含参数不等式问题

合集下载

含参数的一元二次不等式例题

含参数的一元二次不等式例题

含参数的一元二次不等式例题例题 1解不等式:x^2 2x + a > 0,其中a为参数。

解析:对于一元二次方程x^2 2x + a = 0,其判别式\Delta = 4 4a。

当\Delta 0,即4 4a 0,a > 1时,不等式的解集为R。

当\Delta = 0,即4 4a = 0,a = 1时,不等式化为(x 1)^2 > 0,解集为x ≠ 1。

当\Delta > 0,即4 4a > 0,a 1时,方程x^2 2x + a = 0的两根为x_1 = 1 \sqrt{1 a},x_2 = 1 + \sqrt{1 a},不等式的解集为x 1 \sqrt{1 a}或x > 1 + \sqrt{1 a}。

例题 2解不等式:ax^2 + 2x + 1 > 0,其中a为参数。

解析:当a = 0时,不等式化为2x + 1 > 0,解得x > \frac{1}{2}。

当a ≠ 0时,对于一元二次方程ax^2 + 2x + 1 = 0,其判别式\Delta = 4 4a。

若\Delta 0,即4 4a 0,a > 1,不等式的解集为R。

若\Delta = 0,即4 4a = 0,a = 1,不等式化为(x + 1)^2 > 0,解集为x ≠ 1。

若\Delta > 0,即4 4a > 0,a 1且a ≠ 0,方程ax^2 + 2x + 1 = 0的两根为x_1 = \frac{1 + \sqrt{1 a}}{a},x_2 =\frac{1 \sqrt{1 a}}{a}。

当0 a 1时,不等式的解集为x \frac{1 \sqrt{1 a}}{a}或x > \frac{1 + \sqrt{1 a}}{a}。

当a 0时,不等式的解集为\frac{1 + \sqrt{1 a}}{a} x\frac{1 \sqrt{1 a}}{a}。

专题:不等式(组)含参问题

专题:不等式(组)含参问题
6
7
8
x
方法:
如果它有解,那么的取值范围是什么? 1、用口诀
2、用数轴
大小小大中间找
-7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 8 x
步骤:
可以等于吗?
1、定范围
2、定节点
可以等于吗?
练习:
x m 1
1、若不等式组
的解集为
x 3
-7 -6 -5 -4 -3 -2 -1 O
>
可以利用画数轴
或者口诀解决这
-7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 8 x
个问题吗?
可以等于吗?
同大取大
如果它的解集是 > ,那么 的取值范围又是什么呢?
-7 -6 -5 -4 -3 -2 -1 O
可以等于吗?
1
2
3
4
5
6
7
8
x
≤3

1 +
2 3
x 2
2、如果不等式组
x m
( D
)
A. m 2
4
5
6
7
x
的解集为
B.
m2
8
x 3,求m的取值范围.
x
m
mC. 2
m2
,则m的取值范围是
m D.2
3、如果不等式组 x 8 有解,则m的取值范围是(
A .m 8
C.

x m
m8
4、关于x的不等式组
(2)若不等式①的解都是不等式②的解,求a的取值范围.
4、不等式组中含参解集取值范围
>2

含有参数的不等式(含答案)

含有参数的不等式(含答案)

含有参数的不等式【例题26】解关于x 的不等式21123x a x a --+>+。

【例题27】讨论ax b <的解集.【练习】1、解关于x 的不等式23m x +<3x n +2、解关于x 的不等式:()()a x a b x b ->-3、分别就a 得不同取值,讨论关于x 的不等式()12a x x ->-的解的情况。

求参数的取值【例题28】关于x 的不等式()122a x a +>+的解集是2x <-,则系数a ( )A.是负数B.是大于1-的负数C.是小于1-的负数D.是不存在的【例题29】若不等式ax a <的解集是1x >,则a 的取值范围是______.【练习】1、已知关于x 的不等式2ax ≥的解集在数轴上表示如图所示,则a 的取值范围是__________。

2、已知关于x 的不等式()()3419x a x -<-+的解集是1x >,求a 的值。

-1【例题29】已知3x=是关于x的不等式22323ax xx+->的解,求a的取值范围。

【练习】1、不等式234m x x-<+的解集是63xm>-,则m的取值范围是?2、关于x的不等式25x m+>-解集如右图所示,求m的值.3、若关于x的不等式2(1)20a x a--+>的解集为2x<,求a的值.4、已知关于x的不等式(43)2a b x b a->-的解集为49x<,求ax b>的解集.5、已知关于x的不等式(2)50a b x a b-+->的解集是107x<,解不等式350ax b+>.6、若不等式()(23)0a b x a b++-<的解集为13x>-,求不等式(3)(2)0a b x b a-+->的解集.-101-2-3解含参数不等式组【例题30】求关于x的不等式组1223x ax xx-<⎧⎪-+⎨+<⎪⎩①②的解集。

含参数的不等式问题

含参数的不等式问题
当a 1时,解集为x R;
例2、(2005年 江 西,17) 当a 1时,解集为x ( ,a) (2 a,). 已 知 函 数f ( x) x2 (a, b为 常 数 ),
ax b 方 程f ( x) - x 12 0有 两 个 实 根x1 3, x2 4. 设k 1, 解 关 于x的 不 等 式 :f ( x) (k 1)x k .
集 合B { x sin(x ) 3 cos(x ) 0},
3
3
若(CR A) B恰 有3个 元 素,x R;
(2) 1 a 0.
当a 1时, 解集为x ( ,a) (2 a,).
例6、(2005年 辽 宁,16)
是正实数, 设S f ( x) cos[( x )]是奇函数.
例4、(2005年 全 国 Ⅲ,22)
已 知 函 数f ( x) 4x2 7 , x [0,1]. 2 x
(1)求f ( x)的 单 调 区 间 和 值 域 ;
(2)设a 1,函 数g( x) x3 3a2 x 2a, x [0,1], 若 对 任 意x1 [0,1],总 存 在x0 [0,1],使 得 g( x0 ) f ( x1 )成 立,求 实 数a的 取 值 范 围.
(1)当x (0, 1 )时, f ( x)是减函数;当x ( 1 ,1)时, f ( x)是增函数;
2
2
f ( x)的值域为[-4,- 3];
(2)1 a 3 . 2
例5、(2004年 辽 宁,18)
(1)解 关 于x的 不 等 式x - 1 a 1 0(a R);
(2)记A为(1)中 不 等 式 的 解 集,
含有参数的不等式问题主要有三种主要类型
第一种类型:解含有参数的不等式; 第二种类型:已知含有参数的不等式成立的条件,

《含参数的不等式解集问题》专题(含解析)

《含参数的不等式解集问题》专题(含解析)

《含参数的不等式解集问题》专题一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2018春•宿豫区期末)已知不等式组无解,则a的取值范围是()A.a≤1 B.a≥1 C.a<1 D.>12.(2020春•江都区期末)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11 B.x<11 C.x>7 D.x<7 3.(2020春•吴江区期末)已知关于x的不等式(a﹣1)x>1,可化为x,试化简|1﹣a|﹣|a﹣2|,正确的结果是()A.﹣2a﹣1 B.﹣1 C.﹣2a+3 D.14.(2020春•龙华区校级期末)关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1 B.0≤a<1 C.﹣1<a≤0 D.﹣1≤a<0 5.(2020•寿光市二模)若不等式组有三个整数解,则a的取值范围是()A.2≤a<3 B.2<a≤3 C.2<a<3 D.a<3 6.(2020春•济源期末)已知关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,则m 的取值范围在数轴上可表示为()A.B.C.D.7.(2020春•蓬溪县期末)关于x的不等式组无解,则a的取值范围是()A.a≤5 B.a≥5 C.a<5 D.a>58.(2020春•东西湖区期末)若关于x的不等式mx﹣n>0的解集是x,则关于x的不等式(m+n)x<n﹣m的解集是()A.x B.x C.x D.x9.(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m 必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2 10.(2020秋•武汉月考)对于三个数字a,b,c,用min{a,b,c}表示这三个数中最小数,例如min{﹣2,﹣1,0}=﹣2,min{﹣2,﹣1,x}.如果min{﹣3,8﹣2x,3x﹣5}=﹣3,则x的取值范围是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•沭阳县期末)已知不等式组只有一个整数解,则a的取值范围为.12.(2020春•丛台区校级期末)对任意有理数a,b,c,d,规定ad﹣bc,若10,则x的取值范围为.13.(2020春•仁寿县期末)若关于x的不等式组有四个整数解,则m的取值范围是.14.(2020春•番禺区校级月考)若关于x的不等式组的解集为x>a,则a取值范围是.15.(2020春•渝中区校级期末)若关于x,y的方程组的解都是正数,则m的取值范围是.16.(2020春•金水区校级月考)若不等式组有两个整数解,则a的取值范围是.17.(2020秋•高新区校级月考)已知关于x的不等式x m<0有5个自然数解,则m的取值范围是.18.(2020春•高邮市期末)若不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是.三.解答题(共7小题)19.(2016•大庆)关于x的两个不等式①1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.20.(2015春•乐平市期末)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x,求m的取值范围;(2)若它的解集是x,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.21.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.22.(2020春•麦积区期末)(1)解不等式x+12,并把解集在数轴上表示出来;(2)关于x的不等式组恰有两个整数解,试确定a的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2017•江阴市自主招生)已知关于x的不等式的解集是x,求m 的值.25.(2017•呼和浩特)已知关于x的不等式x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2018春•宿豫区期末)已知不等式组无解,则a的取值范围是()A.a≤1 B.a≥1 C.a<1 D.>1【分析】根据不等式的解集的定义即可求出答案.【解析】由不等式组无解可知,两不等式在数轴上没有公共部分,即a≤1故选:A.【点评】本题考查不等式的解集,解题的关键是熟练运用不等式的解集的定义,本题属于基础题型.2.(2020春•江都区期末)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11 B.x<11 C.x>7 D.x<7【分析】将x=4代入方程,求出b=﹣4k>0,求出k<0,把b=﹣4k代入不等式,再求出不等式的解集即可.【解析】∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=﹣4k>0,∴k<0,∵k(x﹣3)+2b>0,∴kx﹣3k﹣8k>0,∴kx>11k,∴x<11,故选:B.【点评】本题考查了解一元一次不等式和一元一次方程的解,能求出b=﹣4k和k<0是解此题的关键.3.(2020春•吴江区期末)已知关于x的不等式(a﹣1)x>1,可化为x,试化简|1﹣a|﹣|a﹣2|,正确的结果是()A.﹣2a﹣1 B.﹣1 C.﹣2a+3 D.1【分析】由不等式的基本性质3可得a﹣1<0,即a<1,再利用绝对值的性质化简可得.【解析】∵(a﹣1)x>1可化为x,∴a﹣1<0,解得a<1,则原式=1﹣a﹣(2﹣a)=1﹣a﹣2+a=﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.(2020春•龙华区校级期末)关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1 B.0≤a<1 C.﹣1<a≤0 D.﹣1≤a<0【分析】根据题意可知:两个整数解是0,1,可以确定a取值范围.【解析】∵a<x<2有两个整数解,∴这两个整数解为0,1,∴a的取值范围是﹣1≤a<0,故选:D.【点评】此题考查了一元一次不等式组的整数解.解题时特别要注意取值范围中等号的确定.5.(2020•寿光市二模)若不等式组有三个整数解,则a的取值范围是()A.2≤a<3 B.2<a≤3 C.2<a<3 D.a<3【分析】首先解不等式,根据解的情况确定a的取值范围.特别是要注意不等号中等号的取舍.【解析】,解不等式x+a≥0得:x≥﹣a,解不等式1﹣2x>x﹣2得:x<1,∴﹣a≤x<1.∵此不等式组有3个整数解,∴这3个整数解为﹣2,﹣1,0,∴﹣3<﹣a≤﹣2,∴2≤a<3.故选:A.【点评】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定.6.(2020春•济源期末)已知关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,则m 的取值范围在数轴上可表示为()A.B.C.D.【分析】根据已知不等式的解集确定出m的范围即可.【解析】不等式3(x+1)﹣2mx>2m变形为:(3﹣2m)x>﹣(3﹣2m),∵关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,∴3﹣2m<0,解得:m,在数轴上表示:故选:C.【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法,以及在数轴上表示不等式的解集的方法是解本题的关键.7.(2020春•蓬溪县期末)关于x的不等式组无解,则a的取值范围是()A.a≤5 B.a≥5 C.a<5 D.a>5【分析】关于x的不等式组无解,根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,求出a的取值范围是多少即可.【解析】关于x的不等式组无解,则a的取值范围是a≥5.故选:B.【点评】此题主要考查了不等式的解集,要熟练掌握,解答此题的关键是要明确:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2020春•东西湖区期末)若关于x的不等式mx﹣n>0的解集是x,则关于x的不等式(m+n)x<n﹣m的解集是()A.x B.x C.x D.x【分析】先根据第一个不等式的解集求出m<0、n<0,m=3n,再代入第二个不等式,求出不等式的解集即可.【解析】∵mx﹣n>0,∴mx>n,∵关于x的不等式mx﹣n>0的解集是x,∴m<0,,∴m=3n,n<0,∴n﹣m=﹣2n,m+n=4n,∴关于x的不等式(m+n)x<n﹣m的解集是x,故选:C.【点评】本题考查了解一元一次不等式,能求出m、n的值是解此题的关键.9.(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m 必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2【分析】根据解集中不等号的方向发生了改变,得出m+2<0,求出即可.【解析】∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:A.【点评】本题考查了解一元一次不等式和一元一次不等式的解集的应用,关键是能根据题意得出m+2<0.10.(2020秋•武汉月考)对于三个数字a,b,c,用min{a,b,c}表示这三个数中最小数,例如min{﹣2,﹣1,0}=﹣2,min{﹣2,﹣1,x}.如果min{﹣3,8﹣2x,3x﹣5}=﹣3,则x的取值范围是()A.B.C.D.【分析】根据题中的新定义列出不等式组,求出x的范围即可.【解析】根据题意得:,解得:x,故选:A.【点评】此题考查了解一元一次不等式组,弄清题意是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•沭阳县期末)已知不等式组只有一个整数解,则a的取值范围为2<a≤3.【分析】先根据不等式组有解,确定不等式组的解集为1<x<a,再根据不等式组只有一个整数解,可知整数解为2,从而可求得a的取值范围.【解析】不等式组有解,则不等式的解集一定是1<x<a,若这个不等式组只有一个整数解即2,则a的取值范围是2<a≤3.故答案为:2<a≤3【点评】此题考查不等式的解集问题,正确解出不等式组的解集,正确确定a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..12.(2020春•丛台区校级期末)对任意有理数a,b,c,d,规定ad﹣bc,若10,则x的取值范围为x>﹣3.【分析】根据新定义可知﹣4x﹣2<10,求不等式的解即可.【解析】根据规定运算,不等式10化为﹣4x﹣2<10,解得x>﹣3.故答案为x>﹣3.【点评】本题考查了利用一种新型定义转化为解一元一次不等式的问题,理解题意是解题的关键.13.(2020春•仁寿县期末)若关于x的不等式组有四个整数解,则m的取值范围是﹣3≤m<﹣2.【分析】解不等式组的两个不等式,根据其整数解的个数得出1≤4+m<2,解之可得.【解析】解不等式2x+5>0,得:x,解不等式x≤2,得:x≤4+m,∵不等式组有4个整数解,∴1≤4+m<2,解得:﹣3≤m<﹣2,故答案为:﹣3≤m<﹣2.【点评】本题主要考查不等式组的整数解问题,根据不等式组的整数解的个数得出关于m的不等式组是解题的关键.14.(2020春•番禺区校级月考)若关于x的不等式组的解集为x>a,则a取值范围是a≥2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大并结合不等式组的解集可得a的范围.【解析】解不等式2(x﹣1)>2,得:x>2,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>a,∴a≥2,故答案为:a≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2020春•渝中区校级期末)若关于x,y的方程组的解都是正数,则m 的取值范围是6<m<15.【分析】解方程组得出,根据题意列出不等式组,解之可得.【解析】解方程组得,根据题意,得:,解不等式①,得:m<15,解不等式②,得:m>6,∴6<m<15,故答案为:6<m<15.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2020春•金水区校级月考)若不等式组有两个整数解,则a的取值范围是0<a≤1.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出关于a的不等式组即可.【解析】,解不等式①得:x≥a,解不等式②得:x<3,∴不等式组的解集为a≤x<3,∵不等式组有两个整数解,∴0<a≤1,故答案为:0<a≤1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a的不等式组.17.(2020秋•高新区校级月考)已知关于x的不等式x m<0有5个自然数解,则m的取值范围是8<m≤10.【分析】首先解不等式求得不等式的解集,然后根据不等式有5个自然数解即可得到一个关于m的不等式,求得m的值.【解析】解不等式x m<0得:x m,不等式有5个自然数解,一定是0,1,2,3,4,根据题意得:4m≤5,解得:8<m≤10.故答案是:8<m≤10.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.18.(2020春•高邮市期末)若不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是m.【分析】求出不等式1≤2﹣x的解,再求出不等式3(x﹣1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【解析】解不等式1≤2﹣x得:x,解关于x的不等式3(x﹣1)+5>5x+2(m+x),得x,∵不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,∴,解得:m,故答案为m.【点评】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.三.解答题(共7小题)19.(2016•大庆)关于x的两个不等式①1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解析】(1)由①得:x,由②得:x,由两个不等式的解集相同,得到,解得:a=1;(2)由不等式①的解都是②的解,得到,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.20.(2015春•乐平市期末)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x,求m的取值范围;(2)若它的解集是x,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.【分析】(1)根据不等式的解集,利用不等式的性质确定出m的范围即可;(2)由解集确定出m的范围,求出m的值即可作出判断.【解析】(1)不等式mx﹣3>2x+m,移项合并得:(m﹣2)x>m+3,由解集为x,得到m﹣2<0,即m<2;(2)由解集为x,得到m﹣2>0,即m>2,且,解得:m=﹣18<0,不合题意,则这样的m值不存在.【点评】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.21.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(2020春•麦积区期末)(1)解不等式x+12,并把解集在数轴上表示出来;(2)关于x的不等式组恰有两个整数解,试确定a的取值范围.【分析】(1)依次去分母、移项、合并同类项、系数化为1可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解析】(1)∵x+12,∴2x+2≥x+4,2x﹣x≥4﹣2,x≥2,将不等式的解集表示在数轴上如下:(2)解不等式0,得x,解不等式x(x+1)+a,得x<2a.因为该不等式组恰有两个整数解,所以1<2a≤2,所以a≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2017•江阴市自主招生)已知关于x的不等式的解集是x,求m 的值.【分析】不等式组整理后表示出解集,根据已知解集确定出m的值即可.【解析】原不等式可化为:4m+2x≤12mx﹣3,即(12m﹣2)x≥4m+3,又因原不等式的解集为x,则12m﹣2>0,m,比较得:,即24m+18=12m﹣2,解得:m(舍去).故m无值.【点评】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.25.(2017•呼和浩特)已知关于x的不等式x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解析】(1)当m=1时,不等式为1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.。

微专题06 含参数不等式问题的处理策略(解析版)

微专题06 含参数不等式问题的处理策略(解析版)

微专题06 含参数不等式问题的处理策略【方法技巧与总结】解含参不等式,常常涉及对参数的分类讨论以确定不等式的解,这是解含参不等式问题的一个难点。

解决此类问题利用函数与方程思想、数形结合思想及分类与整合思想。

【题型归纳目录】题型一:含参数一元二次不等式(因式分解型) 题型二:含参数一元二次不等式(不能因式分解型) 题型三:分式、根式含参数不等式问题 题型四:绝对值含参不等式问题 【典型例题】题型一:含参数一元二次不等式(因式分解型) 例1.(2022·全国·高一专题练习)解下列不等式: (1)22120(0)x ax a a --<<; (2)()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝.【解析】(1)依题意22120(0)x ax a a --<<,()()430x a x a -+<,403a a <<-解得43a x a <<-,所以不等式22120(0)x ax a a --<<的解集为{}|43x a x a <<-. (2)依题意()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝,()110,1x a x a a a⎛⎫--<<< ⎪⎝⎭, 解得1a x a<<, 所以不等式()10(01)a x x a a ⎭-->⎫⎪< <⎛⎝的解集为1|x a x a ⎧⎫<<⎨⎬⎩⎭. 例2.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈. (1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.【解析】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b ab a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->, 当a =0,不等式为10x -<,不等式的解集为{}1x x <;当0a <时,不等式化为3()(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为:3,1a.当3a =时,两根相等,故不等式的解集为{|1}x x ≠; 当3a >时,31a <,不等式的解集为3{|x x a<或1}x >; 当0<<3a 时,31a>,不等式的解集为{|1x x <或3}x a >,.综上:当0a <时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a >.当3a =时,不等式的解集为{|1}x x ≠; 当3a >时,不等式的解集为3{|x x a<或1}x >; 例3.(2022·全国·高一专题练习)设1a >,则关于x 的不等式1(1)()()0a x a x a---<的解集是_________. 【答案】()1,,a a⎛⎫-∞⋃+∞ ⎪⎝⎭【解析】1a >时,10a -<,且1a a>, 则关于x 的不等式1(1)()()0a x a x a ---<可化为1()()0x a x a-->,解得1x a<或x a >, 所以不等式的解集为(-∞,1)(a a ⋃,)∞+.故答案为:()1,,a a⎛⎫-∞⋃+∞ ⎪⎝⎭例4.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式;(2)当a >0时,解关于x 的不等式.【解析】(1)当a =2时,不等式2x 2﹣x ﹣1<0可化为:(2x +1)(x ﹣1)<0, ∴不等式的解集为1{|1}2x x -<<;(2)不等式ax 2﹣x +1﹣a <0可化为:(x ﹣1)(ax +a ﹣1)<0, 当a >0时,()1110x x a ⎛⎫-+- ⎪⎝⎭<,()1110x x a ⎛⎫-+-= ⎪⎝⎭的根为:12111x x a==-,, ①当102a <<时,111a -<,∴不等式解集为1{|11}x x a-<<,②当12a =时,111a=-,不等式解集为∅, ③当12a >时,111a->,∴不等式解集为{x |11a -<x <1},综上,当102a <<时,不等式解集为1{|11}x x a-<<,当a 12=时,不等式解集为∅, 当12a >时,不等式解集为{x |11a-<x <1}..题型二:含参数一元二次不等式(不能因式分解型)例5.(2022·全国·高三专题练习)解关于x 的不等式2210ax x ++<. 【解析】(1)当0a =时,原不等式210x +<,解得12x <-,∴不等式解集为1(,)2-∞-;(2)当0a >时,44a ∆=-,2()21f x ax x =++开口向上,由图象得:①若01a <<时,440a ∆=->,f x ()的两个零点为1,211-±-=ax 1111----+-<a a 不等式0f x <()的解集为1111(----+-a a ; ②若1a ≥时,0∆≤,不等式0f x <()解集为∅; (3)当0a <时,440a ∆=->,f x ()的两个零点为1,211-±-=ax 1111-+----a a2()21f x ax x =++开口向下,由图象得不等式解集为1111(()-+-----∞⋃+∞a a; 综上可知,当0a <时不等式解集为1111()()-+-----∞⋃+∞a a; 当0a =时,不等式解集为1(,)2-∞-;当01a <<时,不等式解集为1111()----+-a a ; 当1a 时,不等式解集为∅. 例6.解关于x 的不等式: (1)2(1)10()ax a x a R -++<∈; (2)2(21)20()ax a x a R +--<∈; (3)2210()ax x a R -+<∈; (4)20(0)x x m x ++>【解析】解:(1)2(1)10ax a x -++<等价于(1)(1)0()ax x a R --<∈, 当0a =时,不等式的解集为(1,)+∞, 当0a >时,等价于1()(1)0x x a--<,即当01a <<时,不等式的解集为1(1,)a当1a =时,不等式的解集为空集, 当1a >时,不等式的解集为1(a ,1),当0a <时,不等式等价于1()(1)0x x a -->,即不等式的解集为(-∞,1)(1a⋃,)+∞(2)2(21)20ax a x +--<等价于(2)(1)0()x ax a R +-<∈ 当0a =时,不等式的解集为(2,)-+∞,当0a >时,不等式等价于1()(2)0x x a -+<,不等式的解集为1(2,)a -当0a <时,不等式等价于1()(2)0x x a-+>,当102a -<<时,不等式的解集为(-∞,1)(2a⋃,)+∞,当12a =-时,不等式的解集为(-∞,2)(2--⋃,)+∞,当12a <-时,不等式的解集为(-∞,12)(a -⋃,)+∞,(3)2210()ax x a R -+<∈;当0a =时,不等式的解集为1(2,)+∞,当0a >时,且△440a =->时,即01a <<时,不等式的解集为244(2a --,244)2a+-, 当0a >是,且△440a =-时,即1a 时,不等式的解集为空集, 当0a <时,且△440a =->时,即0a <时,不等式的解集为(-∞,244244)(22a a--+-⋃,)+∞, (4)20(0)x x m x ++>, 当△140m =->时,即14m <时,20x x m ++=的根为1142m x ---=-(舍去)或1142m x -+-=,若当11402m -+->时,即0m <时,不等式的解集为[0,114]2m-+-,若当11402m -+-<时,即104m <<时,不等式的解集为空集若当11402m-+-=时,即0m =时,不等式的解集为空集当△140m =-<时,即14m >时,不等式的解集为空集, 当△140m =-=时,即14m =时,不等式的解集为空集, 综上所述当0m <时,不等式的解集为[0,114]2m-+-,当0m 时,不等式的解集为空集. 例7.解关于x 的不等式: (1)22(1)10()x a x a R -++<∈; (2)2(8)10()ax a x a R --+>∈.【解析】解:(1)△24(1)40a =+-=时,解得0a =或2-. 当0a =或2-时,不等式化为2(1)0x ±<,此时不等式的解集为∅.由△0>解得0a >或2a <-,此时不等式化为2[(1)2]x a a a -+-+ 2[(1)2]0x a a a -+++<, 解得221212a a a x a a a +-+<<+++,此时不等式的解集为: 22{|1212}x a a a x a a a +-+<<+++;△0<时,即20a -<<时,不等式的解集为∅. 综上可得:20a -时,不等式的解集为∅;当0a >或2a <-时,不等式的解集为22{|1212}x a a a x a a a +-+<<+++.(2)当0a =时,不等式化为810x +>,解得18x >-,此时不等式的解集为1{|}8x x >-.当0a ≠时,由△2(8)40a a =-->,解得16a >或4a <.∴当16a >或4a <且0a ≠时,不等式化为228206482064()()022a a a a a a a x x a a -+-+---+-->. 当16a >或04a <<时,不等式的解集为282064{|2a a a x x a -+-+>或282064}2a a a x a ---+<. 当0a <时,不等式的解集为228206482064{|}22a a a a a a x x a a ---+-+-+<<. 综上可得:当0a =时,不等式的解集为1{|}8x x >-.当16a >或04a <<时,不等式的解集为282064{2a a a xx a -+-+>或282064}2a a a x a---+<. 当0a <时,不等式的解集为228206482064{|}22a a a a a a x x a a ---+-+-+<<. 题型三:分式、根式含参数不等式问题例8.不等式222(0)a x x a a -<+>的解集是( ) A .{|0}x x a < B .{|0x x >或4}5x a <-C .{|}2ax x a -<<D .4{|5x a x a -<-或0}x a <【答案】A【解析】解:不等式222a x x a -<+可化为:222244a x x ax a -<++, 即2540x ax +>,(0)a > 解得:0x >或45x a <-,又由20x a +>,且220a x -得:12a x a -<.综上可得:0x a <.故不等式222(0)a x x a a -<+>的解集是{|0}x x a <, 故选:A .例9.(2022秋•清河区校级期中)已知a R ∈,解不等式11xa x >+-. 【解析】解:原不等式化为(1)01ax a x -++>-①(1)当0a =时,原不等式为1011x x -<⇒>-. 在①中,分子中x 的系数含有字母a ,分类讨论就从这里引起.(2)当0a ≠时,原不等式化为1()01a a x a x +-<-. ② 对于不等式②,分子中的系数a 不能随意约去,因为根据不等式的性质,若给不等式两边同时乘以一个负数,不等式的方向要改变.当0a >时,原不等式等价于101a x a x +-<-. 由于11a a +>,可解得11a x a+<<.也可先确定两根1x ,212()x x x <, 然后直接写出解集.当0a <时,1()01a a x a x +-<-等价于101a x a x +->-. 由1111a a a +=+<可解得1a x a+<或1x >. 综上,当0a =时原不等式的解集为(1,)+∞. 当0a >时,解集为1(1,)a a + 当0a <时,解集为1(,)(1,)a a+-∞+∞.例10.(2022·全国·高一专题练习)解关于x 的不等式(1)22a x x ->-(其中1a ≤) 【解析】()()()()411242220001222a x a x a x a x a a x x x x -------->⇔->⇔>⇔<----, 又由42122a a a a a ---=≤--及知 当01a <≤时,42,2a a ->-则集合4{|2}2a A x x a -=<<-; 当0a =时,原不等式解集A 为空集; 当0a <时,42,2a a -<-则集合4{|2}2a A x x a -=<<-;综上:当01a <≤时,4{|2}2a A x x a -=<<-; 当0a =时,A 为空集; 当0a <时,4{|2}2a A x x a -=<<-. 例11.(2022·上海交大附中高一阶段练习)已知关于x 的不等式250mx x m-<-的解集为S ,若5S ∈且6S ,则实数m 的取值范围为_____;【答案】(]5[,1)25,366;【解析】由题意,2250(5)()0mx mx x m x m-<⇔--<- 故5S ∈且6S ,可得(55)(25)0(65)(36)0m m m m --<⎧⎨--≥⎩由(55)(25)0m m --<可得,1m <或25m >;由(65)(36)0m m --≥可得,5366m ≤≤因此:(]5[,1)25,366m ∈ 故答案为:(]5[,1)25,366例12.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数) (1)220x x a ++< (2)102ax x ->-. 【解析】(1)原不等式对应的一元二次方程为:220x x a ++=, Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<--综上所述,1a ≥时,原不等式无解,当1a <时,原不等式的解集为{1111}xa x a --<--∣; (2)原不等式等价于()()120ax x -->, 当0a =时,解集为(),2-∞;当0a <时,原不等式可化为()()120ax x -+-<,因为12a <,所以解集为1,2a ⎛⎫ ⎪⎝⎭; 当102a <<时,12a >,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当12a =时,原不等式等价于()11202x x ⎛⎫--> ⎪⎝⎭, 所以2(2)0x ->,解集为{}2xx ≠∣; 当12a >时,12a <,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;综上所述,当0a =时,解集为(),2-∞;当0a <时,解集为1,2a ⎛⎫⎪⎝⎭;当102a <≤时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当12a >时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭.例13.(2022·全国·高一课时练习)解不等式:01axx ≤+. 【解析】()0101axax x x ≤⇔+≤+且10x +≠. 当0a >时,()10ax x +≤且()1010x x x +≠⇔+≤且1010x x +≠⇔-<≤, 此时原不等式的解集为{}10x x -<≤; 当0a =时,原不等式的解集为{}1x x ≠-;当0a <时,()10ax x +≤且()1010x x x +≠⇔+≥且101x x +≠⇔<-或0x ≥, 此时原不等式的解集为{|1x x <-或}0x ≥.综上可知,当0a >时,原不等式的解集为{}10x x -<≤;当0a =时,原不等式的解集为{}1x x ≠-;当0a <时,原不等式的解集为{|1x x <-或}0x ≥. 题型四:绝对值含参不等式问题例14.(2022春•安平县校级期中)对于任意的实数x ,不等式|1|x kx +恒成立,则实数k 的取值范围是()A .(,0)-∞B .[1-,0]C .[0,1]D .[0,)+∞【解析】解:不等式|1|x kx +恒成立,|1|y x ∴=+的图象不能在y kx = 的图象的下方,如图所示:01k ∴;故选:C .例15.(2022·全国·高一课时练习)已知集合{}24A x x =<<,{}2211B x x a =--≤,若A B B =,则实数a 的取值范围是______. 【答案】()2,3【解析】由2211x a --≤,得1a x a ≤≤+,∴{}1B x a x a =≤≤+. 由A B B =,得B A ⊆.显然B ≠∅,∴214a a >⎧⎨+<⎩,解得23a <<.故答案为:()2,3.例16.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___. 【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4. 又当a =2时,A ={x |1<x <3}, a =4时,A ={x |3<x <5}, 均满足A 是B 的真子集, ∴2≤a ≤4. 故答案为:2≤a ≤4例17.(2022·全国·高一单元测试)若不等式34x b -<的解集中的整数有且仅有2、3,则b 的取值范围是______. 【答案】78b ≤≤【解析】由34x b -<可得434x b -<-<,也就是4433b bx -+<<, 因为解集中的整数只有2,3,所以44123433b b-+≤<<<≤, 所以71058b b ≤<⎧⎨<≤⎩,故78b ≤≤.填78b ≤≤.例18.(2022·上海·高一课时练习)解关于x 的不等式:()1x x a a R ->-∈.【解析】两边平方,得()()221x x a ->-,即()()()2111a x a a ->-+.当1a =时,不等式解集为∅;当1a >时,不等式解集为1,2a +⎛⎫+∞ ⎪⎝⎭; 当1a <时,不等式解集为1,2a +⎛⎫-∞ ⎪⎝⎭. 例19.(2022·上海嘉定·高一期末)已知集合2{|23,}A x x x x R =+<∈,集合{|1,0,}B x x a a x R =-<>∈.若A B ⊆.求实数a 的取值范围.【解析】由223x x +<得2230x x +-<,解得31x -<<,即()3,1A =-. 又由1,0x a a -<>解得11a x a -<<+,即()1,1B a a =-+.因为A B ⊆,所以1311a a -≤-⎧⎨+≥⎩,解得4a ≥. 因此所求实数a 的取值范围是[)4,+∞.【过关测试】一、单选题1.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( )A .{}1a a >-B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-【答案】B【解析】因为不等式10x -≤的解集为{}1x x ≤,由题意得不等式()2220x a x a +++≤的解集是{}1x x ≤的子集,不等式()2220x a x a +++≤,即()()20x x a ++≤, ①当2a =时,不等式的解集为{}2-,满足{}{}21x x -⊆≤;②当2a <时,不等式的解集为{}2x x a -≤≤-, 若{}{}21x x a x x -≤≤-⊆≤,则1a -≤,所以12a -≤<;③当2a >时,不等式的解集为{}2x a x -≤≤-,满足{}{}21x a x x x -≤≤-⊆≤;综上所述,实数a 的取值范围为{}1a a ≥-.故选:B .2.(2022·四川德阳·高一期末)若关于x 的不等式101x ax ->+的解集为11a ⎛⎫- ⎪⎝⎭,,则a 的取值范围为( ) A .() 1? ∞+,B .(0,1)C .() 1?∞--,D .(-1,0) 【答案】C 【解析】不等式101x ax ->+ 等价于()()110x ax -+>,设()()()11f x x ax =-+ , 显然a =0不符合题意,若0a > ,()()111f x x x a a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦,()f x 是开口向上,零点分别为1和1a - 的抛物线, 对于()0f x > ,解集为1x a<- 或1x > ,不符合题意; 若0a < ,则()f x 是开口向下,零点分别为1和1a- 的抛物线, 对于()0f x > ,依题意解集为1,1a ⎛⎫- ⎪⎝⎭,11a ∴-< ,即(),1a ∞∈-- , 故选:C.3.(2022·全国·高一课时练习)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m的取值范围为( )A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<, 当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C二、多选题4.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( )A .5-B .3-C .πD .5【答案】ABD【解析】解不等式2280x x -->,得4x >或2x <-解方程22(27)70x k x k +++=,得127,2x x k =-=- (1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<- 此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤; (2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数, 则需满足:35k -<-≤,即53k -≤<;所以k 的取值范围为[5,3)(4,5]-.故选:ABD.5.(2022·全国·高一课时练习)已知a ∈R ,关于x 的不等式()10a x x a ->-的解集可能是( ) A .{}1x x a <<B .{}1x x x a 或C .{}1x x a x 或D .∅ 【答案】BCD【解析】当0a <时,不等式等价于()()10x x a --<,解得1<<a x ;当0a =时,不等式的解集是∅;当01a <<时,不等式等价于()()10x x a -->,解得1x >或x a <;当1a =时,不等式的解集为{}1x x ≠;当1a >时,不等式等价于()()10x x a -->,解得x a >或1x <.故选:BCD .三、填空题6.(2022·全国·高一课时练习)已知集合{}2280,R A x x x x =--≤∈ ,(){}2550,R B x x m x m x =-++≤∈ ,设全集为R ,若R B A ⊆,则实数m 的取值范围为______.【答案】()4,+∞ 【解析】解不等式2280x x --≤,得24x -≤≤,所以R {2A x x =<-或4}x > ,(){}()(){}2550,R 50B x x m x m x x x x m =-++≤∈=--≤ , 因为R B A ⊆,当5m =时,{}5B =,满足题意;当5m >时,[]5,B m =,满足题意.当5m <时,[],5B m =,由R B A ⊆,得4m >,所以45m <<.综上,m 的取值范围为()4,+∞.故答案为:()4,+∞7.(2022·上海市控江中学高一期中)已知k 为正实数,关于x 的不等式()24(2)0kx k x --+<的解集为,A B A =⋂Z ,则当k 的值变化时,集合B 中的元素个数的最小值为______;【答案】6【解析】由方程240kx k --=,可解得44x k k=+≥,当且仅当2k =时,等号成立, 则42,A k k ⎛⎫=-+ ⎪⎝⎭,即(]2,4A -⊂,由(]{}2,41,0,1,2,3,4-⋂=-Z ,则集合B 中的元素最少有6个, 故答案为:6.8.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________. 【答案】315a -<≤ 【解析】根据题意,当210a -≠时,可得()()222Δ141010a a a ⎧=-+-<⎪⎨-<⎪⎩,解得315a -<<, 当1a =时,不等式()()221110a x a x ----<显然成立. 综上可得,315a -<≤, 故答案为:315a -<≤. 四、解答题9.(2022·全国·高一课时练习)在①A B A ⋃=,②A B ⋂≠∅,③R B A ⊆这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a 、b 的值;(2)求集合B ;(3)是否存在实数m ,使得______?【解析】(1)因为一元二次不等式2320ax x -+>的解集{1A x x =<或}x b >, 则关于x 的一元二次方程2320ax x -+=的两根分别为1、b , 所以,32021a b a -+=⎧⎪⎨⨯=⎪⎩,解得12a b =⎧⎨=⎩. (2)由(1)可得(){}()(){}222020B x x m x m x x x m =-++<=--<. 当2m =时,(){}220B x x =-<=∅;当2m <时,()(){}{}202B x x x m x m x =--<=<<;当2m >时,()(){}{}202B x x x m x x m =--<=<<.(3)若选①,{1A x x =<或}2x >,由A B A ⋃=,则B A ⊆,当2m =时,B A =∅⊆;当2m <时,{}2B x m x A =<<⊄,不合乎题意;当2m >时,{}2B x x m A =<<⊆,合乎题意.综上所述,2m ≥;选②,当2m =时,B =∅,此时A B =∅,不合乎题意;当2m <时,{}2B x m x =<<,若A B ⋂≠∅,则1m <,此时1m <;当2m >时,{}2B x x m =<<,此时A B ⋂≠∅.综上所述,1m <或2m >; 选③,{}12A x x =≤≤R .当2m =时,R B A =∅⊆;当2m <时,{}R 2B x m x A =<<⊆,则12m ≤<;当2m >时,{}2B x x m A =<<⊄R ,不合乎题意.综上所述,12m ≤≤.10.(2022·上海市杨浦高级中学高一期中)设集合{|12,},{|()(2)0,}A x x x B x x a x a x =-<<∈=--<∈R R ,若B A ⊆,求实数a 的取值范围.【解析】当0a >时,{|2}B x a x a =<<,当0a =时,B =∅,当0a <时,{|2}B x a x a =<<,由B A ⊆,而{|12,}A x x x =-<<∈R ,若0a >,有122a a ≥-⎧⎨≤⎩(等号不同时成立),则01a <≤; 若0a =,显然B =∅A ⊆成立;若0a <,有212a a ≥-⎧⎨≤⎩(等号不同时成立),则102a -≤<; 综上,112a -≤≤. 11.(2022·全国·高一课时练习)已知集合2{|12}{|40}A x x B x x ax =≤≤=-+≥,,若A B ⊆,求实数a 的取值范围.【解析】集合{|12}A x x =≤≤,2{|40}B x x ax =-+≥,若A B ⊆,B 一定非空,若2160a =-≤,得44a -≤≤,R B =,A B ⊆成立,若0>,即4a >或者4a ,设()24f x x ax =-+,(1)()11450f a a =-+=-≥,即5a ≤,对称轴02a <,所以4a ,(2)()2820f a =-≥,即4a ≤,对称轴22a ≥,不成立, 综上,(]4a ∞∈-,. 12.(2022·陕西·榆林市第一中学高一期末(理))解关于x 的不等式()()21440ax a x a ---<∈R .【解析】①当0a =时,原不等式可化为40x --<,解得4x >-;②当0a >时,原不等式可化为()140x x a ⎛⎫-+< ⎪⎝⎭,解得14x a -<<; ③当0a <时,原不等式可化为()140x x a ⎛⎫-+> ⎪⎝⎭, <i>当14a <-,即104a -<<时,解得1x a <或4x >-; <ⅱ>当14a =-,即14a =-时,解得4x <-或4x >-; <ⅱ>当14a >-,即14a <-时,解得4x <-或1x a>. 综上所述,当14a <-时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当14a =-时,不等式解集为{}4x x ≠-;当104a -<<时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或;当0a =时,不等式解集为{}4x x >-;当0a >时,不等式解集为14x x a ⎧⎫-<<⎨⎬⎩⎭.13.(2022·全国·高一专题练习)当a ≤0时,解关于x 的不等式()21220ax a x +--≥.【解析】由()21220ax a x +--≥可得(ax +1)(x -2)≥0①当a =0时,原不等式即x -2≥0﹐解得x ≥2﹔②当a <0时,(ax +1)(x -2)≥0,方程(ax +1)(x -2)=0的两根为11x a =-,22x = 当12a =-时,原不等式解为:x =2﹔ 当102a -<<时,12a ->,原不等式的解为;12x a ≤≤-, 当12a <-时,12a -<,原不等式的解为:12x a -≤≤,综上,当a =0时,原不等式的解集为{}2x x ≥; 当12a =-时,原不等式的解集为{}2x x =; 当102a -<<时,原不等式的解集为:12x x a ⎧⎫≤≤-⎨⎬⎩⎭; 当12a <-时,原不等式的解为:12x x a ⎧⎫-≤≤⎨⎬⎩⎭.14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>.【解析】方程220x x a ++=中()4441a a =-=-,①当10a -<即1a >时,不等式的解集是R ,②当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R ,③当10a ->即1a <时,由220x x a ++=解得:121111x a x a =--=--,1a ∴<时,不等式的解集是{|11>-+-x x a 11}<--x a ,综上,1a >时,不等式的解集是R ,1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|11>-+-x x a 11}<--x a ,15.(2022·湖北·武汉市钢城第四中学高一阶段练习)已知关于x 不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求实数a 、b 的值.(2)解关于x 不等式2ax -+(ac+b)x -bc>0.【解析】(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >,所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且0,a > b >1. 由根与系数的关系得3121b ab a⎧+=⎪⎪⎨⎪⋅=⎪⎩ ,解得12a b =⎧⎨=⎩.(2)原不等式化为2(2)20x c x c -++<,即(2)()0x x c --<,①当2>c 时,不等式的解集为{}2x x c <<;②当2c <时,不等式的解集为{}2x c x <<;③当2c =时,不等式的解集为∅.16.(2022·安徽宣城·高一期中)(1)已知不等式2320mx x +->的解集为{}2x n x <<,求m ,n 的值; (2)求关于x 的不等式()210x a x a +--> (其中a R ∈)的解集.【解析】(1)由题意4620m +-=,1m =-,不等式为2320x x -+->,即2320x x -+<,解得12x <<,所以1n =;(2)不等式2(1)0x a x a +-->可化为(1)()0x x a -+>,1a <-时,1x <或x a >-,1a =-时,1x ≠,1a >-时,x a <-或1x >.综上,1a ≤-时,不等式的解集为(,1)(,)a -∞-+∞,1a >-时,解集为(,)(1,)a -∞-+∞.。

解答含参不等式问题常用的几种方法

解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。

含参数的方程、不等式的问题解题策略

含参数的方程、不等式的问题解题策略

含参数的方程、不等式的问题解题策略含参数的方程、不等式的问题是历年高考常考的题型,由于含有参数对很多同学来说感到困难重重,一重困难是选择什么样的解题方法(如2012年山东卷第12题),二重困难是含参数问题涉及到的分类讨论(如2017年全国卷1第21题),根据我多年的研究发现,(1)这类题目解题方法有规可循,基本方法有:分离参数构建函数,不分离参数构建函数,半分离参数构建函数,总之,如何构建函数是解题的关键。

(2)很多求参数取值范围的问题,其实有时可以避开分类讨论这个陷阱。

本文就结合实例谈谈这类问题的求解策略。

一、分离参数构建函数:若方程或不等式中的参数容易分离出来,即参数分离 在方程或不等式的一边,另一边是关于自变量的函数,分离后的函数不复杂,容易求出导函数,容易研究函数的性质,就选择分离参数法构建函数。

例1(2017年全国高考卷1第21题)已知函数2()(2)x x f x ae a e x =+-- 若()f x 有两个零点,求a 的取值范围.分析:2f(x)=ae (-2)e x x a x +-有两个零点,转化为方程2(2)0x x ae a e x +--=有两个根先分离参数22a x x x e x e e +=+,令222(1)(21)()g ()(1)x x x x x x x e x e x e g x x e e e e +-+-+'==++,设1x h x -+(x)=-e ,则()h x 递减,(0)0h =当(,0)x ∈-∞时()0h x > ()0g x '∴>()g x ∴递增,当(0,)x ∈+∞时,()0,()0,()h x g x g x '<∴<∴递减,所以当x →+∞时()0g x →,当x →-∞时,g(x)-→∞如图01a ∴<<评析:查阅高考评分标准,看出对参数a>0共分了三种情况讨论:(1)a=1(2)a>1(3)0<a<1,其中0<a<1时,要用函数零点的判定定理,找区间端点时非常困难,绝大多数同学完成不了。

含参数的不等式讨论

含参数的不等式讨论

含参不等式讨论(1)一元一次不等式分类讨论1已知关于x 的不等式k(x-2)>x+6,①解这个不等式,②若1不是这个不等式的解,0是这个不等式的解, 求k 的范围课堂练习11关于x 的一元一次不等式2-kx >k 的解是x >2,求k 的值?2关于x 的一元一次不等式3x -2<k 的正整数解是1,2,3,则求k 的取值范围?3解关于x 的不等式①k(x-2)>2x-4 ② (m 2-4)x <m +2 ③ (m-1)x<n(2)一元二次不等式分类讨论1解关于x 的不等式(1)x 2-2ax -3a 2<0(a <0). (2)x 2-5ax+6a 2〈0 (3) 2(2)20x a x a -++<.2解关于x 的不等式ax 2-(a +1)x +1<0.3解关于x 的不等式x -a x -a 2<04解关于x 的不等式x 2+ax+4>05已知常数a ∈R ,解关于x 的不等式ax 2-2x +a <0.课堂练习21解关于x 的不等式:①x 2-(2a+1)x+a(a+1)<0. ②223()0x a a x a -++>2设a 是任意实数,解关于x 的不等式:(a+3)x 2+2ax+a-3>0.3已知不等式mx 2-2x -m +1<0.(1)若对所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足|m |≤2的一切m 的值都成立,求x 的取值范围.课后练习1关于x 的不等式(2a -b)x+a -5b>0的解集是)710,(-∞,则关于x 的不等式ax>b 的解集是( ) A .),53(+∞ B .)53,(-∞ C .),53(+∞- D .)53,(--∞ 2已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________. 3已知函数f (x )=⎩⎪⎨⎪⎧ log 2x , x >0,x 2, x ≤0,则满足f (x )>1的x 的取值范围为________. 4函数d cx bx ax x f +++=23)(的图象如图所示.(1)方程0)(=x f 的解集是__________________________; (2)不等式0)(<x f 的解集是________________________;(3)不等式0)(>x f 的解集是________________________.5解下列不等式组⎪⎩⎪⎨⎧<->+<--②①)1)(3(20322m x m x x x6解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).7设a R ∈,函数22()2.f x x ax a =--,若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠,求实数a 的取值范围。

破解含参不等式恒成立的5种常用方法

破解含参不等式恒成立的5种常用方法

破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。

对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。

一 分离参数法分离参数法是解决含问题的基本思想之一。

对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。

例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。

分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。

解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。

)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。

于是工的取值范围为43-≥a 。

【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。

如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。

解这类问题时一定要注意区间的端点值。

二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。

含参数的不等式解集问题

含参数的不等式解集问题

专题含参数的不等式解集问题(重难点培优)1.若方程组{2x +y =4−m x +2y =2+3m的解满足x +y >0,则m 的取值范围为( ) A .m >﹣3 B .m >3 C .m <﹣3 D .m <32.若关于x 的方程x +k =2x ﹣1的解是负数,则k 的取值范围是( )A .k >﹣1B .k <﹣1C .k ≥﹣1D .k ≤﹣13.如果不等式(a ﹣3)x >a ﹣3的解集是x <1,那么a 的取值范围是( )A .a >0B .a <0C .a >3D .a <3 4.关于x 的不等式组{x −m <03x −1>2(x −1)有解,那么m 的取值范围为( ) A .m ≤﹣1 B .m <﹣1 C .m ≥﹣1 D .m >﹣15.若不等式组{x −1>1x <m无解,那么m 的取值范围是( ) A .m >2 B .m <2C .m ≥2D .m ≤2 6.已知关于x 的不等式组{4−2x ≥012x −a >0恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <−12 B .﹣1≤a ≤−12 C .﹣1<a ≤−12 D .﹣1≤a <−12 7.若关于x 的不等式组{x −2<03x +4>a −x恰好只有2个整数解,则所有满足条件的整数a 的值之和是( ) A .3 B .4 C .6 D .18.若不等式组{x >−a x >−b的解集为x >﹣b ,则下列各式正确的是( ) A .a ≥b B .a ≤b C .a >bD .a <b 9.若关于x 的不等式mx +m <﹣nx +n 的解集为x >−23,则关于x 的不等式mx ﹣m >2nx ﹣n 的解集是( ) A .x >43 B .x <43 C .x >−43 D .x <−4310.若整数a 是使得关于x 的不等式组{x−13+1>x 26x −5≥a有且仅有4个整数解,且使关于y 的一元一次方程2y+a5=y−a3+1的解满足y ≤87.则所有满足条件的整数a 的值之和为( )A .﹣35B .﹣30C .﹣24D .﹣17二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若关于x 的不等式组{3x −2≥12x −a <5,有且只有2个整数解,则a 的取值范围是 . 12.已知关于x ,y 的方程组{x −2y =m 2x +3y =2m +4的解满足不等式组{3x +y ≤0x +5y >0,则满足条件的m 的整数值为 .13.关于x 的方程2x ﹣2m =x +4的解为正数,则m 的取值范围是 .14.阅读理解:我们把|a b c d |称作二阶行列式,规定它的运算法则为|a b c d |=ad ﹣bc ,例如|1324|=1×4﹣2×3=﹣2,如果|23−x 1x|>0,则该不等式的解集是 . 15.若关于x 的不等式ax <﹣bx +b (a ,b ≠0)的解集为x >12,则关于x 的不等式ax >2bx +b 的解集是 .16.若关于x 的不等式x ﹣a >0恰好有两个负整数解,则a 的范围为 .17.若关于x 、y 的二元一次方程组{2x +y =3−a x +2y =4+2a的解满足x +y <1,则a 的取值范围为 . 18.已知关于x 的不等式(a +3b )x >a ﹣b 的解集为x <−53,则关于x 的一元一次不等式bx ﹣a >0的解集为 .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.若关于x ,y 的方程组{x +2y =3m −62x +y =3的解满足x +y <2,求出满足条件的m 的所有非负整数值.20.已知关于x ,y 的二元一次方程组{3x +y =4m +2x −y =6. (1)用含有m 的式子表示上述方程组的解是 ;(2)若x 、y 是相反数,求m 的值;(3)若方程组的解满足x +y <3,求满足条件的m 的所有非负整数值.21.已知关于a 、b 的方程组{a −b =1+3m a +b =−7−m中,a 为负数,b 为非正数. (1)求m 的取值范围;(2)化简:|m ﹣3|+|m +2|;(3)在m 的取值范围内,当m 为何整数值时,不等式2mx ﹣3>2m ﹣3x 的解集为x <1.22.在实数范围内定义一种新运算“⊕”其运算规则为:a ⊕b =2a −32(a +b ),如1⊕5=2×1−32(1+5)=﹣7.(1)若x ⊕4=0,则x = .(2)若关于x 的方程x ⊕m =﹣2⊕(x +4)的解为非负数,求m 的取值范围.23.已知方程组{x +y =−7−m x −y =1+3m的解为{x =a y =b 满足a 为非正数,b 为负数. (1)求m 的取值范围;(2)化简:|2m ﹣6|+|2m +4|; (3)在m 的取值范围内,当m 为何整数时,关于x 不等式2mx +x <2m +1的解集为x >1.24.已知关于x 的不等式2m−mx2>12x ﹣1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集。

含参数的不等式

含参数的不等式

含参数的不等式1. 解关于x 的不等式:a 1 >+x解:1°若 a>0 则: x +1<-a 或 x +1>a ∴ x <-a-1 或 x >a-1 解集为:{}1a 1a |->--<x x x 或 2°若 a<0 则:解集为:R3°若 a=0 则:不等式为:0 1 >+x 解集为: {}1|-≠x x2. 解关于x 的不等式:1a 13 +>+x解:1°当a+1>0即a> -1时得:3x+1<-a-1 或 3x +1>a+1∴ 323a--<x 或 3a>x∴解集为: ⎭⎬⎫⎩⎨⎧>--<3a 323a |x x x 或2°当a+1<0即a< -1时得: 解集为:R3°当a+1=0即a= -1时得:013>+x ∴解集为:⎭⎬⎫⎩⎨⎧≠∈31,R |x x x3. 解关于x 的不等式:1a 2 +≤-x解:1°当a+1>0即a> -1时得:1a 21a +≤-≤--x ∴3a 1a +≤≤+-x解集为:{}3a 1a |+≤≤+-x x2°当a+1<0即a< -1时得: 解集为:φ 3°当a+1=0即a= -1时得:02≤-x ∴解集为:{}2|=x x4. 解关于x 的不等式: 0k )1k (2>++-x x解:令 0k )1k (2=++-x x 得:0)k )(1(=--x x ∴ x 1=1 x 2 = k1°当 k>1 时 解集为:{}k 1|><x x x 或2°当k<1 时 解集为:{} 1 k |><x xx 或 3°当k=1 时不等式为:1)1(2>-x 解集为:{} 1 , R |≠∈x x x5. 解关于x 的不等式:x 2-3 (a+1)x + 2(a+1)2 ≤0解:令 x 2-3 (a+1)x +2(a+1)2=0 得:[])1a (2+-x [])1a (+-x =0 ∴ x 1=2a+2 ,x 2=a+1 1°当2a+2>a+1即a> -1时,得解集为: {}1a 1a 2|+≤≤+x x 2°当2a+2<a+1即a< -1时,得解集为:{}1a 21a |+≤≤+x x 3°当2a+2=a+1即a= -1时,不等式为:x 2≤0,解集为:{}0|=x x6. 解关于x 的不等式:x 2-a (a+2)x +2a 3>0解:令 x 2-a (a+2)x +2a 3=0 得:(x -a 2)(x -2a)=0, ∴ x 1=a 2 x 2=2a1°当a 2>2a 即a<0或 a>2时,得解集为:{}2a a 2|><x x x 或 2°当a 2<2a 即0<a<2时, 得解集为:{}a 2 a |2><x x x 或 3°当a 2=2a 时,a=0 或 a=2a=0 时,解集为:{} 0 R |≠∈x x x 且a=2 时,解集为:{} 4 R |≠∈x x x 且7. 解关于x 的不等式:a x 2+(a+1)x +1<0解:1°a=0 时,解集为:{}1|-<x x2°a ≠0 时,令 a x 2+(a+1)x +1=0 得:(a x +1)(x +1)=0 ∴x 1=a 1-, x 1= 1-若 a ≥1 解集为:⎭⎬⎫⎩⎨⎧-<<-a 11|x x若 0<a<1 解集为:⎭⎬⎫⎩⎨⎧-<<-1a 1|x x若 a<0解集为:⎭⎬⎫⎩⎨⎧->-<a 1 1|x xx 或8. 设 A={}02|2<--x x x ,B={}03a 2a )2a 2(|22<-+++-x x x ,若 A B A = ,求: a 的取值范围 。

巧解:基本不等式中含参数不等式恒成立问题

巧解:基本不等式中含参数不等式恒成立问题

巧解:基本不等式中含参数不等式恒成立问题一、温故知新如果a , b ∈R +,那么 (当且仅当a =b 时,式中等号成立) 二、 典例精讲典例1、正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(-∞,6]D .[6,+∞)解:a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9ab≥16⎝ ⎛⎭⎪⎪⎫当且仅当⎩⎪⎨⎪⎧a =4,b =12时取“=”,故只需-x 2+4x +18-m ≤16,得x 2-4x +m -2≥0恒成立,即Δ=16-4(m -2)≤0,解得m ≥6.故选D.典例2、已知a >b >c ,若1a -b +1b -c ≥n a -c ,求n 的最大值.解法一:∵1a -b +1b -c ≥na -c ,且a >b >c ,∴n ≤a -ca -b +a -c b -c =(a -c )2(a -b )(b -c ).ab b a ≥+2∵对a 、b 、c 上式都成立,∴n ≤⎣⎢⎡⎦⎥⎤(a -c )2(a -b )(b -c )min(a -c )2(a -b )(b -c )≥(a -c )2⎣⎢⎢⎡⎦⎥⎥⎤(a -b )+(b -c )22=4. ∴n 的最大值为4.解法二:∵a >b >c ,∴a -ca -b +a -cb -c=(a -b )+(b -c )a -b +(a -b )+(b -c )b -c=2+b -c a -b+a -b b -c≥2+2=4.∴n ≤4,∴n 的最大值为4. 三、 归纳总结基本不等式中含参数恒成立问题:利用基本不等式性质先求出最值,然后分离参数即可得出参数的范围。

四、 迎接挑战1、若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________. 2、已知实数a >0,b >0,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m ,对任意的正实数x ,y 恒成立,则实数m 的取值范围是( )A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4)答案:1、解析:∵x >0,∴xx 2+3x +1=1x +3+1x≤12+3=15 ∴a ≥15.2、解:因为a ,b ,x ,y为正实数,所以(x +y )·⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ayx =bxy,即a =b ,x =y 时等号成立,故只要m <4即可.故选D.。

含参不等式的例题

含参不等式的例题

含参不等式的例题含参不等式是指在不等式中包含了参数的不等式。

在数学中,含参不等式是一个重要的分支,可以用来解决许多实际问题。

下面是一些例题和相应的拓展。

1. 不等式:|x - 2| > 3 中的参数 x解:这是一个典型的含参不等式,其中 x 是不等式中的参数。

我们可以使用不等式化简的方法求解 x 的值。

首先,我们将不等式化简为:|x - 2| > 3x - 2 > 3 或 x - 2 < -3相加得到:x > 5 或 x < -2因此,当 x > 5 时,不等式成立。

当 x < -2 时,不等式不成立。

拓展:我们还可以使用参数积分的方法求解 x 的值。

具体来说,我们可以使用参数积分的方法来求解如下的含参不等式: ∫(x - 2) > 3解:我们可以将不等式化简为:x - 2 > 3这样,我们就将不等式化简成了一个简单的不等式,可以直接求解 x 的值。

拓展:另一个重要的含参不等式是均值不等式,它可以用来求解两个数的和大于第三个数的问题。

具体来说,我们可以使用均值不等式来求解如下的含参不等式:(x + y) / 2 > z解:我们可以将不等式化简为:x + y > 2z因此,我们可以使用均值不等式来求解 x 和 y 的取值,使得不等式成立。

具体来说,我们可以将 x 和 y 的和取模,即x + y = (x + y) / 2 * |x + y|因此,我们可以得到:(x + y) / 2 > zx + y > 2z因此,我们可以得到:x + y > 4z因此,我们可以得到:x > 2z 或 y > 2z因此,当 x > 2z 时,不等式成立。

当 y > 2z 时,不等式不成立。

总结起来,含参不等式是数学中一个重要的分支,可以用来解决许多实际问题。

在求解含参不等式时,我们需要先化简不等式,然后选择合适的方法求解 x 的值。

含参数的一元二次不等式题(答案)

含参数的一元二次不等式题(答案)

一元二次不等式 参考例题(2)1.(1)解不等式121≤-xx (}0,1|{>-≤x x x 或)(2)不等式11<-x ax的解集为}21|{><x x x ,或,求a 的值. (21=a )2.解下列关于x 的不等式:(1)01)1(2<++-x a a x (2))23(0)3)(2(-≠≠<-+-a a x x a x ,且}1|{01,1)3(1)2(}1|{10,1)1(a x ax a a a ax a x a a <<<<->Φ±=<<<<-<时,或当时,当时,或当 }3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当(3)01)1(2<++-x a ax (4)0)2)(2(>--ax x }11|{1)5(1)4(}11|{10)3(}1|{0)2(}1,1|{0)1(<<>Φ=<<<<>=><<x ax a a ax x a x x a x ax x a 时,当时,当时,当时,当或时,当}2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x ax x a x x a ax x x a x x a x ax a 或时当时当或时当时当时当(5)012<++x ax (6))(11R a a x x∈-<-Φ≥-+-<<---<<-<=--->-+-<<时,当时,当时,当或时,当41)4(}24112411|{410)3(}1|{0)2(}2411,2411|{0)1(a a a x a a x a x x a aax a a x x a }1,1|{0)3(}1|{0)2(}11|{0)1(a a x x x a x x a x aa x a -><<<=<<->或时,当时,当时,当3.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.(22≤<-a )(2)若不等式13642222<++++x x m mx x 的解集为R ,求实数m 的取值范围.(31<<m )4.(1)已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,①若A B ,求实数a 的取值范围.;(2>a )②若A B ⊆,求实数a 的取值范围.;(21≤≤a )③若B A 为仅含有一个元素的集合,求a 的值.(1≤a )(2)已知}031|{≤--=x x x A ,B B A a x a x x B =≤++-= 且},0)1(|{2,求实数a 的取值范围. (31<≤a )(3) 关于x 的不等式2)1(|2)1(|22-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 与B , 若B A ⊆,求实数a 的取值范围. (31,1≤≤-=a a 或)(4)设全集R U =,集合}3|12||{},01|{<+=≥+-=x x B x ax x A ,若R B A = , 求实数a 的取值范围. (12≤≤-a )(5)已知全集R U =,}034|{},082|{},06|{2222<+-=>-+=<--=a ax x x C x x x B x x x A ,若C B A ⊆)( ,求实数a 的取值范围.( 21≤≤a )。

(完整版)含参不等式题型

(完整版)含参不等式题型

含参不等式题型一、给出不等式解的情况,求参数取值范围:总结:给出不等式组解集的情况,只能确定参数的取值范围。

记住:“大小小大有解;大大小小无解。

”注:端点值格外考虑。

(x > -31:已知关于 x 的不等式组〈lx < a。

(1)若此不等式组无解,求 a 的取值范围,并利用数轴说明。

(2)若此不等式组有解,求 a 的取值范围,并利用数轴说明(x > a (y + a 之 12:如果关于 x 的不等式组〈无解,问不等式组〈的解集是怎样的?3、若关于 x 的不等式组〈的解集是 x>2a,则 a 的取值范围是。

4、已知关于 x 的不等式组〈> 1的解集为x > 2 ,则( )A.m > 2B.m < 2C.m = 2D.m 三 2lx < b ly + b 三 15、关于 x 的一元一次不等式组〈 的解集是 x>a,则 a 与 b 的关系为( ) (|x – 3(x – 2) 共 4 (x > a l x > bA.a > bB.a 共 bC.a > b > 0D.a 共 b < 0(x + 8 4x – 1 6、 若关于 x 的不等式组〈 的解集是x > 3 , 则 m 的取值范围是 x m (x < 8,7、 若关于 x 的不等式组〈 有解,则 m 的取值范围是__ ___。

( x < m + 18、 若关于 x 的不等式组〈 无解 ,则 m 的取值范围是。

二、给出不等式解集,求参数的值总结:给出不等式组确切的解集,可以求出参数的值。

方法: 先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。

1:若关于 x 的不等式组〈(2x – a < 1 的解集为 – 1< x < 1 ,求(a + 1)(b – 1) 的值。

2 :已知关于 x 的不等式组〈 a + 2x 的解集是1共 x<3 ,求 a 的值。

不等式组的含参问题

不等式组的含参问题

不等式组的含参问题不等式组的含参问题一:求解含参不等式组•问题描述:给定一个含有参数的不等式组,求解参数的取值范围,使得不等式组成立。

•解释说明:含参不等式组是指在多个不等式中,含有未知参数。

通过求解参数的取值范围,可以确定满足不等式组的解集。

问题二:参数的影响分析•问题描述:分析参数对不等式组解集的影响,即研究参数的变化如何影响不等式组的解集。

•解释说明:在含参不等式组中,参数的取值不同会导致解集的改变。

通过参数的影响分析,可以找出参数取值范围与解集的关系。

问题三:参数的极值问题•问题描述:对于含参不等式组,求解参数的极值点,使不等式组取得最值。

•解释说明:在求解参数的极值问题时,需要注意不等式组的约束条件和最值的定义,分析参数取极值时解集的特点。

•问题描述:研究参数在某些特殊取值时,不等式组所满足的特殊性质。

•解释说明:在含参不等式组中,当参数取某些特殊值时,解集可能具有特定的性质,如唯一解、无解、有无穷多解等。

问题五:参数的系统解问题•问题描述:对于复杂的含参不等式组,寻找参数的解集表达式或参数取值集合,使得不等式组的解集满足某些特定要求。

•解释说明:参数的系统解问题是在多个不等式之间存在约束条件的情况下,分析参数取值的限制条件,从而求得满足特定要求的解集。

问题六:参数的图像表示问题•问题描述:通过图像表示参数的取值范围,以直观地展示不等式组的解集。

•解释说明:参数的图像表示问题可以通过绘制不等式组的平面图或三维图,观察参数取值范围对解集形态的影响,从而更直观地理解不等式组。

以上是关于不等式组的含参的一些相关问题,通过解决这些问题,可以深入理解含参不等式组的特点和解集的性质。

•问题描述:分析含参不等式组中参数的取值,寻找满足特定约束条件的解集。

•解释说明:在含参不等式组中,参数的取值可能受到一定的约束条件,如参数的取值范围、参数与其他参数的关系等。

通过分析这些约束条件,可以确定满足特定条件的解集。

(整理)含参数不等式成立问题中参数范围的确定.

(整理)含参数不等式成立问题中参数范围的确定.

含参数不等式成立问题中参数范围的确定一.恒成立问题(全称命题) 1.分离参数法例 1:(2009海南一模)设()()()⎥⎦⎤⎢⎣⎡+-+++=n an n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。

解析: 当(]1,∞-∈x 时,()x f 有意义,故有()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛->⇔>+-+++xx x xxx n n n a a n n 11210121令()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=xx x n n n x 1121 ϑ,只要对()x ϑ在(]1,∞-上的最大值,此不等式成立即可。

故我们可以利用函数的最值分离出参数a 。

解: 由(]1,∞-∈x 时,()x f 有意义得:()0121>+-+++a n n xxx⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛->⇔xx x n n n a 1121 ,由指数函数单调性知上式右边的函数()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=xx x n n n x 1121 ϑ的最大值是()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=n n n n 1211 ϑ=()n -121故 a>()n -121温馨提示:适用题型;(1) 参数与变量能分离;(2) 函数的最值易求出。

利用这种方法可以顺利解决许多含参数不等式中的取值问题,还可以用来证明一些不等式。

例 2:(2009东营一模)已知向量:0),32,(cos ),cos ,sin 2(2>==→→ωωωω其中向量x b x x a , 函数→→⋅=b a x f )(,若)(x f 图象的相邻两对称轴间的距离为.π (1)求)(x f 的解析式; (2)若对任意实数]3,6[ππ∈x ,恒有2|)(|<-m x f 成立,求实数m 的取值范围.解:(1))2cos 1(32sin )32,(cos )cos ,sin 2()(2x x x x x x f ωωωωω++=⋅=⋅= 3)32sin(2++=πωx∵相邻两对称轴的距离为21,222,=∴=∴ωπωππ3)3sin(2)(++=∴πx x f(2)]32,2[3],3,6[πππππ∈+∴∈x x 32)(32+≤≤∴x f ,又m x f m m x f +<<+-∴<-2)(2,2|)(|若对任意]3,6[ππ∈x ,恒有⎪⎩⎪⎨⎧+≥+≤+-<-322322,2|)(|m m m x f 则有成立解得3223+≤≤m例 3:(2009北京市一模)已知函数32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参数不等式问题
在一定条件下,给出的一个带参数的不等式,对使不等式恒成立的参数进行讨论,或求其最 值,在数学竞赛中比较活跃的题型之一。

步骤:(1)估计参数上、下界
(2) 求出参数上、下界
(3) 证明不等式对上、下界恒成立
例1、求a 的范围,使得对任意
x 和€ [0 ,-]恒有
2
2 、2
(x 3 2sin • cos ) (x asin
a 丿 cos
111 M
M ,使一一 —>
a b c a b c
例3、求最大的常数c ,使得对满足x >o, y >0, x 2 y 2
cxy
例2 ♦设awbvc 是Rt △二边长‘求最大常数 6
1
的实数X, y 恒有X
方法:比较法、放编法、反射法、归纲法、算术、几何平均值不等式、柯西不等式、排序不等式例4、设a、b、c是Rt△三边长,且a w bv c,
求:最大常数k,使a2(b c) b2(c a) c2(a b) > kabc对任何Rt△恒成立.
例5、求最小的实数a,使得对任意非负x、y、z,且x + y+z=i,有a(x2
y2 z2) xyz> —.
3 27
多元函数的条件最(极)值求解
求函数最值问题是数学中一类重要问题,其中又以求多元函数的条件最(极)值为各竞赛的热点,解答此类问题,常常要应用到二次函数、三次函数的性质以及一般函数的各种基本性质,特别是凹凸性,以及几个重要不等式,如平均值不等式、柯西不等式等,除此之外,还要具有灵活变更问题的能力和较强的解题技巧•例如,对于某些多元函数的极值,常常要将某些变量固定而考虑少数几个变量的变化规律・因此,求解多元函数的条件最(极)值问题常采用函数法、不等式法、不变量法、冻结变量(先固定某些变量)法等.
1、函数法
例1、设X、y€ R,求函数f(x,y) x2 6y2 2xy 14x 6y 72的最小值,并求出取
得最小值时的x、y的值.
例2、设x€ R,试求函数f(x) (x2 4x 5)(x2 4x 2) 2x2 8x 1 的最小值.
例3、求三位数(十进制表示)与其各位数字之和的比的最小值.
例4、已知若干个正整数之和为 1976,求其积的最大值.
2
例5、求二元函数f (x, y) (x y) (x
例 6、已知 a,b,c,d R 試求 f (a,b,c,d) 的最小值.
例7、m 个互不相同的正偶数与n 个互不相同的正奇数的总和为
3nw4n 的最大值是多少?请证明你的结论.
1 2
1)的最小 y 值.
xx •对于所有这样的m 和n,。

相关文档
最新文档