与函数g(x)=ln2x,x>0有两个交点即可,由题意可得g(x)的图象和y=kx﹣3(x>0)的图象有两个交点.设直线y=kx﹣3与y=g(x)相切的切点为(m,ln2m)由g(x)的导数为g′(x)==,即有切线的斜率为=k,又ln2m=km﹣3,即ln2m=•m﹣3=1﹣3=﹣2,解得m=e﹣2,k=2e2,由图象可得0<k<2e2时,有两个交点,故选:C.二、填空题,本题共4小题,每小题5分,共20分.13.(5分)若向量=(x,1)与向量=(1,﹣2)垂直,则|+|=.【解答】解:根据题意,向量=(x,1)与向量=(1,﹣2)垂直,则有•=x﹣2=0,则x=2;则向量=(2,1),则+=(3,﹣1),则|+|==;故答案为:14.(5分)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.【解答】解:某校选定4名教师去3个边远地区支教(每地至少1人),基本事件总数n=•=36,甲、乙两人在同一边远地区包含的基本事件个数m==6,∴甲、乙两人不在同一边远地区的概率是p=1﹣=1﹣=.故答案为:.15.(5分)若直线l:ax﹣3y+12=0(a∈R)与圆M:x2+y2﹣4y=0相交于A、B两点,若∠ABM的平分线过线段MA的中点,则实数a=.【解答】解:如图,由圆M:x2+y2﹣4y=0,得x2+(y﹣2)2=4,圆心M(0,2),半径为2,直线l:ax﹣3y+12=0(a∈R)过定点A(0,4),要使∠ABM的平分线过线段MA的中点,则AM=BM,∴B为(,3)或(,3),∴,即a=.故答案为:.16.(5分)已知底面是正六边形的六棱锥P﹣ABCDEF的七个顶点均在球O的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为,则球O的表面积为.【解答】解:当六棱锥P﹣ABCDEF为正六棱锥时,体积最大,由于底面正六边形的边长为1,故底面外接圆半径r=1,底面面积S==,设高为h,则V==,解得:h=2,设此时外接球半径为R,则球心到底面的距离d=|h﹣R|=|2﹣R|,由R2=d2+r2得:R2=(2﹣R)2+1,解得:R=,故球O的表面积为4πR2=,故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,角A,B,C所对的边长分别是a,b,c,AB边上的高h=c.(Ⅰ)若△ABC为锐角三角形,且cos A=,求角C的正弦值;(Ⅱ)若∠C=,M=,求M的值.【解答】解:(Ⅰ)作CD⊥AB与D,∵△ABC为锐角三角形,且cos A=,∴sin A==.⇒AD=cot A•CD=.,∴=.由正弦定理得=.(Ⅱ)∵S=.△ABC∴.由余弦定理得.∴M==.18.(12分)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(Ⅰ)求甲、乙两名学生共答对2个问题的概率.(Ⅱ)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?【解答】解:(Ⅰ)由题意得甲、乙两名学生共答对2个问题的概率:P=×+=.(Ⅱ)设学生甲答对的题数为X,则X的所有可能取值为1,2,3,P(X=1)==,P(X=2)==,P(X=3)==,E(X)==2,D(X)=(1﹣2)2×+(2﹣2)2×+(3﹣2)2×=,设学生乙答对题数为Y,则Y所有可能的取值为0,1,2,3,由题意知Y~B(3,),E(Y)=3×=2,D(Y)==,E(X)=E(Y),D(X)<D(Y),∴甲被录取的可能性更大.19.(12分)如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,P A=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.【解答】(I)证明:∵P A=PD,Q是AD的中点,∴PQ⊥AD,又平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,PQ⊂平面P AD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面P AD,∴BQ⊥平面P AD,又BQ∥CD∥MN,∴MN⊥平面P AD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=P A=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.20.(12分)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,•=0,过F2垂直于x轴的直线交椭圆C 于A,B两点,且|AB|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点(2,﹣1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.【解答】解:(Ⅰ)由•=0,可得b=c,∵过F2垂直于x轴的直线交椭圆C于A,B两点,且|AB|=,∴=,由,解得a2=2,b2=1,∴椭圆C的方程为+y2=1(Ⅱ)经过点(2,﹣1)且不经过点M的直线l的方程为y+1=k(x﹣2),即y =kx﹣2k﹣1,代入椭圆程+y2=1可得(2k2+1)x2﹣4k(1+2k)x+(8k2+8k)=0,△=﹣16k(k+2)>0,设G(x1,y1),H(x2,y2).则x1+x2=,x1x2=,∴k1+k2=+=+=2k﹣=2k﹣(2k+1)=﹣1,即k1+k2=﹣121.(12分)已知函数f(x)=lnx+x2﹣ax+a(a∈R).(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求实数a的取值范围;(Ⅱ)若函数f(x)在x=x1和x=x2处取得极值,且x2≥x1(e为自然对数的底数),求f(x2)﹣f(x1)的最大值.【解答】解:(Ⅰ)∵f′(x)=+x﹣a,(x>0),又f(x)在(0,+∞)递增,故恒有f′(x)≥0,即+x﹣a≥0(x>0)恒成立,a≤(x+)min,而x+≥2=2,当且仅当x=1时取“=”,故a≤2,即函数f(x)在(0,+∞)递增时a的范围是(﹣∞,2];(Ⅱ)f(x2)﹣f(x1)=ln+(﹣)﹣a(x2﹣x1),又f′(x)=(x>0),故x1,x2是方程x2﹣ax+1=0的2个根,由韦达定理得:x1+x2=a,x1x2=1,故f(x2)﹣f(x1)=ln+(﹣)﹣a(x2﹣x1),=ln﹣(﹣),设t=(t≥),令h(t)=lnt﹣(t﹣),(t≥),h′(t)=<0,∴h(t)在[,+∞)递减,h(t)≤h()=(1﹣+),故f(x2)﹣f(x1)的最大值是(1﹣+).请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C:(α为参数),在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ+)=﹣1.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)过点M(﹣1,0)且与直线l平行的直线l1交曲线C于A,B两点,求点M到A,B两点的距离之和.【解答】解:(Ⅰ)∵曲线C:(α为参数),∴曲线C化为普通方程得:+y2=1,∵直线l的极坐标方程为ρcos(θ+)=﹣1.∴ρcosθ﹣ρsinθ=﹣2,∴直线l的直角坐标方程为x﹣y+2=0.(Ⅱ)直线l1的参数方程为(t为参数),代入=1,化简,得:,设A,B两点对应的参数分别为t1,t2,则t1+t2=,t1t2=﹣1,∴点M到A,B两点的距离之和:|MA|+|MB|=|t1|+|t2|=|t1﹣t2|===.[选修不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)解不等式f(x)>﹣x;(Ⅱ)若关于x的不等式f(x)≤a2﹣2a的解集为R,求实数a的取值范围.【解答】解:(Ⅰ)不等式f(x)>﹣x,即为|x﹣2|﹣|x+1|>﹣x,当x≥2时,x﹣2﹣x﹣1>﹣x,可得x>3,即x>3;当x≤﹣1时,2﹣x+x+1>﹣x,解得x>﹣3,即﹣3<x≤﹣1;当﹣1<x<2时,2﹣x﹣x﹣1>﹣x,解得x<1,即﹣1<x<1,综上可得原不等式的解集为{x|x>3或﹣3<x<1};(Ⅱ)关于x的不等式f(x)≤a2﹣2a的解集为R,即有a2﹣2a≥f(x)的最大值,由|x﹣2|﹣|x+1|≤|x﹣2﹣x﹣1|=3,当且仅当x≤﹣1时,等号成立,可得a2﹣2a≥3,解得a≥3或a≤﹣1.第21页(共21页)。
2018届贵州省贵阳市第一中学高三12月月考数学(理)试题(解析版)
2018届贵州省贵阳市第一中学高三12月月考数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集为,集合,,则图中阴影部分表示的集合为()A. B. C. D.【答案】B【解析】有韦恩图中知道表示的是,,.,故答案为:B。
2. 已知为虚数单位,复数满足,则()A. B. C. D.【答案】D【解析】复数满足,故答案为:D。
3. 直线:,:,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】直线:,:,若,则故“”是“”的充分不必要条件.故答案为:A。
4. 某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为和,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为()A. B. C. D.【答案】C【解析】两户中至少有一户获得扶持资金的概率故答案为:C。
5. 已知平面向量,,,若,则与的夹角为()A. B. C. D.【答案】C【解析】根据条件,,,代入求得故答案为:C。
6. 将函数的图象上所有点的横坐标伸长到原来的倍,再向右平移个单位长度,得到函数的图象,则图象的一条对称轴为()A. B. C. D.【答案】C【解析】根据题意得到,对称轴为得到.故答案为:C。
7. 设定义在上的函数的导函数为,且满足,,则不等式的解集为()A. B. C. D.【答案】B【解析】根据题意可变形为设,故函数单调增,可等价为,故即解故答案为:B。
8. 过抛物线的焦点作倾斜角为锐角的直线,交抛物线于,两点,若,则直线的斜率为()A. B. C. D.【答案】C【解析】根据题意画出抛物线,画出准线,由AB两点向准线做垂线,垂足分别为,直线AB和准线交于点P,设BF=m,AF =2m,根据三角形相似得到BP=3m,故倾斜角的正弦值为故答案为:C .9. 某三棱锥的三视图如图所示,若该三棱锥的体积是,则该三棱锥的外接球的表面积为()A. B. C. D.【答案】A【解析】由三视图得到原图应该是个正四面体,是以正方体的各个面对角线为棱长的三棱锥,该三棱锥的体积是,设棱长为a,则得到棱长为,是正方体的面对角线,则正方体的边长为,则体对角线的长度为12.外接球的表面积为故答案为:A。
贵州省贵阳一中2017-2018学年高二上学期第一次月考理科数学试题(教师版) Word版含答案
13.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你依次写出最先检测的4颗种子的编号785,567,199,810
(下面摘取了随机数表第7行至第9行)
即这种产品的销售收入大约为82.5百万元
18.(本小题12分)
已知定圆 ,定直线 ,过 的一条动直线 与直线相交于 ,与圆 相交于 两点,
(1)当 与 垂直时,求出 点的坐标,并证明: 过圆心 ;
(2)当 时,求直线 的方程.
解:(Ⅰ)直线 的方程为 . 将圆心 代入方程易知 过圆心
(Ⅱ) 当直线 与 轴垂直时,易知 符合题意; 当直线与 轴不垂直时,设直线 的方程为 ,由于 , 由 ,解得 .
2
4
5
6
8
30
40
60
50
70
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10百万元时,销售额多大?
解:(1)根据表中所列数据可得散点图如图
(2)列出下表,并用科学计算器进行有关计算.
因此 ,
于是可得 ;
,因此所求回归直线方程是
(3)据上面求得的回归直线方程,当广告费支出为10百万元时 (百万元)
5.甲乙两位同学在高二的5次月考中数学成绩统计如茎叶图所示,若甲乙两人的平均成绩分别是 ,则下列正确的是(C)
A. ;乙比甲成绩稳定
B. ;甲比乙成绩稳定
C. ;乙比甲成绩稳定
D. ;甲比乙成绩稳定
6.在区域 内任意取一点P(x,y),则x2+y2>1的概率是(C)
2018年贵州省贵阳市田家炳中学高一数学理月考试题含解析
2018年贵州省贵阳市田家炳中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知直线的斜率是,在轴上的截距是,则此直线方程是().A.B.C.D.参考答案:A解:∵直线的斜率为,在轴上的截距是,∴由直线方程的斜截式得直线方程为,即.故选:.2. 在等比数列{a n}中,a n>0,且a2a4+2a3a5+a4a6=25,那么a3+a5=()A.5 B.10 C.15 D.20参考答案:A【考点】8G:等比数列的性质.【分析】由{a n}是等比数列,a2a4+2a3a5+a4a6=25,利用等比数列的通项公式知a32+2a3a5+a52=25,再由完全平方和公式知(a3+a5)2=25,再由a n>0,能求出a3+a5的值.【解答】解:∵{a n}是等比数列,且a n>0,a2a4+2a3a5+a4a6=25,∴a32+2a3a5+a52=25,∴(a3+a5)2=25,∵a n>0,∴a3+a5=5.故选:A.3. 函数的最小值是()A.3 B.8 C.0 D.-1参考答案:D4. 已知一扇形的弧所对圆心角为54°,半径为20cm,则扇形的周长为()A.6π cm B.60cm C.(40+6π)cm D.1080cm参考答案:C【考点】弧长公式.【分析】由条件利用扇形的弧长公式,求得扇形的弧长l的值,可得扇形的周长为l+2r的值.【解答】解:由题意,扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的弧长l=α?r=π?20=6π(cm),则扇形的周长为l+2r=6π+2×20=(6π+40)cm,故选:C.5. 已知,则的值为 ( )(A) (B)(C) (D)参考答案:C略6. 已知MP,OM,AT分别为角的正弦线、余弦线、正切线,则一定有()A. B. C. D.参考答案:B7. 若直线经过点,则此直线的倾斜角是()A. 45°B. 60°C. 120°D. 150°参考答案:D【分析】先通过求出两点的斜率,再通过求出倾斜角的值。
贵州省遵义2018届高三第一次月考数学试题(理)(含答案)
2017~2018学年度第一学期高三第一次模拟考试数学(理)试卷一、选择题.(每题5分,该部分共60分)1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,5A =,{}1,3,4B =,则()U C A B =U ( ){}{}{}{}.1 .2,5 .1,3,4,6 .1,2,3,4,5A B C D 2.若132iZ i+=-(i 是虚数单位),则Z =( ) . 2 .2 . 5 .5B C D3. "0"x >是1"2"x x+≥的( ) .A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件4.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当20x -≤≤时,()(2)f x x x =+,则(2018)f =( ).1 . 1 .3 .0A B C D -5.已知125ln , log 2, 2x y z π-===,则( ). . . .A x y z B x z y C z y x D y z x <<<<<<<<6.函数xy xe =的图象是( )BCDA7.已知10,sin cos ,25πααα-<<+=则22cos sin αα-=( )525725. . . .772524A B C D 8.1(ln +1) ex dx =⎰( ).1 . . 1 .1A B e C e D e +-9.已知函数2()log (2)(0a f x x x a =+>且 1)a ≠.当10,2x ⎛⎫∈ ⎪⎝⎭时,恒有()0f x >,则()f x 的单调递增区间为( )111.(,) . (0,) .(,) .(,)244A B C D -∞-+∞-∞--+∞10.已知2tan sin 3,02πααα⋅=-<<,则sin α=( )11 . . .2222A B C D --11.曲线(0,x y a a =>且0)a ≠,且在0x =处的切线方程是ln 210x y +-=,则a = ( )11. . 2 .ln 2 .ln 22A B C D 12.已知()22()2x x f x x k e e --=-++,()f x 与直线2y =有且仅有一个交点,则k =( ).2 .1 . 2 .1A B C D --二、填空题.(每题5分,该部分总分20分)13.若角α的终边经过点()1,2--,则2sin 2cos αα+=____________.14.命题“若2320x x -+=,则1x =或2x =”的逆否命题是________.15.已知函数()221sin ()1x x f x x +-=+,若2()3f α=,则()f α-=__________.16.若函数321()()2xf x x x e a =+-有三个不同的零点,则实数a 的取值范围是_________.三、解答题.(除21题10分外每题各12分,该部分共70分)17. (本小题12分)ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,且53a b =. (1)若60B ︒=,求cos A 的值; (2)若23c b a -=,求cos C 的值.18. (本小题12分)已知函数()5ln ()1kxf x x k R x =+-∈+,若曲线()y f x =在点(1,(1))f 处的切线与直线220x y +-=垂直,求k 的值及曲线在点(1,(1))f 处的切线方程.19. (本小题12分)已知等差数列{}n a 与等比数列{}n b 满足,111a b =+,224a b ==,且{}n a 的公差比{}n b 的公比小1.(1)求{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足()112(23)2n n n n n c a nb --=--,求数列{}n c 的前n 项和n T .20. (本小题12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∕∕BC ,CD BC ⊥,2,AD =3,4AB BC PA ===,M 为AD 的中点,N 为PC 上一点,且3PC PN =.(1)求证: MN ∕∕平面PAB ; (2)求二面角P AN M --的余弦值.21. (本小题10分)在直角坐标系xoy 中,圆C 的参数方程为2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴,建立极坐标系. (1)求圆C 的普通方程;(2)直线l 的极坐标方程是2sin()6πρθ+=,射线OM :6πθ=与圆C 的交点为,O P ,与直线l 的交点为Q ,求线段Q P 的长.22. (本小题12分)设函数1()ln ()f x x a x a R x=--∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值,若不存在,请说明理由.高三第一次模拟考试数学(理)参考答案一、1-5CACDD 6-10BCBAB 11-12AB二、13.1; 14.若1x ≠且2x ≠,则2320x x -+≠;15. 43; 16. 1210,2e -⎛⎫ ⎪⎝⎭三、17.(本题12分) (1)由sin sin A aB b =得sin A =53a b =,知a b <,,A B A ∴<为锐角,cos A ∴=(2)设3,5(0)a k b k k ==>,则273c a b k =+= 2222222925491cos 2302a b c k k k C ab k +-+-∴===-. 18.(本题12分) 解:'21()(1)k f x x x =-+,由题意'(1)2,124k f =∴-=,得4k =-,故4()5ln 1xf x x x =+++,(1)7f =,∴所求切线方程为250x y -+=. 19.(本题12分)解:(1)设{}n a 的公差为d ,{}n b 公比为q ,由题意有1121211441a b a a d b b q q d =+⎧⎪=+=⎪⎨==⎪⎪=+⎩解得113212a b d q =⎧⎪=⎪⎨=⎪⎪=⎩,2,2n n n a n b ∴=+=.(2)()()1121111(21)2122121(21)22n n n n C n n n n n n --⎛⎫===- ⎪+--++⋅-⎝⎭ 11122121n n T n n ⎛⎫∴=-= ⎪++⎝⎭.20.(本题12分)(1)证明:在BC 上取点Q 使Q 1B =,连接Q.Q N M 可证得Q N ∕∕PB ,Q M ∕∕AB ,∴平面Q MN ∕∕平面PAB ,得MN ∕∕平面PAB .(2)分别以Q A 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系A xyz -(如图)则2228(0,0,4) (0,0,0) (0,1,0) (22,2,0) N(,,)333P A M C ,解得平面AMN 法向量11(2,0,)2n =-u r ,平面法向量()212261,2,0cos ,9n n n -=-∴=u u r u r u u r .21.(本题12分)。
贵阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
贵阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④2. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( )A .64πB .16πC .12πD .4π3. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A .k >7B .k >6C .k >5D .k >4 4. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )A .13B .15C .12D .115. 椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的22:143x y C +=12,A A P C 12,A A 1PA 取值范围是,那么直线斜率的取值范围是( )[]1,22PA A . B . C . D .31,42⎡⎤--⎢⎥⎣⎦33,48⎡⎤--⎢⎥⎣⎦1,12⎡⎤⎢⎥⎣⎦3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6.过抛物线y=x2上的点的切线的倾斜角()A.30°B.45°C.60°D.135°7.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能8.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符号不确定9.已知等比数列{a n}的公比为正数,且a4•a8=2a52,a2=1,则a1=()A.B.2C.D.10.已知△ABC是锐角三角形,则点P(cosC﹣sinA,sinA﹣cosB)在()A.第一象限B.第二象限C.第三象限D.第四象限11.已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()A.2对B.3对C.4对D.5对12.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2B.C.D.3二、填空题13.若函数f(x)=3sinx﹣4cosx,则f′()= .14.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则= .15.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是 .16.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN 所成角的余弦值为 .17.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .18.已知||=1,||=2,与的夹角为,那么|+||﹣|= .三、解答题19.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.20.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.21.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.22.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.23.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2(1)当a=1,b=0时解不等式;(2)a,b∈R,a≠b解不等式.24.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.贵阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.2.【答案】A【解析】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵AB=1,AC=2,∠BAC=60°,∴BC=,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=1,∵SA⊥平面ABC,SA=2∴球O的半径R=4,∴球O的表面积S=4πR2=64π.故选:A.【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.3.【答案】C【解析】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 0第一圈2 2 是第二圈3 7 是第三圈4 18 是第四圈5 41 是第五圈6 88 否故退出循环的条件应为k>5?故答案选C.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.4.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.5.【答案】B6.【答案】B【解析】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.7.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.8.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.9.【答案】D【解析】解:设等比数列{a n}的公比为q,则q>0,∵a4•a8=2a52,∴a62=2a52,∴q2=2,∴q=,∵a2=1,∴a1==.故选:D10.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B11.【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD为矩形∴BC⊥CD,CD⊥AD∵PD⊥矩形ABCD所在的平面∴PD⊥BC,PD⊥CD∵PD∩AD=D,PD∩CD=D∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D12.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.二、填空题13.【答案】 4 .【解析】解:∵f′(x)=3cosx+4sinx,∴f′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题. 14.【答案】 ﹣5 .【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,故,解得故==﹣5故答案为:﹣515.【答案】 a≤0或a≥3 .【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.16.【答案】 .【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题. 17.【答案】 x﹣y﹣2=0 .【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,故答案为x﹣y﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.18.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),.…(1分)由x∈(0,+∞),令f′(x)=0,得.当x变化时,f′(x),f(x)的变化如下表:xf′(x)﹣0+f(x)↘极小值↗故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】【解析】解:(Ⅰ)设F(c,0),M(c,y1),N(c,y2),则,得y1=﹣,y2=,MN=|y1﹣y2|==b,得a=2b,椭圆的离心率为:==.(Ⅱ)由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kx﹣y+b=0,由于圆x2+y2=4内切于△APQ,所以r=2=,得k=±(b>2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,∴y Q=y P=﹣2,不妨设点Q在y轴左侧,可得x Q=﹣x P=﹣2,则=,解得b=3,则a=6,∴椭圆方程为:.【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.21.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.22.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.23.【答案】【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)即x(x﹣1)≤0;…(4分)解得0≤x≤1,∴原不等式的解集为{x|0≤x≤1};…(6分)(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,∴(a﹣b)2x≥(a﹣b)2x2,(10分)又∵a≠b,∴(a﹣b)2>0,∴x≥x2;即x(x﹣1)≤0,…(12分)解得0≤x≤1;∴不等式的解集为{x|0≤x≤1}.…(14分)【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题. 24.【答案】【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},∴∁U B={x|x≥4},又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},∴A∩(∁U B)={x|4≤x≤5};(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,∴a的范围为a≤﹣1.【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.。
贵州省遵义2018届高三第一次月考数学试题(理)(含答案)
2017~2018学年度第一学期高三第一次模拟考试数学(理)试卷一、选择题.(每题5分,该部分共60分)1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,5A =,{}1,3,4B =,则()U C A B =( ){}{}{}{}.1 .2,5 .1,3,4,6 .1,2,3,4,5A B C D 2.若132iZ i+=-(i 是虚数单位),则Z =( ).2 . 5 .5B C D3. "0"x >是1"2"x x+≥的( ) .A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件4.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当20x -≤≤时,()(2)f x x x =+,则(2018)f =( ).1 . 1 .3 .0A B C D -5.已知125ln , log 2, 2x y z π-===,则( ). . . .A x y z B x z y C z y x D y z x <<<<<<<<6.函数xy xe =的图象是( )BCDA7.已知10,sin cos ,25πααα-<<+=则22cos sin αα-=( ) 525725. . . .772524A B C D 8.1(ln +1) ex dx =⎰( ).1 . . 1 .1A B e C e D e +-9.已知函数2()log (2)(0a f x x x a =+>且 1)a ≠.当10,2x ⎛⎫∈ ⎪⎝⎭时,恒有()0f x >,则()f x 的单调递增区间为( )111.(,) . (0,) .(,) .(,)244A B C D -∞-+∞-∞--+∞10.已知2tan sin 3,02πααα⋅=-<<,则sin α=( )311. . . .2222A B C D --11.曲线(0,xy a a =>且0)a ≠,且在0x =处的切线方程是ln 210x y +-=,则a= ( )11. . 2 .ln 2 .ln 22A B C D12.已知()22()2x x f x x k e e --=-++,()f x 与直线2y =有且仅有一个交点,则k =( ).2 .1 . 2 .1A B C D --二、填空题.(每题5分,该部分总分20分)13.若角α的终边经过点()1,2--,则2sin 2cos αα+=____________.14.命题“若2320x x -+=,则1x =或2x =”的逆否命题是________.15.已知函数()221sin ()1x x f x x +-=+,若2()3f α=,则()f α-=__________.16.若函数321()()2x f x x x e a =+-有三个不同的零点,则实数a 的取值范围是_________.三、解答题.(除21题10分外每题各12分,该部分共70分)17. (本小题12分)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且53a b =. (1)若60B ︒=,求cos A 的值; (2)若23c b a -=,求cos C 的值.18. (本小题12分)已知函数()5ln ()1kxf x x k R x =+-∈+,若曲线()y f x =在点(1,(1))f 处的切线与直线220x y +-=垂直,求k 的值及曲线在点(1,(1))f 处的切线方程.19. (本小题12分)已知等差数列{}n a 与等比数列{}n b 满足,111a b =+,224a b ==,且{}n a 的公差比{}n b 的公比小1. (1)求{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足()112(23)2n n n n n c a nb --=--,求数列{}n c 的前n 项和n T .20. (本小题12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∕∕BC ,CD BC ⊥,2,AD =3,4AB BC PA ===,M 为AD 的中点,N 为PC 上一点,且3PC PN =. (1)求证: MN ∕∕平面PAB ; (2)求二面角P AN M --的余弦值.21. (本小题10分)在直角坐标系xoy 中,圆C 的参数方程为2cos 22sin x y ϕϕ=⎧⎨=+⎩ (ϕ为参数),以O 为极点,x 轴的非负半轴为极轴,建立极坐标系. (1)求圆C 的普通方程;(2)直线l 的极坐标方程是2sin()536πρθ+=,射线OM :6πθ=与圆C 的交点为,O P ,与直线l 的交点为Q ,求线段Q P 的长.22. (本小题12分)设函数1()ln ()f x x a x a R x=--∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值,若不存在,请说明理由.高三第一次模拟考试数学(理)参考答案一、1-5CACDD 6-10BCBAB 11-12AB二、13.1; 14.若1x ≠且2x ≠,则2320x x -+≠;15. 43; 16. 1210,2e -⎛⎫ ⎪⎝⎭三、17.(本题12分) (1)由sin sin A aB b=得33sin 10A =,又由53a b =,知a b <,,A B A ∴<为锐角,cos 10A ∴= (2)设3,5(0)a k b k k ==>,则273c a b k =+= 2222222925491cos 2302a b c k k k C ab k +-+-∴===-.18.(本题12分) 解:'21()(1)k f x x x =-+,由题意'(1)2,124k f =∴-=,得4k =-,故4()5ln 1x f x x x =+++,(1)7f =,∴所求切线方程为250x y -+=.19.(本题12分)解:(1)设{}n a 的公差为d ,{}n b 公比为q ,由题意有1121211441a b a a d b b q q d =+⎧⎪=+=⎪⎨==⎪⎪=+⎩解得113212a b d q =⎧⎪=⎪⎨=⎪⎪=⎩,2,2n n n a n b ∴=+=.(2)()()1121111(21)2122121(21)22n n n n C n n n n n n --⎛⎫===- ⎪+--++⋅-⎝⎭ 11122121n n T n n ⎛⎫∴=-= ⎪++⎝⎭.20.(本题12分)(1)证明:在BC 上取点Q 使Q 1B =,连接Q.Q N M 可证得Q N ∕∕PB ,Q M ∕∕AB ,∴平面Q MN ∕∕平面PAB ,得MN ∕∕平面PAB .(2)分别以Q A 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系A x -(如图)则28(0,0,4) (0,0,0) (0,1,0) 2,2,0) N(,)333P A M C ,解得平面A M N 法向量11(2,0,)2n =-,平面法向量()212261,2,0cos ,9n n n-=-∴=. 21.(本题12分)。
贵阳市第一中学校2018-2019学年上学期高二数学12月月考试题含解析
贵阳市第一中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( ) A. B. C .2 D.2. sin45°sin105°+sin45°sin15°=( )A .0 B.C.D .13. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个4. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对5. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D106. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错7. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .48. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 9. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.10.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .611.如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2C .2D .612.已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.二、填空题13.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .14.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.15.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)16.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .17.已知1sin cos3αα+=,(0,)απ∈,则sin cos7sin12ααπ-的值为.18.如图,函数f(x)的图象为折线AC B,则不等式f(x)≥log2(x+1)的解集是.三、解答题19.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)20.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cosθ的值.21.在中,、、是 角、、所对的边,是该三角形的面积,且(1)求的大小; (2)若,,求的值。
贵州省遵义2018届高三第一次月考数学试题(理)(含答案)
2017~2018学年度第一学期高三第一次模拟考试数学(理)试卷一、选择题.(每题5分,该部分共60分)1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,5A =,{}1,3,4B =,则()U C A B =( ){}{}{}{}.1 .2,5 .1,3,4,6 .1,2,3,4,5A B C D 2.若132iZ i+=-(i 是虚数单位),则Z =( ).2 .5B C D3. "0"x >是1"2"x x+≥的( ) .A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件4.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当20x -≤≤时,()(2)f x x x =+,则(2018)f =( ).1 . 1 .3 .0A B C D -5.已知125ln , log 2, 2x y z π-===,则( ). . . .A x y z B x z y C z y x D y z x <<<<<<<<6.函数xy xe =的图象是( )BCDA7.已知10,sin cos ,25πααα-<<+=则22cos sin αα-=( ) 525725. . . .772524A B C D 8.1(ln +1) ex dx =⎰( ).1 . . 1 .1A B e C e D e +-9.已知函数2()log (2)(0a f x x x a =+>且 1)a ≠.当10,2x ⎛⎫∈ ⎪⎝⎭时,恒有()0f x >,则()f x 的单调递增区间为( )111.(,) . (0,) .(,) .(,)244A B C D -∞-+∞-∞--+∞10.已知2tan sin 3,02πααα⋅=-<<,则sin α=( )11. . .2222A B C D --11.曲线(0,xy a a =>且0)a ≠,且在0x =处的切线方程是ln 210x y +-=,则a = ( )11. . 2 .ln 2 .ln 22A B C D 12.已知()22()2x x f x x k e e --=-++,()f x 与直线2y =有且仅有一个交点,则k =( ).2 .1 . 2 .1A B C D --二、填空题.(每题5分,该部分总分20分)13.若角α的终边经过点()1,2--,则2sin 2cos αα+=____________.14.命题“若2320x x -+=,则1x =或2x =”的逆否命题是________.15.已知函数()221sin ()1x x f x x +-=+,若2()3f α=,则()f α-=__________.16.若函数321()()2x f x x x e a =+-有三个不同的零点,则实数a 的取值范围是_________.三、解答题.(除21题10分外每题各12分,该部分共70分)17. (本小题12分)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且53a b =. (1)若60B ︒=,求cos A 的值; (2)若23c b a -=,求cos C 的值.18. (本小题12分)已知函数()5ln ()1kxf x x k R x =+-∈+,若曲线()y f x =在点(1,(1))f 处的切线与直线220x y +-=垂直,求k 的值及曲线在点(1,(1))f 处的切线方程.19. (本小题12分)已知等差数列{}n a 与等比数列{}n b 满足,111a b =+,224a b ==,且{}n a 的公差比{}n b 的公比小1.(1)求{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足()112(23)2n n n n n c a nb --=--,求数列{}n c 的前n 项和n T .20. (本小题12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∕∕BC ,CD BC ⊥,2,AD =3,4AB BC PA ===,M 为AD 的中点,N 为PC 上一点,且3PC PN =. (1)求证: MN ∕∕平面PAB ; (2)求二面角P AN M --的余弦值.21. (本小题10分)在直角坐标系xoy 中,圆C 的参数方程为2cos 22sin x y ϕϕ=⎧⎨=+⎩ (ϕ为参数),以O 为极点,x 轴的非负半轴为极轴,建立极坐标系. (1)求圆C 的普通方程;(2)直线l的极坐标方程是2sin()6πρθ+=,射线OM :6πθ=与圆C 的交点为,O P ,与直线l 的交点为Q ,求线段Q P 的长.22. (本小题12分)设函数1()ln ()f x x a x a R x=--∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值,若不存在,请说明理由.高三第一次模拟考试数学(理)参考答案一、1-5CACDD 6-10BCBAB 11-12AB二、13.1; 14.若1x ≠且2x ≠,则2320x x -+≠;15. 43; 16. 1210,2e -⎛⎫ ⎪⎝⎭三、17.(本题12分) (1)由sin sin A aB b=得sin 10A =,又由53a b =,知a b <,,A B A ∴<为锐角,cos 10A ∴= (2)设3,5(0)a k b k k ==>,则273c a b k =+= 2222222925491cos 2302a b c k k k C ab k +-+-∴===-.18.(本题12分) 解:'21()(1)k f x x x =-+,由题意'(1)2,124k f =∴-=,得4k =-,故4()5ln 1x f x x x =+++,(1)7f =,∴所求切线方程为250x y -+=.19.(本题12分)解:(1)设{}n a 的公差为d ,{}n b 公比为q ,由题意有1121211441a b a a d b b q q d =+⎧⎪=+=⎪⎨==⎪⎪=+⎩解得113212a b d q =⎧⎪=⎪⎨=⎪⎪=⎩,2,2nn n a n b ∴=+=.(2)()()1121111(21)2122121(21)22n n n n C n n n n n n --⎛⎫===- ⎪+--++⋅-⎝⎭ 11122121n n T n n ⎛⎫∴=-= ⎪++⎝⎭.20.(本题12分)(1)证明:在BC 上取点Q 使Q 1B =,连接Q.Q N M 可证得Q N ∕∕PB ,Q M ∕∕AB ,∴平面Q MN ∕∕平面PAB ,得MN ∕∕平面PAB .(2)分别以QA为x轴,AD为y轴,AP为z轴,建立空间直角坐标系A x-(如图)则228(0,0,4(0,,0)(,)333P A M C,解得平面A M N法向量11(2,0,)2n=-,平面法向量()212261,2,0cos,9n n n-=-∴=.21.(本题12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵阳一中2018届第一次月考卷——理科数学一、选择题1.已知集合2{|23}A x y x x ==--,2{|0}2x B x x +=≤-,则A B =I ( ) A. [2,1]-- B. [1,2)- C. [1,1]-- D. [1,2)2.复数32(1)(1)i i +-在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D. 第四象限 3.已知()f x 在其定义域[1,)-+∞上是减函数,若(2)()f x f x ->,则( ) A. 1x > B. 11x -≤< C. 13x <≤ D. 13x -≤≤ 4.双曲线方程为2221x y -=,则它的右焦点坐标为( )A. 2,02⎛⎫ ⎪ ⎪⎝⎭B. 5,0⎛⎫⎪ ⎪⎝⎭ C. 6,02⎛⎫⎪ ⎪⎝⎭D. (3,0) 5.某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这4人中三个项目都有人参加的概率为( ) A.89 B. 49 C. 29 D. 8276.若方程2(1)10x k x --+=有大于2的根,则实数k 的取值范围是( )A. 7,2⎛⎫-∞ ⎪⎝⎭B.7,2⎛⎤-∞ ⎥⎝⎦ C. 7,2⎛⎫+∞ ⎪⎝⎭ D. 7,2⎡⎫+∞⎪⎢⎣⎭7.已知,αβ都是锐角,且sin cos cos (1sin )αβαβ=+,则( ) A. 32παβ-=B. 22παβ-=C. 32παβ+=D. 22παβ+=8.如图1.由曲线21y x =-,直线0,2x x ==和x 轴围成的封闭图形的面积是( ) A. 220(1)x dx -⎰ B. 220(1)x dx -⎰C. 2201x dx -⎰D.122211(1)(1)x dx x dx --+-⎰⎰9.设直线2a x =与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若OAB ∆是直角三角形,则椭圆的离心率为( ) A.22B. 33C. 63D. 1210.已知数列{}n a 满足:111,21(2)n n a a a n -==+≥,为求使不等式123n a a a a k ++++<L 的最大正整数n ,某人编写了如图2所示的程序框图,在框图的判断框中的条件和输出框输出的表达式分别为( ) A. ,S k i < B. ,1S k i <- C. ,S k i ≥ D. ,1S k i ≥-11.为得到函数22()2sin cos 3(sin cos )f x x x x x =++的图象,可以把函数()2cos(2)3g x x π=-的图象( )A. 向左平移4π个单位B. 向左平移2π个单位C. 向右平移4π个单位D. 向右平移2π个单位12.图3是某几何体的三视图,则该几何体的各个棱长中,最长的 棱的长度为( ) A. 32 B. 19 C. 22 D. 33二、填空题13. 61(12)x x x ⎛⎫-+ ⎪⎝⎭展开式的常数项是 (用数字作答).14.已知变量,x y 满足条件,230,29,x y x y x y ≥⎧⎪+-≥⎨⎪≤-⎩则23x y -的最小值等于 .15.如图4,在ABC ∆中,D 是AB 上一点,2AD DB =u u u r u u u r,若CD CA ⊥ ,2CD =u u u r ,则CD CB ⋅=u u u r u u u r.16.已知,,a b c 分别为锐角ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin )()sin b A sinB c b C +-=-,则ABC ∆周长的取值范围为.三、解答题17.已知数列{}n a 满足:1111,(2)21n n n a a a n a --==≥+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列1{}n n a a +的前n 项和为n T ,求证:12n T <. 18.为了解学生完成数学作业所需时间,某学校统计了高三年级学生每天完成数学作业的平均时间介于30分钟到90分钟之间,图5是统计结果的频率分布直方图.(Ⅰ)数学教研组计划对作业完成较慢的20%的学生进行集中辅导,试求每天完成数学作业的平均时间为多少分钟以上的学生需要参加辅导?(Ⅱ)现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不超过50分钟的人数为X ,求X 的分布列和期望.19.如图6,在三棱锥K ABC -中,,,D E F 分别是,,KA KB KC 的中点,平面KBC ⊥平面ABC ,AC BC ⊥, KBC ∆是边长为2的正三角形,3AC =.(Ⅰ)求证:BF ⊥平面KAC ; (Ⅱ)求二面角F BD E --的余弦值.20. 已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,12,F F 是椭圆的左、右焦点, P 是椭圆上的一点,12PF PF ⋅u u u r u u u u r的最小值为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点2F 且与x 轴不重合的直线l 交椭圆C 于,M N 两点,圆E 是以1F 为圆心椭圆C 的长轴长为半径的圆,过2F 且与l 垂直的直线与圆E 交于,P Q 两点,求四边形MPNQ 面积的取值范围.21.设2()(ln 1)(2),f x x x a x x a R =-+-∈. (Ⅰ)令()()g x f x '=,求()g x 的单调区间;(Ⅱ)已知()f x 在1x =处取得极大值,求实数a 的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程]已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的非负半轴重合,且长度单位相同.直线l 的极坐标方程为:2sin()33πρθ+=,曲线C 的参数方程为:3cos ,23sin ,x y αα⎧=⎪⎨=+⎪⎩(α为参数),其中[0,2)απ∈. (Ⅰ)写出直线l 的直角坐标方程及曲线C 的普通方程; (Ⅱ)若A 、B 为曲线C 与直线l 的两个交点,求AB .23. (本小题满分10分)[选修4-5:不等式选讲] 设()231f x x x =-++.(Ⅰ)求不等式()4f x x <+的解集;(Ⅱ)若函数()()g x f x ax =+有两个不同的零点,求实数a 的取值范围.贵阳第一中学2018届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACCCBCBCCBCC【解析】1. 函数223y x x =--的定义域为(1][3+)A =-∞-∞U ,,,不等式202x x +-≤的解集为[22)B =-,,所以[21]A B =--I ,,故选A.2.复数32(1i)(1i)+-1i =--,对应点为(11)--,,位于第三象限,故选C. 3.由单调性及定义域得12x x --<≤,解得13x <≤,故选C. 4.双曲线焦点在x 轴上,22213122a b c ==⇒=,,右焦点为60⎛⎫ ⎪ ⎪⎝⎭,,故选C. 5.23434C A 3643819P ===,故选B.6.问题等价于方程11x k x +=-在(2)+∞,有解,而函数1y x x=+在(2)+∞,上递增,值域为52⎛⎫+∞ ⎪⎝⎭,,所以k 的取值范围是72⎛⎫∞ ⎪⎝⎭,+,故选C. 7.πsin cos cos (1sin )sin()cos sin 2αβαβαβαα⎛⎫=+⇒-==- ⎪⎝⎭,即2αβπ-=2,故选B.8.阴影部分面积为12221[(1)]d (1)d x x x x ⎰--+⎰-,而222101|1|112x x x x x ⎧--=⎨-<⎩,,,,≤≤≤ 故选C.9.2a x =代入椭圆方程得3y b =±,222363()2a c b a c a a =⇒-=⇒=,故选C. 10.判断的条件为S k <;输出的结果为1i -,故选B. 11.ππ()2sin 22sin 236f x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,π()2sin 26g x x ⎛⎫=+ ⎪⎝⎭π2sin 212x ⎛⎫=+ ⎪⎝⎭,故选C .12.几何体ABCD 为图1中粗线所表示的图形,最长棱是AC ,图1AC =C .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.61x x ⎛⎫+ ⎪⎝⎭展开式的通项为6216C r rr T x -+=,6203621r r r -=⇒=-=-;无解,所以展开式的常数项为36C 20=.15.由已知3122CB CD CA =-u u u r u u u r u u u r ,0CD CA =u u u r u u u rg ,231622CD CB CD CD CA =-=u u u ru u u r u uu r u u u r u u u r g g .16.由已知()()()a b a b c b c +-=-,即2221cos 2b c a bc A +-=⇒=得60A=︒,由正弦定理,三角形的周长为π24sin 26B C B ⎛⎫++=++ ⎪⎝⎭,ππ62B ⎛⎫∈ ⎪⎝⎭,,πsin 16B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦⎝,周长的取值范围为(26]+.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) (Ⅰ)解:111112111(2)2(2)21n n n n n n n a a a n n a a a a -----+=⇒==++≥≥,所以1n a ⎧⎫⎪⎨⎬⎪⎭⎩是以2为公差的等差数列,11111a a =⇒=,所以121nn a =-,所以数列{}n a 的通项公式为121n a n =-. ………………………………(6分) (Ⅱ)证明:由(Ⅰ)得111111212122121n n a a n n n n +⎛⎫=⋅=- ⎪-+-+⎝⎭, 11112212n T n ⎛⎫=-< ⎪+⎝⎭.…………………………………………………(12分)18.(本小题满分12分)解:(Ⅰ)设每天完成作业所需时间为x 分钟以上的同学需要参加辅导,则(70)0.02(9070)0.0050.2x -⨯+-⨯=,得65x =(分钟),所以,每天完成数学作业的平均时间为65分钟以上的同学需要参加辅导. …(6分)(Ⅱ)把统计的频率作为概率,则选出的每个学生完成作业的时间不超过50分钟的概率为0.2,~(40.2)X B ,, 44()C 0.20.8(01234)k k k P X k k -===gg ,,,,, 0.8EX =. ……………………………………………………………………(12分)19.(本小题满分12分)(Ⅰ)证明:如图2,建立空间直角坐标系,则(103)K ,,, 3302BF CK ⎛⎫=-= ⎪ ⎪⎝⎭u u u r u u ur ,,,(103)(030)CA =-u u u r ,,,,,, 0BF CK =u u u r u u u r g ,BF CK ⊥u u u r u u u r得BF CK ⊥, 0BF CA =u u u r u u u r g ,BF CA ⊥u u u r u u u r得BF CA ⊥,CA ,CK 是平面KAC 内的两条相交直线, 所以BF ⊥平面KAC.……………………………………………………(6分)(Ⅱ)解:平面BDF 的一个法向量(103)m =r,,, 平面BDE (即平面ABK )的一个法向量为(323)n =-r,,,3cos 4m n 〈〉=r r,,所以二面角F BD E --的余弦值为34. ………………………………………(12分)20.(本小题满分12分)解:(Ⅰ)已知12c a =,12PF PF ⋅u u u r u u u u r 的最小值为222b c -=,又222a b c =+, 解得2243a b ==,,所以椭圆方程为22143x y +=. ………………………(6分) (Ⅱ)当l 与x 轴不垂直时,设l 的方程为1122(1)(0)()()y k x k M x y N x y =-≠,,,,.由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得2222(43)84120k x k x k +-+-=.则221212228412+4343k k x x x x k k -==++,.所以212212(1)|||43k MN x x k +-=+.过点2(1)F ,0且与l 垂直的直线1(1)m y x k =--:,1F 到m,所以||PQ == 故四边形MPNQ的面积1||||2S MN PQ == 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(12,. 当l 与x 轴垂直时,其方程为1||3||8x MN PQ ===,,,四边形MPNQ 的面积为12. 综上,四边形MPNQ面积的取值范围为[12,. …………………………(12分) 21.(本小题满分12分)解:(Ⅰ)由()ln 22f x x ax a '=-+, 可得()ln 22(0)g x x ax a x =-+∈+∞,,, 则112()2axg x a x x-'=-=, 当0a ≤时,(0)x ∈+∞,时,()0g x '>,函数()g x 单调递增, 当0a >时,102x a ⎛⎫∈ ⎪⎝⎭,时,()0g x '>,函数()g x 单调递增,12x a ⎛⎫∈+∞ ⎪⎝⎭,时,()0g x '<,函数()g x 单调递减.所以当0a ≤时,函数()g x 的单调递增区间为(0)+∞,, 当0a >时,函数()g x 的单调递增区间为102a ⎛⎫ ⎪⎝⎭,,单调递减区间为12a ⎛⎫+∞⎪⎝⎭,. ………………………………………………………………………………(6分) (Ⅱ)由(Ⅰ)知,(1)0f '=. ①当a ≤0时,()f x '单调递增,所以当(01)x ∈,时,()0()f x f x '<,单调递减, 当(1+)x ∈∞,时,()0()f x f x '>,单调递增, 所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(Ⅰ)知()f x '在102a ⎛⎫ ⎪⎝⎭,内单调递增,可得当(01)x ∈,时,()0f x '<,112x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,所以()f x 在(0,1)内单调递减,在112a ⎛⎫ ⎪⎝⎭,内单调递增,所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,即112a=,()f x '在(0,1)内单调递增,在(1)+∞,内单调递减, 所以当(0)x ∈+∞,时,()0f x '≤,()f x 单调递减,不合题意. ④当12a >时,即1012a <<, 当112x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,()f x 单调递增, 当(1)x ∈+∞,时,()0f x '<,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. ………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)∵π2sin 33ρθ⎛⎫+= ⎪⎝⎭,∴sin cos 3ρθθ+=,直线l 的直角坐标方程:30y +-=.曲线C :3cos 23sin x y αα⎧=⎪⎨=+⎪⎩(α为参数), 消去参数可得曲线C 的普通方程为:22(()29x y -+=.………………………………(5分)(Ⅱ)由(Ⅰ)可知,22(()29x y +-+=的圆心为D (2),半径为3. 设AB 中点为M ,连接DM ,DA , 圆心到直线l 的距离|323|22d -+-==,所以2DM =,又因为3DA =,所以MA ||AB = ………………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】解:(Ⅰ)分段讨论得不等式解集为(0,3). …………………………(5分) (Ⅱ)利用图象可得533a -<<-.…………………………………………(10分)。